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Abstract—Verification is a major bottleneck in today’s circuit
and system design. This includes the tasks of error detection,
error localization, and error correction in an implemented design
as well as the analysis and avoidance of transient faults. For all
those tasks, knowing for how long values of signals influence the
system is important.

In this paper, we propose a minimal and maximal latency
measure for sequential circuits. This measure explains how long
a circuit’s state and outputs depend on input stimuli. Exact and
heuristic algorithms are proposed to determine the measure.
Experiments show that the measure provides insight into the
behavior of circuit designs.

I. INTRODUCTION

Verification has become a major bottleneck in circuit and
system design. Up to 80% of the overall design cost are
due to verification. While there exists a lot of work for
formal verification, there are fewer approaches dedicated to
debugging (error localization and error correction) [1], [2], [3]
and understanding a counterexample often requires as much
as effort as coding a design. For debugging such erroneous
behavior, it is useful to know for how many time cycles a
sequential circuit has to be considered at least and at the
maximum to locate the source of erroneous output. By this,
localization and correction of bugs are supported.

Another upcoming application area of verification tools is
the analysis of transient faults [4], [5], [6], [7], [8]. Similarly,
for analyzing transient faults, it is of interest to know for how
many time cycles the fault may affect the output of the circuit
at the maximum. This is equal to the number of future time
steps a circuit’s behavior depends on.

In this paper we formally define the new terms minimal
latency and maximal latency of a sequential synchronous
circuit represented by a Finite State Machine (FSM). Our
approach investigates when an input assignment to a sequential
circuit is observed at the outputs and for how long the input
assignment influences the internal state. Three approaches to
compute the latency for synchronous sequential circuits are
proposed: (1) an exact approach based on Sequential Equiv-
alence Checking (SEC), (2) an under-approximation based
on 2-valued simulation, and (3) an over-approximation based
on 3-valued analysis. By this, if only the two approximate
approaches are applied, the difference between the results
indicates how accurate the results are. In many cases the
maximal latency of a circuit may be infinite because the design
under analysis contains loops. However, this is also decidable
by the SEC-approach. While we define latency with respect to
primary inputs, the technique can also be applied selectively
to parts of a circuit, like e.g., state elements or certain signals.
This further supports a designer in understanding observed
behavior.

The remaining part of this paper is organized as follows:
In Section II we review related work. FSMs and sequential
circuits are introduced in Section III. Section IV defines the
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term latency and explains the principle of the proposed latency
analysis. Experimental results on ITC’99 benchmarks are
presented in Section V. The paper is concluded in Section VI.

II. RELATED WORK

In the context of Bounded Model Checking (BMC) already
several measures have been proposed on synchronous sequen-
tial circuits represented by FSMs. Significant effort has been
spent to calculate the diameter [9], and the sequential depth
of circuits [10], [11], [12]. In [13], [14] further the recurrence
diameter is introduced.

The diameter d of circuits, i.e., the maximum length of
longest-shortest paths where no states are repeated, is required
to decide whether a proof in BMC is complete. In [9] the
analysis for the diameter is re-formulated as a Quantified
Boolean Formula (QBF) and reduced to a Boolean Satisfia-
bility Problem (SAT Problem).

The sequential depth s, which is the longest loop-free path
is an over-approximation s ≥ d of the diameter, since every
shortest path is a loop-free path. In [10] the sequential depth
of FSMs has been automatically determined by a simulation-
based approach using evolutionary algorithms while in [12] the
maximal length of potential counterexamples is determined
which depends on the sequential depth of the FSMs. The
authors further establish tighter bounds for the maximal length
of counterexamples by defining a recurrence diameter r which
differs from the sequential depth by considering initialized
loop-free paths in an FSM. Analogously to the sequential
depth it over-approximates the diameter r ≥ d. Kroening
and Strichman discuss various techniques to compute the
recurrence diameter efficiently in [14].

In [11] the robustness of BMC is increased by computing
lower bounds on the reachable states of the circuit. The lower
bounds are determined by using BDD-based reachability anal-
ysis. The bounds are then used to shorten the counterexample.

However, these approaches are different from our approach
in so far as the sequential depth and the recurrence diameter
are considered. In this paper we define and analyze the latency
of signals with respect to all (reachable) states as defined in
Section IV.

Prabhakar and Hsiao presented in [15] a debugging algo-
rithm using a logic implication-based learning approach [16]
to intelligently select trace signals. This is important because
an effective silicon debug technique uses a trace buffer to
monitor and capture a portion of the behavior during its post-
silicon operation. Due to the limited space, the selection of
critical trace signals plays an important role. By this, signals
are prefered which cover implications that are not implied by
other signals. This method is explicitly used for post-silicon
debug and concentrates on single signal traces. Our approach
can be used as a supplement to the debugging and post-
silicon debugging techniques discussed above as it restricts
the analysis to a certain time interval. Especially, for the
investigation of soft errors and their effects, considering the
latency of signals may reduce the effort for making circuits
robust.



III. PRELIMINARIES

This section provides the terminology used in the remainder
of this paper. FSMs model synchronous sequential circuits and
are defined in the following. We use the terms FSM and circuit
interchangeably.

Definition 1 (Finite State Machine (FSM)). An FSM is a 5-
tuple M = (I,O, S, δ, ω), where I is the input alphabet, O is
the output alphabet, S is a finite set of states, δ : S×I → S is
the state-transition function, and ω : S× I → O is the output
function.

The state-transition function δ : S × I → S determines the
next state of the machine based on its current state and inputs.
The output function ω : S × I → O determines the output of
the machine based on its current state and inputs.

A synchronous sequential circuit modeled by an FSM has
a finite number n of primary inputs (pi0, . . . , pin), a finite
number m of primary outputs (po0, . . . , pom), and a finite
number k of state or memory elements (s0, . . . , sk). Since
synchronous sequential circuits are considered, each applica-
tion of δ transfers the state of the circuit from one time cycle
to the next time cycle. To indicate the time step we use the
superscript t, like e.g., pitpitpit denotes the primary input signals
at time step t. The functions δ and ω are computed by the
combinational part of the circuit.

st+1st+1st+1 = δ(st, pitst, pitst, pit)

potpotpot = ω(st, pitst, pitst, pit)

where pitpitpit ≡ (pit0, . . . , pi
t
n), sss ≡ (st0, . . . , s

t
k), st+1st+1st+1 ≡

(st+1
0 , . . . , st+1

k ), potpotpot ≡ (pot0, . . . , po
t
m).

The transition relation τ of the circuit is derived from δ.

Definition 2 (State-transition relation τ ). Given an input pitpitpit ≡
(pit1, . . . , pi

t
n), a current state ststst ≡ (st1, . . . , s

t
k), a next state

st+1st+1st+1 ≡ (st+1
1 , . . . st+1

k ), and a state-transition function δ then
the characteristic function of the transition relation τ of an
FSM is defined as:

τ(ststst, pitpitpit, st+1st+1st+1) = st+1st+1st+1 ≡ δ(st, pitst, pitst, pit)

If τ(ststst, pitpitpit, st+1st+1st+1) evaluates to 1, this implies that there exists
a transition from state ststst to st+1st+1st+1.

Based on the notations above we define the unrolling ρtC of
a circuit C for t time steps by

ρtC =

t∧
i=0

τ(sisisi, piipiipii, si+1si+1si+1) ∧ poipoipoi ≡ ω(si, pii)ω(si, pii)ω(si, pii)

We use symbols γtγtγt, νtνtνt, ototot to denote elements of I , S,
and O. These correspond to assignments to pitpitpit, ststst, and potpotpot,
respectively. A path π of an FSM is defined as follows.

Definition 3 (Path π). A path π from a concrete state ν0ν0ν0 to
another concrete state νtνtνt in an FSM M is given by

π = (ν0ν0ν0, γ0γ0γ0, ν1ν1ν1, γ1γ1γ1, . . . , γt−1γt−1γt−1, νt)νt)νt)

with state values νjνjνj = (νj0 , ν
j
1 , . . . , ν

j
k) ∈ S,

primary input values γiγiγi = (γi0, γ
i
1, . . . , γ

i
n) ∈ I ,

and τ(νiνiνi, γiγiγi, νi+1νi+1νi+1) = 1 (i = 0, . . . , t− 1 and j = 0, . . . , t).
The length of the path π is given by t.

Lemma 1. Given an FSM M . π is a path in M of length t
iff ρtC is satisfied when variables corresponding to input and
state elements are restricted to to the values given by π.

In the following we consider two-valued simulations as well
as two-valued and three-valued SAT-encodings of circuits. The

input alphabet I , the output alphabet O, and the states S will
either be based on B = {0, 1}, or on A = {0, 1, X}, where
X denotes an unknown value.

IV. LATENCY ANALYSIS

In this section we first describe the idea behind this paper
and formally define latencies of a circuit. In this context the
terms minimal latency and maximal latency for primary inputs
with respect to the primary outputs are introduced. After this,
we present three approaches to calculate latency values and
show that the presented methods can be extended, for example,
to analyze the latency of parts of a circuit.

A. Idea
If incorrect behavior is observed at the primary outputs of a

circuit C, it is often not clear what triggered this misbehavior
and what the reason of a faulty computation was. The idea of
the proposed approach is to compute the latency of signals.
That means, we investigate, how long signal assignments
are affecting the computation of the circuit and when the
assignment of values on the signal becomes observable at
the primary outputs, respectively. In our presentation we
concentrate on primary inputs but alternatively other signals
may be considered.

We define the maximal latency λ of synchronous sequential
circuits as follows.

Definition 4 (Maximal Latency λ). Given an FSM M for a
sequential circuit, the maximal latency is the maximal number
λ with the following property:

There exists a path

π = (ν0ν0ν0, γ0γ0γ0, ν1ν1ν1, γ1γ1γ1, . . . , γλ−1γλ−1γλ−1, νλ)νλ)νλ)

and a path

π′ = (ν0ν0ν0, γ′0γ′0γ′0, ν′1ν′1ν′1, γ1γ1γ1, . . . , γλ−1γλ−1γλ−1, ν′λ)ν′λ)ν′λ)

with different primary input values γ0γ0γ0 6= γ′0γ′0γ′0,
different state values νjνjνj 6= ν′jν′jν′j (j = 1, . . . , λ),
and equal state values νtνtνt ≡ ν′tν′tν′t with t > λ.

Conceptually, after more than λ time steps a value at the
primary inputs cannot influence the internal state of the circuit.
Consider the analysis of transient faults. A transient fault flips
a value in the circuit. The fault effect leaves the system after
at most λ cycles. This particularly holds, as our approach
considers any configuration of state bits including potentially
unreachable states that might only occur due to transient faults
in practice. We do not use the primary outputs pojpojpoj and po′jpo′jpo′jfor
measuring the maximal latency because of loops, a difference
at the primary outputs may only be observable every few time
cycles. On the other hand, a difference between state elements
sjsjsj and s′js′js′j is measurable over all time cycles. By this, the
maximal latency value may be infinite. More on that later.

Similarly, we define the minimal latency µ over the primary
outputs of a circuit.

Definition 5 (Minimal Latency µ). Given an FSM M for a
sequential circuit, then the minimal latency is the minimal
number µ with the following property:

There exists a path

π = (ν0ν0ν0, γ0γ0γ0, ν1ν1ν1, γ1γ1γ1, . . . , γµ−1γµ−1γµ−1, νµ)νµ)νµ)

and a path

π′ = (ν0ν0ν0, γ′0γ′0γ′0, ν′1ν′1ν′1, γ1γ1γ1, . . . , γµ−1γµ−1γµ−1, ν′µ)ν′µ)ν′µ)

with different initial primary input values γ0γ0γ0 6= γ′0γ′0γ′0,
different state values νjνjνj 6= ν′jν′jν′j (j = 1, . . . , µ),



t 0 1 2 3
pi1pi2 11 01 00 11
pi′1pi

′
2 01 01 00 11

po1po2 10 }
µ

00 00 11
po′1po

′
2 00 00 00 10

s1s2s3s4 0000 1000 0010 0101 }
λ

s′1s
′
2s

′
3s

′
4 0000 0000 0000 0100

Fig. 1. Example circuit

and the values of the primary outputs are different oµoµoµ 6= o′µo′µo′µ

for time cycle µ.

The values of the primary outputs are computed by oµoµoµ =
ω(νµ, γµνµ, γµνµ, γµ), o′µo′µo′µ = ω(ν′µ, γµν′µ, γµν′µ, γµ),
with oµoµoµ = (oµ0 , . . . , o

µ
m) ∈ O,o′µo′µo′µ = (o′µ0 , . . . , o

′µ
m) ∈ O.

In other words, µ represents the first influence of values
at primary inputs on the values of primary outputs. When
debugging, an erroneous output value must be explained and
understood. In this case, the input assignments of at least µ
time steps in the past must be considered, but at most λ time
steps in the past are relevant for the explanation.

Example 1. In Fig. 1 we illustrate a simple sequential circuit.
If there is an erroneous output for a given input stimulus, the
circuit has to be unrolled for µ = 0 time cycles at the minimum
and for λ = 3 time cycles at the maximum to reproduce the
faulty output. The path for the minimal latency is in bold in the
figure. In the table we give an example for the assignment of
the primary inputs to retrieve the latency values. Assignments
for 4 time cycles t = 0, . . . , 3 are given. By definition, for
t = 0 different assignments to the primary inputs are applied
and the initial state values are equal. For this case, we get
a minimal latency µ = 0. In all following time cycles equal
assignments are applied to the primary inputs, such that a
difference is observable at the state elements. In time cycle 4
no longer a difference is observable. The entries in the table
which explain the latency values are bold-faced.

In this case, 0 is also the number of flip flops on the shortest
structural path from a primary input to a primary output and
3 is the number of flip flops on the longest structural path to a
primary output plus one. This suggests a structural approach
to determine the latency. But in general a structural approach
is not exact as it neglects the functionality of the circuit.

In comparison, the diameter is defined as the longest of
all shortest paths between the initial state and every other
reachable state. In addition, no equal states on the path should
occur. By this, the minimal latency is similar to a single
shortest path from an initial state to a certain reachable state.
In contrast, the sequential depth and the recurrence diameter
are completely different from the minimal and the maximal
latency, respectively. For example, consider a simple circuit
consisting of just 1 state element. Both the sequential depth
and the recurrence diameter are 2 while the minimal and the
maximal latency are 1. Extending this example to n state
elements, like e.g. an n-bit memory we get 2n as sequential
depth while the maximal and the minimal latency are still 1.
Thus, µ and λ can be exponentially smaller than r and d.
Vice versa for other circuits λ can be infinite while r and
d are linear in size, since both the definition of the minimal
latency and the definition of the maximal latency do not have
the restriction of being loop-free but the restriction that there
have to exist two different paths fulfilling the constraints.

Fig. 2. Principle of latency analysis with equivalence check

B. Realization
We present three approaches to compute the latency of

a circuit C. Depending on the approach either exact or
approximate values for the minimal latency µ and maximal
latency λ are returned. The first approach is based on SEC
and the second approach is based on 3-valued BMC. For both
approaches a SAT-instance is created and the circuit considered
is unrolled incrementally. The third approach is simulation-
based. The three procedures are compared and discussed at
the end of this section.

Note, that we do not consider reachability issues in the
following but each of the algorithms can be restricted to
reachable states. In this case, both the values for the minimal
latency µ and the maximal latency λ may vary. But, especially
regarding transient faults a circuit also can get into a state
which is actually unreachable during normal operation.

1) SEC-based Latency Analysis: The SEC approach is
based on two-valued logic using an input alphabet I = Bn,
states S = Bk, and an output alphabet O = Bm, where
B = {0, 1}. The circuit C and a copy C ′ of C are unrolled for
t time steps and an equivalence check is carried out between
both circuits. This is formulated by ρtC ∧ ρtC′ . The principle
of this method is shown in Fig. 2 that illustrates the structure
of the underlying SAT-instance. The SAT-instance is the basis
to decide whether λ ≥ t or µ ≤ t. Additional constraints
at primary inputs, primary outputs, and states are required to
determine the latency.

For SEC a circuit C and the copy C ′ are considered. For
the initial states s0s0s0 and s′0s′0s′0 identical assignments are assumed,
such that:

σ0
SEC =

k∧
i=0

s0
i ≡ s′0i

C and C ′ are unrolled incrementally as shown in Fig. 2.
In all time cycles t > 0 equivalent signal assignments are
assumed for the primary inputs of both circuits:

ιtSEC =

t∧
j=1

n∧
i=0

piji ≡ pi
′j
i .

Now, the minimal latency is given as µ = t by the first time
cycle t where the following formula is satisfiable. The symbol
⊕ denotes the XOR function.



Fig. 3. Conservative X propagation

φSEC = ρtC ∧ ρtC′ ∧ σ0
SEC ∧ ιtSEC ∧

m∨
i=0

poti ⊕ po′ti

To apply incremental satisfiability [17], this SAT-instance is
created starting at t = 0 to iteratively increase t until finding
a satisfying assignment.

And corresponding to this, the maximal latency is given by
λ = r− 1 if the following formula is satisfiable for t ≤ r− 1
and unsatisfiable for t = r:

σSEC = ρtC ∧ ρtC′ ∧ σ0
SEC ∧ ιtSEC ∧

k∨
i=0

sri ⊕ s′ri

With this method we exactly determine when an assignment
at the primary inputs pi0pi0pi0 will be observable at the primary
outputs potpotpot for the first time and for how long an assignment
at the primary inputs maximally affects the circuit.

Theorem 1. SEC-based latency analysis calculates µ and λ.

Proof: The unrolling of the circuit is satisfiable by apply-
ing values corresponding to a path in the circuit. Now consider
µ at first. If there exists no assignment for t such that there
are differences at the primary outputs, then there exist no two
paths as required by Definition 5. Since the circuit is unrolled
incrementally, the smallest t is determined where two paths
exist as required by Definition 5.

This is similar for λ: If there exists an assignment for the
circuit such that there are differences in the state variables,
this assignment and the corresponding paths will be found for
the same reason.

2) 3-Valued Approach: The 3-valued method uses an input
alphabet I = An, states S = Ak, and an output alphabet
O = Am, where A = {0, 1, X}. We encode the well-
known semantics of 3-valued simulation into the SAT-instance.
However, 3-valued simulation is known to be conservative in
the propagation of an X , such that an X may be propagated
instead of an actual value.

Example 2. In Fig. 3 we show an example for the conservative
propagation of X . For the assignment of a = 1 and b = X we
will get an X at output f . However, the circuitry driven by b
is redundant. Consequently, independently of the assignment
of b, f is functionally equivalent to a.

The principle of the 3-valued approach is shown in Fig. 4
and described below. Initially, the unknown value X is as-
signed to at least one of the primary inputs pi0i ∈ I such that

ι03V =

n∨
i=0

pi0i ≡ X.

At the same time it has to be ensured that no X has been
assigned to the initial state variables s0

i because otherwise an

Fig. 4. Principle of 3-valued latency analysis

X may be recognized at the outputs poti that did not originate
at the inputs pi0i :

σ0
3V =

k∧
i=0

s0
i 6= X

Subsequently, the circuit is unrolled incrementally analo-
gous to the SEC approach and the primary outputs poti are
checked whether an X is assigned to one of them in time step
t. This is expressed by the following formula:

φt3V = ρtC ∧ ι03V ∧ σ0
3V ∧

m∨
i=0

poti ≡ X. (1)

With satisfying Formula (1) in time cycle t we have an
under-approximation µ3V = t for the minimal latency.

Similarly, the maximal latency λ is determined by checking
for how long the X is propagated through the state elements
sti. Thus, we have an over-approximation λ3V = t for the
maximal latency, if the following formula is unsatisfiable at
time cycle t:

σt3V = ρtC ∧ ι03V ∧ σ0
3V ∧

k∨
i=0

sti ≡ X.

Theorem 2. Let µ3V be calculated by the 3-valued approach
and µ be the exact latency. Then µ3V ≤ µ.

Proof Idea: Given an exact value µ there exist two paths
π and π′. Then there exists an assignment π3V to σµ3V derived
from π and π′, such that σµ3V (π3V ) = 1.

In addition, because the value X is propagated conserva-
tively through the circuit, as shown in Example 2, an X can
be observed at time cycle t < µ, such that µ3V ≤ µ.

Theorem 3. Let λ3V be calculated by the 3-valued approach
and λ be the exact latency. Then λ3V ≥ λ.

Proof: Analogously to µ3V ≤ µ, λ3V ≥ λ is proven.
3) Simulation: In the simulation-based approach certain

values are randomly simulated at the input signals piti of a
circuit C in each time cycle t. An approximation λSim for
the maximal latency λ and an approximation µSim for the
minimal latency µ are determined corresponding to the same
constraints described for the SEC-based approach. To compare
simulation to the other procedures the initial state signals are
assigned with random values such that also unreachable states
are created.

Theorem 4. With simulation latency values are obtained that
over-approximate the minimal latency µSim ≥ µ and under-
approximate the maximal latency λSim ≤ λ.

Proof: Since only random values are simulated, as a
consequence assignments may be missed, that lead to a smaller
value for µ or to a larger value for λ.

C. Comparison of the Approaches
The proposed procedures may deliver different values for

the latency of the same circuit. The SEC-approach yields exact



values for µ and λ that are in between the results of the
simulation-based approach and the 3-valued approach:

µ3V ≤ µSEC = µ ≤ µSim
λ3V ≥ λSEC = λ ≥ λSim

The simulation-based approach tends to over-approximate µ
and under-approximate λ while the 3-valued approach applies
conservative X-propagation that under-approximates µ and
over-approximates λ.

D. Extensions
The methodologies proposed above can be extended in

several ways. Typically, the functionality of certain primary
inputs is known. For example, consider a counter with a reset
input. Resetting one copy of the counter while not resetting a
second copy will cause the two circuits to remain in different
states for an unbounded number of future time steps. In such
a case restricting the latency analysis to the remaining inputs
is useful.

In general, a set of inputs may be excluded from the analysis
as follows. Given a set Γ ⊆ {1, . . . , n} the latency analysis is
performed by replacing the constraints ι0SEC on the primary
inputs for the SEC-based approach by

ι′0SEC =
∨
i∈Γ

pii ⊕ pi′i ∧
∨
i/∈Γ

pii ≡ pii

and the constraints ι03V on the primary inputs for the 3-valued
approach by

ι′03V =
∨
i∈Γ

pii ≡ X ∧
∧
i/∈Γ

pii ⊕X.

Otherwise the approaches are working as described above.
Analogously, the analysis may be restricted to a set of state
variables, a set of output variables, or to certain internal
variables, respectively.

Having loops in a circuit, often the primary input values
can be chosen such that the difference in the states can be
propagated over all time cycles. To avoid an infinite run of the
approaches a possible extension is loop detection. With loop
detection we check whether a current state where latency is
still observable represents a repeated state of the covered path.
Loop detection has been implemented for SEC and is only
carried out if already a minimal latency µ has been observed.
Given two paths π = (νµνµνµ, γµγµγµ, νµ+1νµ+1νµ+1, γµ+1γµ+1γµ+1, . . . , γt−1γt−1γt−1, νt)νt)νt) and
π′ = (ν′µν′µν′µ, γµγµγµ, ν′µ+1ν′µ+1ν′µ+1, γµ+1γµ+1γµ+1, . . . , γt−1γt−1γt−1, ν′t)ν′t)ν′t) with t ≤ λ loop
detection LD is defined by

LD =

t−1∨
i=µ

νiνiνi ≡ νtνtνt ∧ ν′iν′iν′i ≡ ν′tν′tν′t.

With this formula loops in both paths π and π′ are detected
in the same time cycle t. Note that there may be different
loops in the two copies of the circuit with different lengths k
and l. These loops are detected in time cycle t = k · l.

V. EXPERIMENTAL RESULTS

The latency analysis approaches described in the previous
section have been evaluated on a set of ITC’99 benchmark
circuits. These include among other functionality FSMs (b01,
b02), an arbiter (b03), simple algorithms and games (b04,
b12), and parts of processors (b14, b15). The considered
benchmarks consist of up to 243k gates (b19). More infor-
mation about the properties of the benchmarks is available
in [18].

The experiments have been carried out on an Dual-Core
AMD Opteron(tm) Processor 2222SE with 64 GB of memory.
The latency values µ and λ as well as the run times in CPU
seconds have been measured. We restricted the latency analysis
for all approaches to a time limit of 60 minutes per instance.
In addition, the simulation-based procedure has been limited
to 2000 simulation traces and 2000 time cycles per simulation
trace at the maximum for the same instance. Since the intro-
duced measures are new, there exist no other approaches for
the latency analysis of circuits. Thus, a comparison to other
procedures is not possible so far.

In Table I at first the three proposed procedures are com-
pared to each other. In addition, in column SECld SEC is
carried out with loop detection. A time out is denoted as t.o.
Time outs are especially expected for circuits with loops for
the computation of the maximal latency using SEC or the 3-
valued approach. In the case of a time out the maximal latency
λ represents the time cycle t, where the analysis procedure
was canceled. Consequently, λ ≥ t can be assumed. The run
times are relatively small for calculating the minimal latency,
where only a few time steps have to be considered. Only
for calculating the maximal latency, run time becomes an
issue. Interpolation techniques could be used to speed up the
calculation as shown for reachability analysis before [19].

The minimal latency µ which is quite small is retrieved
for almost all circuits by the SEC-based exact approach. Also
the two heuristic approaches retrieve the exact values in most
cases. Simulation coarsely over-approximates µ only in case
of b09 where a value of 10 is retrieved instead of the exact
value 1. The 3-valued approach is even more accurate, where
µ is underestimated by one for b11, while the exact result is
retrieved in all other cases. For the large benchmarks b18 and
b19 the two heuristic procedures provide an approximation for
the latencies. Both approaches return the same value for the
minimal latency. Thus, the value is exact.

The computation of the maximal latency λ with SEC
exceeds the time limitation in most cases. This also happens
for the 3-valued over-approximation. The reason for the long
run times of the approaches is explained by the SEC approach
with loop detection. In all cases where the analysis runs out
of time, a loop is detected which leads to infinite maximal
latency values.

Due to the large search space, the simulation-based ap-
proach is quite inaccurate when the maximal latency is con-
sidered. This behavior is expected as in many cases a circuit
may be influenced for an unbounded number of time steps by
certain events – remember the example of a counter with a
reset signal in Section IV-D.

The simulation runs additionally yield statistical data about
the circuit. For example, µ and λ are equal for b02 for all
random simulation runs. This means if an error is recognized
at the primary outputs it will most likely disappear in the next
time cycle. For benchmark b07 a difference at the primary
inputs does not affect the primary outputs for 90% of the
simulation runs. Similarly, for b11 just in 4% of all runs
different input stimuli affect the primary outputs.

Next we consider different results for the minimal latency
of single input variables in Table II. Only those circuits are
shown where the minimal latency varies for different inputs.
In the table we give the range of µ for individual inputs of
a benchmark. As can be seen the variation is quite small for
most circuits – an exception is b08. Assigning different input
values to single primary inputs, a minimal latency between 1
and 17 is observed. A further enhancement of the resolution
is possible by separately considering each output or sets of
outputs that are important for debugging, e.g., where an error
has been observed.



TABLE I
RESULTS FOR MINIMAL LATENCY µ AND MAXIMAL LATENCY λ

benchmark SEC 3V Simulation SECld
#pi #po #ff µSEC λSEC time µ3V λ3V time µSim λSim time µSECld

#cycles(λSECld
) time

µSEC λSEC µ3V λ3V µSim λSim µSECld
λSECld

b01 2 2 5 1 6 < 1 < 1 1 ≥ 2037 < 1 t.o. 1 5 < 1 < 1 1 6 < 1 < 1
b02 1 1 4 2 5 < 1 < 1 2 ≥ 2955 < 1 t.o. 2 4 < 1 < 1 2 5 < 1 < 1
b03 4 4 30 4 ≥ 418 < 1 t.o. 4 ≥ 1277 < 1 t.o. 4 44 < 1 < 1 4 6(∞) < 1 < 1
b04 11 8 66 1 ≥ 120 < 1 t.o. 1 ≥ 340 < 1 t.o. 1 481 < 1 < 1 1 (∞) < 1 < 1
b05 1 36 34 1 ≥ 476 < 1 t.o. 1 ≥ 257 < 1 t.o. 1 ≥ 2000 < 1 < 1 1 3(∞) < 1 < 1
b06 2 6 9 1 ≥ 325 < 1 t.o. 1 ≥ 2187 < 1 t.o. 1 43 < 1 < 1 1 2(∞) < 1 < 1
b07 1 8 49 1 ≥ 491 < 1 t.o. 1 ≥ 644 < 1 t.o. 1 ≥ 2000 < 1 < 1 1 42(∞) < 1 2856
b08 9 4 21 1 ≥ 385 < 1 t.o. 1 ≥ 1103 < 1 t.o. 1 901 < 1 < 1 1 17(∞) < 1 13
b09 1 1 28 2 ≥ 458 < 1 t.o. 2 ≥ 1252 < 1 t.o. 10 75 < 1 < 1 2 11(∞) < 1 < 1
b10 11 6 17 1 ≥ 320 < 1 t.o. 1 ≥ 785 < 1 t.o. 1 ≥ 2000 < 1 < 1 1 2(∞) < 1 < 1
b11 7 6 31 3 ≥ 200 < 1 t.o. 2 ≥ 260 < 1 t.o. 3 ≥ 2000 < 1 < 1 3 4(∞) < 1 < 1
b12 5 6 121 1 ≥ 214 < 1 t.o. 1 ≥ 271 < 1 t.o. 1 ≥ 2000 < 1 8.7 1 5(∞) < 1 1.4
b13 10 10 53 1 ≥ 649 < 1 t.o. 1 ≥ 759 < 1 t.o. 1 ≥ 2000 < 1 1.1 1 2(∞) < 1 < 1
b14 32 54 245 2 ≥ 66 4.2 t.o. 2 ≥ 72 4.0 t.o 2 740 < 1 3.7 2 4(∞) 3.8 6.0
b15 36 70 449 2 ≥ 128 3.6 t.o. 2 ≥ 113 3.9 t.o 2 ≥ 2000 < 1 31.8 2 3(∞) 5.1 2.2
b17 37 97 1415 2 ≥ 41 22.8 t.o. 2 ≥ 39 17.7 t.o. 2 ≥ 2000 < 1 327 2 3(∞) 18.9 9.5
b18 37 22 3320 - - t.o. - 2 ≥ 13 146 t.o. 2 ≥ 2000 2.2 823 - - t.o. -
b19 24 27 6642 - - t.o. - 2 ≥ 6 2246 t.o. 2 ≥ 173 4.6 t.o. - - t.o. -
b20 32 22 490 2 ≥ 38 833 t.o. 2 ≥ 43 12.2 t.o. 2 ≥ 2000 < 1 25.0 2 4(∞) 2704 17.8
b21 32 22 490 2 ≥ 39 1369 t.o. 2 ≥ 44 8.9 t.o. 2 ≥ 2000 < 1 46.4 2 4(∞) 512 42.7
b22 32 22 735 ≥ 1 - t.o. - 2 ≥ 33 19.4 t.o. 2 ≥ 2000 < 1 14.6 ≥ 1 - t.o. -

TABLE II
RANGE OF µ FOR SINGLE INPUTS

benchmark
#pi #po #ff µ

b08 9 4 21 1-17
b10 11 6 17 1-4
b12 5 6 121 1-2
b13 10 10 53 1-3
b14 32 54 245 2-3
b15 36 70 449 2-3
b17 37 97 1415 2-3

TABLE III
µ OF B10 FOR SINGLE INPUTS

b10
input µ λ

0 4 9
1 4 9
2 1 9
3 1 9
4 4 9
5 2 9
6 2 9
7 2 9
8 2 9
9 2 9

10 2 9

In Table III we analyzed the latency of single primary inputs
of the voting system b10 with the SEC approach. We achieve
results for the minimal latency µ that vary between 1 and 4.
However, the maximal latency always is λ = 9. This means
that an error at input 0 at the maximum will stay within the
circuit for 5 time cycles while an error at input 2 may influence
the results for 8 time cycles only. Moreover, the analysis of
single signals always leads to a maximal latency λ while the
consideration of all inputs always contains loops such that an
infinite maximal latency has been determined. The analysis
of single signals or a subset of signals especially becomes
interesting if parts of circuits have to be analyzed.

In summary, all of the approaches are applicable for the
circuits considered. Run time is not an issue for most of the
circuits considered here. For the minimal latency also the two
approximate approaches may be used as they yield almost
exact values. The maximal latency is typically infinite for
the benchmark circuits considered here if a design contains
loops. But in practice, a range of designs will exhibit a
different behavior. For example, most pipelined designs or
data sampling designs only depend on a limited number of
past time steps.

VI. CONCLUSION

We introduced a formal definition for the latency of sequen-
tial circuits and evaluated three methods for computing min-
imal and maximal latency. The two approximate approaches
are orthogonal in the sense that one is optimistic while the
other one is pessimistic. Together they yield bounds on the
latency values and the difference between these bounds shows
a potential inaccuracy. The described methods have been
effectively applied on ITC’99 benchmark circuits.

In future work we will utilize the new measure within de-
bugging algorithms and the analysis of fault tolerant circuits.
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