
Preface

CASL, the Common Algebraic Specification Language, has been designed by
CoFI, the Common Framework Initiative for algebraic specification and de-
velopment. CASL is an expressive language for specifying requirements and
design for conventional software. It is algebraic in the sense that models of
CASL specifications are algebras; the axioms can be arbitrary first-order for-
mulas.

CASL is a major new algebraic specification language. It has been care-
fully designed by a large group of experts as a general-purpose language for
practical use in software development – in particular, for specifying both re-
quirements and design. CASL includes carefully selected features from many
previous specification languages, as well as some novel features that allow al-
gebraic specifications to be written much more concisely and perspicuously
than hitherto. It may ultimately replace most of the previous languages, and
provide a common basis for future research and development.

CASL has already attracted widespread interest within the algebraic spec-
ification community, and is generally regarded as a de facto standard. Various
sublanguages of CASL are available – primarily for use in connection with
existing tools that were developed in connection with previous languages. Ex-
tensions of CASL provide languages oriented toward development of particular
kinds of software (reactive, concurrent, etc.).

Major libraries of validated CASL specifications are freely available on the
Internet, and the specifications can be reused simply by referring to their
names. Tools are provided to support practical use of CASL: checking the
correctness of specifications, proving facts about them, and managing the
formal software development process.

This reference manual gives a detailed presentation of the CASL specifica-
tion formalism. It reviews the main underlying concepts, and carefully summa-
rizes the intended meaning of each construct of CASL. It formally defines both
the syntax and semantics of CASL, and presents a logic for reasoning about
CASL specifications. It also provides extensive libraries of CASL specifications
of basic datatypes, and an annotated bibliography of CoFI publications.

VI Preface

The companion CASL User Manual (LNCS 2900) illustrates and discusses
how to write CASL specifications, introducing the potential user to the features
of CASL mainly by means of illustrative examples. The User Manual also
reviews the background of CoFI and CASL, and the underlying concepts of
algebraic specification languages, as well as introducing the reader to some
of the currently available CASL support tools, and to a couple of the CASL

libraries of basic datatypes. Finally, the User Manual includes a substantial
case study of the practical use of CASL in an industrially relevant context, and
a Quick Reference overview of the CASL syntax.

Structure

Part I offers a definitive summary of the entire CASL language: all the lan-
guage constructs are listed there systematically, together with the syntax used
to write them down and a detailed explanation of their intended meaning.
However, although it tries to be precise and complete, the CASL Summary
still relies on natural language to present CASL. This inherently leaves some
room for interpretation and ambiguity in various corners of the language, for
example where details of different constructs interact. Such potential ambigu-
ities are eliminated by the following formal definitions, which also establish
sound mathematical foundations.

Part II gives a formal definition of the syntax of CASL. Both concrete
and abstract syntax are defined by means of context-free grammars, using a
variant of the BNF notation.

The ultimate definition of the meaning of CASL specifications is provided
by the semantics of CASL in Part III. The semantics first defines mathemat-
ical entities that formally model the intended meaning of various concepts
underlying CASL, which were introduced and discussed throughout the sum-
mary. The semantics is given in the form of so-called natural semantics, with
formal deduction rules to derive judgments concerning the meaning of each
CASL phrase from the meanings of its constituent parts.

The semantics is also a necessary prerequisite for the development of mech-
anisms for formal reasoning about CASL specifications. This is dealt with in
Part IV, where proof calculi that support reasoning about the various layers
of CASL are presented. Soundness is proved and completeness discussed by
reference to the formal semantics of CASL.

All this work on the mathematical underpinnings of CASL, as documented
in this Reference Manual, should make the language exceptionally trustworthy
– at least in the sense that it provides a formal point of reference against which
claims may (and should) be checked.

Finally, Part V presents extensive libraries of CASL specifications of basic
datatypes. These include specifications of numbers (both bounded and un-
bounded), relations and orders, simple and structured datatypes, graphs, and
various mathematical structures.

Preface VII

The Reference Manual is concluded by an annotated bibliography, a list
of cited references, an index of specification and library names (referring to
Part V), a symbol index, and an index of concepts.

An accompanying CD-ROM contains a copy of the libraries of specifica-
tions of basic datatypes and a collection of CASL tools.

Organization

CASL consists of several major levels, which are quite independent and may
be understood (and used) separately:

Basic specifications denote classes of partial first-order structures: algebras
where the functions are partial or total, and where also predicates are
allowed. Subsorts are interpreted as embeddings. Axioms are first-order
formulas built from definedness assertions and both strong and existential
equations. Sort generation constraints can be stated. Datatype declara-
tions are provided for concise specification of sorts equipped with con-
structors and (optional) selectors, including enumerations and products.

Structured specifications allow translation, reduction, union, and extension of
specifications. Extensions may be required to be free; initiality constraints
are a special case. A simple form of generic (parametrized) specifications
is provided, together with instantiation involving parameter-fitting trans-
lations.

Architectural specifications define how the specified software is to be com-
posed from a given set of separately developed, reusable units with clear
interfaces.

Libraries allow the distributed storage and retrieval of (particular versions
of) named specifications.

The CASL Summary in Part I is organized accordingly: after an introductory
chapter, each level of CASL is considered in turn. The grammars for the ab-
stract and concrete syntax of CASL in Part II are structured similarly. The
chapters and sections of the CASL Semantics in Part III and of the CASL Logic
in Part IV correspond directly to those of Part I. Thus readers interested in
all aspects of one particular level of CASL should have no difficulty in locating
the relevant chapters in each part, and similarly for all the sections dealing
with a particular CASL construct.

References to chapters within the same part give just the chapter num-
ber, possibly following it by section and subsection numbers, e.g., Chap. 4,
Sect. 4.2.3. References to chapters in other parts are always preceded by the
Roman numeral indicating the part, e.g., Chap. III:4, Sect. III:4.2.3. Similarly
for references to propositions, etc.

VIII Preface

Acknowledgement. The design of CASL and the preparation of this book have in-
volved a large group of persons, and a considerable amount of effort. Specific ac-
knowledgements to contributors are given in the introductions to the individual
parts. Much of the material on which this book is based was developed in connec-
tion with activities of CoFI-WG (ESPRIT Working Group 29432) and IFIP WG 1.3
(Working Group on Foundations of System Specification). The final design of CASL
version 1.0.1 was reviewed and approved by WG 1.3 in April 2001. The current
version (1.0.2) was adopted in October 2003; it incorporates adjustments to some
minor details of the concrete syntax and semantics. No further revisions of the CASL
design are anticipated.

Public drafts of this book were released in July and December 2003. The many
insightful comments from CoFI participants were very helpful during the preparation
of the final version. Detailed comments on all or part of the public drafts were
received from Michel Bidoit, Christian Maeder, and Lutz Schröder, as well as from
those responsible for the various parts of the book.

Special thanks are due to those responsible for editing Parts III–V: Don Sannella
and Andrzej Tarlecki integrated several large, independently authored chapters into
a coherent Part III, and Till Mossakowski took excellent care of the production of
Parts IV–V.

Peter Mosses gratefully acknowledges support from BRICS1 and the Department
of Computer Science, University of Aarhus.

Finally, special thanks to Springer, and in particular to Alfred Hofmann as
Executive Editor, for their willingness to publish this book, and for helpful advice
concerning its preparation.

January 2004 Peter D. Mosses

News of the latest developments concerning CoFI and CASL

is available on the Internet at http://www.cofi.info .

1 Basic Research in Computer Science (www.brics.dk), funded by the Danish Na-
tional Research Foundation.

http://www.brics.dk/~pdm/
http://www.cofi.info

Contents

Part I CASL Summary
Editors: Bernd Krieg-Brückner (University of Bremen, Germany) and
Peter D. Mosses (University of Aarhus, Denmark)
Authors: The CoFI Language Design Group

1 Introduction . 3

2 Basic Specifications . 5
2.1 Basic Concepts . 5

2.1.1 Signatures . 6
2.1.2 Models . 7
2.1.3 Sentences . 7
2.1.4 Satisfaction . 8

2.2 Basic Items . 9
2.3 Signature Declarations . 10

2.3.1 Sorts . 10
2.3.2 Operations . 11
2.3.3 Predicates . 13
2.3.4 Datatypes . 14
2.3.5 Sort Generation . 17

2.4 Variables . 17
2.4.1 Global Variable Declarations . 17
2.4.2 Local Variable Declarations . 18

2.5 Axioms . 18
2.5.1 Quantifications . 19
2.5.2 Logical Connectives . 19
2.5.3 Atomic Formulas . 21
2.5.4 Terms . 23

2.6 Identifiers . 25

X Contents

3 Subsorting Specifications . 27
3.1 Subsorting Concepts . 27

3.1.1 Signatures . 27
3.1.2 Models . 28
3.1.3 Sentences . 28

3.2 Signature Declarations . 29
3.2.1 Sorts . 29
3.2.2 Datatypes . 30

3.3 Axioms . 31
3.3.1 Atomic Formulas . 31
3.3.2 Terms . 32

4 Structuring Specifications . 33
4.1 Structuring Concepts . 33

4.1.1 Structured Specifications . 33
4.1.2 Named and Generic Specifications 34
4.1.3 Signature and Specification Morphisms 35

4.2 Structured Specifications . 36
4.2.1 Translations . 37
4.2.2 Reductions . 37
4.2.3 Unions . 38
4.2.4 Extensions . 39
4.2.5 Free Specifications . 39
4.2.6 Local Specifications . 40
4.2.7 Closed Specifications . 40

4.3 Named and Generic Specifications . 40
4.3.1 Specification Definitions . 40
4.3.2 Specification Instantiation . 42

4.4 Views . 43
4.4.1 View Definitions . 43
4.4.2 Fitting Views . 44

4.5 Symbol Lists and Mappings . 45
4.5.1 Symbol Lists . 45
4.5.2 Symbol Mappings . 46

4.6 Compound Identifiers . 47

5 Architectural Specifications . 49
5.1 Architectural Concepts . 49

5.1.1 Unit Functions . 49
5.1.2 Persistency and Compatibility . 50

5.2 Architectural Specification Definitions . 50
5.3 Unit Declarations and Definitions . 51

5.3.1 Unit Declarations . 52
5.3.2 Unit Definitions . 52

Contents XI

5.4 Unit Specifications . 52
5.4.1 Unit Types . 53
5.4.2 Architectural Unit Specifications . 53
5.4.3 Closed Unit Specifications . 53

5.5 Unit Expressions . 54
5.5.1 Unit Terms . 54

6 Specification Libraries . 57
6.1 Library Concepts . 57
6.2 Local Libraries . 58
6.3 Distributed Libraries . 58
6.4 Library Names . 59

7 Sublanguages and Extensions . 61
7.1 Sublanguages . 61

7.1.1 A Language for Naming Sublanguages 61
7.1.2 A List of Orthogonal Features . 64
7.1.3 A List of Levels of Expressiveness 65

7.2 Extensions . 68
7.2.1 Higher-Order and Coalgebraic Extensions 68
7.2.2 Reactive Extensions . 68
7.2.3 Extensions at the Structured Level 69

Part II CASL Syntax
Editors: Bernd Krieg-Brückner (University of Bremen, Germany) and
Peter D. Mosses (University of Aarhus, Denmark)
Authors: The CoFI Language Design Group

1 Introduction . 73

2 Abstract Syntax . 75
2.1 Normal Grammar . 76

2.1.1 Basic Specifications . 76
2.1.2 Subsorting Specifications . 78
2.1.3 Structured Specifications . 78
2.1.4 Architectural Specifications . 79
2.1.5 Specification Libraries . 80

2.2 Abbreviated Grammar . 81
2.2.1 Basic Specifications . 81
2.2.2 Subsorting Specifications . 83
2.2.3 Structured Specifications . 83
2.2.4 Architectural Specifications . 84
2.2.5 Specification Libraries . 85

XII Contents

3 Concrete Syntax . 87
3.1 Context-Free Grammar . 88

3.1.1 Basic Specifications . 88
3.1.2 Subsorting Specifications . 90
3.1.3 Structured Specifications . 91
3.1.4 Architectural Specifications . 92
3.1.5 Specification Libraries . 93

3.2 Disambiguation . 93
3.2.1 Precedence . 94
3.2.2 Mixfix Grouping Analysis . 95
3.2.3 Mixfix Identifiers . 96

4 Lexical Symbols . 97
4.1 Key Words and Signs . 97

4.1.1 Key Words . 98
4.1.2 Key Signs . 98
4.1.3 Display Format . 98

4.2 Tokens . 99
4.2.1 Words . 99
4.2.2 Signs . 99
4.2.3 Quoted Characters . 100

4.3 Literal Strings and Numbers . 100
4.4 URLs and Paths . 101

5 Comments and Annotations . 103
5.1 Comments . 104
5.2 Annotations . 105

5.2.1 Label Annotations . 106
5.2.2 Display Annotations . 106
5.2.3 Parsing Annotations . 106
5.2.4 Literal Annotations . 108
5.2.5 Semantic Annotations . 110
5.2.6 Miscellaneous Annotations . 111

Contents XIII

Part III CASL Semantics
Editors: Donald Sannella (University of Edinburgh, United Kingdom) and
Andrzej Tarlecki (Warsaw University, Poland)
Authors: Hubert Baumeister (LMU Munich, Germany),
Maura Cerioli (University of Genova, Italy),
Anne Haxthausen (Technical University of Denmark),
Till Mossakowski (University of Bremen, Germany),
Peter D. Mosses (University of Aarhus, Denmark),
Donald Sannella (University of Edinburgh, United Kingdom), and
Andrzej Tarlecki (Warsaw University, Poland)

1 Introduction . 115
1.1 Notation . 116
1.2 Static Semantics and Model Semantics . 118
1.3 Semantic Rules . 119
1.4 Institution Independence . 120

2 Basic Specification Semantics . 123
2.1 Basic Concepts . 123

2.1.1 Signatures . 124
2.1.2 Models . 128
2.1.3 Sentences . 131
2.1.4 Satisfaction . 135

2.2 Basic Items . 138
2.3 Signature Declarations . 140

2.3.1 Sorts . 140
2.3.2 Operations . 141
2.3.3 Predicates . 145
2.3.4 Datatypes . 147
2.3.5 Sort Generation . 157

2.4 Variables . 157
2.4.1 Global Variable Declarations . 158
2.4.2 Local Variable Declarations . 158

2.5 Axioms . 159
2.5.1 Quantifications . 160
2.5.2 Logical Connectives . 160
2.5.3 Atomic Formulas . 162
2.5.4 Terms . 165

2.6 Identifiers . 168

XIV Contents

3 Subsorting Specification Semantics . 169
3.1 Subsorting Concepts . 169

3.1.1 Signatures . 169
3.1.2 Models . 173
3.1.3 Sentences . 174

3.2 Signature Declarations . 175
3.2.1 Sorts . 175
3.2.2 Datatypes . 177

3.3 Axioms . 184
3.3.1 Atomic Formulas . 184
3.3.2 Terms . 187

4 Structured Specification Semantics . 189
4.1 Structuring Concepts . 189

4.1.1 Institution Independence and the CASL Institution 190
4.1.2 Derived Notions . 193
4.1.3 Signature Morphisms . 196
4.1.4 Extended Signatures . 200
4.1.5 Institution Independent Structuring Concepts 201

4.2 Structured Specifications . 204
4.2.1 Translations . 205
4.2.2 Reductions . 206
4.2.3 Unions . 207
4.2.4 Extensions . 208
4.2.5 Free Specifications . 209
4.2.6 Local Specifications . 210
4.2.7 Closed Specifications . 210

4.3 Named and Generic Specifications . 211
4.3.1 Specification Definitions . 211
4.3.2 Specification Instantiation . 214

4.4 Views . 216
4.4.1 View Definitions . 216
4.4.2 Fitting Views . 218

4.5 Symbol Lists and Mappings . 220
4.5.1 Symbol Lists . 221
4.5.2 Symbol Mappings . 222

4.6 Compound Identifiers . 223

5 Architectural Specification Semantics . 227
5.1 Architectural Concepts . 228
5.2 Architectural Specification Definitions . 232
5.3 Unit Declarations and Definitions . 234

5.3.1 Unit Declarations . 235
5.3.2 Unit Definitions . 236

Contents XV

5.4 Unit Specifications . 237
5.4.1 Unit Types . 238
5.4.2 Architectural Unit Specifications . 239
5.4.3 Closed Unit Specifications . 239

5.5 Unit Expressions . 240
5.5.1 Unit Terms . 242

5.6 Extended Static Semantics . 247
5.6.1 Architectural Concepts . 248
5.6.2 Architectural Specification Definitions 251
5.6.3 Unit Declarations and Definitions 253
5.6.4 Unit Specifications . 255
5.6.5 Unit Expressions . 255
5.6.6 Discussion . 262

6 Specification Library Semantics . 265
6.1 Library Concepts . 266
6.2 Local Libraries . 268
6.3 Distributed Libraries . 270
6.4 Library Names . 271

Part IV CASL Logic
Editor: Till Mossakowski (University of Bremen, Germany)
Authors: Till Mossakowski (University of Bremen, Germany),
Piotr Hoffman (Warsaw University, Poland),
Serge Autexier (DFKI Saarbrücken, Germany), and
Dieter Hutter (DFKI Saarbrücken, Germany)

1 Introduction . 275
1.1 Institution Independence . 276
1.2 Style of the Proof Calculi . 277
1.3 Soundness and Completeness . 277

2 Basic Specification Calculus . 279

3 Subsorting Specification Calculus . 287

4 Structured Specification Calculus . 289
4.1 Institution Independence . 290
4.2 Development Graphs . 293
4.3 Translating Development Graphs

along Institution Comorphisms . 297

XVI Contents

4.4 Proof Rules for Development Graphs . 298
4.4.1 Hiding Decomposition Rules . 299
4.4.2 Conservativity Rules . 303
4.4.3 Simple Structural Rules . 307

4.5 Soundness and Completeness . 308
4.6 Checking Conservativity and Freeness . 310
4.7 Translation from Structured Specifications

to Development Graphs . 311
4.7.1 Concepts for the Verification Semantics 312
4.7.2 Structured Specifications . 317
4.7.3 Named and Generic Specifications 320
4.7.4 Views . 322
4.7.5 Adequacy of the Translation . 324

5 Architectural Specification Calculus . 329
5.1 Semantics . 330

5.1.1 Static and Model Semantics . 330
5.1.2 Extended Static Semantics . 334

5.2 Soundness and Completeness of the Extended Static Semantics 338
5.2.1 Concepts . 338
5.2.2 Proof . 341

5.3 The Proof Calculus . 347
5.3.1 Definition of the Proof Calculus . 348
5.3.2 Soundness and Completeness . 353

6 Specification Library Calculus . 357

Part V CASL Libraries
Authors: Markus Roggenbach (University of Wales Swansea, United
Kingdom), Till Mossakowski (University of Bremen, Germany),
and Lutz Schröder (University of Bremen, Germany)

1 Introduction . 363
1.1 A Short Overview of the Specified Datatypes 364
1.2 The Library Basic/Numbers . 365
1.3 The Library Basic/RelationsAndOrders . 368
1.4 The Library Basic/Algebra_I . 369
1.5 The Library Basic/SimpleDatatypes . 370
1.6 The Library Basic/StructuredDatatypes . 370
1.7 The Library Basic/Graphs . 372
1.8 The Library Basic/Algebra_II . 374
1.9 The Library Basic/LinearAlgebra_I . 375
1.10 The Library Basic/LinearAlgebra_II . 377
1.11 The Library Basic/MachineNumbers . 377

Contents XVII

2 Library Basic/Numbers . 379

3 Library Basic/RelationsAndOrders . 387

4 Library Basic/Algebra_I . 393

5 Library Basic/SimpleDatatypes . 401

6 Library Basic/StructuredDatatypes . 405

7 Library Basic/Graphs . 421

8 Library Basic/Algebra_II . 431

9 Library Basic/LinearAlgebra_I . 439

10 Library Basic/LinearAlgebra_II . 449

11 Library Basic/MachineNumbers . 453

12 Dependency Graphs of the Libraries . 459

Appendices

Annotated Bibliography . 469

References . 487

Index of Library and Specification Names . 491

Abstract Syntax Sorts and Constructors . 495

Symbol Index . 501

Concept Index . 511

Part I

CASL Summary

The CoFI Language Design Group

Editors: Bernd Krieg-Brückner and Peter D. Mosses

1

Introduction

This part of the CASL Reference Manual gives a detailed summary of the
syntax and intended semantics of CASL. Readers are assumed to be already
familiar with the main concepts of algebraic specifications.

Chapter 2 summarizes many-sorted basic specifications in CASL, which de-
note classes of many-sorted partial first-order structures: algebras where the
functions are partial or total, and where also predicates are allowed. Axioms
are first-order formulas built from equations and definedness assertions. Sort
generation constraints can be stated. Datatype declarations are provided for
concise specification of sorts together with constructors and (optional) selec-
tors.

Chapter 3 summarizes subsorted basic specifications, which extend many-
sorted specifications with a simple treatment of subsorts, interpreting subsort
inclusion as embedding.

Chapter 4 summarizes structured specifications, which allow translation,
reduction, union, and extension of specifications. Extensions may be required
to be free; initiality constraints are a special case. A simple form of generic
specifications is provided, together with instantiation involving parameter-
fitting translations and views.

Chapter 5 summarizes architectural specifications, which define how the
specified software is to be composed from a given set of separately-developed,
reusable units with clear interfaces.

Chapter 6 summarizes specification libraries, which allow the (distributed)
storage and retrieval of named specifications.

Finally, Chap. 7 (by Till Mossakowski) summarizes various sublanguages
and extensions of CASL.

In general, each chapter first summarizes the main semantic concepts un-
derlying the kind of specification concerned, then it presents the (abstract and
concrete) syntax of the associated CASL language constructs and indicates
their intended semantics. See Part II of this reference manual for complete
grammars for the abstract and concrete syntax of CASL, and Part III for the
formal semantics of CASL.

4 I:1 Introduction

This summary does not attempt to motivate the design choices that have
been taken; a rationale for a preliminary design has been published separately
[49], as has a full exposition of architectural specifications [6]. See also [1] for
a concise overview of CASL, and [5] for a tutorial introduction.

Acknowledgement. The CoFI Language Design Group was formed at the founding
meeting of the Common Framework Initiative in Oslo, September 1995. Language de-
sign working meetings were held in Paris (November 1995), Munich (January 1996),
Oxford (March 1996), Paris (May 1996), Munich (July 1996), Edinburgh (Novem-
ber 1996), Paris (January and April 1997), Amsterdam (September 1997), Bremen
(January 1998), Lisbon (April 1998), Amsterdam (April 1999), Berlin (April 2000),
and Genova (April 2001). The earlier meetings were mostly hosted by Michel Bidoit,
Bernd Krieg-Brückner, Don Sannella, and Martin Wirsing; the later meetings were
co-located with major conferences. Notes recording the discussions and decisions at
the meetings were produced by Christine Choppy.

The following persons contributed to the design of CASL– some of them over
many years, others only occasionally – by studying the issues and making sug-
gestions: Egidio Astesiano, Hubert Baumeister, Jan Bergstra, Gilles Bernot, Di-
dier Bert, Mohammed Bettaz, Michel Bidoit, Mark van den Brand, Maria Victo-
ria Cengarle, Maura Cerioli, Christine Choppy, Pietro Cenciarelli, Ole-Johan Dahl,
Hans-Dieter Ehrich, Hartmut Ehrig, José Fiadeiro, Marie-Claude Gaudel, Chris
George, Joseph Goguen, Radu Grosu, Magne Haveraaen, Anne Haxthausen, Jim
Horning, Hélène Kirchner, Kolyang, Hans-Jörg Kreowski, Bernd Krieg-Brückner,
Pierre Lescanne, Christoph Lüth, Tom Maibaum, Grant Malcolm, Karl Meinke,
Till Mossakowski, Peter Mosses, Peter Padawitz, Fernando Orejas, Olaf Owe, Gi-
anna Reggio, Horst Reichel, Markus Roggenbach, Erik Saaman, Don Sannella,
Giuseppe Scollo, Amilcar Sernadas, Andrzej Tarlecki, Christophe Tronche, Eelco
Visser, Frédéric Voisin, Eric Wagner, Michał Walicki, Bjarke Wedemeijer, Martin
Wirsing, Uwe Wolter, and Alexandre Zamulin.

The acronym CASL for the Common Algebraic Specification Language was pro-
posed by Christine Choppy.

The design of the abstract syntax and semantics of CASL was much influenced
by the work of the CoFI Semantics Group, mainly consisting of Hubert Baumeister,
Maura Cerioli, Anne Haxthausen, Till Mossakowski, Don Sannella, and Andrzej
Tarlecki. (See Part II regarding the design of the concrete syntax.)

The IFIP WG1.3 Referees’ Report on CASL reviewed the initial design pro-
posal for CASL (version 0.97, May 1997); the CASL Designers’ final response to the
referees indicated how the points raised in the report had influenced the final de-
sign (version 1.0.1-DRAFT, June 2000, approved and released as version 1.0.1 in
March 2001)1. The IFIP WG1.3 reviewers consisted of Hartmut Ehrig (Coordina-
tor), José Meseguer, Ugo Montanari, Fernando Orejas, Peter Padawitz, Francesco
Parisi-Presicce, Martin Wirsing, and Uwe Wolter.

The coordinator of the Language Design task group during the design of CASL
was Bernd Krieg-Brückner.

1 The original design documents and the reviews are available from the CoFI
Archives [16].

2

Basic Specifications

Basic specifications in CASL allow declaration of sorts, subsorts, operations
(both total and partial), and predicates, and the use of formulas of first-order
logic for stating axioms. Subsorts can be defined by formulas. Sorts can be con-
strained to include only generated values. Both loose and free datatypes with
constructor and (optionally) selector operations can be declared concisely.

Section 2.1 introduces the concepts underlying many-sorted basic speci-
fications, and the remaining sections cover the language constructs provided
by CASL for use in such specifications: Sect. 2.2 describes the overall structure
of basic specifications; Sect. 2.3 introduces declarations of sorts, operations,
and predicates; Sect. 2.4 deals with variable declarations; Sect. 2.5 summa-
rizes the formulas and terms used in axioms; and Sect. 2.6 indicates the form
of identifiers. The concepts and CASL constructs concerned with subsorts are
summarized separately, in Chap. 3.

2.1 Basic Concepts

First, before considering the particular concepts underlying basic specifica-
tions in CASL, here is a brief reminder of how specification frameworks in gen-
eral may be formalized in terms of so-called institutions [20] (some category-
theoretic details are omitted) and proof systems.

A basic specification framework may be characterized by:

• a class Sig of signatures Σ, each determining the set of symbols |Σ| whose
intended interpretation is to be specified, with morphisms between signa-
tures;

• a class Mod(Σ) of models, with homomorphisms between them, for each
signature Σ;

• a set Sen(Σ) of sentences (or axioms), for each signature Σ;
• a relation |= of satisfaction, between models and sentences over the same

signature; and
• a proof system, for inferring sentences from sets of sentences.

A basic specification consists of a signature Σ together with a set of sentences
from Sen(Σ). The signature provided for a particular declaration or sentence

6 I:2 Basic Specifications

in a specification is called its local environment. It may be a restriction of the
entire signature of the specification, e.g., determined by an order of presen-
tation for the signature declarations and the sentences with linear visibility,
where symbols may not be used before they have been declared; or it may be
the entire signature, reflecting non-linear visibility.

The (loose) semantics of a basic specification is the class of those models
in Mod(Σ) which satisfy all the specified sentences. A specification is said to
be consistent when there are some models that satisfy all the sentences, and
inconsistent when there are no such models. A sentence is a consequence of a
basic specification if it is satisfied in all the models of the specification.

A signature morphism σ : Σ → Σ′ determines a translation function
Sen(σ) on sentences, mapping Sen(Σ) to Sen(Σ′), and a reduct function
Mod(σ) on models, mapping Mod(Σ′) to Mod(Σ) 1. Satisfaction is required
to be preserved by translation: for all S ∈ Sen(Σ), M ′ ∈Mod(Σ′),

Mod(σ)(M ′) |= S ⇐⇒ M ′ |= Sen(σ)(S).

The proof system is required to be sound, i.e., sentences inferred from a spec-
ification are always consequences; moreover, inference is to be preserved by
translation.

Sentences of basic specifications may include constraints that restrict the
class of models, e.g., to reachable ones.

The rest of this chapter considers many-sorted basic specifications of the
CASL specification framework, and indicates the underlying signatures, mod-
els, and sentences2. Then the syntax of the language constructs used for ex-
pressing many-sorted basic specifications is described. Consideration of the
extra features concerned with subsorts is deferred to Chap. 3. The abstract
syntax of any well-formed basic specification determines a signature and a set
of sentences, the models of which provide the semantics of the basic specifi-
cation.

2.1.1 Signatures

A many-sorted signature Σ = (S,TF ,PF , P) consists of:

• a set S of sorts ;
• sets TFw,s, PFw,s, of total function symbols, respectively partial function

symbols, such that TFw,s ∩ PFw,s = ∅, for each function profile (w, s)
consisting of a sequence of argument sorts w ∈ S∗ and a result sort s ∈ S
(constants are treated as functions with no arguments);

• sets Pw of predicate symbols, for each predicate profile consisting of a
sequence of argument sorts w ∈ S∗.

1 In fact Sig is a category, and Sen(.) and Mod(.) are functors. The categorial as-
pects of the semantics of CASL are emphasized in its formal semantics in Part III.

2 A particular proof system for CASL is provided in Part IV.

I:2.1 Basic Concepts 7

Constants and functions are also referred to as operations, following the tra-
ditions of algebraic specification.

Note that symbols used to identify sorts, operations, and predicates may
be overloaded, occurring in more than one of the above sets. To ensure that
there is no ambiguity in sentences at this level, however, function symbols f
and predicate symbols p are always qualified by profiles when used, written
fw,s and pw respectively. (The language described later in this chapter allows
the omission of such qualifications when these are unambiguously determined
by the context.)

A many-sorted signature morphism σ : (S,TF ,PF , P)→ (S′,TF ′,PF ′, P ′)
consists of a mapping from S to S′, and for each w ∈ S∗, s ∈ S, a mapping
between the corresponding sets of function, resp. predicate symbols. A partial
function symbol may be mapped also to a total function symbol, but not vice
versa.

2.1.2 Models

For a many-sorted signature Σ = (S,TF ,PF , P) a many-sorted model M ∈
Mod(Σ) is a many-sorted first-order structure consisting of a many-sorted
partial algebra:

• a non-empty carrier set sM for each sort s ∈ S (let wM denote the Carte-
sian product sM

1 × · · · × sM
n when w = s1 . . . sn),

• a partial function fM from wM to sM for each function symbol f ∈ TFw,s

or f ∈ PFw,s, the function being required to be total in the former case,

together with:

• a predicate pM ⊆ wM for each predicate symbol p ∈ Pw.

A (weak) many-sorted homomorphism h from M1 to M2, with M1, M2 ∈
Mod(S,TF ,PF , P), consists of a function hs : sM1 → sM2 for each s ∈ S
preserving not only the values of functions but also their definedness, and
preserving the truth of predicates [14].

Any signature morphism σ : Σ → Σ′ determines the many-sorted reduct of
each model M ′ ∈Mod(Σ′) to a model M ∈Mod(Σ), defined by interpreting
symbols of Σ in M in the same way that their images under σ are interpreted
in M ′.

2.1.3 Sentences

The many-sorted terms on a signature Σ = (S,TF ,PF , P) and a set of sorted,
non-overloaded variables X are built from:

• variables from X ;
• applications of qualified function symbols in TF ∪ PF to argument terms

of appropriate sorts.

8 I:2 Basic Specifications

We refer to such terms as fully-qualified terms, to avoid confusion with the
terms of the language considered later in this chapter, which allow the omission
of qualifications and explicit sorts when these are unambiguously determined
by the context.

For a many-sorted signature Σ = (S,TF ,PF , P) the many-sorted sen-
tences in Sen(Σ) are the usual closed many-sorted first-order logic formulas,
built from atomic formulas using quantification (over sorted variables) and
logical connectives. An inner quantification over a variable makes a hole in
the scope of an outer quantification over the same variable, regardless of the
sorts of the variables. Implication may be taken as primitive (in the presence
of an always-false formula), the other connectives being regarded as derived.

The atomic formulas are:

• applications of qualified predicate symbols p ∈ P to argument terms of
appropriate sorts;

• assertions about the definedness of fully-qualified terms;
• existential and strong equations between fully-qualified terms of the same

sort.

Definedness assertions may be derived from existential equations or regarded
as applications of fixed, always-true predicates. Strong equations may be de-
rived from existential equations, using implication and conjunction; existential
equations may be derived from conjunctions of strong equations and defined-
ness assertions, or regarded as applications of fixed predicates.

The sentences Sen(Σ) also include sort-generation constraints. Let Σ =
(S,TF ,PF , P). A sort-generation constraint consists of (S′, F ′) with S′ ⊆ S
and F ′ ⊆ TF ∪ PF 3.

2.1.4 Satisfaction

The satisfaction of a sentence in a structure M is determined as usual by the
holding of its atomic formulas w.r.t. assignments of (defined) values to all the
variables that occur in them, the values assigned to variables of sort s being in
sM . The value of a term w.r.t. a variable assignment may be undefined, due to
the application of a partial function during the evaluation of the term. Note,
however, that the satisfaction of sentences is two-valued (as is the holding of
open formulas with respect to variable assignments).

The application of a predicate symbol p to a sequence of argument terms
holds in M iff the values of all the terms are defined and give a tuple belonging
to pM . A definedness assertion concerning a term holds iff the value of the
term is defined (thus it corresponds to the application of a constantly-true
unary predicate to the term). An existential equation holds iff the values of
both terms are defined and identical, whereas a strong equation holds also
when the values of both terms are undefined.
3 The translation of such constraints along signature morphisms adds a further

component, for technical reasons.

I:2.2 Basic Items 9

The value of an occurrence of a variable in a term is that provided by the
given variable assignment. The value of the application of a function symbol
f to a sequence of argument terms is defined only if the values of all the
argument terms are defined and give a tuple in the domain of definedness of
fM , and then it is the associated result value.

A sort-generation constraint (S′, F ′) is satisfied in a Σ-model M if the
carriers of the sorts in S′ are generated by the function symbols in F ′. That
is, every element of each sort in S′ is the value of a term built from just
these symbols (possibly using variables of sorts not in S′, with appropriate
assignments of values to them).

The rest of this chapter indicates the abstract and concrete syntax of the
constructs of many-sorted basic specifications, and describes their intended
interpretation.

2.2 Basic Items
For an introduction to the form of grammar used here to define the abstract
syntax of language constructs, see Chap. II:2, which also provides the com-
plete grammar defining the abstract syntax of the entire CASL specification
language.

BASIC-SPEC ::= basic-spec BASIC-ITEMS*

A many-sorted basic specification BASIC-SPEC in the CASL language is written
simply as a sequence of BASIC-ITEMS constructs:

BI1. . .BIn

The empty basic specification is not usually needed, but can be written ‘{ }’.
This language construct determines a basic specification within the under-

lying many-sorted institution, consisting of a signature and a set of sentences
of the form described at the beginning of this chapter. This signature and the
class of models over it that satisfy the set of sentences provide the semantics
of the basic specification. Thus this chapter explains well-formedness of basic
specifications, and the way that they determine the underlying signatures and
sentences, rather than directly explaining the intended interpretation of the
constructs.

While well-formedness of specifications in the language can be checked
statically, the question of whether the value of a term that occurs in a well-
formed specification is necessarily defined in all models may depend on the
specified axioms (and it is not decidable in general).

BASIC-ITEMS ::= SIG-ITEMS | FREE-DATATYPE | SORT-GEN
| VAR-ITEMS | LOCAL-VAR-AXIOMS | AXIOM-ITEMS

A BASIC-ITEMS construct is always a list, written:

plural -keyword X1; . . . Xn;

10 I:2 Basic Specifications

The plural -keyword may also be written in the singular (regardless of the
number of items), and the final ‘;’ may be omitted.

Each BASIC-ITEMS construct determines part of a signature and/or some
sentences (except for VAR-ITEMS, which merely declares some global variables).
The order of the basic items is generally significant: there is linear visibility
of declared symbols and variables in a list of BASIC-ITEMS constructs (except
within a list of datatype declarations). Repeated declaration of a symbol is
allowed, and does not affect the semantics; some tools may however be able
to locate and warn about such duplications, in case they were not intentional.

A list of signature declarations and definitions SIG-ITEMS determines part
of a signature and possibly some sentences. A FREE-DATATYPE construct de-
termines part of a signature together with some sentences. A sort-generation
construct SORT-GEN determines part of a signature, together with some sen-
tences including a corresponding sort generation constraint. A list of variable
declaration items VAR-ITEMS determines sorted variables that are implicitly
universally quantified in the subsequent axioms of the enclosing basic speci-
fication; note that variable declarations do not contribute to the signature of
the specification in which they occur. A LOCAL-VAR-AXIOMS construct restricts
the scope of the variable declarations to the indicated list of axioms. (Variables
may also be declared locally in individual axioms, by explicit quantification.)
An AXIOM-ITEMS construct determines a set of sentences.

2.3 Signature Declarations

SIG-ITEMS ::= SORT-ITEMS | OP-ITEMS | PRED-ITEMS | DATATYPE-ITEMS

A list SORT-ITEMS of sort declarations determines one or more sorts. A
list OP-ITEMS of operation declarations and/or definitions determines one
or more operation symbols, and possibly some sentences; similarly for a list
PRED-ITEMS of predicate declarations and/or definitions. Operation and pred-
icate symbols may be overloaded, being declared with several different profiles
in the same local environment. A list DATATYPE-ITEMS of datatype declara-
tions determines one or more sorts together with some constructor and (op-
tional) selector operations, and sentences defining the selector operations on
the values given by the constructors with which they are associated.

2.3.1 Sorts

SORT-ITEMS ::= sort-items SORT-ITEM+
SORT-ITEM ::= SORT-DECL

A list SORT-ITEMS of sort declarations is written:

sorts SI1; . . . SIn;

I:2.3 Signature Declarations 11

Sort Declarations

SORT-DECL ::= sort-decl SORT+
SORT ::= SORT-ID

A sort declaration SORT-DECL is written:

s1, . . . , sn

It declares each of the sorts in the list s1, . . . , sn.

2.3.2 Operations

OP-ITEMS ::= op-items OP-ITEM+
OP-ITEM ::= OP-DECL | OP-DEFN

A list OP-ITEMS of operation declarations and definitions is written:

ops OI1; . . . OIn;

Operation Declarations

OP-DECL ::= op-decl OP-NAME+ OP-TYPE OP-ATTR*
OP-NAME ::= ID

An operation declaration OP-DECL is written:

f1, . . . , fn : TY , a1, . . . , am

When the list a1, . . . , am is empty, the declaration is written simply:

f1, . . . , fn : TY

It declares each operation name f1, . . . , fn as a total or partial operation, with
profile as specified by the operation type TY , and as having the attributes a1,
. . . , am (if any). If an operation is declared both as total and as partial with
the same profile, the resulting signature only contains the total operation.

Operation Types

OP-TYPE ::= TOTAL-OP-TYPE | PARTIAL-OP-TYPE
TOTAL-OP-TYPE ::= total-op-type SORT-LIST SORT
PARTIAL-OP-TYPE ::= partial-op-type SORT-LIST SORT
SORT-LIST ::= sort-list SORT*

A total operation type TOTAL-OP-TYPE with some argument sorts is written:

s1 × . . .× sn → s

12 I:2 Basic Specifications

When the list of argument sorts is empty, the type is simply written ‘s ’. The
sign displayed as ‘×’ may be input as ‘×’ in ISO Latin-1, or as ‘*’ in ASCII.
The sign displayed as ‘→’ is input as ‘->’.

A partial operation type PARTIAL-OP-TYPE with some argument sorts is
written:

s1 × . . .× sn →? s

When the list of argument sorts is empty, the type is simply written ‘? s ’.
The operation profile determined by the type has argument sorts s1, . . . ,

sn and result sort s .

Operation Attributes

OP-ATTR ::= BINARY-OP-ATTR | UNIT-OP-ATTR
BINARY-OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr
UNIT-OP-ATTR ::= unit-op-attr TERM

Operation attributes assert that the operations being declared (which must
be binary) have certain common properties, which are characterized by strong
equations, universally quantified over variables of the appropriate sort. (This
can also be used to add attributes to operations that have previously been
declared without them.)

The attribute assoc-op-attr is written ‘assoc’. It asserts the associativity
of an operation f :

f (x , f (y, z)) = f (f (x , y), z)

The attribute of associativity moreover implies a local parsing annotation (see
Sect. II:5.2.3) that allows an infix operation f of the form ‘__t__’ (or ‘__ __’)
to be iterated without explicit grouping parentheses.

The attribute comm-op-attr is written ‘comm’. It asserts the commuta-
tivity of an operation f :

f (x , y) = f (y, x)

The attribute idem-op-attr is written ‘idem ’. It asserts the idempotency of
an operation f :

f (x , x) = x

The attribute UNIT-OP-ATTR is written ‘unit T ’. It asserts that the value of
the term T is the unit (left and right) of an operation f :

f (T , x) = x ∧ f (x ,T) = x

In practice, the unit T is normally a constant. In any case, T must not contain
any free variables (i.e., variables that are not explicitly declared by enclosing
quantifications).

The declaration enclosing an operation attribute is ill-formed unless the
operation profile has exactly two argument sorts, both the same, which, except
in the case of commutativity, have also to be the same as the result sort.

I:2.3 Signature Declarations 13

Operation Definitions

OP-DEFN ::= op-defn OP-NAME OP-HEAD TERM
OP-HEAD ::= TOTAL-OP-HEAD | PARTIAL-OP-HEAD
TOTAL-OP-HEAD ::= total-op-head ARG-DECL* SORT
PARTIAL-OP-HEAD ::= partial-op-head ARG-DECL* SORT
ARG-DECL ::= arg-decl VAR+ SORT

A definition OP-DEFN of a total operation with some arguments is written:

f (v11, . . . , v1m1 : s1; . . . ; vn1, . . . , vnmn : sn) : s = T

When the list of arguments is empty, the definition is simply written:

f : s = T

A definition OP-DEFN of a partial operation with some arguments is written:

f (v11, . . . , v1m1 : s1; . . . ; vn1, . . . , vnmn : sn) :? s = T

When the list of arguments is empty, the definition is simply written:

f :? s = T

It declares the operation name f as a total, respectively partial operation,
with a profile having argument sorts s1 (m1 times), . . . , sn (mn times) and
result sort s . It also asserts the strong equation:

f (v11, . . . , vnmn) = T

universally quantified over the declared argument variables (which must be
distinct, and are the only free variables allowed in T), or just ‘f = T ’ when
the list of arguments is empty.

In each of the above cases, the operation name f may occur in the term
T , and may have any interpretation satisfying the equation – not necessarily
the least fixed point.

2.3.3 Predicates
PRED-ITEMS ::= pred-items PRED-ITEM+
PRED-ITEM ::= PRED-DECL | PRED-DEFN
PRED-NAME ::= ID

A list PRED-ITEMS of predicate declarations and definitions is written:

preds PI1; . . . PIn;

Predicate Declarations

PRED-DECL ::= pred-decl PRED-NAME+ PRED-TYPE

A predicate declaration PRED-DECL is written:

p1, . . . , pn : TY

It declares each predicate name p1, . . . , pn as a predicate, with profile as
specified by the predicate type TY .

14 I:2 Basic Specifications

Predicate Types

PRED-TYPE ::= pred-type SORT-LIST

A predicate type PRED-TYPE with some argument sorts is written:

s1 × . . .× sn

The sign displayed as ‘×’ may be input as ‘×’ in ISO Latin-1, or as ‘*’ in
ASCII. When the list of argument sorts is empty, the type is written ‘()’.

The predicate profile determined by the type has argument sorts s1, . . . , sn.

Predicate Definitions

PRED-DEFN ::= pred-defn PRED-NAME PRED-HEAD FORMULA
PRED-HEAD ::= pred-head ARG-DECL*

A definition PRED-DEFN of a predicate with some arguments is written:

p(v11, . . . , v1m1 : s1; . . . ; vn1, . . . , vnmn : sn) ⇔ F

When the list of arguments is empty, the definition is simply written:

p ⇔ F

The sign displayed as ‘⇔’ is input as ‘<=>’.
It declares the predicate name p as a predicate, with a profile having argu-

ment sorts s1 (m1 times), . . . , sn (mn times). It also asserts the equivalence:

p(v11, . . . , vnmn) ⇔ F

universally quantified over the declared argument variables (which must be
distinct, and are the only free variables allowed in F), or just ‘p ⇔ F ’ when
the list of arguments is empty. The predicate name p may occur in the formula
F , and may have any interpretation satisfying the equivalence.

2.3.4 Datatypes

DATATYPE-ITEMS ::= datatype-items DATATYPE-DECL+

A list DATATYPE-ITEMS of datatype declarations is written:

types DD1; . . . DDn;

The order of the datatype declarations is not significant: there is non-linear
visibility of the declared sorts in a list (in contrast to the linear visibility
between the BASIC-ITEMS of a BASIC-SPEC, and between the SIG-ITEMS of a
SORT-GEN).

I:2.3 Signature Declarations 15

Datatype Declarations

DATATYPE-DECL ::= datatype-decl SORT ALTERNATIVE+

A datatype declaration DATATYPE-DECL is written:

s ::= A1 | . . . | An

It declares the sort s . For each alternative construct A1, . . . , An, it declares
the specified constructor and selector operations, and determines sentences as-
serting the expected relationship between selectors and constructors. All sorts
used in an alternative construct must be declared in the local environment
(which always includes the sort declared by the datatype declaration itself).
A list of datatype declarations must not declare a function symbol both as a
constructor and selector with the same profiles.

Note that a datatype declaration allows models where the ranges of the
constructors are not disjoint, and where not all values are the results of con-
structors. This looseness can be eliminated in a general way by use of free
extensions in structured specifications (as summarized in Chap. 4), or by use
of free datatypes within basic specifications (see below). Unreachable values
can be eliminated also by the use of sort generation constraints.

Alternatives

ALTERNATIVE ::= TOTAL-CONSTRUCT | PARTIAL-CONSTRUCT
TOTAL-CONSTRUCT ::= total-construct OP-NAME COMPONENTS*
PARTIAL-CONSTRUCT ::= partial-construct OP-NAME COMPONENTS+

A total constructor TOTAL-CONSTRUCT with some components is written:

f (C1; . . . ; Cn)

When the list of components is empty, the constructor is simply written ‘f ’.
A partial constructor PARTIAL-CONSTRUCT with some components is writ-

ten:

f (C1; . . . ; Cn)?

(Partial constructors without components are not expressible in datatype dec-
larations.)

The alternative declares f as an operation. Each component C1, . . . , Cn

specifies one or more argument sorts for the profile, and possibly some com-
ponent selectors; the result sort is the sort declared by the enclosing datatype
declaration. The selectors within each alternative must be distinct, but need
not be distinct from selectors in different alternatives.

16 I:2 Basic Specifications

Components

COMPONENTS ::= TOTAL-SELECT | PARTIAL-SELECT | SORT
TOTAL-SELECT ::= total-select OP-NAME+ SORT
PARTIAL-SELECT ::= partial-select OP-NAME+ SORT

A declaration TOTAL-SELECT of total selectors is written:

f1, . . . , fn : s

A declaration PARTIAL-SELECT of partial selectors is written:

f1, . . . , fn :? s

The remaining case is a component sort without any selector, simply written
‘s ’.

In the first two cases, the component declaration provides n components:
the sort s is taken as an argument sort n times for the constructor operation
declared by the enclosing alternative, and it declares f1, . . . , fn as selector
operations for the respective components. In the first case, each selector oper-
ation is declared as total, and in the second case, as partial. The component
declaration also determines sentences that define the value of each selector on
the values given by the constructor of the enclosing alternative.

In the last case, the component declaration provides the sort s only once
as an argument sort for the constructor of the enclosing alternative, and it
does not declare any selector operation for that component.

Note that when there is more than one alternative construct in a datatype
declaration, selectors are usually partial, and should therefore be declared as
such; their values on constructs for which they are not declared as selectors
are left unspecified.

Free Datatype Declarations

FREE-DATATYPE ::= free-datatype DATATYPE-ITEMS

A list FREE-DATATYPE of free datatype declarations is written:

free types DD1; . . . DDn;

This construct is only well-formed when all the constructors declared by the
datatype declarations are total.

Free datatype declarations declare the same sorts, constructors, and selec-
tors as ordinary datatype declarations. Apart from the sentences that define
the values of selectors, the free datatype declarations determine additional
sentences requiring that the constructors are injective, that the ranges of con-
structors of the same sort are disjoint, that all the declared sorts are generated
by the constructors, and that the value of applying a selector to a constructor
for which it has not been declared is always undefined. The sentences ensure
that the models, if any, are the same as for a free extension with the datatype

I:2.4 Variables 17

declarations, provided that the following conditions are fulfilled (all conditions
refer to fully qualified symbols):

• all the declared sorts are distinct from those in the local environment, and
• each total selector is present in all the alternatives for its argument sort.

When the alternatives of a free datatype declaration are all constants, the
declared sort corresponds to an (unordered) enumeration type.

2.3.5 Sort Generation

SORT-GEN ::= sort-gen SIG-ITEMS+

A sort generation SORT-GEN is written:

generated { SI1. . .SIn };

When the list of SIG-ITEMS is a single DATATYPE-ITEMS construct, writing
the grouping signs is optional:

generated types DD1; . . . DDn;

(The terminating ‘;’ is optional in both cases.)
It determines the same elements of signature and sentences as SI1, . . . ,

SIn, together with a corresponding sort generation constraint sentence: all the
declared sorts of SI1, . . . , SIn are required to be generated by the declared
operations of SI1, . . . , SIn – but excluding operations declared as selectors
by datatype declarations. A SORT-GEN is ill-formed if it does not declare any
sorts.

2.4 Variables

Variables for use in terms may be declared globally, locally, or with explicit
quantification. Globally or locally declared variables are implicitly universally
quantified in subsequent axioms of the enclosing basic specification. Variables
are not included in the declared signature.

Universal quantification over a variable that does not occur free in an
axiom is semantically irrelevant, due to the assumption that all carrier sets
are non-empty.

2.4.1 Global Variable Declarations

VAR-ITEMS ::= var-items VAR-DECL+

A list VAR-ITEMS of variable declarations is written:

vars VD1; . . . VDn;

18 I:2 Basic Specifications

Note that local variable declarations are written in a similar way, but followed
directly by a bullet ‘ • ’ instead of the optional semicolon.

VAR-DECL ::= var-decl VAR+ SORT
VAR ::= SIMPLE-ID

A variable declaration VAR-DECL is written:

v1, . . . , vn : s

It declares the variables v1, . . . , vn of sort s for use in subsequent axioms, but
it does not contribute to the declared signature.

The scope of a global variable declaration is the subsequent axioms of the
enclosing basic specification; a later declaration for a variable with the same
identifier overrides the earlier declaration (regardless of whether the sorts of
the variables are the same). A global declaration of a variable is equivalent to
adding a universal quantification on that variable to the subsequent axioms
of the enclosing basic specification.

2.4.2 Local Variable Declarations

LOCAL-VAR-AXIOMS ::= local-var-axioms VAR-DECL+ AXIOM+

A localization LOCAL-VAR-AXIOMS of variable declarations to a list of axioms
is written:

∀VD1; . . . ; VDn • F1 . . . • Fm;

The sign displayed as ‘∀’ is input as ‘forall’. The sign displayed as ‘ • ’ may
be input as ‘·’ in ISO Latin-1, or as ‘.’ in ASCII.

It declares variables for local use in the axioms F1, . . . , Fm, but it does
not contribute to the declared signature. A local declaration of a variable
is equivalent to adding a universal quantification on that variable to all the
indicated axioms.

2.5 Axioms

AXIOM-ITEMS ::= axiom-items AXIOM+
AXIOM ::= FORMULA

A list AXIOM-ITEMS of axioms is written:

• F1 . . . • Fn

Each well-formed axiom determines a sentence of the underlying basic speci-
fication (closed by universal quantification over all declared variables).

I:2.5 Axioms 19

FORMULA ::= QUANTIFICATION | CONJUNCTION | DISJUNCTION
| IMPLICATION | EQUIVALENCE | NEGATION | ATOM

A formula is constructed from atomic formulas of the form ATOM using quan-
tification and the usual logical connectives.

Keywords in formulas and terms are displayed in the same font as identi-
fiers.

2.5.1 Quantifications

QUANTIFICATION ::= quantification QUANTIFIER VAR-DECL+ FORMULA
QUANTIFIER ::= universal | existential | unique-existential

A quantification with the universal quantifier is written:

∀VD1; . . . ; VDn • F

The sign displayed as ‘∀’ is input as ‘forall’. The sign displayed as ‘ • ’ may
be input as ‘·’ in ISO Latin-1, or as ‘.’ in ASCII.

A quantification with the existential quantifier is written:

∃VD1; . . . ; VDn • F

A quantification with the unique-existential quantifier is written:

∃!VD1; . . . ; VDn • F

The sign displayed as ‘∃’ is input as ‘exists’.
The first case is universal quantification, holding when the body F holds

for all values of the quantified variables; the second case is existential quan-
tification, holding when the body F holds for some values of the quantified
variables; and the last case is unique existential quantification, abbreviating a
formula that holds when the body F holds for unique values of the quantified
variables.

The formula ∀VD1; . . . ; VDn • F is equivalent to ∀VD1 • . . . ∀VDn •
F ; and ∀v1, . . . , vn : s • F is equivalent to ∀v1 : s • . . . ∀vn : s • F .
Similarly for the other quantifiers. The scope of a variable declaration in a
quantification is the component formula F , and an inner declaration for a
variable with the same identifier as in an outer declaration overrides the outer
declaration (regardless of whether the sorts of the variables are the same).
Note that the body of a quantification extends as far as possible.

2.5.2 Logical Connectives

The usual logical connectives are provided. Conjunction and disjunction apply
to lists of two or more formulas; they both have weaker precedence than
negation. When mixed, they have to be explicitly grouped, using parentheses
‘(. . .)’.

20 I:2 Basic Specifications

Both implication (which may be written in two different ways) and equiv-
alence have weaker precedence than conjunction and disjunction. When the
‘forward’ version of implication is iterated, it is implicitly grouped to the
right; the ‘backward’ version is grouped to the left. When these constructs
are mixed, they have to be explicitly grouped.

Conjunction

CONJUNCTION ::= conjunction FORMULA+

A conjunction is written:

F1 ∧ . . . ∧ Fn

The sign displayed as ‘∧’ is input as ‘/\’.

Disjunction

DISJUNCTION ::= disjunction FORMULA+

A disjunction is written:

F1 ∨ . . . ∨ Fn

The sign displayed as ‘∨’ is input as ‘\/’.

Implication

IMPLICATION ::= implication FORMULA FORMULA

An implication is written:

F1 ⇒ F2

The sign displayed as ‘⇒’ is input as ‘=>’. An implication may also be written
in reverse order:

F2 if F1

Equivalence

EQUIVALENCE ::= equivalence FORMULA FORMULA

An equivalence is written:

F1 ⇔ F2

The sign displayed as ‘⇔’ is input as ‘<=>’.

I:2.5 Axioms 21

Negation

NEGATION ::= negation FORMULA

A negation is written:

¬F1

The sign displayed as ‘¬’ may be input as ‘¬’ in ISO Latin-1, or as ‘not’ in
ASCII.

2.5.3 Atomic Formulas

ATOM ::= TRUTH | PREDICATION | DEFINEDNESS
| EXISTL-EQUATION | STRONG-EQUATION

An atomic formula ATOM is well-formed (with respect to the local environment
and variable declarations) if it is well-sorted and expands to a unique atomic
formula for constructing sentences. The notions of when an atomic formula
is well-sorted, of when a term is well-sorted for a particular sort, and of the
expansions of atomic formulas and terms, are indicated below for the various
constructs.

Due to overloading of predicate and/or operation symbols, a well-sorted
atomic formula or term may have several expansions, preventing it from being
well-formed. Qualifications on operation and predicate symbols may be used
to determine the intended expansion and make it well-formed; explicit sorts
on arguments and/or results may also help to avoid unintended expansions.

Truth

TRUTH ::= true-atom | false-atom

The atomic formulas true-atom and false-atom are written ‘true’, resp.
‘false ’.

They are always well-sorted, and expand to primitive sentences, such that
the sentence for ‘true’ always holds, and the sentence for ‘false’ never holds.

Predicate Application

PREDICATION ::= predication PRED-SYMB TERMS
PRED-SYMB ::= PRED-NAME | QUAL-PRED-NAME
QUAL-PRED-NAME ::= qual-pred-name PRED-NAME PRED-TYPE

An application of a predicate symbol PS to some argument terms is written:

PS (T1, . . . ,Tn)

22 I:2 Basic Specifications

When PS is a mixfix identifier (cf. Sect. 2.6) consisting of a sequence
‘t0__ . . . __tn’ of possibly-empty mixfix tokens ti separated by place-holders
‘__’, the application may also be written:

t0T1 . . .Tntn

When the predicate symbol is a constant p with no argument terms, its ap-
plication is simply written ‘p’.

A qualified predicate name QUAL-PRED-NAME with type TY is written:

(pred p : TY)

An unqualified predicate name PRED-NAME is simply written ‘p’.
The application of the predicate symbol is well-sorted when there is a

declaration of the predicate name (with the argument sorts indicated by the
indicated type in the case of a qualified predicate name) such that all the
argument terms are well-sorted for the respective argument sorts. It then
expands to an application of the qualified predicate name to the fully-qualified
expansions of the argument terms for those sorts.

Definedness

DEFINEDNESS ::= definedness TERM

A definedness formula is written:

def T

It is well-sorted when the term is well-sorted for some sort. It then expands
to a definedness assertion on the fully-qualified expansion of the term.

Equations

EXISTL-EQUATION ::= existl-equation TERM TERM
STRONG-EQUATION ::= strong-equation TERM TERM

An existential equation EXISTL-EQUATION is written:

T1
e= T2

The sign displayed as ‘ e=’ is input as ‘=e=’.
A strong equation is written:

T1 = T2

An existential equation holds when the values of the terms are both defined
and equal; a strong equation holds also when the values of both terms are
undefined (thus the two forms of equation are equivalent when the values of
both terms are always defined).

An equation is well-sorted if there is a sort such that both terms are well-
sorted for that sort. It then expands to the corresponding existential or strong
equation on the fully-qualified expansions of the terms for that sort.

I:2.5 Axioms 23

2.5.4 Terms

TERM ::= SIMPLE-ID | QUAL-VAR | APPLICATION
| SORTED-TERM | CONDITIONAL

A term is constructed from constants and variables by applications of oper-
ations. All names used in terms may be qualified by the intended types, and
the intended sort of the term may be specified. Note that the condition of a
conditional term is a formula, not a term.

Identifiers

An unqualified simple identifier in a term may be a variable or a constant,
depending on the local environment and the variable declarations. Either is
well-sorted for the sort specified in its declaration; a variable expands to the
(sorted) variable itself, whereas a constant expands to an application of the
qualified symbol to the empty list of arguments. Note that when an identifier
is declared both as variable and as a constant of the same sort, unqualified
use of the identifier always makes the enclosing atomic formula ill-formed.

Qualified Variables

QUAL-VAR ::= qual-var VAR SORT

A qualified variable QUAL-VAR is written:

(var v : s)

It is well-sorted for the sort s if v has been declared accordingly.

Operation Application

APPLICATION ::= application OP-SYMB TERMS
OP-SYMB ::= OP-NAME | QUAL-OP-NAME
QUAL-OP-NAME ::= qual-op-name OP-NAME OP-TYPE
TERMS ::= terms TERM*

An application of an operation symbol OS to some argument terms is written:

OS(T1, . . . ,Tn)

When OS is a mixfix identifier (cf. Sect. 2.6) consisting of a sequence
‘t0__ . . . __tn’ of possibly-empty mixfix tokens ti separated by place-holders
‘__’, the application may also be written:

t0T1 . . .Tntn

24 I:2 Basic Specifications

When the operation symbol is a constant c with no argument terms, its ap-
plication is simply written ‘c’.

Declaring different mixfix identifiers that involve some common tokens
may lead to ambiguity, with different candidate groupings of the same se-
quence of tokens and terms. Such ambiguity prevents the enclosing atomic
formula from being well-formed, irrespective of the declared profiles of the
symbols involved, and generally has to be eliminated by use of explicit group-
ing parentheses. However, to allow the omission of some parentheses, infix
identifiers are given weaker precedence than prefix identifiers, which in turn
are given weaker precedence than postfix identifiers. (The mixfix identifier
‘__ __’ is allowed, and regarded as an infix, although this is unlikely to be
the case in higher-order extensions of CASL, since there juxtaposition will be
reserved for function application.)

In an application, a qualified operation name QUAL-OP-NAME with f qual-
ified by the operation type TY is written:

(op f : TY)

When the qualified operation name is a constant c, its application (to no
arguments) is written (op c : TY).

The application is well-sorted for some particular sort when there is a dec-
laration of the operation name (with the argument and result sorts indicated
by the type, if specified) such that all the argument terms are well-sorted for
the respective argument sorts, and the result sort is the required sort. It then
expands to an application of the qualified operation name to the fully-qualified
expansions of the argument terms for those sorts.

Sorted Terms

SORTED-TERM ::= sorted-term TERM SORT

A sorted term is written:

T : s

It is well-sorted for some sort if the component term T is well-sorted for the
specified sort s . It then expands to those of the fully-qualified expansions of
the component term that have the specified sort.

Conditional Terms

CONDITIONAL ::= conditional TERM FORMULA TERM

A conditional term is written:

T1 when F else T2

I:2.6 Identifiers 25

It is well-sorted for some sort when both T1 and T2 are well-sorted for
that sort and F is a well-formed formula. The enclosing atomic formula
‘A[T1 when F else T2]’ expands to ‘(A[T1] if F) ∧ (A[T2] if ¬F)’. When
several conditional terms occur in the same atomic formula, the expansions
are made in a fixed but arbitrary order (all orders yield equivalent formulas).

2.6 Identifiers

SIMPLE-ID ::= WORDS
SORT-ID ::= WORDS
ID ::= id TOKEN

The internal structure of identifiers, used to identify sorts, operations, pred-
icates, and variables, is insignificant in the abstract syntax of basic speci-
fications. (SORT-ID and ID are extended with compound identifiers, whose
structure is significant, in connection with generic specifications in Sect. 4.6.)

TOKEN ::= WORDS | DOT-WORDS | SIGNS | DIGIT | QUOTED-CHAR

In concrete syntax, an identifier may be written as a single token: either a
sequence of words – each consisting of letters, digits, and primes (’), the first
word starting with a letter) separated by single underscores (_) and possibly
prefixed by a dot (.) – or a sequence of other printable ISO Latin-1 char-
acters (excluding () ; , ‘ " %). Keywords, and various other sequences
that could be confused with separators, are not allowed as tokens in the in-
put syntax (however, display annotations may be used to produce them when
formatting identifiers, cf. Sect. II:5.2.2).

ID ::= id MIX-TOKEN+
MIX-TOKEN ::= TOKEN | PLACE | BRACED-ID | BRACKET-ID | EMPTY-BRS
BRACED-ID ::= braced-id ID
BRACKET-ID::= bracket-id ID
EMPTY-BRS ::= empty-braces | empty-brackets

An identifier may also be a mixfix identifier4 ‘t0__ . . . __tn’, consisting of a
sequence of possibly-empty mixfix tokens ti interspersed with place-holders,
each place-holder being written as a pair of underscores ‘__’. Mixfix identi-
fiers allow the use of mixfix notation for application of operations and predi-
cates to argument terms in concrete syntax. A mixfix identifier such as f__ is
a different symbol from f. An application of the (unqualified) symbol f__ to
x may be written as f x, f(x), or f__(x); an application of f to x may only
be written as f(x). ‘Invisible’ identifiers, consisting entirely of two or more
place-holders (separated by spaces), are allowed.
4 Mixfix notation is so-called because it generalizes infix, prefix, and postfix nota-

tion to allow arbitrary mixing of argument positions and identifier tokens.

26 I:2 Basic Specifications

Braces ‘{’, ‘}’ and square brackets ‘[’, ‘]’ are allowed as mixfix tokens in
mixfix identifiers; however, any occurrences of these characters in a declared
identifier must be balanced – e.g., ‘{[__}]’ and ‘{__]’ are not allowed.

An identifier may be used simultaneously to identify different kinds of
entities (sorts, operations, and predicates) in the same local environment; its
intended interpretation is determined by the context.

3

Subsorting Specifications

Section 3.1 introduces the signatures, models, and sentences characterizing ba-
sic specifications with subsorts, extending what was provided for many-sorted
specifications in Chap. 2. The notion of satisfaction for subsorted specifica-
tions is essentially as for many-sorted specifications. The rest of the chapter
indicates the abstract and concrete syntax of the constructs of subsorted basic
specifications, and describes their intended interpretation, extending Chap. 2.
Section 3.2 covers the declaration and definition of subsorts, and Sect. 3.3
introduces subsort membership tests and casts for use in axioms.

3.1 Subsorting Concepts

The intuition behind the treatment of subsorts adopted here is to represent
subsort inclusion by embedding (which is not required to be the identity),
commuting, as usual in order-sorted approaches, with overloaded operation
symbols. In the language described later in this chapter, however, no condi-
tions such as ‘regularity’ are imposed on signatures. Instead, terms and sen-
tences that can be given different parses (up to the commutativity between
embedding and overloaded symbols) are simply rejected as ill-formed.

3.1.1 Signatures

A subsorted signature Σ = (S,TF ,PF , P,≤) consists of a many-sorted signa-
ture (S,TF ,PF , P) together with a pre-order ≤ of subsort embedding on the
set S of sorts. The pre-order ≤ is extended pointwise to sequences of sorts.

For a subsorted signature, we define overloading relations for operation and
predicate symbols. Two qualified operation symbols fw1,s1 and fw2,s2 are in the
overloading relation (written fw1,s1 ∼F fw2,s2) iff there exists a w ∈ S∗ and
s ∈ S such that w ≤ w1, w2 and s1, s2 ≤ s. Similarly, two qualified predicate
symbols pw1 and pw2 are in the overloading relation (written pw1 ∼P pw2) iff
there exists a w ∈ S∗ such that w ≤ w1, w2. We say that two profiles of a

28 I:3 Subsorting Specifications

symbol are in the overloading relation if the corresponding qualified symbols
are in the overloading relation.

Note that two profiles of an overloaded constant declared with different
sorts are in the overloading relation iff the two sorts have a common supersort.

A subsorted signature morphism σ : Σ → Σ′ is a many-sorted signature
morphism that preserves the subsort relation and the overloading relations.

With each subsorted signature Σ = (S,TF ,PF , P,≤) a many-sorted sig-
nature Σ# is associated, extending (S,TF ,PF , P) for each pair of sorts s ≤ s′

by a total embedding operation (from s into s′), a partial projection operation
(from s′ onto s), and a membership predicate (testing whether values in s′ are
embeddings of values in s). The symbols used for embedding, projection, and
membership are chosen to be distinct from all symbols that can be explicitly
declared in specifications.

Any subsorted signature morphism σ : Σ1 → Σ2 expands to a many-
sorted signature morphism σ# : Σ#

1 → Σ#
2 , preserving the symbols used for

embedding, projection, and membership.

3.1.2 Models

For a subsorted signature Σ the subsorted models are ordinary many-sorted
models for Σ# that satisfy the following properties (which can be formalized
as a set of conditional axioms):

• Embedding operations are total and injective; projection operations are
partial, and injective when defined.

• The embedding of a sort into itself is the identity function.
• All compositions of embedding operations between the same two sorts are

equal functions.
• Embedding followed by projection is the identity function; projection fol-

lowed by embedding is included in the identity function.
• Membership in a subsort holds just when the projection to the subsort is

defined.
• Embedding is compatible with those operations and predicates that are in

the overloading relations.

3.1.3 Sentences

For a subsorted signature Σ, the subsorted sentences are the ordinary many-
sorted sentences (as defined in Chap. 2) for the associated many-sorted sig-
nature Σ#.

A well-formed subsorted basic specification BASIC-SPEC of the CASL lan-
guage determines a basic specification of the underlying subsorted institution,
consisting of a subsorted signature and a set of sentences of the form described
above. This signature and the class of models over it that satisfy the set of
sentences provide the semantics of the basic specification.

I:3.2 Signature Declarations 29

3.2 Signature Declarations

No further alternatives for SIG-ITEMS are needed.

3.2.1 Sorts

SORT-ITEM ::= ... | SUBSORT-DECL | ISO-DECL | SUBSORT-DEFN

When a subsort declaration SUBSORT-DECL, isomorphism declaration ISO-
DECL, or subsort definition SUBSORT-DEFN occurs in a sort generation con-
struct, the embedding operations between the subsort(s) and the supersort
are treated as declared operations with regard to the generation of sorts and
to free datatype declarations.

Subsort Declarations

SUBSORT-DECL ::= subsort-decl SORT+ SORT

A subsort declaration SUBSORT-DECL is written:

s1, . . . , sn < s

It declares all the sorts s1, . . . , sn, and s , as well as the embedding of each si

as a subsort of s . The si must be distinct from s.
Introducing an embedding relation between two sorts may cause operation

symbols to become related by the overloading relation, so that values of terms
become equated when the terms are identical up to embedding.

Isomorphism Declarations

ISO-DECL ::= iso-decl SORT+

An isomorphism declaration ISO-DECL is written:

s1 = . . . = sn

It declares all the sorts s1, . . . , sn, as well as their embeddings as subsorts of
each other. Thus the carriers for the sorts si are required to be isomorphic.
The si must be distinct.

Subsort Definitions

SUBSORT-DEFN ::= subsort-defn SORT VAR SORT FORMULA

A subsort definition SUBSORT-DEFN is written:

s = {v : s ′ • F}

30 I:3 Subsorting Specifications

The sign displayed as ‘ • ’ may be input as ‘·’ in ISO Latin-1, or as ‘.’ in
ASCII. It provides an explicit specification of the values of the subsort s of s ′,
in contrast to the implicit specification provided by using subsort declarations
and overloaded operation symbols.

The subsort definition declares the sort s ; it declares the embedding of s
as a subsort of s ′, which must already be declared in the local environment;
and it asserts that the values of s are precisely (the projection of) those values
of the variable v from s ′ for which the formula F holds.

The scope of the variable v is restricted to the formula F . Any other vari-
ables occurring in F must be explicitly declared by enclosing quantifications.

Note that the terms of sort s ′ cannot generally be used as terms of sort s .
But they can be explicitly projected to s, using a cast, cf. Sect. 3.3.2.

Defined subsorts may be separately related using subsort (or isomorphism)
declarations – implication or equivalence between their defining formulas does
not give rise to any subsort relationship between them.

3.2.2 Datatypes

Datatype declarations are unchanged, except for a new kind of ALTERNATIVE:

Alternatives

ALTERNATIVE ::= ... | SUBSORTS
SUBSORTS ::= subsorts SORT+

A subsorts alternative is written:

sorts s1, . . . , sn

As with sort declarations, the plural keyword may be written in the singular
(regardless of the number of sorts).

The sorts si, which must be already declared in the local environment,
are declared to be embedded as subsorts of the sort declared by the enclos-
ing datatype declaration. (‘sorts s1, . . . , sn’ and ‘sort s1 | . . . | sort sn’ are
equivalent.)

When each alternative of a free datatype declaration is a subsorts alter-
native, the declared sort corresponds to the disjoint union of the listed sorts,
provided that these have no common subsorts. The models of a free datatype
declaration, if any, are the same as for a free extension with the datatype
declarations, provided that the following conditions are fulfilled (apart from
those listed concerning free datatype declarations in Sect. 2.3.4):

• all the sorts that are embedded in the declared sort by the alternatives
have no common subsorts; and moreover,

• consider the set of qualified constructor and selector symbols declared by
the free datatype: no element of this set is in the overloading relation with
any other element, nor with the qualified operation symbols from the local
environment.

I:3.3 Axioms 31

3.3 Axioms

The only further new constructs introduced in connection with subsorts are
atomic formulas for subsort membership, and terms for casting to subsorts.

3.3.1 Atomic Formulas

ATOM ::= ... | MEMBERSHIP

As for many-sorted specifications, an atomic formula is well-formed (with re-
spect to the current declarations) if it is well-sorted and expands to a unique
atomic formula for constructing sentences of the underlying institution – but
now for subsorted specifications, uniqueness is required only up to an equiva-
lence on atomic formulas and terms. This equivalence is the least one including
fully-qualified terms that are the same up to profiles of operation symbols in
the overloading relation ∼F and embedding, and fully-qualified atomic formu-
las that are the same up to the profiles of predicate symbols in the overloading
relation ∼P and embedding.

The notions of when an atomic formula or term is well-sorted and of its
expansion are indicated below for the various subsorting constructs. Due not
only to overloading of predicate and/or operation symbols, but also to implicit
embeddings from subsorts into supersorts, a well-sorted atomic formula may
have several non-equivalent expansions, preventing it from being well-formed.
Qualifications on operation and predicate symbols, or explicit sorts on terms,
may be used to determine the intended expansion (up to the equivalence
indicated above) and make the enclosing formula well-formed.

Membership

MEMBERSHIP ::= membership TERM SORT

A membership formula is written:

T ∈ s

The sign displayed as ‘∈’ is input as ‘in’.
It is well-sorted if the term T is well-sorted for a supersort s ′ of the speci-

fied sort s . It expands to an application of the pre-declared predicate symbol
for testing s ′ values for membership in the embedding of s .

32 I:3 Subsorting Specifications

3.3.2 Terms

TERM ::= ... | CAST

Casts

CAST ::= cast TERM SORT

A cast term is written:

T as s

It is well-sorted if the term T is well-sorted for a supersort s ′ of s . It expands
to an application of the pre-declared operation symbol for projecting s ′ to s .

Term formation is also extended by letting a well-sorted term of a subsort
s be regarded as a well-sorted term of a supersort s ′ as well, which provides
implicit embedding. It expands to the explicit application of the pre-declared
operation symbol for embedding s into s ′. (There are no implicit projections.)
Also a sorted-term T : s ′ expands to an explicit application of an embedding,
provided that the apparent sort s of the component term T is a subsort of
the specified sort s ′.

4

Structuring Specifications

Section 4.1 reviews the concepts underlying the structuring constructs pro-
vided by CASL. The rest of the chapter indicates their abstract and concrete
syntax, and describes their intended interpretation, extending what was pro-
vided for basic (many-sorted and subsorted) specifications in the preceding
chapters. Section 4.2 covers structured specifications: renaming, hiding, union,
extension, and free extension. Section 4.3 introduces named and generic spec-
ifications. Section 4.4 indicates how to define and use views, with Sect. 4.5
addressing the use of symbol lists and mappings in connection with views.
Finally, Sect. 4.6 introduces compound identifiers.

4.1 Structuring Concepts

Recall that a basic specification, as described in Chaps. 2 and 3, consists
essentially of a signature Σ (declaring symbols) and a set of sentences (axioms
or constraints) over Σ. The semantics of a well-formed basic specification is
the specified signature Σ together with the class of all Σ-models that satisfy
the specified sentences.

Section 4.1.1 considers structured specifications, which allow basic spec-
ifications to be divided into parts, and the relationship between them to be
exhibited. Section 4.1.2 is concerned with named specifications, which allow
reuse of such parts; generic specifications have also parameters that can be
fitted to argument specifications by so-called views – which can themselves be
named and generic. Section 4.1.3 explains how the signature and specification
morphisms that are involved in structuring are determined by symbol sets
and mappings.

4.1.1 Structured Specifications

A structured specification is formed by combining specifications in various
ways, starting from basic specifications. For instance, specifications may be

34 I:4 Structuring Specifications

united ; a specification may be extended with further signature items and/or
sentences; parts of a signature may be hidden; the signature may be translated
to use different symbols (with corresponding translation of the sentences) by a
signature morphism; and models may be restricted to free extensions (initial
models are a special case of free extensions). The abstract syntax of constructs
in the CASL language for presenting such structured specifications is described
later in this chapter.

The structuring concepts and constructs and their semantics do not de-
pend on a specific framework of basic specifications. This means that the
CASL language design for basic specifications is orthogonal to that of struc-
tured specifications. Therefore, CASL basic specifications, as summarized in
the preceding chapters, can be restricted to sublanguages (cf. Sect. 7.1) or
extended (cf. Sect. 7.2) in various ways without the need to reconsider or to
change structured specifications1.

The semantics of a well-formed structured specification is of the same
form as that of a basic specification: a signature Σ together with a class of
Σ-models. Thus the structure of a specification is not reflected in its models:
it is used only to present the specification in a modular style. (Specification
of the architecture of models in the CoFI framework is addressed in Chap. 5.)

Within a structured specification, the current signature may vary. For
instance, when two specifications are united, the signature valid in the one
is generally different from that valid in the other. The association between
symbols and their declarations as given by the current signature is called the
local environment.

4.1.2 Named and Generic Specifications

Parts of structured specifications, in contrast to arbitrary parts of basic spec-
ifications, are potentially reusable – either verbatim, or with the adjustment
of some parameters. Specifications may be named, so that the reuse of a spec-
ification may be replaced by a reference to it through its name. (Libraries
of named specifications are explained in Chap. 6.) The current association
between names and the specifications that they reference is called the global
environment. Named specifications are implicitly closed, not depending on a
local environment of declared symbols. A reference to the name of a speci-
fication is equivalent to the referenced specification itself, provided that the
closedness is explicitly ensured.

A named specification may declare some parameters, the union of which
is extended by a body; it is then called generic. A reference to a generic spec-
ification should instantiate it by providing, for each parameter, an argument
1 The occasional reference to the subsort and overloading relations in this chapter

may simply be ignored (or the relations may be replaced by the identity relation)
when the framework for basic specifications is restricted so as not to include these
features.

I:4.1 Structuring Concepts 35

specification together with a fitting morphism from the parameter to the ar-
gument specification. Fitting may also be achieved by (explicit) use of named
views between the parameter and argument specifications. The union of the
arguments, together with the translation of the generic specification by an ex-
pansion of the fitting morphism, corresponds to a so-called pushout construc-
tion – taking into account any explicit imports of the generic specification,
which allow symbols used in the body to be declared also by arguments.

4.1.3 Signature and Specification Morphisms

The semantics of structured specifications involve signature morphisms and
the corresponding reducts on models. For instance, hiding some symbols in a
specification corresponds to a signature morphism that injects the non-hidden
symbols into the original signature; the models, after hiding the symbols, are
the reducts of the original models along this morphism. Translation goes the
other way: the reducts of models over the translated signature back along the
morphism give the original models.

The semantics of views involves also specification morphisms, which are
signature morphisms between particular specifications such that the reduct of
each model of the target specification is a model of the source specification.

Given a signature Σ with symbols |Σ|, symbol sets and symbol mappings
determine signature morphisms as follows:

• A subset of the symbols in |Σ| determines the inclusion of the smallest
subsignature of Σ that contains these symbols. (When an operation or
predicate symbol is included, all the sorts in its profile have to be included
too.)
It also determines the inclusion of the largest subsignature of Σ that does
not contain any of these symbols. (When a sort is not included, no op-
eration or predicate symbol with that sort in its profile can be included
either.)

• A mapping of symbols in |Σ| determines the signature morphism from
Σ that extends this mapping with identity maps for all the remaining
names in |Σ|. In the case that the signature morphism does not exist, the
enclosing construct is ill-formed.

• Given another signature Σ′, a mapping of symbols in |Σ| to symbols in
|Σ′| determines the unique signature morphism from Σ to Σ′ that extends
the given mapping, and then is the identity, as far as possible, on common
names of Σ and Σ′. (Mapping an operation or predicate symbol implies
mapping the sorts in the profile consistently.) In the case that the signature
morphism does not exist or is not unique, the enclosing construct is ill-
formed.

36 I:4 Structuring Specifications

4.2 Structured Specifications

The summary below indicates when structured specifications are well-formed,
and how their signatures and classes of models are determined by those of their
component specifications. The interpretation is essentially based on model
classes – a ‘flattening’ reduction to sets of sentences is not possible, in general
(due to the presence of constructs such as hiding and freeness).

A structured specification can only be well-formed when all its component
specifications are well-formed.

SPEC ::= BASIC-SPEC | TRANSLATION | REDUCTION
| UNION | EXTENSION | FREE-SPEC | LOCAL-SPEC
| CLOSED-SPEC

A translation allows the symbols declared by a specification to be renamed;
it may also be used to require that some symbols have been declared, e.g.,
when referencing a named specification. A reduction allows symbols to be hid-
den; for convenience, the remaining ‘revealed’ symbols may be simultaneously
renamed. A union combines specifications such that when the declaration
of a particular symbol is common to some of the combined specifications,
its interpretation in a model has to be a common one too – this is called
the ‘same name, same thing’ principle. An extension may enrich models by
declaring new symbols and asserting their properties, and/or specialize the
interpretation of already-declared symbols. A free specification is used to re-
strict interpretations to free extensions, with initiality as a special case. A
local specification is used to specify auxiliary symbols for local use, hiding
them afterwards. A closed specification ensures that the local environment
provided to a specification is empty.

When the above constructs are combined in the same specification, the
grouping is determined unambiguously by precedence rules: translations and
reductions have the highest precedence, then come local specifications, then
unions, and finally extensions have the lowest precedence. (Free specifications
generally involve explicit grouping, and their relative precedence to the other
constructs is irrelevant.) A different grouping may always be obtained by use
of grouping braces: ‘{ . . . }’.

A specification SPEC may occur in a context (e.g., when it is being named)
where it is required to be self-contained or closed, not depending on the local
environment at all. In that case, it determines a signature and a class of models
straightforwardly.

In structured specifications, however, a specification SPEC may also occur
in a context where it is to extend other specifications, providing itself only
part of a signature. Then its interpretation determines an extended signature
Σ′, given a signature Σ (the local environment), together with a model class
over Σ′ (when defined), given a model class over Σ. The signature and model
class for the self-contained case above can be obtained by supplying the empty
signature and the model class of the empty specification, respectively.

I:4.2 Structured Specifications 37

Translations and reductions in a SPEC are not allowed to affect symbols
that are already in the local environment that is being extended. The other
structuring constructs generalize straightforwardly from self-contained speci-
fications to extensions.

4.2.1 Translations

TRANSLATION ::= translation SPEC RENAMING
RENAMING ::= renaming SYMB-MAP-ITEMS+

A translation is written:

SP with SM

Symbol mappings SM are described in Sect. 4.5.
The symbols mapped by SM must be among those declared by SP . The

signature Σ given by SP and the mapping SM then determine a signature
morphism to a signature Σ′, as explained in Sect. 4.1.3. The morphism must
not affect the symbols already declared in the local environment, which is
passed unchanged to SP .

The class of models of the translation consists exactly of those models over
Σ′ whose reducts along the morphism are models of SP .

If a partial operation symbol is renamed into a total one, this is only well-
formed in the case that the resulting operation symbol is already total due to
another component of the renaming.

When the symbol mapping SM is simply a list of identity maps (which may
be abbreviated to a simple list of symbols) the only effect of the translation on
the semantics of SP is to require that the symbols listed are indeed included
in the signature given by SP , otherwise the translation is not well-formed.

4.2.2 Reductions

REDUCTION ::= reduction SPEC RESTRICTION
RESTRICTION ::= HIDDEN | REVEALED
HIDDEN ::= hidden SYMB-ITEMS+
REVEALED ::= revealed SYMB-MAP-ITEMS+

A hiding reduction is written:

SP hide SL

A revealing reduction is written:

SP reveal SM

Symbol lists SL and symbol mappings SM are described in Sect. 4.5.
The symbols listed by SL, or mapped by SM , must be among those de-

clared by SP .

38 I:4 Structuring Specifications

In the case of a hiding reduction, the signature Σ given by SP and the set of
symbols listed by SL determine the inclusion of the largest subsignature Σ′ of
Σ that does not contain any of the listed symbols, as explained in Sect. 4.1.3.
Note that hiding a sort entails hiding all the operations and predicate symbols
whose profiles involve that sort.

In the case of a revealing reduction, the signature Σ given by SP and
the set of symbols mapped by SM determine the inclusion of the smallest
subsignature Σ′ of Σ that contains all of the listed symbols, as explained
in Sect. 4.1.3. Note that revealing an operation or predicate symbol entails
revealing the sorts involved in its profile.

In both cases, the subsort embedding relation is inherited from that de-
clared by SP , and a model class M is given by the reducts of the models of
SP along the inclusion of Σ′ in Σ.

In the case of a hiding reduction, its model class is simply M. In the case
of a revealing reduction, however, the signature Σ′ and the mapping SM of
(all) the symbols in it determine a signature morphism to a signature Σ′′,
as explained in Sect. 4.1.3. The class of models of the reduction then consists
exactly of those models over Σ′′ whose reducts along this morphism are in M.

A reduction must not affect the symbols already declared in the local
environment, which is passed unchanged to SP .

4.2.3 Unions

UNION ::= union SPEC+

A union is written:

SP1 and . . . and SPn

When the current local environment is empty, each SPi must determine a
complete signature Σi. The signature of the union is obtained by the ordinary
union of the Σi (not their disjoint union). Thus all (non-localized) occurrences
of a symbol in the SPi are interpreted uniformly (rather than being regarded
as homonyms for potentially different entities). This is the ‘same name, same
thing’ principle. If the same name is declared both as a total and as a par-
tial operation with the same profile (in different signatures), the operation
becomes total in the union.

The models are those models of the union signature for which the reduct
along the signature inclusion morphism from SPi is a model of SPi, for each
i = 1, . . . , n.

When the current local environment is non-empty, each SPi must deter-
mine an extension from it to a complete signature Σi; then the resulting
signature is determined as above. Similarly, models of the local environment
are extended to models of the SPi; then the resulting models are determined
as above. This provides the required partial functions from signatures to sig-
natures, and from model classes to model classes.

I:4.2 Structured Specifications 39

4.2.4 Extensions

EXTENSION ::= extension SPEC+

An extension is written:

SP1 then . . . then SPn

When the current local environment is empty, SP1 must determine a com-
plete signature Σ1; otherwise, it must determine an extension from the local
environment to a complete signature Σ1. For i = 2, . . . , n each SPi must de-
termine an extension from Σi−1 to a complete signature Σi. The signature
determined by the entire extension is then Σn.

Similarly, SP1 determines a class of models M1 over Σ1. For i = 2, . . . , n
each SPi determines the class Mi of those models over Σi which satisfy the
conditions imposed by SPi and whose reducts to Σi−1 are in Mi−1. The class
of models determined by the entire extension is then Mn.

An annotation ‘%cons’ after the occurrence of ‘then’ that precedes SPi

indicates that the corresponding extension is conservative, i.e., every model
in Mi−1 is the reduct of some model in Mi. Similarly, an annotation ‘%mono’
indicates that the corresponding extension is monomorphic, i.e., every model
inMi−1 is the reduct of a model inMi which is unique up to isomorphism. An
annotation ‘%def’ indicates that the corresponding extension is definitional,
i.e., every model in Mi−1 is the reduct of a unique model in Mi. Finally, an
annotation ‘%implies’ indicates that the corresponding extension just adds
implied properties, i.e., the model classes Mi−1 and Mi are the same (this
requires that their signatures are equal, too).

4.2.5 Free Specifications

FREE-SPEC ::= free-spec SPEC

A free specification FREE-SPEC is written:

free { SP }

Recall that the specification written:

free types DD1; . . . DDn;

is parsed as a free datatype declaration construct of a basic specification
(cf. Sect. 2.3.4), but in fact it usually has the same interpretation as the
free structured specification written:

free { types DD1; . . . DDn; }

This equivalence holds at least in the framework for basic specifications sum-
marized in Chaps. 2 and 3, under some minor restrictions.

When the current local environment is empty, SP must determine a com-
plete signature Σ; otherwise, it must determine an extension from the local

40 I:4 Structuring Specifications

environment to a complete signature Σ. In both cases, Σ is the signature
determined by the free specification.

When the current local environment is empty, the free specification deter-
mines the class of initial models of SP ; otherwise, it determines the class of
models that are free extensions for SP of their own reducts to models of the
current local environment.

4.2.6 Local Specifications

LOCAL-SPEC ::= local-spec SPEC SPEC

A local specification LOCAL-SPEC is written:

local SP1 within SP2

It is equivalent to writing:

{ SP1 then SP2 } hide SY1, . . . , SYn

where SY1, . . . , SYn are all the symbols declared by SP1 that are not already
in the current local environment. Thus the symbols SY1, . . . , SYn are only
for local use in (SP1 and) SP2. The hiding must not affect symbols that are
declared only in SP2 (thus operation or predicate symbols declared in SP2

should not have sorts declared by SP1 in their profiles).

4.2.7 Closed Specifications

CLOSED-SPEC ::= closed-spec SPEC

A closed specification CLOSED-SPEC is written:

closed { SP }

It determines the same signature and class of models as SP determines in the
empty local environment, thus ensuring the closedness of SP .

4.3 Named and Generic Specifications

Specifications are named by specification definitions, and referenced by use of
the name. A named specification may also have some parameters, which have
to be instantiated when referencing the specification.

4.3.1 Specification Definitions

SPEC-DEFN ::= spec-defn SPEC-NAME GENERICITY SPEC
GENERICITY ::= genericity PARAMS IMPORTED
PARAMS ::= params SPEC*
IMPORTED ::= imported SPEC*

I:4.3 Named and Generic Specifications 41

A generic specification definition SPEC-DEFN with some parameters and some
imports is written:

spec SN [SP1] . . . [SPn] given SP ′′
1 , . . . , SP ′′

m =
SP

end

When the list of imports SP ′′
1 , . . . , SP ′′

m is empty, the definition is written:

spec SN [SP1] . . . [SPn] =
SP

end

When the list of parameters SP1, . . . , SPn is empty, the definition merely
names a specification and is simply written:

spec SN =
SP

end

The terminating ‘end’ keyword is optional.
It defines the name SN to refer to the specification that has parameter

specifications SP1, . . . , SPn (if any), import specifications SP ′′
1 , . . . , SP ′′

m (if
any), and body specification SP . This extends the global environment (which
must not already include a definition for SN).

The well-formedness and semantics of a generic specification are essentially
as for the imports, extended by the union of the parameter specifications,
extended by the body:

{ SP ′′
1 and . . .and SP ′′

m } then { SP1 and . . .and SPn } then SP

The local environment given to the defined specification is empty, i.e., the
above specification is implicitly closed. The difference between declaring pa-
rameters and leaving them implicit in an extension is that each parameter
has to be provided with a fitting argument specification in all references to
the specification name SN . The declared parameters show just which parts of
the generic specification are intended to vary between different references to
it. The imports, in contrast, are fixed, and common to the parameters, body,
and arguments.

When a declared parameter happens to be merely a specification name, it
always must refer to an existing specification definition in the global environ-
ment – it does not declare a local name for an argument specification.

SPEC-NAME ::= SIMPLE-ID

A specification name SPEC-NAME is normally displayed in a Small-Caps font,
and input in mixed upper and lower case.

42 I:4 Structuring Specifications

4.3.2 Specification Instantiation

SPEC ::= ... | SPEC-INST
SPEC-INST ::= spec-inst SPEC-NAME FIT-ARG*

An instantiation SPEC-INST of a generic specification with some fitting argu-
ment specifications is written

SN [FA1]. . . [FAn]

When the list of fitting arguments FA1, . . . , FAn is empty, the instantiation is
merely a reference to the name of a specification that has no declared param-
eters at all, and it is simply written ‘SN ’. Note that the grouping braces ‘{ }’,
normally required when writing free (or closed) specifications, may always be
omitted around instantiations.

The instantiation refers to the specification named SN in the global en-
vironment, providing a fitting argument FAi for each declared parameter (in
the same order).

FIT-ARG ::= FIT-SPEC
FIT-SPEC ::= fit-spec SPEC SYMB-MAP-ITEMS*

A fitting argument specification FIT-SPEC is written:

SP ′
i fit SMi

When SMi is empty, the fitting argument specification is simply written SP ′
i .

Symbol mappings SM are described in Sects. 4.5 and 4.6.
The signature Σi given by the parameter specification SPi, the signature

Σ′
i given by the corresponding argument specification, and the symbol map-

ping SMi determine a signature morphism from Σi to Σ′
i, as explained in

Sect. 4.1.3. The fitting argument is well-formed only when the signature mor-
phism is defined, i.e., the fitting argument morphism is well-defined. Note
that mapping an operation or predicate symbol generally implies non-identity
mapping of the sorts in the profile.

When there is more than one parameter, the separate fitting argument
morphisms have to be compatible, and their union has to yield a single mor-
phism from the union of the parameters to the union of the arguments. Thus
any common parts of declared parameters have to be instantiated in the same
way, and it is pointless to declare the same parameter twice in a generic
specification. (Generic specifications that require two similar but independent
parameters can be expressed by using a translation to distinguish between the
symbols in the signatures of the two parameters.)

Each fitting argument FAi is regarded as an extension of the union of
the imports (the current local environment is ignored). The fitting argument
morphism has to be identity on all symbols declared by the imports SP ′′

1 ,
. . . , SP ′′

m of the generic specification, if there are any. Any symbol declared

I:4.4 Views 43

explicitly in the parameter (and not only in the import) must be mapped to
a symbol declared explicitly in the argument specification.

Let SP ′ be the extension of the imports by the generic parameters and
then by the body of the specification named SN :

{ SP ′′
1 and . . .and SP ′′

m } then { SP1 and . . .and SPn } then SP

Let FM be the morphism yielded by the fitting arguments FA1, . . . , FAn,
extended to a morphism applicable to the signature of SP ′ as explained in
Sects. 4.5 and 4.6 (and written as a list of symbol maps). Then the semantics
of the well-formed instantiation SN [FA1]. . . [FAn] is the same as that of the
specification:

{ SP ′ with FM } and SP ′
1 and . . .and SP ′

n

where each SP ′
i is the specification of the corresponding fitting argument FAi.

Each model of an argument FAi (these are models of SP ′
i reduced by the

signature morphism determined by SMi) is required to be a model of the
corresponding parameter SPi, otherwise the instantiation is undefined. The
instantiation is not well-formed if the result signature is not a pushout of the
body and argument signatures: if the translated body

{ SP ′ with FM }

and the union of the argument specifications

SP ′
1 and . . .and SP ′

n

share any symbols, these symbols have to be translations (along FM) of sym-
bols that share in the extension of the imports by the parameters

{ SP ′′
1 and . . .and SP ′′

m } then { SP1 and . . .and SPn }

Here, two sorts share if they are identical, and two function or predicate
symbols share if they are in the overloading relation.

4.4 Views

Views between specifications are named by view definitions, and referenced
by use of the name. A named view may also have some parameters, which
have to be instantiated when referencing the view.

4.4.1 View Definitions

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE SYMB-MAP-ITEMS*
VIEW-TYPE ::= view-type SPEC SPEC

A view definition VIEW-DEFN with some parameters and some imports is writ-
ten:

44 I:4 Structuring Specifications

view VN [SP1] . . . [SPn] given SP ′′
1 , . . . , SP ′′

m : SP to SP ′ =
SM

end

A view definition VIEW-DEFN with some parameters is written:

view VN [SP1] . . . [SPn] : SP to SP ′ =
SM

end

When the list of parameters is empty, the view definition is simply written:

view VN : SP to SP ′ =
SM

end

The terminating ‘end’ keyword is optional.
It declares the view name VN to have the type of specification morphisms

from SP to SP ′, parameter specifications SP1, . . . , SPn (if any), import spec-
ifications SP ′′

1 , . . . , SP ′′
m (if any), and defines it by the symbol mapping SM .

Symbol mappings SM are described in Sects. 4.5 and 4.6.
SP gets the empty local environment. The well-formedness conditions for

SP ′ are as if SP ′ were the body of a generic specification with parameters SP1,
. . . , SPn and import specifications SP ′′

1 , . . . , SP ′′
m. The view definition is well-

formed only if the signature morphism determined by the symbol mapping
SM , as explained in Sect. 4.1.3, is defined. The view definition extends the
global environment (which must not already include a definition for VN).

Parameters in a view definition allow the same view to be instantiated
with different fitting arguments, giving compositions of the morphism defined
by the view with other fitting morphisms. The source SP of the view is not in
the scope of the view parameters SP1, . . . , SPn, and view instantiation affects
only the target of the generic view.

It is required that the reduct by the specification morphism of each model
of the target

{ SP ′′
1 and . . .and SP ′′

m } then { SP1 and . . .and SPn } then SP ′

is a model of the source SP ; otherwise the semantics is undefined.

VIEW-NAME ::= SIMPLE-ID

A view name VIEW-NAME is normally displayed in a Small-Caps font, and
input in mixed upper and lower case.

4.4.2 Fitting Views

FIT-ARG ::= ... | FIT-VIEW
FIT-VIEW ::= fit-view VIEW-NAME

I:4.5 Symbol Lists and Mappings 45

A reference to a non-generic fitting argument view FIT-VIEW is simply written:

view VN

It refers to the current global environment, and is well-formed as an argument
for a parameter SPi only when the global environment includes a view def-
inition for VN of type from SP to SP ′, such that the signatures of SP and
of SPi are the same. The view definition then provides the fitting morphism
from the parameter SPi to the argument specification given by the target SP ′

of the view.
If the generic specification being instantiated has imports, the fitting mor-

phism is then the union of the specification morphism given by the view and
the identity morphism on the imports. The argument specification is the union
of the target of the view and the imports.

Each model of SP is required to be a model of SPi, otherwise the instan-
tiation is undefined.

FIT-VIEW ::= ... | fit-view VIEW-NAME FIT-ARG+

A fitting argument view FIT-VIEW involving the instantiation of a generic
view to fitting arguments is written:

view VN [FA1]. . . [FAn]

It refers to the current global environment, and is well-formed only when the
global environment includes a generic view definition for VN with parameters
that can be instantiated by the indicated fitting arguments FA1, . . . , FAn to
give a view of type from SP to SP ′, such that the signatures of SP and of SPi

are the same. As with non-generic views, each model of SP is required to be a
model of SPi, otherwise the instantiation is undefined. The instantiation of a
generic view with some fitting arguments is not well-formed if the instantiation
of the target SP ′ of the view with the same fitting arguments is not well-
formed.

4.5 Symbol Lists and Mappings

Symbol lists are used in hiding reductions. Symbol mappings are used in
translations, revealing reductions, fitting arguments, and views.

4.5.1 Symbol Lists

SYMB-ITEMS ::= symb-items SYMB-KIND SYMB+
SYMB-KIND ::= implicit | sorts-kind | ops-kind | preds-kind
SYMB ::= ID | QUAL-ID
QUAL-ID ::= qual-id ID TYPE
TYPE ::= OP-TYPE | PRED-TYPE

46 I:4 Structuring Specifications

A list of symbols SYMB-ITEMSwith implicit kinds SYMB-KIND is written simply:

SY1, . . . ,SYn

Overloaded operation symbols and predicate symbols may be disambiguated
by explicit qualification; when SYi is not qualified, the effect is as if all (sort,
operation, or predicate) symbols declared with the name SYi in the current
local environment are listed.

Optionally, the list may be sectioned into sub-lists by inserting the key-
words ‘sorts’, ‘ops’, ‘preds’ (or their singular forms), which explicitly indi-
cate that the subsequent symbols are of the corresponding kind:

sorts s1, . . . , ops f1, . . . , preds p1, . . .

As with signature declarations in basic specifications, there is no restriction
on the order of the various sections of the list.

A qualified identifier QUAL-ID is written

I : TY

where TY is an operation type or a predicate type. When TY is a single sort
s , it is interpreted as a constant operation type or unary predicate type, as
determined by the latest keyword, or, when there is none, unambiguously by
the local environment.

The list determines a set of qualified symbols, obtained from the listed
symbols with reference to a given signature; the order in which symbols are
listed is not significant (except regarding their position in relation to any
specified kinds).

Note that in the symbol list ‘I1,...,In:TY ’ it is only the last identifier,
In, which is qualified; to qualify all the identifiers, the list has to be written
thus:

I1:TY , . . . , In:TY

4.5.2 Symbol Mappings

SYMB-MAP-ITEMS ::= symb-map-items SYMB-KIND SYMB-OR-MAP+
SYMB-OR-MAP ::= SYMB | SYMB-MAP
SYMB-MAP ::= symb-map SYMB SYMB

A list of symbol maps SYMB-MAP-ITEMSwith implicit kinds SYMB-KIND is writ-
ten simply:

SY1 �→ SY ′
1, . . . ,SYn �→ SY ′

n

The sign displayed as ‘ �→’ is input as ‘|->’.
SYi �→ SY ′

i denotes the map that takes the symbol SYi to the symbol SY ′
i .

The mapped symbols in the list must be distinct. Overloaded operation sym-
bols and predicate symbols may be disambiguated by explicit qualification;

I:4.6 Compound Identifiers 47

when SYi is not qualified, the effect is as if all (sort, operation, or predicate)
symbols declared with the name SYi (other than those explicitly mapped as
fully qualified symbols) in the current environment are mapped uniformly to
SY ′

i .
Optionally, the list may be sectioned into sub-lists by inserting the key-

words ‘sorts’, ‘ops’, ‘preds’ (or their singular forms), which explicitly indi-
cate that the subsequent symbols are of the corresponding kind:

sorts s1 �→ s ′1, . . ., ops f1 �→ f ′1 , . . ., preds p1 �→ p′
1, . . .

As with signature declarations in basic specifications, there is no restriction
on the order of the various sections of the list.

An identity map ‘SYi �→ SYi’ may be simply written ‘SYi’. Thus a symbol
list may be regarded as a special case of a symbol mapping.

The list determines a set of qualified symbols, obtained from the first
components of the listed symbol maps with reference to a given signature,
together with a mapping of these symbols to qualified symbols obtained from
the second components of the listed symbol maps. The order in which symbol
maps are listed is not significant (except regarding their position in relation
to any specified kinds).

4.6 Compound Identifiers

SORT-ID ::= ... | COMP-SORT-ID
MIX-TOKEN ::= ... | COMP-MIX-TOKEN
COMP-SORT-ID ::= comp-sort-id WORDS ID+
COMP-MIX-TOKEN ::= comp-mix-token ID+

This extension of the syntax of identifiers for sorts, operations, and predi-
cates is of relevance to generic specifications. An ordinary compound iden-
tifier COMP-SORT-ID is written ‘I [I1, . . . , In]’; a mixfix compound identifier
COMP-MIX-TOKEN is written by inserting ‘[I1, . . . , In]’ directly after the last
(non-placeholder) mixfix token of the identifier. (Compound ‘invisible’ iden-
tifiers without any tokens are not allowed.) Note that declaration of both
compound identifiers and mixfix identifiers as operation symbols in the same
local environment may give rise to ambiguity, when they involve overlapping
sets of mixfix tokens.

The components Ii may (but need not) themselves identify sorts, opera-
tions, or predicates that are specified in the declared parameters of a generic
specification.

When such a compound identifier is used to name, e.g., a sort in the body
of a generic specification, the translation determined by fitting arguments to
parameters applies to the components I1,. . . ,In as well. Thus instantiations
with different arguments generally give rise to different compound identifiers
for what would otherwise be the same sort, which avoids unintended identifi-
cations when the instantiations are united.

48 I:4 Structuring Specifications

For example, a generic specification of sequences of arbitrary elements
might use the simple identifier Elem for a sort in the parameter, and a com-
pound identifier Seq[Elem] for the sort of sequences in the body. Fitting vari-
ous argument sorts to Elem in different instantiations then results in distinct
sorts of sequences.

Subsort embeddings between component sorts do not induce subsort em-
beddings between the compound sorts: when desired, these have to be declared
explicitly. For example, when Nat is declared as a subsort of Int, we do not
automatically get Seq[Nat] embedded as a subsort of Seq[Int] in signatures
containing all these sorts.

Instantiation, however, does preserve subsorts: if in a generic specification
we have Elem declared as a subsort of Seq[Elem], where Elem is a param-
eter sort, then in the result of instantiation of Elem by Nat, one does get
Nat automatically declared as a subsort of Seq[Nat]. Compound identifiers
must not be identified through the identification of components by the fit-
ting morphism. For example, if the body of a generic specification contains
both List[Elem1] and List[Elem2], the fitting morphism must not map both
Elem1 and Elem2 to Nat, otherwise the instantiation is not a pushout.

Higher-order extensions of CASL are expected to provide a more semantic
treatment of parametrized sorts, etc.

5

Architectural Specifications

Section 5.1 explains the main concepts of architectural specifications. The
rest of the chapter indicates the abstract and concrete syntax of the con-
structs of architectural specifications, and describes their intended interpreta-
tion, extending what was provided for basic and structured specifications in
the preceding chapters: Sect. 5.2 covers architectural specification definitions,
Sect. 5.3 unit declarations and definitions, Sect. 5.4 unit specifications, and
Sect. 5.5 unit expressions.

5.1 Architectural Concepts

The intention with architectural specifications is primarily to impose structure
on models, expressing their composition from component units – and thereby
also a decomposition of the task of developing such models from requirements
specifications. This is in contrast to the structured specifications summarized
in Chap. 4, where the specified models have no more structure than do those
of the basic specifications summarized in Chaps. 2 and 3.

5.1.1 Unit Functions

The component units may all be regarded as unit functions: functions without
arguments give self-contained units; functions with arguments use such units
in constructing further units. Note that a resulting unit may be needed for
use as an argument in more than one application.

The specification of a unit function indicates the properties to be as-
sumed of the arguments, and the properties to be guaranteed of the result.
Such a specification provides the appropriate interfaces for the development
of the function. In CASL, self-contained units are simply models as defined
in Chaps. 2 and 3, and their properties are expressed by ordinary (usually:
named) specifications.

50 I:5 Architectural Specifications

Thus a unit function maps models of argument specifications to models of
a result specification. A specification of such a function can be simply a list
of the argument specifications together with the result specification. Thinking
of argument and result specifications as types of models, a specification of a
unit function may be regarded as a function type.

An entire architectural specification is a collection of unit function specifi-
cations, together with a description of how the functions are to be composed
to give a resulting unit. A model of an architectural specification is a collec-
tion of unit functions with the specified types or definitions, together with the
result of composing them as described.

5.1.2 Persistency and Compatibility

The intention is that a unit function should actually make use of its arguments.
In particular, it should not re-implement the argument specifications. This is
ensured by requiring the unit function to be persistent : the reduct of the result
to each argument signature yields exactly the given arguments.

As a consequence, the result signature has to include each argument sig-
nature – any desired hiding has to be left to when functions are composed.
Moreover, since each symbol in the union of the argument signatures has
to be implemented the same way in the result as in each argument where
it occurs, the arguments must already have the same implementation of all
common symbols. In the absence of subsorts, this is sufficient to allow one to
unambiguously amalgamate arguments into a single model over the union of
argument signatures. When subsorts are present, extra conditions to ensure
that implicit subsort embeddings can be defined unambiguously in such an
amalgamated model may be necessary. Let us call arguments satisfying such
a requirement compatible.

Hence the interpretation of the specification of a unit function is as all
persistent functions from compatible tuples of models of the argument specifi-
cations to models of the result specification. When composing such functions,
care must be taken to ensure that arguments are indeed compatible. Notice
that if two arguments have the same signature, the arguments must be iden-
tical. It is not possible to specify a function that should take two arguments
that implement the same signature independently – although one can get the
same effect, by renaming one or both of the argument signatures.

5.2 Architectural Specification Definitions

ARCH-SPEC-DEFN ::= arch-spec-defn ARCH-SPEC-NAME ARCH-SPEC
ARCH-SPEC ::= BASIC-ARCH-SPEC | ARCH-SPEC-NAME

I:5.3 Unit Declarations and Definitions 51

An architectural specification definition ARCH-SPEC-DEFN is written:

arch spec ASN =
ASP

end

where the terminating ‘end’ keyword is optional.
It defines the name ASN to refer to the architectural specification ASP ,

extending the global environment (which must not already include a definition
for ASN). The local environment given to ASP is empty.

ARCH-SPEC-NAME ::= SIMPLE-ID

An architectural specification name ARCH-SPEC-NAME is normally displayed in
a Small-Caps font, and input in mixed upper and lower case.

A reference in an architectural specification ARCH-SPEC to an architectural
specification named ASN is simply written as the name itself ‘ASN ’. It refers
to the current global environment, and is well-formed only when the global
environment includes an architectural specification definition for ASN . The
enclosing definition then merely introduces a synonym for a previously-defined
architectural specification.

BASIC-ARCH-SPEC ::= basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT
UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN
RESULT-UNIT ::= result-unit UNIT-EXPRESSION

A basic architectural specification BASIC-ARCH-SPEC is written:

units UD1; . . . UDn; result UE ;

where both the last two semicolons are optional.
It consists of a list of unit declarations and definitions UD1, . . . , UDn,

together with a unit expression UE describing how such units are to be com-
posed. A model of such an architectural specification consists of a unit for
each UDi, and the composition of these units as described by UE .

5.3 Unit Declarations and Definitions

The visibility of unit names in architectural specifications is linear: each name
has to be declared or defined before it is used in a unit expression; and no
unit name may be introduced more than once in a particular architectural
specification. Note that declarations and definitions of units do not affect the
global environment: a unit may be referenced only within the architectural
specification in which it occurs.

52 I:5 Architectural Specifications

5.3.1 Unit Declarations

UNIT-DECL ::= unit-decl UNIT-NAME UNIT-SPEC UNIT-IMPORTED
UNIT-IMPORTED ::= unit-imported UNIT-TERM*
UNIT-NAME ::= SIMPLE-ID

A unit declaration UNIT-DECL is written:
UN : USP given UT1,. . . ,UTn

When the list UNIT-TERM* of imported unit terms is empty, it is simply writ-
ten:

UN : USP

It provides not only a unit specification USP but also a unit name UN , which
is used for referring to the unit in subsequent unit expressions, so that the
same unit may be used more than once in a composition.

The UNIT-IMPORTED lists any units UT1, . . . ,UTn that are imported for
the implementation of the declared unit (which corresponds to implementing
a generic unit function and applying it only once, to the imported units, the
argument type of the generic function being merely the list of the signatures of
the UTi). The unit specification USP is treated as an extension of the signa-
tures of the imported units, thus being given a non-empty local environment,
in general.

5.3.2 Unit Definitions

UNIT-DEFN ::= unit-defn UNIT-NAME UNIT-EXPRESSION

A unit definition UNIT-DEFN is written:
UN = UE

It defines the name UN to refer to the unit resulting from the composition
described by the unit expression UE .

5.4 Unit Specifications

UNIT-SPEC-DEFN ::= unit-spec-defn SPEC-NAME UNIT-SPEC
UNIT-SPEC ::= UNIT-TYPE | SPEC-NAME | ARCH-UNIT-SPEC

| CLOSED-UNIT-SPEC

A unit specification definition UNIT-SPEC-DEFN is written:

unit spec SN =
USP

end

where the terminating ‘end’ keyword is optional.

I:5.4 Unit Specifications 53

It provides a name SN for a unit specification USP . The unit specification
may be a unit type. It may also be the name of another unit specification
(in the context-free concrete syntax, this is indistinguishable from a reference
to a named structured specification in a constant unit type, but the global
environment determines how the name should be interpreted). It may be an
architectural specification (either a reference to the defined name of an archi-
tectural specification, or an anonymous architectural specification). Finally, it
may be an explicitly-closed unit specification.

It defines the name SN to refer to the unit specification USP , extending
the global environment (which must not already include a definition for SN).
The local environment given to USP is empty, i.e., the unit specification is
implicitly closed.

5.4.1 Unit Types

UNIT-TYPE ::= unit-type SPEC* SPEC

A unit type is written:

SP1 × . . .× SPn → SP

When the list SPEC* of argument specifications is empty, the unit type is
simply written ‘SP ’. The sign displayed as ‘×’ may be input as ‘×’ in ISO
Latin-1, or as ‘*’ in ASCII. The sign displayed as ‘→’ is input as ‘->’.

A unit satisfies a unit type when it is a persistent function that maps
compatible tuples of models of the argument specifications SP1, . . . , SPn to
models of their extension by the result specification SP .

5.4.2 Architectural Unit Specifications

ARCH-UNIT-SPEC ::= arch-unit-spec ARCH-SPEC

An architectural unit specification ARCH-UNIT-SPEC is written:

arch spec ASP

A unit satisfies ‘arch spec ASP ’ when it is the result unit of some model
of ASP . Given a (basic or named) architectural specification ASP , note the
difference between ‘ASP ’ and ‘arch spec ASP ’: the former is an architectural
specification, while the latter is a coercion of the architectural specification
ASP to a unit specification.

5.4.3 Closed Unit Specifications

CLOSED-UNIT-SPEC ::= closed-unit-spec UNIT-SPEC

A closed unit specification CLOSED-UNIT-SPEC is written:

closed USP

It determines the same type as USP determines in the empty local environ-
ment, thus ensuring the closedness of USP .

54 I:5 Architectural Specifications

5.5 Unit Expressions

UNIT-EXPRESSION ::= unit-expression UNIT-BINDING* UNIT-TERM
UNIT-BINDING ::= unit-binding UNIT-NAME UNIT-SPEC

A unit expression with some unit bindings is written:

λUN1 : USP1; . . . ; UNn : USPn • UT

The sign displayed as ‘λ’ is input as ‘lambda’. The sign displayed as ‘ • ’ may
be input as ‘·’ in ISO Latin-1, or as ‘.’ in ASCII. When the list of unit bindings
is empty, just the unit term ‘UT ’ is written.

It describes a composition of units declared (or defined) in the enclosing
architectural specification. The result unit is a function, mapping the argu-
ments specified by the unit bindings (if any) to the unit described by the unit
term UT . The unit names UN1, . . . , UNn for the arguments must be dis-
tinct, and not include the names of units previously declared in the enclosing
architectural specification.

The unit bindings for the arguments (which are like unit declarations but
with no possibility of importing other units) in a unit expression are for (non-
parametrized) units that are required to build the result, but are not directly
provided yet. This allows for compositions which express partial architectural
specifications that depend on additional units, and might be used to instan-
tiate the same composition for various realizations of the required units.

5.5.1 Unit Terms

UNIT-TERM ::= UNIT-REDUCTION | UNIT-TRANSLATION | AMALGAMATION
| LOCAL-UNIT | UNIT-APPL

Unit terms provide counterparts to most of the constructs of structured spec-
ifications: translations, reductions, amalgamations (corresponding to unions),
local unit definitions, and applications (corresponding to instantiations).

Unit terms use the same notation as structured specifications – but with
a crucially different semantics, however. This is easiest to notice when con-
sidering the difference between union and amalgamation, as well as between
translation and unit translation. For units, enough sharing is required so that
the constructs, as applied to the given units, will always make sense and
produce results. This is in contrast with the constructs for structured specifi-
cations, where well-formed unions or (non-injective) translations of consistent
specifications might result in inconsistencies.

The sharing between symbols is understood here semantically: two symbols
share if they coincide semantically. However, there is also a static semantics
(with the corresponding static analysis supported by CASL tools) that exploits
situations where symbols required to share in fact originate from the same
symbol in some unit declaration or definition. Such direct information should

I:5.5 Unit Expressions 55

be sufficient to discharge the verification conditions implicit in the above se-
mantic requirement in most typical cases. This is simplest when no subsorting
constructs are involved. The presence of subsorts, and the properties that sub-
sort embeddings and overloaded operations and predicates must satisfy, make
the static analysis more complex [62] (but still tractable in practical exam-
ples).

Taking the unit type of each unit name from its declaration, the unit term
must be well-typed. All the constructs involved must get argument units over
the appropriate signatures.

Unit Translations

UNIT-TRANSLATION ::= unit-translation UNIT-TERM RENAMING

A unit translation is written:

UT R

where the renaming R is written ‘with SM ’, and determines a mapping of
symbols, cf. Sect. 4.2.1.

It allows some of the unit symbols to be renamed. Any symbols that hap-
pen to be glued together by the renaming must share.

Unit Reductions

UNIT-REDUCTION ::= unit-reduction UNIT-TERM RESTRICTION

A unit reduction is written:

UT R

where the restriction R is written ‘hide SL’ or ‘reveal SM ’, and determines
a set of symbols, and in the latter case also a mapping of them, cf. Sect. 4.2.2.

It allows parts of the unit to be hidden and other parts to be simultaneously
renamed.

Amalgamations

AMALGAMATION ::= amalgamation UNIT-TERM+

An amalgamation is written:

UT1 and . . .and UTn

It produces a unit that consists of the components of all the amalgamated
units put together. Compatibility of the unit terms must be ensured.

56 I:5 Architectural Specifications

Local Units

LOCAL-UNIT ::= local-unit UNIT-DEFN+ UNIT-TERM

A local unit is written:

local UD1; . . . ; UDn; within UT

where the final ‘;’ may be omitted.
This allows for naming units that are locally defined for use in a unit term,

these units being intermediate results that are not to be visible in the models
of the enclosing architectural specification.

Unit Applications

UNIT-APPL ::= unit-appl UNIT-NAME FIT-ARG-UNIT*

A unit application UNIT-APPL is written:

UN [FAU1]. . . [FAUn]

It refers to a generic unit named UN that has already been declared or defined
in the enclosing architectural specification, providing a fitting argument FAUi

for each declared parameter (in the same order).

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*

A fitting argument FAUi is written:

UT ′
i fit SMi

When the symbol mapping SMi is empty, just the unit term UT ′
i is written.

The fitting argument fits the argument unit given by the unit term UT ′
i

to the corresponding formal argument for the generic unit, via a signature
morphism which is determined by the symbol mapping SMi in the same way
as for generic specifications. The result of such ‘fitting’ (which is the reduct of
the argument unit by the signature morphism) must be a model of the corre-
sponding parameter specification in the declaration of the unit UN , otherwise
the unit application is undefined.

When there is more than one parameter, the separate fitting argument
morphisms have to be compatible; moreover, the argument units determined
by UT ′

i must be compatible as well.
Then, the unit function denoted by UN is applied to the fitted argument

units. The result is translated by the fitting signature morphisms extended
to the signature of the result specification in the declaration of UN (just as
for instantiations of generic specifications) and finally amalgamated with the
argument units, yielding the overall result of the unit application.

6

Specification Libraries

Section 6.1 introduces the concepts underlying the specification libraries pro-
vided by CASL. The rest of the chapter indicates the abstract and concrete
syntax of the library constructs, and describes their intended interpretation,
extending what was provided for basic, structured, and architectural specifi-
cations in the preceding chapters. Section 6.2 presents the constructs of local
libraries. Such libraries are not dependent on other libraries. Section 6.3 con-
siders constructs for referencing distributed libraries. Finally, Sect. 6.4 explains
the form and intended interpretation of library names.

6.1 Library Concepts

Specifications may be named by definitions and collected in libraries. In the
context of a library, the (re)use of a specification may be replaced by a ref-
erence to it through its name. The current association between names and
the specifications that they reference is called the global environment ; it may
vary throughout a library: with linear visibility, as in CASL, the global envi-
ronment for a named specification is determined exclusively by the definitions
that precede it. When overriding is forbidden, as in CASL, each valid reference
to a particular name refers to the same defined entity.

The local environment given to each named specification in a library should
be independent of the other specifications in the library (in CASL, it is empty).
Thus any dependence between the specifications is always apparent from the
explicit references to the names of specifications.

A library may be located at a particular site on the Internet. The library
is referenced from other sites by a name which determines the location and
perhaps identifies a particular version of the library. To allow libraries to be
relocated without this invalidating existing references to them, library names
may be interpreted relative to a global directory that maps names to URLs.
Libraries may also be referenced directly by their (relative or absolute) URLs,
independently of their registration in the global directory.

58 I:6 Specification Libraries

A library may incorporate the downloading of (the semantics of) named
specifications from (perhaps particular versions of) other libraries, whenever
the library is used. To ensure continuous access to specifications despite tem-
porary failures at a particular library site, registered libraries may be mirrored
at archive sites.

The semantics of a specification library is the name of the library together
with a map taking each specification name defined in it to the semantics of
that specification. The initial global environment for the library is empty.

6.2 Local Libraries

LIB-DEFN ::= lib-defn LIB-NAME LIB-ITEM*
LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN | ARCH-SPEC-DEFN | UNIT-SPEC-DEFN

A library definition LIB-DEFN is written:

library LN LI1. . .LIn

Each library item LIi starts with a distinctive keyword, and may be terminated
by an optional ‘end’.

The library definition provides a collection of specification (and perhaps
also view) definitions. It is well-formed only when the defined names are dis-
tinct, and not referenced until (strictly) after their definitions. The global
environment for each definition is that determined by the preceding defini-
tions. Thus a library in CASL provides linear visibility, and mutual or cyclic
chains of references are not allowed.

The local environment for each definition is empty: the symbols declared by
the preceding specifications in the library are only made available by explicit
reference to the name of the specification concerned.

Each specification definition in a library must be self-contained (after re-
solving references to names defined in the current global environment), deter-
mining a complete signature – fragments of specifications cannot be named.

A library definition determines a library name, together with a map from
names to the semantics of the named specifications.

6.3 Distributed Libraries

LIB-ITEM ::= ... | DOWNLOAD-ITEMS
DOWNLOAD-ITEMS ::= download-items LIB-NAME ITEM-NAME-OR-MAP+
ITEM-NAME-OR-MAP ::= ITEM-NAME | ITEM-NAME-MAP
ITEM-NAME-MAP ::= item-name-map ITEM-NAME ITEM-NAME
ITEM-NAME ::= SIMPLE-ID

The syntax of local libraries is here extended with a further sort of library
item, for use with distributed libraries.

I:6.4 Library Names 59

A downloading DOWNLOAD-ITEMS is written:

from LN get IN1 �→ IN ′
1, . . . , INn �→ IN ′

n end

where the terminating ‘end’ keyword is optional. An identity map ‘INi �→ INi’
may be simply written ‘INi’.

The downloading specifies which definitions to download from the remote
library named LN , changing the remote names INi to the local names IN ′

i . The
semantics corresponds to having already replaced all references in the down-
loaded definitions by the corresponding (closed) specifications; cyclic chains
of references via remote libraries are not allowed. The download items show
exactly which specification names are added to the current global environment
of the library in which they occur, allowing references to named specifications
to be checked locally (although not whether the kind of specification to be
downloaded from the remote library is consistent with its local use).

6.4 Library Names

LIB-NAME ::= LIB-ID | LIB-VERSION
LIB-VERSION ::= lib-version LIB-ID VERSION-NUMBER
VERSION-NUMBER ::= version-number NUMBER+

A library name LIB-NAME without a VERSION-NUMBER is written simply as a
library identifier LI . A library name LIB-NAME with version numbers N1, . . . ,
Nn is written:

LI version N1.Nn

The lists of version numbers are ordered lexicographically on the basis of the
usual ordering between natural numbers.

The library name of a library definition determines how the library is to
be referenced from other libraries; its interpretation as a URL determines
the primary location of the library (any copies of a library are to retain the
original name).

When the name of a defined library is simply a library identifier LIB-ID,
it must be changed to an explicit library version LIB-VERSION before defining
further versions of that library. A library identifier without an explicit version
in a downloading construct always refers to the current version of the iden-
tified library: the one with the largest list of version numbers (which is not
necessarily the last-created version).

LIB-ID ::= DIRECT-LINK | INDIRECT-LINK
DIRECT-LINK ::= direct-link URL
INDIRECT-LINK ::= indirect-link PATH

A direct link to a library is simply written as the URL of the library. The
location of a library is always a directory, giving access not only to the in-
dividual specifications defined by the current version of the library but also

60 I:6 Specification Libraries

to previously-defined versions, various indexes, and perhaps other documen-
tation.

An indirect link is written:

FI1/. . . /FIn

where each file identifier FIi is a valid file name, as for use in a path in a
URL. An indirect link is interpreted as a URL by the current global library
directory.

7

Sublanguages and Extensions

From CASL, simpler languages (e.g., for interfacing with existing tools) are ob-
tained by restriction, and CASL is also extended in more advanced languages
(e.g., higher-order). CASL strikes a balance between simplicity and expressive-
ness.

7.1 Sublanguages

This section defines various frequently used sublogics as sublanguages of CASL.
Different existing algebraic specification language implementations have a nat-
ural extension in CASL, so that specifications in such languages can be trans-
lated into CASL and can be combined with other CASL specifications. Tool
support for CASL specifications can be obtained for specifications within given
sublanguages by translating CASL specifications for those sublanguages into
the corresponding languages of given tools.

Note that the sublanguages defined here only address basic specifications.
CASL structured and architectural specifications as well as libraries remain
the same for all the sublanguages.

7.1.1 A Language for Naming Sublanguages

A concise notation for a variety of sublanguages of CASL can be obtained by as-
signing tokens to the various features of CASL. This leads to a two-component
name for the various sublanguages that can be obtained by combining CASL’s
features. The first component is a vector of tokens. The presence (or absence)
of a token denotes the presence (or absence) of a corresponding feature, cf.
Sect. 7.1.2. The second component determines the level of expressiveness of
axioms due to Sect. 7.1.3.

62 I:7 Sublanguages and Extensions

We assign the following tokens to features:

• Sub stands for subsorting.
• P stands for partiality.
• C stands for sort generation constraints.
• An equality symbol (=) stands for equality.

Any subset of this set of four tokens, when combined with the notation for
denoting a particular level of expressiveness, denotes the sublanguage obtained
by equipping the level of expressiveness with the features expressed by the
tokens (technically, this is achieved by intersecting all those sublanguages
which omit a feature that is not in the set).

In order to be consistent with standard terminology, the predicate feature
is combined with the levels of axiomatic expressiveness (Sect. 7.1.3), as follows.

With predicates, we have:

• FOL stands for the unrestricted form of axioms (first-order logic).
• GHorn stands for the restriction to generalized positive conditional logic.
• Horn stands for the restriction to positive conditional logic.
• Atom stands for the restriction to atomic logic.

Without predicates, we have:

• FOAlg stands for the unrestricted form of axioms (first-order logic).
• GCond stands for the restriction to generalized positive conditional logic.
• Cond stands for the restriction to positive conditional logic.
• Eq stands for the restriction to atomic logic.

Finally, we adopt the convention that the equality sign = is always put at
the end, as a superscript.

Some Interesting Sublanguages of CASL

Here are some examples of what the above naming scheme means in practice:

SubPCFOL=:
(read: subsorted partial constraint first-order logic with equality). This is
the logic of CASL itself.

SubPFOL=:
(read: subsorted partial first-order logic with equality). CASL without sort
generation constraints. This is described in [13].

FOL=:
Standard many-sorted first-order logic with equality.

PFOL=:
Partial many-sorted first-order logic with equality.

FOAlg=:
First-order algebra (i.e., no predicates).

I:7.1 Sublanguages 63

SubPHorn=:
This is the positive conditional fragment of CASL. It has two important
properties:
• Initial models and free extensions exist (see [41]).
• Using a suitable encoding of subsorting and partiality, one can use

conditional term rewriting or paramodulation [51] for theorem proving.
SubPCHorn=:

The positive conditional fragment plus sort generation constraints. Com-
pared with SubPHorn=, one has to add induction techniques to the the-
orem proving tools.

PCond=:
These are Burmeister’s partial quasi-varieties [10] modulo the fact that
Burmeister does not have total function symbols. But total function sym-
bols can be easily simulated by partial ones, using totality axioms, as in
the partly total algebras of [11]. A suitable restriction leads to Reichel’s
HEP-theories [55]. Meseguer’s Rewriting Logic [35] can be embedded into
PCond=.

Horn=:
This is Eqlog [22, 51]. By further restricting this we get Membership
Equational Logic [36], Equational Type Logic [33] and Unified Algebras
[48]. Of course, Membership Equational Logic, Equational Type Logic
and Unified Algebras are not just restrictions of Horn=, but all have been
invented in order to represent more complex logics within a subset of
Horn=.

Horn :
Logic Programming (Pure Prolog) [32].

SubCond=:
Subsorted conditional logic. This is similar but not equal to OBJ3 [25],
see [41], the main difference being the treatment of subsorts.

Cond=:
This is many-sorted conditional equational logic [66] .

SubPAtom:
The atomic subset of CASL. Unconditional term rewriting becomes appli-
cable.

SubPCAtom:
The atomic subset plus sort generation constraints.

Eq=:
This is classical equational logic [24].

CEq=:
Equational logic plus sort generation constraints.

In the literature, some of the above institutions are typically defined in a way
allowing empty carrier sets, while CASL excludes empty carriers. This problem
is discussed in [41].

64 I:7 Sublanguages and Extensions

7.1.2 A List of Orthogonal Features

In this section, we describe a number of CASL’s features negatively by speci-
fying, for each feature, the sublanguage of CASL that leaves out exactly that
feature. This is possible since CASL is already the combination of all its fea-
tures. A combination of only some of CASL’s features can then be obtained by
intersecting all those sublanguages that exclude exactly one of the undesired
features. Intersection of languages as institutions is formally defined in [41].

Partiality

As indicated above, we now specify the sublanguage of CASL without partiality.
We cross out those parts of the CASL grammar given in Sect.. II:2.1 that have
to be removed in order to remove the possibility to declare and use partial
functions:

OP-TYPE ::= TOTAL-OP-TYPE | PARTIAL-OP-TYPE

OP-HEAD ::= TOTAL-OP-HEAD | PARTIAL-OP-HEAD

ALTERNATIVE ::= TOTAL-CONSTRUCT | PARTIAL-CONSTRUCT

COMPONENTS ::= TOTAL-SELECT | PARTIAL-SELECT | SORT

TERM ::= SIMPLE-ID | QUAL-VAR | APPLICATION
| SORTED-TERM | CONDITIONAL | CAST

Note that we can keep DEFINEDNESS, EXISTL-EQUATION and STRONG-EQUA-
TION, since in the total case, the former is semantically equivalent to true
and the latter two are equivalent.

Predicates

This is easy as well: from the CASL grammar we just have to remove the
possibility to declare and use predicates:

SIG-ITEMS ::= SORT-ITEMS | OP-ITEMS | PRED-ITEMS
| DATATYPE-ITEMS

ATOM ::= TRUTH | PREDICATION | DEFINEDNESS
| EXISTL-EQUATION | STRONG-EQUATION

Subsorting

Just remove everything from Sect. II:2.1.2 from the grammar.

I:7.1 Sublanguages 65

Sort Generation Constraints

To remove sort generation constraints, just change the grammar as follows:

BASIC-ITEMS ::= SIG-ITEMS | FREE-DATATYPE | SORT-GEN
| VAR-ITEMS | LOCAL-VAR-AXIOMS | AXIOM-ITEMS

Equality

To remove equations, just change the grammar as follows:

ATOM ::= TRUTH | PREDICATION | DEFINEDNESS
| EXISTL-EQUATION | STRONG-EQUATION

7.1.3 A List of Levels of Expressiveness

In this and the following section, the sublanguages are identified in a purely
syntactical way, namely by restricting the grammar for the CASL abstract
syntax (cf. Sect. II:2.1). Thus, given a particular specification, a tool can
easily determine the minimal sublanguage of CASL to which the specification
belongs.

We start with the four different level of axiomatic expressiveness.

First-Order Logic

This is given by the unrestricted CASL grammar.

Positive Conditional Logic

Positive conditional logic more precisely means: universally-quantified pos-
itive conditional logic. Usually this means that formulas are restricted to
universally-quantified implications that consist of a premise that is a con-
junction of atoms, and a conclusion that is an atom:

∀x1:s1 . . . ∀xn:sn • ϕ1 ∧ . . . ∧ ϕn ⇒ ϕ

Positive conditional means that the atoms must not implicitly contain nega-
tive parts. Now strong equations are implicit implications (if both sides are
defined, then they are equal, or both sides are undefined) and thus may not
occur in the premises of positive conditional axioms. The reason for this is
that we want to have initial models for positive conditional axioms, and these
do not exist if strong equations are allowed in the premises (see [12, 3]).

The new grammar for formulas, which describes a subset of CASL (even
though it uses some new nonterminals, written THUS), is as follows:

66 I:7 Sublanguages and Extensions

FORMULA ::= QUANTIFICATION | CONJUNCTION | DISJUNCTION
| IMPLICATION | EQUIVALENCE | NEGATION | ATOM

QUANTIFICATION ::= quantification QUANTIFIER VAR-DECL+ FORMULA
QUANTIFIER ::= universal | existential | unique-existential
P-CONJUNCTION ::= conjunction P-ATOM+
IMPLICATION ::= implication P-CONJUNCTION ATOM

P-ATOM ::= TRUTH | PREDICATION | DEFINEDNESS
| EXISTL-EQUATION | STRONG-EQUATION

ATOM ::= TRUTH | PREDICATION | DEFINEDNESS
| EXISTL-EQUATION | STRONG-EQUATION

TRUTH ::= true | false

SUBSORT-DEFN ::= subsort-defn SORT VAR SORT P-ATOM

P-CONJUNCTION allows a conjunction in the premise of an implication.
Note that P-ATOM is needed to forbid strong equations in the premise.

Since subsort definitions are reduced to equivalences (and can be further
reduced to two implications), in order to obtain a positive conditional formula,
we must ensure that the defining formula is a P-ATOM .

Generalized Positive Conditional Logic

In the following, we generalize the above form of positive conditional formulas
by allowing also:

• conjunctions of atoms in the conclusion (they can be removed by writing,
for each conjunct, an implication with the same premise and the conjunct
as conclusion),

• nested conjunctions in the premise and conclusion (they can be flattened),
• equivalences in addition to implications (an equivalence is equivalent to

two implications), and
• nesting of conjunction and universal quantification (by the rules for prenex

normal form [64], we can always shift the quantifiers inside, getting a
conjunction of universally quantified implications).

Each formula of this more general kind is equivalent to a set of formulas
of the standard conditional kind. Thus there is an easy transformation from
generalized positive conditional logic to plain positive conditional logic.

The new grammar for formulas is as follows

FORMULA ::= QUANTIFICATION | C-CONJUNCTION
| F-CONJUNCTION | DISJUNCTION
| IMPLICATION | EQUIVALENCE | NEGATION | ATOM

QUANTIFICATION ::= quantification QUANTIFIER VAR-DECL+ FORMULA
QUANTIFIER ::= universal | existential | unique-existential
F-CONJUNCTION ::= conjunction FORMULA+
P-CONJUNCTION ::= conjunction PREMISE+

I:7.1 Sublanguages 67

C-CONJUNCTION ::= conjunction CONCLUSION+
PREMISE ::= P-CONJUNCTION | P-ATOM
CONCLUSION ::= C-CONJUNCTION | ATOM
IMPLICATION ::= implication PREMISE CONCLUSION
EQUIVALENCE ::= equivalence PREMISE PREMISE

P-ATOM ::= TRUTH | PREDICATION | DEFINEDNESS
| EXISTL-EQUATION | STRONG-EQUATION

ATOM ::= TRUTH | PREDICATION | DEFINEDNESS
| EXISTL-EQUATION | STRONG-EQUATION

TRUTH ::= true | false

SUBSORT-DEFN ::= subsort-defn SORT VAR SORT PREMISE

P-CONJUNCTION and C-CONJUNCTION allow nested conjunctions in the
premises and conclusion of an implication. F-CONJUNCTION allows nesting of
quantification and conjunction.

Atomic Logic

This is the restriction of conditional logic to unconditional (i.e., universally
quantified atomic) formulas. Strong equations are only allowed if at least one
of the sides of the equation consists entirely of total function symbols and
variables; this is indicated by the nonterminal written ‘(STRONG-EQUATION)’
below. Other strong equations are removed due to their conditional nature: in
[37] it is proved that strong equations can simulate positive conditional formu-
las. Since definitions of partial functions involve strong equations with possibly
partial function symbols occurring on both sides of the equations, these are
removed as well. Likewise, associativity and commutativity attributes are re-
moved. Finally, due to the conditional nature of subsort definitions we have
to forbid them entirely.

SORT-ITEM ::= SORT-DECL | SUBSORT-DECL | ISO-DECL | SUBSORT-DEFN

OP-HEAD ::= TOTAL-OP-HEAD | PARTIAL-OP-HEAD

BINARY-OP-ATTR ::= assoc-op-attr | |comm-op-attr | idem-op-attr
FORMULA ::= QUANTIFICATION | F-CONJUNCTION | DISJUNCTION

| IMPLICATION | EQUIVALENCE | NEGATION | P-ATOM
QUANTIFICATION ::= quantification QUANTIFIER VAR-DECL+ FORMULA
QUANTIFIER ::= universal | existential | unique-existential
F-CONJUNCTION ::= conjunction FORMULA+

P-ATOM ::= TRUTH | PREDICATION | DEFINEDNESS
| EXISTL-EQUATION | (STRONG-EQUATION)

TRUTH ::= true | false

68 I:7 Sublanguages and Extensions

7.2 Extensions

Various extensions of CASL have been proposed. They have not been developed
by CoFI as a whole, but by subgroups of CoFI, and have not yet been approved
by CoFI and IFIP WG1.3. For a language to be approved as an extension of
CASL, its syntax and intended semantics have to be documented in relation to
the CASL Summary (i.e., the foregoing chapters of this part of the reference
manual), and it has to include most constructs of CASL– respecting their usual
syntax and semantics.

Most of the extensions are defined at the level of CASL basic specifications.
The exceptions are COCASL, HETCASL and the refinement language: these
languages also define new structuring constructs.

7.2.1 Higher-Order and Coalgebraic Extensions

HASCASL

HASCASL [60, 61] is an extension of CASL that establishes a connection with
functional programming languages such as Haskell. To this end, CASL has been
extended by features that support the type system of these languages, in par-
ticular higher-order types, type constructors, and parametric polymorphism.
The HASCASL semantics is tuned to allow program development by specifi-
cation refinement, while at the same time staying close to the set-theoretic
semantics of first-order CASL. The number of primitive concepts in the logic
has been kept as small as possible; various extensions to the logic can be for-
mulated within the language itself. Together with the HASCASL tool support,
an environment is created for the specification and formal implementation of
software, which allows the coherent development of formal specifications and
executable functional programs in a common framework.

COCASL

COCASL [46] is a simple coalgebraic extension of CASL. COCASL admits the
nested combination of algebraic datatypes and coalgebraic process types.
COCASL dualizes CASL’s generated and free types to cogenerated and cofree
types, and provides a coalgebraic modal logic for these. At the level of struc-
tured specifications, CASL’s free construct is dualized to a cofree construct.

7.2.2 Reactive Extensions

CASL-LTL

CASL-LTL is an extension of CASL that allows for specification of dynamic
systems by modelling them by means of labelled transition systems and by

I:7.2 Extensions 69

expressing their properties with temporal formulas. It is based on LTL, a logic-
algebraic formalism for the specification of concurrent systems. A detailed
summary of the syntax and intended semantics of CASL-LTL can be found
in [54].

SB-CASL

SB-CASL [4] is an extension of CASL that deals with the specification of state-
based systems using the state-as-algebra approach. In this approach, the state
of a software system is modeled as an algebra (in SB-CASL, as an algebra of
the CASL institution), and operations changing the state as (partial) functions
on classes of algebras.

SB-CASL incorporates ideas from Gurevich’s Abstract State Machines
(ASM), d-oids by Astesiano and Zucca, and others. In particular, this ex-
tension combines an operational style of specification (in the sense of ASMs)
with a declarative style (in the sense of Z).

CSP-CASL

CSP-CASL [56] is a combination of CASL with the process algebra CSP, fol-
lowing the paradigm “integrating a formalism for concurrent aspects with
algebraic specification of static datatypes” [2]. Its novel aspects include the
use of denotational semantics for the process part, loose semantics for the
datatypes, and their combination in terms of a two-step semantics leading to
decomposition theorems concerning an appropriate notion of refinement.

7.2.3 Extensions at the Structured Level

HETCASL

HETCASL stand for heterogeneous CASL, and allows for mixing of specifications
written in different logics (using translations between the logics) [40, 42]. It
extends CASL only at the level of structuring constructs, by adding constructs
for choosing the logic and translating specifications among logics. HETCASL

is needed when combining specifications written in CASL with specifications
written in its sublanguages and extensions.

A Simple Refinement Language

A simple refinement language built on top of CASL has been proposed in
[43, 47]. It allows to refine unit specifications and architectural specifications,
until monomorphic unit specifications are reached. Under suitable restrictions,
the latter can then be translated into a programming language.

Part II

CASL Syntax

The CoFI Language Design Group

Editors: Bernd Krieg-Brückner and Peter D. Mosses

1

Introduction

This part of the CASL Reference Manual is concerned with syntax. It makes
the usual distinction between concrete syntax and abstract syntax: the former
deals with the representation of specifications as sequences of characters, and
with how these sequences can be grouped to form specifications, whereas the
latter reflects only the compositional structure of specifications after they have
been properly grouped.

The abstract syntax of CASL plays a particularly central rôle: not only is it
the basis for the CASL semantics, which is explained informally in Part I and
defined formally in Part III, but also the abstract syntax of CASL specifications
can be stored in libraries, so that tools can process the specifications without
having to (re)parse them.

In acknowledgment of the importance of abstract syntax, consideration of
concrete syntax for CASL was deferred until after the design of the abstract
syntax – and of most of the details of its semantics – had been settled. The
presentation of the CASL syntax here reflects the priority given to the abstract
syntax:

• Chapter 2 specifies the abstract syntax of CASL;
• Chapter 3 gives a context-free grammar for CASL specifications, indicating

also how ambiguities are resolved;
• Chapter 4 specifies the grouping of sequences of characters into sequences

of lexical symbols, and determines their display format; and finally,
• Chapter 5 explains the form and use of comments and annotations (which

are both included in abstract syntax, but have no effect on the semantics
of specifications).

The relationship between the concrete syntax and the abstract syntax is
rather straightforward – except that mapping the use of mixfix notation in
a concrete ATOM to an abstract ATOM depends on the declared operation and
predicate symbols (although not on their profiles). Here, the relationship is
merely suggested by the use of the same nonterminal symbols in the concrete
and abstract grammars.

74 II:1 Introduction

Acknowledgement. The design of the abstract syntax of CASL has been heavily in-
fluenced by the work of the CoFI Semantics group on the formal semantics of CASL
(see Part III).

The initial design of the concrete syntax (both input syntax and display format)
of CASL was produced by Michel Bidoit, Christine Choppy, Bernd Krieg-Brückner,
and Frédéric Voisin (with Peter Mosses as moderator of the lively discussions).
Feedback from the development of various prototype parsers for CASL by Hubert
Baumeister, Mark van den Brand, Kolyang, Christian Maeder, Till Mossakowski,
Markus Roggenbach, Axel Schairer, Christophe Tronche, Frédéric Voisin, and Bjarke
Wedemeijer contributed significantly to the final design of the concrete syntax.

2

Abstract Syntax

The abstract syntax is central to the definition of a formal language. It stands
between the concrete representations of documents, such as marks on paper or
images on screens, and the abstract entities, semantic relations, and semantic
functions used for defining their meaning.

The abstract syntax has the following objectives:

• to identify and separately name the abstract syntactic entities;
• to simplify and unify underlying concepts, putting like things with like,

and reducing unnecessary duplication.

There are many possible ways of constructing an abstract syntax, and the
choice of form is a matter of judgment, taking into account the somewhat
conflicting aims of simplicity and economy of semantic definition.

The abstract syntax is presented as a set of production rules in which each
kind of entity is defined in terms of its sub-kinds:

SOME-KIND ::= SUB-KIND-1 | ... | SUB-KIND-n

or in terms of its constructor and components:

SOME-CONSTRUCT ::= some-construct COMPONENT-1 ... COMPONENT-n

The productions form a context-free grammar; algebraically, the nonterminal
symbols of the grammar correspond to sorts (of trees), and the terminal sym-
bols correspond to constructor operations. The notation COMPONENT* indicates
repetition of COMPONENT any number of times; COMPONENT+ indicates repeti-
tion at least once. These repetitions can be replaced by auxiliary sorts and
constructs, after which it would be straightforward to transform the grammar
into a CASL library of specifications using datatype declarations.

The context conditions for well-formedness of specifications are context-
sensitive, and considered as part of the CASL semantics, see Part III.

Many constructs can have comments and annotations attached to them
(see Sect. 5.2), but these are not shown in the grammar.

76 II:2 Abstract Syntax

2.1 Normal Grammar

The grammar given in this section has the property that there is a nonterminal
for each abstract construct (although an exception is made for constant con-
structs with no components). Section 2.2 provides an abbreviated grammar
defining the same abstract syntax.

The following nonterminal symbols correspond to the lexical syntax, and
are left unspecified in the abstract syntax: WORDS, DOT-WORDS, SIGNS, DIGIT,
DIGITS, NUMBER, QUOTED-CHAR, PLACE, URL, and PATH.

2.1.1 Basic Specifications

BASIC-SPEC ::= basic-spec BASIC-ITEMS*

BASIC-ITEMS ::= SIG-ITEMS | FREE-DATATYPE | SORT-GEN
| VAR-ITEMS | LOCAL-VAR-AXIOMS | AXIOM-ITEMS

SIG-ITEMS ::= SORT-ITEMS | OP-ITEMS | PRED-ITEMS
| DATATYPE-ITEMS

SORT-ITEMS ::= sort-items SORT-ITEM+
SORT-ITEM ::= SORT-DECL

SORT-DECL ::= sort-decl SORT+

OP-ITEMS ::= op-items OP-ITEM+
OP-ITEM ::= OP-DECL | OP-DEFN

OP-DECL ::= op-decl OP-NAME+ OP-TYPE OP-ATTR*
OP-TYPE ::= TOTAL-OP-TYPE | PARTIAL-OP-TYPE
TOTAL-OP-TYPE ::= total-op-type SORT-LIST SORT
PARTIAL-OP-TYPE ::= partial-op-type SORT-LIST SORT
SORT-LIST ::= sort-list SORT*
OP-ATTR ::= BINARY-OP-ATTR | UNIT-OP-ATTR
BINARY-OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr
UNIT-OP-ATTR ::= unit-op-attr TERM

OP-DEFN ::= op-defn OP-NAME OP-HEAD TERM
OP-HEAD ::= TOTAL-OP-HEAD | PARTIAL-OP-HEAD
TOTAL-OP-HEAD ::= total-op-head ARG-DECL* SORT
PARTIAL-OP-HEAD ::= partial-op-head ARG-DECL* SORT
ARG-DECL ::= arg-decl VAR+ SORT

PRED-ITEMS ::= pred-items PRED-ITEM+
PRED-ITEM ::= PRED-DECL | PRED-DEFN

PRED-DECL ::= pred-decl PRED-NAME+ PRED-TYPE
PRED-TYPE ::= pred-type SORT-LIST

II:2.1 Normal Grammar 77

PRED-DEFN ::= pred-defn PRED-NAME PRED-HEAD FORMULA
PRED-HEAD ::= pred-head ARG-DECL*

DATATYPE-ITEMS ::= datatype-items DATATYPE-DECL+
DATATYPE-DECL ::= datatype-decl SORT ALTERNATIVE+
ALTERNATIVE ::= TOTAL-CONSTRUCT | PARTIAL-CONSTRUCT
TOTAL-CONSTRUCT ::= total-construct OP-NAME COMPONENTS*
PARTIAL-CONSTRUCT::= partial-construct OP-NAME COMPONENTS+
COMPONENTS ::= TOTAL-SELECT | PARTIAL-SELECT | SORT
TOTAL-SELECT ::= total-select OP-NAME+ SORT
PARTIAL-SELECT ::= partial-select OP-NAME+ SORT

FREE-DATATYPE ::= free-datatype DATATYPE-ITEMS

SORT-GEN ::= sort-gen SIG-ITEMS+

VAR-ITEMS ::= var-items VAR-DECL+
VAR-DECL ::= var-decl VAR+ SORT

LOCAL-VAR-AXIOMS ::= local-var-axioms VAR-DECL+ AXIOM+

AXIOM-ITEMS ::= axiom-items AXIOM+

AXIOM ::= FORMULA
FORMULA ::= QUANTIFICATION | CONJUNCTION | DISJUNCTION

| IMPLICATION | EQUIVALENCE | NEGATION | ATOM
QUANTIFICATION ::= quantification QUANTIFIER VAR-DECL+ FORMULA
QUANTIFIER ::= universal | existential | unique-existential
CONJUNCTION ::= conjunction FORMULA+
DISJUNCTION ::= disjunction FORMULA+
IMPLICATION ::= implication FORMULA FORMULA
EQUIVALENCE ::= equivalence FORMULA FORMULA
NEGATION ::= negation FORMULA

ATOM ::= TRUTH | PREDICATION | DEFINEDNESS
| EXISTL-EQUATION | STRONG-EQUATION

TRUTH ::= true-atom | false-atom
PREDICATION ::= predication PRED-SYMB TERMS
PRED-SYMB ::= PRED-NAME | QUAL-PRED-NAME
QUAL-PRED-NAME ::= qual-pred-name PRED-NAME PRED-TYPE
DEFINEDNESS ::= definedness TERM
EXISTL-EQUATION ::= existl-equation TERM TERM
STRONG-EQUATION ::= strong-equation TERM TERM

TERMS ::= terms TERM*
TERM ::= SIMPLE-ID | QUAL-VAR | APPLICATION

| SORTED-TERM | CONDITIONAL
QUAL-VAR ::= qual-var VAR SORT
APPLICATION ::= application OP-SYMB TERMS

78 II:2 Abstract Syntax

OP-SYMB ::= OP-NAME | QUAL-OP-NAME
QUAL-OP-NAME ::= qual-op-name OP-NAME OP-TYPE
SORTED-TERM ::= sorted-term TERM SORT
CONDITIONAL ::= conditional TERM FORMULA TERM

SORT ::= SORT-ID
OP-NAME ::= ID
PRED-NAME ::= ID
VAR ::= SIMPLE-ID

SORT-ID ::= WORDS
SIMPLE-ID ::= WORDS
ID ::= id MIX-TOKEN+
MIX-TOKEN ::= TOKEN | PLACE | BRACED-ID | BRACKET-ID | EMPTY-BRS
TOKEN ::= WORDS | DOT-WORDS | SIGNS | DIGIT | QUOTED-CHAR
BRACED-ID ::= braced-id ID
BRACKET-ID ::= bracket-id ID
EMPTY-BRS ::= empty-braces | empty-brackets

2.1.2 Subsorting Specifications

SORT-ITEM ::= ... | SUBSORT-DECL | ISO-DECL | SUBSORT-DEFN

SUBSORT-DECL ::= subsort-decl SORT+ SORT
ISO-DECL ::= iso-decl SORT+
SUBSORT-DEFN ::= subsort-defn SORT VAR SORT FORMULA

ALTERNATIVE ::= ... | SUBSORTS
SUBSORTS ::= subsorts SORT+

ATOM ::= ... | MEMBERSHIP
MEMBERSHIP ::= membership TERM SORT

TERM ::= ... | CAST
CAST ::= cast TERM SORT

2.1.3 Structured Specifications

SPEC ::= BASIC-SPEC | TRANSLATION | REDUCTION
| UNION | EXTENSION | FREE-SPEC | LOCAL-SPEC
| CLOSED-SPEC | SPEC-INST

TRANSLATION ::= translation SPEC RENAMING
RENAMING ::= renaming SYMB-MAP-ITEMS+

REDUCTION ::= reduction SPEC RESTRICTION
RESTRICTION ::= HIDDEN | REVEALED
HIDDEN ::= hidden SYMB-ITEMS+

II:2.1 Normal Grammar 79

REVEALED ::= revealed SYMB-MAP-ITEMS+

UNION ::= union SPEC+
EXTENSION ::= extension SPEC+
FREE-SPEC ::= free-spec SPEC
LOCAL-SPEC ::= local-spec SPEC SPEC
CLOSED-SPEC ::= closed-spec SPEC

SPEC-DEFN ::= spec-defn SPEC-NAME GENERICITY SPEC
GENERICITY ::= genericity PARAMS IMPORTED
PARAMS ::= params SPEC*
IMPORTED ::= imported SPEC*

SPEC-INST ::= spec-inst SPEC-NAME FIT-ARG*

FIT-ARG ::= FIT-SPEC | FIT-VIEW
FIT-SPEC ::= fit-spec SPEC SYMB-MAP-ITEMS*
FIT-VIEW ::= fit-view VIEW-NAME FIT-ARG*

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE
SYMB-MAP-ITEMS*

VIEW-TYPE ::= view-type SPEC SPEC

SYMB-ITEMS ::= symb-items SYMB-KIND SYMB+
SYMB-MAP-ITEMS ::= symb-map-items SYMB-KIND SYMB-OR-MAP+
SYMB-KIND ::= implicit | sorts-kind | ops-kind | preds-kind

SYMB ::= ID | QUAL-ID
QUAL-ID ::= qual-id ID TYPE
TYPE ::= OP-TYPE | PRED-TYPE
SYMB-MAP ::= symb-map SYMB SYMB
SYMB-OR-MAP ::= SYMB | SYMB-MAP

SPEC-NAME ::= SIMPLE-ID
VIEW-NAME ::= SIMPLE-ID

SORT-ID ::= ... | COMP-SORT-ID
COMP-SORT-ID ::= comp-sort-id WORDS ID+
MIX-TOKEN ::= ... | COMP-MIX-TOKEN
COMP-MIX-TOKEN ::= comp-mix-token ID+

2.1.4 Architectural Specifications

ARCH-SPEC-DEFN ::= arch-spec-defn ARCH-SPEC-NAME ARCH-SPEC
ARCH-SPEC ::= BASIC-ARCH-SPEC | ARCH-SPEC-NAME
BASIC-ARCH-SPEC ::= basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT

UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN
UNIT-DECL ::= unit-decl UNIT-NAME UNIT-SPEC UNIT-IMPORTED

80 II:2 Abstract Syntax

UNIT-IMPORTED ::= unit-imported UNIT-TERM*
UNIT-DEFN ::= unit-defn UNIT-NAME UNIT-EXPRESSION

UNIT-SPEC-DEFN ::= unit-spec-defn SPEC-NAME UNIT-SPEC
UNIT-SPEC ::= UNIT-TYPE | SPEC-NAME | ARCH-UNIT-SPEC

| CLOSED-UNIT-SPEC
ARCH-UNIT-SPEC ::= arch-unit-spec ARCH-SPEC
CLOSED-UNIT-SPEC ::= closed-unit-spec UNIT-SPEC
UNIT-TYPE ::= unit-type SPEC* SPEC

RESULT-UNIT ::= result-unit UNIT-EXPRESSION
UNIT-EXPRESSION ::= unit-expression UNIT-BINDING* UNIT-TERM
UNIT-BINDING ::= unit-binding UNIT-NAME UNIT-SPEC
UNIT-TERM ::= UNIT-REDUCTION | UNIT-TRANSLATION | AMALGAMATION

| LOCAL-UNIT | UNIT-APPL
UNIT-TRANSLATION ::= unit-translation UNIT-TERM RENAMING
UNIT-REDUCTION ::= unit-reduction UNIT-TERM RESTRICTION
AMALGAMATION ::= amalgamation UNIT-TERM+
LOCAL-UNIT ::= local-unit UNIT-DEFN+ UNIT-TERM
UNIT-APPL ::= unit-appl UNIT-NAME FIT-ARG-UNIT*
FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*

ARCH-SPEC-NAME ::= SIMPLE-ID
UNIT-NAME ::= SIMPLE-ID

2.1.5 Specification Libraries

LIB-DEFN ::= lib-defn LIB-NAME LIB-ITEM*
LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN

| ARCH-SPEC-DEFN | UNIT-SPEC-DEFN
| DOWNLOAD-ITEMS

DOWNLOAD-ITEMS ::= download-items LIB-NAME ITEM-NAME-OR-MAP+
ITEM-NAME-OR-MAP ::= ITEM-NAME | ITEM-NAME-MAP
ITEM-NAME-MAP ::= item-name-map ITEM-NAME ITEM-NAME
ITEM-NAME ::= SIMPLE-ID

LIB-NAME ::= LIB-ID | LIB-VERSION
LIB-VERSION ::= lib-version LIB-ID VERSION-NUMBER
VERSION-NUMBER ::= version-number NUMBER+
LIB-ID ::= DIRECT-LINK | INDIRECT-LINK
DIRECT-LINK ::= direct-link URL
INDIRECT-LINK ::= indirect-link PATH

II:2.2 Abbreviated Grammar 81

2.2 Abbreviated Grammar

This section provides an abbreviated grammar that defines the same (tree)
language as the one in Sect. 2.1. It was obtained by eliminating each nonter-
minal that corresponds to a single construct, when this nonterminal occurs
only once as an alternative.

As in Sect. 2.1, the following nonterminal symbols correspond to lexical
syntax, and are left unspecified in the abstract syntax: WORDS, DOT-WORDS,
SIGNS, DIGIT, DIGITS, NUMBER, QUOTED-CHAR, PLACE, URL, and PATH.

2.2.1 Basic Specifications

BASIC-SPEC ::= basic-spec BASIC-ITEMS*

BASIC-ITEMS ::= SIG-ITEMS
| free-datatype DATATYPE-DECL+
| sort-gen SIG-ITEMS+
| var-items VAR-DECL+
| local-var-axioms VAR-DECL+ FORMULA+
| axiom-items FORMULA+

SIG-ITEMS ::= sort-items SORT-ITEM+
| op-items OP-ITEM+
| pred-items PRED-ITEM+
| datatype-items DATATYPE-DECL+

SORT-ITEM ::= sort-decl SORT+

OP-ITEM ::= op-decl OP-NAME+ OP-TYPE OP-ATTR*
| op-defn OP-NAME OP-HEAD TERM

OP-TYPE ::= total-op-type SORT-LIST SORT
| partial-op-type SORT-LIST SORT

SORT-LIST ::= sort-list SORT*

OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr
| unit-op-attr TERM

OP-HEAD ::= total-op-head ARG-DECL* SORT
| partial-op-head ARG-DECL* SORT

ARG-DECL ::= arg-decl VAR+ SORT

PRED-ITEM ::= pred-decl PRED-NAME+ PRED-TYPE
| pred-defn PRED-NAME PRED-HEAD FORMULA

PRED-TYPE ::= pred-type SORT-LIST
PRED-HEAD ::= pred-head ARG-DECL*

82 II:2 Abstract Syntax

DATATYPE-DECL ::= datatype-decl SORT ALTERNATIVE+

ALTERNATIVE ::= total-construct OP-NAME COMPONENTS*
| partial-construct OP-NAME COMPONENTS+

COMPONENTS ::= total-select OP-NAME+ SORT
| partial-select OP-NAME+ SORT
| SORT

VAR-DECL ::= var-decl VAR+ SORT

FORMULA ::= quantification QUANTIFIER VAR-DECL+ FORMULA
| conjunction FORMULA+
| disjunction FORMULA+
| implication FORMULA FORMULA
| equivalence FORMULA FORMULA
| negation FORMULA
| true-atom | false-atom
| predication PRED-SYMB TERMS
| definedness TERM
| existl-equation TERM TERM
| strong-equation TERM TERM

QUANTIFIER ::= universal | existential | unique-existential

PRED-SYMB ::= PRED-NAME | qual-pred-name PRED-NAME PRED-TYPE

TERMS ::= terms TERM*
TERM ::= SIMPLE-ID

| qual-var VAR SORT
| application OP-SYMB TERMS
| sorted-term TERM SORT
| conditional TERM FORMULA TERM

OP-SYMB ::= OP-NAME | qual-op-name OP-NAME OP-TYPE

SORT ::= SORT-ID
OP-NAME ::= ID
PRED-NAME ::= ID
VAR ::= SIMPLE-ID

SORT-ID ::= WORDS
ID ::= id MIX-TOKEN+
SIMPLE-ID ::= WORDS
MIX-TOKEN ::= TOKEN | PLACE

| bracket-id ID | empty-brackets
| braced-id ID | empty-braces

TOKEN ::= WORDS | DOT-WORDS | SIGNS | DIGIT | QUOTED-CHAR

II:2.2 Abbreviated Grammar 83

2.2.2 Subsorting Specifications

SORT-ITEM ::= ...
| subsort-decl SORT+ SORT
| subsort-defn SORT VAR SORT FORMULA
| iso-decl SORT+

ALTERNATIVE ::= ...
| subsorts SORT+

FORMULA ::= ...
| membership TERM SORT

TERM ::= ...
| cast TERM SORT

2.2.3 Structured Specifications

SPEC ::= BASIC-SPEC
| translation SPEC RENAMING
| reduction SPEC RESTRICTION
| union SPEC+
| extension SPEC+
| free-spec SPEC
| local-spec SPEC SPEC
| closed-spec SPEC
| spec-inst SPEC-NAME FIT-ARG*

RENAMING ::= renaming SYMB-MAP-ITEMS+

RESTRICTION ::= hide SYMB-ITEMS+
| reveal SYMB-MAP-ITEMS+

SPEC-DEFN ::= spec-defn SPEC-NAME GENERICITY SPEC
GENERICITY ::= genericity PARAMS IMPORTED
PARAMS ::= params SPEC*
IMPORTED ::= imported SPEC*

FIT-ARG ::= fit-spec SPEC SYMB-MAP-ITEMS*
| fit-view VIEW-NAME FIT-ARG*

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE
SYMB-MAP-ITEMS*

VIEW-TYPE ::= view-type SPEC SPEC

SYMB-ITEMS ::= symb-items SYMB-KIND SYMB+
SYMB-MAP-ITEMS ::= symb-map-items SYMB-KIND SYMB-OR-MAP+
SYMB-KIND ::= implicit | sorts-kind | ops-kind | preds-kind

84 II:2 Abstract Syntax

SYMB ::= ID | qual-id ID TYPE
TYPE ::= OP-TYPE | PRED-TYPE
SYMB-MAP ::= symb-map SYMB SYMB
SYMB-OR-MAP ::= SYMB | SYMB-MAP

SPEC-NAME ::= SIMPLE-ID
VIEW-NAME ::= SIMPLE-ID

SORT-ID ::= ... | COMP-SORT-ID
MIX-TOKEN ::= ... | COMP-MIX-TOKEN
COMP-SORT-ID ::= comp-sort-id WORDS ID+
COMP-MIX-TOKEN ::= comp-mix-token ID+

2.2.4 Architectural Specifications

ARCH-SPEC-DEFN ::= arch-spec-defn ARCH-SPEC-NAME ARCH-SPEC
ARCH-SPEC ::= basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT

| ARCH-SPEC-NAME
UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN

UNIT-DECL ::= unit-decl UNIT-NAME UNIT-SPEC UNIT-IMPORTED
UNIT-IMPORTED ::= unit-imported UNIT-TERM*
UNIT-DEFN ::= unit-defn UNIT-NAME UNIT-EXPRESSION

UNIT-SPEC-DEFN ::= unit-spec-defn SPEC-NAME UNIT-SPEC
UNIT-SPEC ::= UNIT-TYPE | SPEC-NAME | arch-unit-spec ARCH-SPEC

| closed-unit-spec UNIT-SPEC
UNIT-TYPE ::= unit-type SPEC* SPEC

RESULT-UNIT ::= result-unit UNIT-EXPRESSION
UNIT-EXPRESSION ::= unit-expression UNIT-BINDING* UNIT-TERM
UNIT-BINDING ::= unit-binding UNIT-NAME UNIT-SPEC
UNIT-TERM ::= unit-translation UNIT-TERM RENAMING

| unit-reduction UNIT-TERM RESTRICTION
| amalgamation UNIT-TERM+
| local-unit UNIT-DEFN+ UNIT-TERM
| unit-appl UNIT-NAME FIT-ARG-UNIT*

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*

ARCH-SPEC-NAME ::= SIMPLE-ID
UNIT-NAME ::= SIMPLE-ID

II:2.2 Abbreviated Grammar 85

2.2.5 Specification Libraries

LIB-DEFN ::= lib-defn LIB-NAME LIB-ITEM*
LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN

| ARCH-SPEC-DEFN | UNIT-SPEC-DEFN
| download-items LIB-NAME ITEM-NAME-OR-MAP+

ITEM-NAME-OR-MAP ::= ITEM-NAME | item-name-map ITEM-NAME ITEM-NAME
ITEM-NAME ::= SIMPLE-ID

LIB-NAME ::= LIB-ID | LIB-VERSION
LIB-VERSION ::= lib-version LIB-ID VERSION-NUMBER
VERSION-NUMBER ::= version-number NUMBER+
LIB-ID ::= direct-link URL | indirect-link PATH

3

Concrete Syntax

Section 3.1 gives a context-free grammar for the concrete syntax of CASL.
The grammar is ambiguous; Sect. 3.2 explains various precedence rules for
disambiguation, and the intended grouping of mixfix formulas and terms.

The following meta-notation for context-free grammars is used not only for
specifying the grouping syntax of CASL in this chapter, but also for specifying
lexical symbols in Chaps. 4, and comments and annotations in Chap. 5.

Nonterminal symbols are written as uppercase words, possibly hyphenated,
e.g., SORT, BASIC-SPEC.

Terminal symbols are written as either:
• lowercase words, e.g. free, assoc; or
• sequences of characters enclosed in double-quotes, e.g. ".", "::="; or
• sequences of characters enclosed in single quotes, e.g. ’"’, ’\"’.
When sequences of characters cannot be confused with the meta-notation
introduced below, the enclosing quotes are usually omitted.

Sequences of symbols are written with spaces between the symbols. The empty
sequence is denoted by the reserved nonterminal symbol EMPTY.

Optional symbols are underlined, e.g. end, ;. This is used also for the optional
plural ‘s’ at the end of some lowercase words used as terminal symbols,
e.g. sorts.

Repetitions are indicated by ellipsis ‘...’, e.g. MIXFIX...MIXFIX denotes one
or more occurrences of MIXFIX, and [SPEC]...[SPEC] denotes one or
more occurrences of [SPEC]. Repetitions often involve separators, e.g.
SORT,...,SORT denotes one or more occurrences of SORT separated by ‘,’.

Alternative sequences are separated by vertical bars, e.g. idem | unit TERM
where the alternatives are idem and unit TERM.

Production rules are written with the nonterminal symbol followed by ‘::=’,
followed by one or more alternatives. When a production extends a
previously-given production for the same nonterminal symbol, this is in-
dicated by writing ‘...’ as its first alternative.

Start symbols are not specified.

88 II:3 Concrete Syntax

3.1 Context-Free Grammar

The lexical symbols of CASL are given in Chap. 4. They consist of:

• key words and symbols;
• tokens: WORDS, DOT-WORDS, DIGIT, SIGNS, and QUOTED-CHAR;
• literals: STRING, DIGITS, NUMBER, FRACTION, and FLOATING;
• URL and PATH; and
• COMMENT and ANNOTATION.

The context-free grammar of CASL below treats these lexical symbols as termi-
nal symbols. The language generated by this grammar is both LALR(1) and
LL(1), and parsers can be generated from appropriate deterministic grammars
using tools such as ML-yacc and Haskell combinator parsers.

Lexical analysis for CASL is generally independent of the context-free pars-
ing (apart from the recognition of NUMBER, URL and PATH, which may appear
in libraries but not within individual specifications).

Context-free parsing of CASL specifications according to the grammar in
this section yields a parse tree where terms and formulas occurring in axioms
and definitions have been grouped with respect to explicit parentheses and
brackets, but where the intended applicative structure has not yet been rec-
ognized. A further phase of mixfix grouping analysis is needed, dependent on
the identifiers declared in the specification and on parsing annotations, before
the parse tree can be mapped to a complete abstract syntax tree.

3.1.1 Basic Specifications
BASIC-SPEC ::= BASIC-ITEMS...BASIC-ITEMS | { }

BASIC-ITEMS ::= SIG-ITEMS
| free types DATATYPE-DECL ;...; DATATYPE-DECL ;
| generated types DATATYPE-DECL ;...; DATATYPE-DECL ;
| generated { SIG-ITEMS...SIG-ITEMS } ;
| vars VAR-DECL ;...; VAR-DECL ;
| forall VAR-DECL ;...; VAR-DECL

"." FORMULA "."..."." FORMULA ;
| "." FORMULA "."..."." FORMULA ;

SIG-ITEMS ::= sorts SORT-ITEM ;...; SORT-ITEM ;
| ops OP-ITEM ;...; OP-ITEM ;
| preds PRED-ITEM ;...; PRED-ITEM ;
| types DATATYPE-DECL ;...; DATATYPE-DECL ;

SORT-ITEM ::= SORT ,..., SORT

OP-ITEM ::= OP-NAME ,..., OP-NAME : OP-TYPE
| OP-NAME ,..., OP-NAME :
OP-TYPE , OP-ATTR ,..., OP-ATTR

| OP-NAME OP-HEAD = TERM

II:3.1 Context-Free Grammar 89

OP-TYPE ::= SORT *...* SORT -> SORT | SORT
| SORT *...* SORT -> ? SORT | ? SORT

OP-ATTR ::= assoc | comm | idem | unit TERM

OP-HEAD ::= (ARG-DECL ;...; ARG-DECL) : SORT | : SORT
| (ARG-DECL ;...; ARG-DECL) : ? SORT | : ? SORT

ARG-DECL ::= VAR ,..., VAR : SORT

PRED-ITEM ::= PRED-NAME ,..., PRED-NAME : PRED-TYPE
| PRED-NAME PRED-HEAD <=> FORMULA
| PRED-NAME <=> FORMULA

PRED-TYPE ::= SORT *...* SORT | ()

PRED-HEAD ::= (ARG-DECL ;...; ARG-DECL)

DATATYPE-DECL ::= SORT "::=" ALTERNATIVE "|"..."|" ALTERNATIVE

ALTERNATIVE ::= OP-NAME (COMPONENT ;...; COMPONENT)
| OP-NAME (COMPONENT ;...; COMPONENT) ?
| OP-NAME

COMPONENT ::= OP-NAME ,..., OP-NAME : SORT
| OP-NAME ,..., OP-NAME : ? SORT
| SORT

VAR-DECL ::= VAR ,..., VAR : SORT

FORMULA ::= QUANTIFIER VAR-DECL ;...; VAR-DECL "." FORMULA
| FORMULA /\ FORMULA /\.../\ FORMULA
| FORMULA \/ FORMULA \/...\/ FORMULA
| FORMULA => FORMULA
| FORMULA if FORMULA
| FORMULA <=> FORMULA
| not FORMULA
| true | false
| def TERM
| TERM =e= TERM
| TERM = TERM
| (FORMULA)
| MIXFIX...MIXFIX

QUANTIFIER ::= forall | exists | exists!

TERMS ::= TERM ,..., TERM

TERM ::= MIXFIX...MIXFIX

90 II:3 Concrete Syntax

MIXFIX ::= TOKEN | LITERAL | PLACE
| QUAL-PRED-NAME | QUAL-VAR-NAME | QUAL-OP-NAME
| TERM : SORT
| TERM when FORMULA else TERM
| (TERMS)
| [TERMS] | []
| { TERMS } | { }

QUAL-VAR-NAME ::= (var VAR : SORT)

QUAL-PRED-NAME ::= (pred PRED-NAME : PRED-TYPE)

QUAL-OP-NAME ::= (op OP-NAME : OP-TYPE)

SORT ::= SORT-ID

OP-NAME ::= ID

PRED-NAME ::= ID

VAR ::= SIMPLE-ID

TOKEN ::= WORDS | DOT-WORDS | DIGIT | SIGNS
| QUOTED-CHAR

LITERAL ::= STRING | DIGITS | FRACTION | FLOATING

PLACE ::= __

SORT-ID ::= WORDS

SIMPLE-ID ::= WORDS

ID ::= MIX-TOKEN ... MIX-TOKEN

MIX-TOKEN ::= TOKEN | PLACE
| [ID] | []
| { ID } | { }

3.1.2 Subsorting Specifications
SORT-ITEM ::= ...

| SORT ,..., SORT < SORT
| SORT = { VAR : SORT "." FORMULA }
| SORT =...= SORT

ALTERNATIVE ::= ...
| sorts SORT ,..., SORT

II:3.1 Context-Free Grammar 91

FORMULA ::= ...
| TERM in SORT

MIXFIX ::= ...
| TERM as SORT

3.1.3 Structured Specifications

SPEC ::= BASIC-SPEC
| SPEC RENAMING
| SPEC RESTRICTION
| SPEC and SPEC and...and SPEC
| SPEC then SPEC then...then SPEC
| free GROUP-SPEC
| local SPEC within SPEC
| closed GROUP-SPEC
| GROUP-SPEC

GROUP-SPEC ::= { SPEC }
| SPEC-NAME
| SPEC-NAME [FIT-ARG]...[FIT-ARG]

RENAMING ::= with SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

RESTRICTION ::= hide SYMB-ITEMS ,..., SYMB-ITEMS
| reveal SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

SPEC-DEFN ::= spec SPEC-NAME = SPEC end
| spec SPEC-NAME SOME-GENERICS = SPEC end

SOME-GENERICS ::= SOME-PARAMS | SOME-PARAMS SOME-IMPORTED

SOME-PARAMS ::= [SPEC]...[SPEC]

SOME-IMPORTED ::= given GROUP-SPEC ,..., GROUP-SPEC

FIT-ARG ::= SPEC fit SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS
| SPEC
| view VIEW-NAME
| view VIEW-NAME [FIT-ARG]...[FIT-ARG]

VIEW-DEFN ::= view VIEW-NAME : VIEW-TYPE end
| view VIEW-NAME : VIEW-TYPE =

SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS end
| view VIEW-NAME SOME-GENERICS : VIEW-TYPE end
| view VIEW-NAME SOME-GENERICS : VIEW-TYPE =

SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS end

VIEW-TYPE ::= GROUP-SPEC to GROUP-SPEC

92 II:3 Concrete Syntax

SYMB-ITEMS ::= SYMB
| SOME-SYMB-KIND SYMB ,..., SYMB

SYMB-MAP-ITEMS ::= SYMB-OR-MAP
| SOME-SYMB-KIND SYMB-OR-MAP ,..., SYMB-OR-MAP

SOME-SYMB-KIND ::= sorts | ops | preds

SYMB ::= ID | ID : TYPE

TYPE ::= OP-TYPE | PRED-TYPE

SYMB-MAP ::= SYMB "|->" SYMB

SYMB-OR-MAP ::= SYMB | SYMB-MAP

SPEC-NAME ::= SIMPLE-ID
VIEW-NAME ::= SIMPLE-ID

SORT-ID ::= ... | WORDS [ID ,..., ID]

MIX-TOKEN ::= ... | [ID ,..., ID]

3.1.4 Architectural Specifications

ARCH-SPEC-DEFN ::= arch spec ARCH-SPEC-NAME = ARCH-SPEC end

ARCH-SPEC ::= BASIC-ARCH-SPEC | GROUP-ARCH-SPEC

GROUP-ARCH-SPEC ::= { ARCH-SPEC } | ARCH-SPEC-NAME

BASIC-ARCH-SPEC ::= units UNIT-DECL-DEFN ;...; UNIT-DECL-DEFN ;
result UNIT-EXPRESSION ;

UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN

UNIT-DECL ::= UNIT-NAME : UNIT-SPEC
given GROUP-UNIT-TERM ,..., GROUP-UNIT-TERM

| UNIT-NAME : UNIT-SPEC

UNIT-DEFN ::= UNIT-NAME = UNIT-EXPRESSION

UNIT-SPEC-DEFN ::= unit spec SPEC-NAME = UNIT-SPEC end

UNIT-SPEC ::= GROUP-SPEC
| GROUP-SPEC *...* GROUP-SPEC -> GROUP-SPEC
| arch spec GROUP-ARCH-SPEC
| closed UNIT-SPEC

II:3.2 Disambiguation 93

UNIT-EXPRESSION ::= lambda UNIT-BINDING ;...;
UNIT-BINDING "." UNIT-TERM

| UNIT-TERM

UNIT-BINDING ::= UNIT-NAME : UNIT-SPEC

UNIT-TERM ::= UNIT-TERM RENAMING
| UNIT-TERM RESTRICTION
| UNIT-TERM and...and UNIT-TERM
| local UNIT-DEFN ;...; UNIT-DEFN ; within UNIT-TERM
| GROUP-UNIT-TERM

GROUP-UNIT-TERM ::= { UNIT-TERM }
| UNIT-NAME
| UNIT-NAME [FIT-ARG-UNIT]...[FIT-ARG-UNIT]

FIT-ARG-UNIT ::= UNIT-TERM
| UNIT-TERM fit SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

ARCH-SPEC-NAME ::= SIMPLE-ID
UNIT-NAME ::= SIMPLE-ID

3.1.5 Specification Libraries

LIB-DEFN ::= library LIB-NAME LIB-ITEM...LIB-ITEM

LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN
| ARCH-SPEC-DEFN | UNIT-SPEC-DEFN
| from LIB-NAME

get ITEM-NAME-OR-MAP ,..., ITEM-NAME-OR-MAP end

ITEM-NAME-OR-MAP::= ITEM-NAME | ITEM-NAME "|->" ITEM-NAME

ITEM-NAME ::= SIMPLE-ID

LIB-NAME ::= LIB-ID | LIB-ID VERSION-NUMBER

VERSION-NUMBER ::= version NUMBER "."..."." NUMBER

3.2 Disambiguation

The context-free grammar given in Sect. 3.1 for input syntax is quite ambigu-
ous. This section explains various precedence rules for disambiguation, and
the intended grouping of mixfix formulas and terms (which is to be recog-
nized in a separate phase, dependent on the declared symbols and parsing
annotations).

94 II:3 Concrete Syntax

3.2.1 Precedence

At the level of structured specifications, ambiguities of grouping are resolved
as follows, in decreasing order of precedence:

• ‘free’ and ‘closed’.
• ‘with’, ‘reveal’, and ‘hide’.
• ‘within’.
• ‘and’.
• ‘then’.

At the level of architectural specifications, ambiguities of grouping in unit
terms are resolved in the same way as for structured specifications. Moreover,
a SPEC-NAME occurring as a UNIT-SPEC gives rise to just the SPEC-NAME itself
in the abstract syntax tree, rather than a UNIT-TYPE with an empty list SPEC*
of argument specifications.

In BASIC-ITEMS, a list of ‘. FORMULA FORMULA’ extends as far to
the right as possible. Within a FORMULA, the use of prefix and infix notation
for the logical connectives gives rise to some potential ambiguities. These are
resolved as follows, in decreasing order of precedence:

• ‘not FORMULA’.
• ‘FORMULA /\.../\ FORMULA’ and ‘FORMULA \/...\/ FORMULA’. These

constructs may not be combined without explicit grouping.
• The connectives ‘FORMULA => FORMULA’, ‘FORMULA if FORMULA’,

‘FORMULA <=> FORMULA’. When repeated, ‘=>’ groups to the right, whereas
‘if’ groups to the left; ‘<=>’ may not be repeated without explicit group-
ing. These constructs may not be combined without explicit grouping.

• ‘QUANTIFIER VAR-DECL;... . FORMULA’. The last FORMULA extends as far
to the right as possible, e.g., ‘forall x:S . F => G’ is disambiguated as
‘forall x:S . (F => G)’, not as ‘(forall x:S . F) => G’.
Moreover, a quantification may be used on the right of a logical connective
without grouping parentheses. For instance,

‘F <=> exists x:s . G <=> H’ is parsed as
‘F <=> (exists x:s . G <=> H)’.

The declaration1 of infix, prefix, postfix, and general mixfix operation sym-
bols may introduce further potential ambiguities, which are partially resolved
as follows, in decreasing order of precedence (remaining ambiguities have to
be eliminated by explicit use of grouping parentheses in terms, or by use of
parsing annotations):

• Ordinary function application ‘OP-SYMB(TERMS)’.
• Applications of postfix symbols. This extends to all mixfix symbols of the

form ‘t0__...__tn’ with t0 empty, and to sorted terms and casts.
1 Declarations occurring anywhere in the enclosing list of basic items are taken into

account when disambiguating the grouping of symbols in a term.

II:3.2 Disambiguation 95

• Applications of prefix symbols. This extends to all mixfix symbols of the
form ‘t0__...__tn’ with tn empty.

• Applications of infix symbols. This extends to all mixfix symbols of the
form ‘t0__...__tn’ with both t0 and tn empty. Mixtures of different in-
fix symbols and iterations of the same infix symbol have to be explicitly
grouped – although the attribute of associativity implies a parsing annota-
tion that allows iterated applications of that symbol to be written without
grouping.

• The conditional ‘TERM when FORMULA else TERM’. Iterations such as:
T1 when F1 else T2 when F2 else T3

are implicitly grouped to the right:
T1 when F1 else (T2 when F2 else T3)

Various other techniques for allowing the omission of grouping parenthe-
ses and/or list-separators in input (and display) are familiar from previous
specification and programming languages, e.g., user-specified precedence (rel-
ative or absolute). Moreover, not all parsers are expected to implement full
mixfix notation. CASL therefore allows parsing annotations on (libraries of)
specifications, to indicate the possible omission of grouping parentheses, and
the degree of use of mixfix notation. (Such annotations are expected to apply
uniformly to CASL sublanguages, and to most extensions.) Parsing annota-
tions may even override the rules given above for the relative precedence of
postfix, prefix, and infix symbols. See Sect. 5.2.3 for details of the available
parsing annotations.

3.2.2 Mixfix Grouping Analysis

Mixfix grouping analysis of a specification should be equivalent to context-
free parsing according to a derived grammar – obtained from the grammar in
Sect. 3.1 by replacing the phrases involving MIXFIX with phrases determined
(partly) by the declared symbols, as follows:

FORMULA ::= ... | QUAL-PRED-NAME
| QUAL-PRED-NAME (TERMS)

TERMS ::= TERM ,..., TERM

TERM ::= LITERAL | QUAL-VAR-NAME | QUAL-OP-NAME
| QUAL-OP-NAME (TERMS)
| TERM : SORT
| TERM as SORT
| TERM when FORMULA else TERM
| (TERM)

plus, for each declared variable or constant name id ,

TERM ::= ... | id

96 II:3 Concrete Syntax

plus, for each declared operation symbol id of positive arity,

TERM ::= ... | id (TERMS)

plus, for each declared mixfix operation symbol ‘t0__...__tn’ (with t0 and tn
possibly empty),

TERM ::= ... | t0 TERM ... TERM tn

plus, for each annotation ‘%list b1__b2, c, f ’,

TERM ::= ... | b1 b2

(provided that b1 b2 is different from c) and

TERM ::= ... | b1 TERMS b2

plus, for each declared predicate constant name id ,

FORMULA ::= ... | id

plus, for each declared predicate symbol id of positive arity,

FORMULA ::= id (TERMS)

plus, for each declared mixfix predicate symbol ‘t0__...__tn’ (with t0 and tn
possibly empty),

FORMULA ::= t0 TERM ... TERM tn

It would be possible to obtain a fixed grammar for a sublanguage of CASL

lacking mixfix notation in a similar way, using the appropriate kinds of ID
in place of the declared ids above. (It may be convenient to obtain all these
various grammars as extensions of a root grammar that is completely uncom-
mitted about the notation used for applications, etc.)

The context-free parsing during mixfix grouping analysis involves disam-
biguation as determined by the general precedence rules for applications (see
Sect. 3.2.1) and by any parsing annotations (see Sect. 5.2.3).

3.2.3 Mixfix Identifiers

An ID is well-formed only when no two adjacent MIX-TOKENs are TOKENs. Thus
adjacent WORDS or SIGNS in an ID have to be separated by brackets or PLACEs.

Moreover, when an ID contains a TOKEN immediately followed by ‘[ID]’ or
‘[ID,...,ID]’, any further MIX-TOKENs in the same sequence of MIX-TOKENs
must all be PLACEs. This ensures that a list of identifiers used to indicate a
compound identifier can only be attached to the last token in an ID.

4

Lexical Symbols

This chapter describes the lexical symbols of CASL. Section 4.1 lists the key
words and signs, Sect. 4.2 specifies the tokens used to form identifiers, and
Sect. 4.3 describes the form of literal symbols for quoted characters, strings,
and numbers. Finally, Sect. 4.4 gives a grammar for the simple URLs and paths
used to identify libraries. The meta-notation used for grammars in this chapter
is the same as in Chap. 3. The description of comments and annotations is
deferred to Chap. 5.

Spaces and other layout characters terminate lexical symbols, and are oth-
erwise ignored, except in quoted characters and strings. The next lexical sym-
bol recognized at each stage is as long as possible. The lexical syntax of CASL

forms a regular language, and a lexical analyzer for CASL can be generated
using ML-lex from a grammar given on the accompanying CD-ROM. Note
that when a library name is expected, a different lexical analysis is required,
see Sect. 4.4. Some CASL parsers are scannerless [8], which facilitates context-
dependent analysis of lexical symbols.

The character set for CASL specifications is ISO Latin-1. However, specifi-
cations can always be input in the ASCII subset.

For enhanced readability of specifications, each lexical symbol has a display
format for use with graphic screens and printers, involving various type styles
(upright, italic, boldface, and small capitals) as well as common mathematical
signs. (No restrictions are imposed concerning which font families are to be
used for displaying CASL specifications.) The display format for particular
identifiers can be determined by means of display annotations, as explained
in Sect. 5.2.2. The input syntax of lexical symbols is easy to relate to their
display format, and also sufficiently readable for use in (plain-text) e-mail
messages. A LATEX package implementing the display format is available [50].

4.1 Key Words and Signs

The lexical symbols of CASL include various key words and signs that occur
as terminal symbols in the context-free grammar in Chap. 3. Key words and
signs that represent mathematical signs are displayed as such, when possible,

98 II:4 Lexical Symbols

and those signs that are available in the ISO Latin-1 character set may also
be used for input.

4.1.1 Key Words

Key words are always written lowercase. The following key words are reserved,
and are not available for use as complete identifiers (nor as complete mixfix
tokens in mixfix identifiers) although they can be used as parts of tokens:

and arch as axiom axioms closed def else end exists
false fit forall free from generated get given hide
if in lambda library local not op ops pred preds
result reveal sort sorts spec then to true type types
unit units var vars version view when with within

The following key words are not reserved:
assoc comm idem

4.1.2 Key Signs

The following key signs are reserved, and are not available for use as complete
identifiers (nor as mixfix tokens in mixfix identifiers):

: :? ::= = => <=> ¬ . · | |-> \/ /\

The ISO Latin-1 characters ‘¬’ and ‘·’ are equivalent as key signs to the ASCII
characters ‘not’ and ‘.’, respectively. The following key signs are not reserved:

< * × -> ? !

The ISO Latin-1 key character ‘×’ is equivalent as a key sign to the ASCII
character ‘*’.

4.1.3 Display Format

The following key words represent mathematical signs, and are displayed ac-
cordingly when possible, as indicated below:

forall exists not in lambda
∀ ∃ ¬ ∈ λ

The following key words are displayed in the same (italic) font as identifiers
when they occur in formulas, in attributes, or in alternatives of datatype
declarations:

true false not if when else assoc comm idem unit
op ops pred preds sort sorts var vars

Otherwise, key words are always displayed in a boldface font.
The following key signs represent mathematical signs, and are displayed

accordingly when possible, as indicated below:
-> => <=> =e= . · |-> /\ \/
→ ⇒ ⇔ e

= • • �→ ∧ ∨

II:4.2 Tokens 99

4.2 Tokens

This section defines the tokens used to form identifiers: words, signs, single
digits, and quoted characters. Words are essentially alphanumeric sequences,
allowing also some further characters. Signs are sequences of mathematical
and punctuation characters.

4.2.1 Words

The lexical grammar for the tokens WORDS, DOT-WORDS, and DIGIT is as follows:

WORDS ::= WORD _ ... _ WORD

DOT-WORDS ::= "." WORDS

WORD ::= WORD-CHAR ... WORD-CHAR

WORD-CHAR ::= LETTER | "’" | DIGIT

LETTER ::= A | B | C | D | E | F | G | H | I | J | K | L | M
| N | O | P | Q | R | S | T | U | V | W | X | Y | Z
| a | b | c | d | e | f | g | h | i | j | k | l | m
| n | o | p | q | r | s | t | u | v | w | x | y | z
| À | Á | Â | Ã | Ä | Å | Æ | Ç | È | É | Ê | Ë | Ì
| Í | Î | Ï | Ð | Ñ | Ò | Ó | Ô | Õ | Ö | Ø | Ù | Ú
| Û | Ü | Ý | Þ | ß | à | á | â | ã | ä | å | æ | ç
| è | é | ê | ë | ì | í | î | ï | ð | ñ | ò | ó | ô
| õ | ö | ø | ù | ú | û | ü | ý | þ | ÿ

DIGIT ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

A WORDS must start with a LETTER, and must not be one of the reserved key
words used in the context-free syntax in Sect. 4.1.1. Note that LETTER includes
all the ISO Latin-1 national and accented letters.

4.2.2 Signs

The lexical grammar for the token SIGNS is as follows:

SIGNS ::= SIGN ... SIGN

SIGN ::= + | - | * | / | \ | & | = | < | >
| ! | ? | : | . | $ | @ | # | ˆ | ˜
| ¡ | ¿ | × | ÷ | £ | c© | ± | ¶ | §
| 1 | 2 | 3 | · | �c | ◦ | ¬ | µ | "|"

A SIGNS must not be one of the reserved signs:

: :? ::= = => <=> ¬ . · | |-> \/ /\

100 II:4 Lexical Symbols

These sequences of characters may however be used together with other char-
acters in a SIGNS. For example, ‘==’, ‘:=’, and ‘||’ are each recognized as a
complete SIGNS. Note that identifiers that start or finish with a SIGNS need
to be separated by (e.g.) a space from adjacent reserved signs: a sequence
of characters such as ‘ #: ’ is always recognized as a single symbol, whereas
‘ # : ’ is recognized as two symbols.

A single character ‘<’, ‘*’, ‘×’, ‘?’, or ‘!’ is also recognized as a complete
SIGNS, despite its use as a key sign as described in Sect. 4.1.2.

Note that SIGN does not include the following ASCII signs:

() [] { } ; , ‘ " %

nor the ISO Latin-1 signs for general currency, yen, broken vertical bar, regis-
tered trade mark, masculine and feminine ordinals, left and right angle quotes,
fractions, soft hyphen, acute accent, cedilla, macron, and umlaut.

4.2.3 Quoted Characters

The lexical grammar for the token QUOTED-CHAR is as follows (where ‘|...|’
indicates evident alternatives that are omitted here for brevity):

QUOTED-CHAR ::= "’" CHAR "’"

CHAR ::= LETTER | DIGIT | SIGN
| ; | , | ‘ | % | _ | " "
| (|) | [|] | { | }
| \n | \t | \r | \v | \b | \f
| \a | \? | ’\"’ | "\’" | \\
| \000 | ... | \255
| \x00 | ... | \xFF
| \o000 | ... | \o377

4.3 Literal Strings and Numbers

CASL provides literal symbols for quoted strings and numbers. Their inter-
pretation can be determined using annotations, as explained in Sect. 5.2.4.
(CASL has no built-in datatypes, so literal symbols cannot have a default
interpretation.)

In contrast to the tokens described in Sect. 4.2, literal symbols abbreviate
terms, and cannot be used as identifiers. The lexical grammar of the symbols
STRING, DIGITS, NUMBER, FRACTION, and FLOATING is a follows:

STRING ::= ’"’ ’"’ | ’"’ CHAR ... CHAR ’"’

DIGITS ::= DIGIT DIGIT ... DIGIT

NUMBER ::= DIGIT | DIGITS

II:4.4 URLs and Paths 101

FRACTION ::= NUMBER . NUMBER

FLOATING ::= NUMBER "E" OPT-SIGN NUMBER
| FRACTION "E" OPT-SIGN NUMBER

OPT-SIGN ::= + | - | EMPTY

NUMBER is recognized as a lexical symbol only where a VERSION-NUMBER is
expected in specification libraries; elsewhere, a single digit is recognized as
a DIGIT, and a sequence of two or more digits as a DIGITS (since only the
former can be used as an identifier).

4.4 URLs and Paths

URL and PATH are recognized as lexical symbols only directly following the
key words ‘library’ and ‘from’ in specification libraries. The following gram-
mar provides a minimal syntax for URL: further forms may be recognized and
supported.

PATH-CHAR ::= A |...| Z | a |...| z | 0 |...| 9
| $ | - | _ | @ | . | & | + | ! | *
| ’"’ | "’" | (|) | , | : | ~
| % HEX-CHAR HEX-CHAR

HEX-CHAR ::= A |...| F | a |...| f | 0 |...| 9

PATH-WORD ::= PATH-CHAR ... PATH-CHAR
PATH ::= PATH-WORD /.../ PATH-WORD
URL ::= http:// PATH

| ftp:// PATH
| file:/// PATH

5

Comments and Annotations

This chapter starts with a description of the common features of comments
and annotations. Section 5.1 explains how comments are written. Section 5.2
covers various kinds of annotations, including those used to provide literal
syntax for numbers, strings, and lists. The meta-notation used for grammars
in this chapter is the same as in Chap. 3.

Comments and annotations can be used to provide auxiliary information
that gets attached to the nodes of abstract syntax trees of CASL specifications
during parsing. They do not affect the semantics of specifications, but may
have significance for tool support. Comments may also be used to ignore parts
of specifications (so-called ‘commenting-out’).

The general form of comments and annotations is similar:

• they start with a percent character ‘%’;
• their extent can be indicated by grouping brackets, terminated by ‘%’;
• they have abbreviated forms for use at the end of the line (except for label

annotations); and
• they cannot be nested (except for commenting-outs, which are treated as

blank space).

Ordinary comments and annotations – collectively referred to here simply as
annotations – can get attached to the following sorts of nodes in abstract
syntax trees:

• a SORT-ITEM, OP-ITEM, PRED-ITEM, or ALTERNATIVE;
• a complete FORMULA (i.e., not part of a larger FORMULA or TERM) in an

AXIOM, PRED-DEFN, or SUBSORT-DEFN;
• a complete TERM (i.e., not part of a larger TERM) in an OP-DEFN;
• a DATATYPE-DECL or SIG-ITEMS in a SORT-GEN or BASIC-ITEMS;
• a SPEC, FIT-ARG, ARCH-SPEC, UNIT-DECL-DEFN, UNIT-TERM, LIB-ITEM, or

LIB-DEFN.

Such nodes can be formed by parsing text as the corresponding nonterminal
symbols of the concrete syntax grammar given in Sect. 3.1 (they can also be

104 II:5 Comments and Annotations

constructed by other tools). During parsing, the recognition of each of the
above nodes may collect both preceding and trailing annotations. At first, a
(possibly-empty) sequence of preceding annotations is collected. During the
recognition of a node, any annotations not collected by inner nodes are kept
as trailing annotations of the outer node. Finally, after the recognition of the
outer node is complete, any further trailing annotations are collected – as long
as they are on consecutive lines, i.e., without a blank line. (Commented-out
text is treated as blank space, so it may give the effect of a blank line.) After a
blank line, preceding annotations for the next node that collects annotations
may appear. (Final annotations of a library LIB-DEFN may extend to the end
of the file.)

Thus annotations may occur anywhere between lexical tokens, but are only
attached to the above sorts of nodes. The interpretation of some annotations
is further explained in Sect. 5.2.

The nonterminal symbols TEXT and TEXT-LINES are used only for specify-
ing the form of comments and annotations, and are not themselves regarded
as lexical symbols:

TEXT ::= NOT-NEWLINE ... NOT-NEWLINE | EMPTY
TEXT-LINE ::= TEXT NEWLINE
TEXT-LINES ::= TEXT | TEXT-LINE TEXT-LINES

NEWLINE denotes the character that indicates the start of a new line;
NOT-NEWLINE denotes all the other printable ISO Latin-1 characters, together
with the space and tab characters.

5.1 Comments

COMMENT ::= COMMENT-LINE | COMMENT-GROUP | COMMENT-OUT
COMMENT-LINE ::= %% TEXT-LINE
COMMENT-GROUP ::= %{ TEXT-LINES }%
COMMENT-OUT ::= %[TEXT-LINES]%

A single-line comment of the form ‘%%text newline’ is equivalent to the
grouped comment ‘%{text}%’; the latter form also allows multi-line comments.
Arbitrary text is ‘commented out’ by writing ‘%[text]%’; commenting-out may
be nested.

Comments are generally displayed with the body in the same font as or-
dinary informal text that might appear before and after a CASL specification.
However, this may be overruled by explicit formatting instructions in the text
of the comment. The preferred formatting of a part of a comment by different
formatters is indicated using the following syntax (which is similar to that of
display annotations, see Sect. 5.2.2):

%display text %HTML ... %LATEX ... %RTF ...

II:5.2 Annotations 105

at the end of a line, or, possibly over several lines:

%display(text %HTML ... %LATEX ... %RTF ...)%

Both the above indicate that the text is to be displayed according to the
formatting instructions given for HTML, LATEX, and RTF (which may be
listed in any order, or omitted). Formatters for which there are no instructions
should display the text exactly as input, preserving the line breaks of multi-line
comments.

If available, a smaller base font than normal may be used when displaying
comments. The delimiters of comments are always to be displayed in boldface.

CASL specification text within comments should be delimited by a brack-
eted group1 of the form ‘%CASL(...)%’, to allow its appropriate display. The
kind of CASL construct may be indicated by using a nonterminal symbol from
the CASL abstract syntax (such as ‘ID’ or ‘TERM’, see Chap. 2) instead of
‘CASL’.

5.2 Annotations

ANNOTATION ::= ANNOTATION-LINE | ANNOTATION-GROUP | LABEL
ANNOTATION-LINE ::= %WORDS TEXT-LINE
ANNOTATION-GROUP ::= %WORDS(TEXT-LINES)%
LABEL ::= %(TEXT-LINE)%

In ANNOTATION-LINE and ANNOTATION-GROUP, spaces are not allowed before
the WORDS, and an opening bracket ‘(’ directly following the WORDS distin-
guishes an ANNOTATION-GROUP from an ANNOTATION-LINE. (The lexical to-
ken WORDS is defined in Sect. 4.2.1.) A single-line annotation of the form
‘%words text newline’ is equivalent to ‘%words(text)%’.

Annotations at the beginning of a library (between the LIB-NAME and
the first LIB-ITEM) apply globally to all its LIB-ITEMs, and to all libraries
that download any of those items. Conflicting annotations that arise due to
downloading from different remote libraries are simply ignored, whereas local
annotations override conflicting annotations from remote libraries. Conflicting
annotations within the same library are ignored as well.

Each kind of annotation imposes restrictions on the syntax of its text. (It
is envisaged that further kinds of annotations will be added later, but only
with the same general form as indicated above.)

Unless otherwise indicated below, annotations ‘%words...’ are to be dis-
played in a smaller font than usual, when possible, and with the delimiters
in boldface. CASL symbols in the body of the annotation are to be shown in
their display format. Tools may suppress the display of particular kinds of
annotations.
1 The delimiters for CASL specification text in comments are similar to those used

for multi-line annotations, see Sect. 5.2.

106 II:5 Comments and Annotations

5.2.1 Label Annotations

A label annotation is written ‘%(text-lines)%’, where text -lines is the label
itself. For instance, in ‘%(reverse-NeList)%’ the label is ‘reverse-NeList’.

A label annotation is normally attached to a complete FORMULA, although
other constructs within a specification may be labelled as well. A label on an
axiom is to be displayed flush with the right margin of the enclosing list of
axioms, with the text -lines in the same font as used for text in comments.

Labels are used by tools to reference parts of specifications, and should
therefore be unique at least within the same LIB-ITEM.

5.2.2 Display Annotations

A single-line display annotation ANNOTATION-LINE is written:

%display id %HTML ... %LATEX ... %RTF ...

It indicates that the identifier with input syntax id is to be displayed according
to the formatting instructions given for HTML,

LATEX, and RTF (which may be listed in any order, or omitted). When
there are no instructions given for the language of the formatter being used,
the identifier is displayed as its input syntax.

The following example indicates that the identifier input as ‘div’ should be
displayed as ‘÷’ by formatters that understand HTML or LATEX commands:

%display div %HTML ÷ %LATEX \div

Display annotations generalize to formatting mixfix notation by interpret-
ing the place-holder ‘__’ as such in the formatting instructions, e.g.:

%display(sum__to__
%HTML SUM<sub>__<sup>__
%LATEX \sum_{__}ˆ{__}
)%

The HTML level is assumed to be 4.0; the version of LATEX is assumed to
be LATEX2e, using the CASL package [50], in math mode.

Display annotations may occur only at the beginning of libraries (between
the LIB-NAME and the first LIB-ITEM), and apply globally. Display annotations
for the same identifier are regarded as conflicting unless their formatting in-
structions are identical or complementary, up to reordering. For displaying
the annotation itself, only the input syntax and the display relevant to the
formatter being used are to be shown.

5.2.3 Parsing Annotations

These annotations are to allow users to specify the precedence and associa-
tivity of operation symbols. Their primary purpose is to allow the omission

II:5.2 Annotations 107

of grouping parentheses in the input; but formatters may also exploit them
to avoid superfluous parentheses in the display. Parsing annotations may oc-
cur only at the beginning of libraries (between the LIB-NAME and the first
LIB-ITEM), and apply globally.

Precedence

A single-line precedence annotation ANNOTATION-LINE is written:

%prec {id1, ... , idn} < {idn+1, ..., idn+k}

Each idi is a mixfix identifier of the form ‘__...__...__’. The relation {id1}<
{id2} specifies that the symbol id1 has lower priority (i.e., binds weaker) than
the symbol id2. It is also possible to specify that mixfix identifiers (of any form)
are not allowed to be combined without explicit grouping parentheses. This is
done using ‘<>’ instead of ‘<’. In both cases, a precedence annotation involving
groups of identifiers abbreviates the collection of corresponding precedence
annotations between each pair of identifiers from the two groups.

Two different precedence annotations for the same pair of identifiers are
regarded as conflicting.

The precedence annotations determine a pre-order, which is obtained in
the following way:

1. Expand all precedence relations into binary relations:
• from annotations of the form ‘%prec {id1} < {id2}’ we get
{(id1, id2)}, and

• from annotations of the form ‘%prec {id1} <> {id2}’ we get
{(id1, id2), (id2, id1)}.

2. Take the union of all the expanded precedence relations thus obtained
with the predefined precedences listed in Sect. 3.2.

3. Take the reflexive transitive closure of this union.

If two symbols occurring in a term or atomic formula are equivalent (i.e.
related in both directions) or incomparable (i.e. related in no direction) in
the precedence relation, their grouping has to be explicitly specified by using
parentheses.

Associativity

A single-line left-associativity annotation ANNOTATION-LINE is written:

%left_assoc id1, ..., idn

The idi must be infix operation symbols. Similarly for right-associativity an-
notations.

An associativity annotation involving a group of identifiers abbreviates
the collection of corresponding associativity annotations for each identifier in

108 II:5 Comments and Annotations

the group. Left and right associativity annotations for the same identifier are
regarded as conflicting.

For example, declaring ‘__+__’ to be left associative means that t1+t2+t3
is parsed as (t1+t2)+t3 while declaring it to be right associative leads to
t1+(t2+t3). If there is no associativity annotation for an infix symbol, it is
not allowed to repeat that symbol without explicit grouping using parenthe-
ses.

An associativity attribute ‘assoc’ for an operation (see Sect. 3.2) has the
effect of an implicit associativity annotation. In contrast to explicit associa-
tivity annotations, such an implicit associativity annotation is local, and only
influences parsing of the surrounding specification (more precisely, only the
items after the ‘assoc’ attribute) plus any specification importing the speci-
fication containing the attribute. If the operation with the assoc attribute is
renamed, the local parsing annotation applies to the new name instead of the
old one.

5.2.4 Literal Annotations

In this section, several annotations for operations are introduced that can
be used to interpret the literal syntax for numbers and strings in CASL (see
Sect. 4.3), and provide a literal syntax for lists. Literal annotations may oc-
cur only at the beginning of libraries (between the LIB-NAME and the first
LIB-ITEM), and apply globally.

Literal Syntax for Numbers

The annotation for declaring an operation to be used for concatenation of
digits within a number is written ‘%number f ’.

The annotation has the effect that a DIGITS of the form d1 . . . dn (where
n > 1 and each di is a DIGIT) is translated to the (abstract syntax of) the
term f(f(. . . f(t1, t2) . . . , tn−1), tn), where ti is the abstract syntax tree for di.
For example, to interpret DIGITS as decimal notation in connection with a
particular datatype of integers, f would be a binary operation which, when
applied to x and y, returns 10x + y, and the decimal digits would be defined
as the expected numbers from 0 to 9.

Vice versa, an abstract syntax tree corresponding to a term of the above
form which is maximal (i.e., it is not a sub-term of a larger term of the same
form) is expected to be printed as d1 . . . dn.

Different ‘%number’ annotations are regarded as conflicting. If there is
no ‘%number’ annotation, then a DIGITS is not recognized as a well-formed
LITERAL.

The annotation for declaring the operations used for evaluating the decimal
point and the exponentiation ‘E’ within FRACTION or a FLOATING is written
‘%floating f , g ’.

II:5.2 Annotations 109

The annotation has the effect that a FRACTION of the form n1.n2 (where
each ni is a NUMBER) is translated to the (abstract syntax of) the term f(t1, t2),
where ti is the abstract syntax tree for ni, i = 1, 2.

Similarly, a FLOATING of the form ‘n1En2’ (where n1 is a NUMBER or a
FRACTION and n2 is of form OPT-SIGN NUMBER) is translated to the (abstract
syntax of) the term g(t1, t2), where ti is the abstract syntax tree for ni, i = 1, 2.

Vice versa, an abstract syntax tree corresponding to a term of one of the
above forms which is maximal (i.e., it is not a sub-term of a larger term of
the same form) is expected to be printed as n1.n2 or n1En2, respectively.

Different ‘%floating’ annotations are regarded as conflicting. If there is no
‘%floating’ annotation, then neither a FRACTION nor a FLOATING is recognized
as a well-formed LITERAL.

Literal Syntax for Strings

The annotation for declaring operations for the empty string and for concate-
nation of a character with a string is written ‘%string c, f ’.

The annotation has the effect that a STRING of the form ‘"c1 ...cn"’
(where n ≥ 0 and each ci is a CHAR) is translated to the (abstract syntax of)
the term f(t1, f(t2, . . . f(tn, c) . . .)), where ti is the abstract syntax tree for
the QUOTED-CHAR ‘’ci’’, or simply to c when n = 0 .

Vice versa, an abstract syntax tree corresponding to a term of the above
form which is maximal (i.e., it is not a sub-term of a larger term of the same
form) is expected to be printed as ‘"c1 ...cn"’.

Different ‘%string’ annotations are regarded as conflicting. If there is
no ‘%string’ annotation, then a STRING is not recognized as a well-formed
LITERAL.

Literal Syntax for Lists

The annotation for declaring a macro for applying a binary function on a
list of arguments is written ‘%list b1__b2, c, f ’. The symbol ‘b1__b2’ is
a mixfix identifier with a single place-holder, where b1 at least contains an
open bracket (‘[’ or ‘{’) that must be matched by b2. This annotation can
in particular be used to introduce a syntax for lists, e.g., ‘%list [__], nil,
cons’ allows the use of the notation ‘[x1,...,xn]’ for lists constructed using
cons, starting from the empty list nil.

A list of the form ‘b1 t1,...,tn b2’ (where n ≥ 0 and each ti is a TERM)
is translated to the (abstract syntax of) the term f(u1, f(u2, . . . f(un, c) . . .)),
where ui is the abstract syntax tree for ti, or simply to c when n = 0.

Vice versa, an abstract syntax tree corresponding to a term of the above
form which is maximal (i.e., it is not a sub-term of a larger term of the same
form) is expected to be printed as ‘b1 t1,...,tn b2’.

Different ‘%list’ annotations are regarded as conflicting when their mixfix
identifiers ‘b1__b2’ are identical.

110 II:5 Comments and Annotations

5.2.5 Semantic Annotations

These annotations are used to express known (or presumed) features of the
semantics of the specification, e.g., that an extension is ‘conservative’, or
that certain formulas are consequences of the specification. Theorem-proving
tools may interpret these annotations as proof obligations. Note, however, that
the annotations do not affect the semantics of a specification, regardless of
whether the specification has the indicated features or not.

Implied Axioms

The annotation for an implied axiom is written ‘%implied’ (at the end of a
line).

In the context of basic specifications the annotation %implied is used
to characterize implicit or explicit axioms as logical consequences of the en-
closing basic specification. %implied may annotate a SORT-ITEM, OP-ITEM,
PRED-ITEM, AXIOM, ALTERNATIVE, DATATYPE-DECL, or a BASIC-ITEMS consist-
ing of a FREE-DATATYPE or SORT-GEN.

Within a basic specification SP the annotations %implied hold if the an-
notation %implies holds for the following structured specification:

SP1 then %implies SP2

Here, SP1 consists of two parts: the first declares the whole signature of SP ,
the second is SP without the items marked with %implied. SP2 is as SP
without the non-%implied items, except that global variable declarations and
parsing annotations (possibly arising from operation attributes) are kept.

Extension Annotations

All the remaining semantic annotations precede a specification SP ′ that fol-
lows either:

• a ‘then’ keyword within an extension – in which case, let SP be the part
of the extension just up to, but excluding this occurrence of ‘then’; or

• the equals sign within a SPEC-DEFN – in which case, let SP be the union
of the imports, extended by the union of the parameters.

Different semantic annotations at the same position are regarded as com-
plementary.

Conservative Extension

The annotation for conservative extension is written ‘%cons’. It expresses that
SP ′ is a conservative extension of SP , i.e. each SP -model can be expanded
to an (SP then SP ′)-model.

Note that a model M ′ is an expansion of a model M iff M is a reduct
of M ′.

II:5.2 Annotations 111

Monomorphic Extension

The annotation for monomorphic extension is written ‘%mono’. It expresses
that SP ′ is a monomorphic extension of SP , i.e. each model of SP can be
expanded to a model of (SP then SP ′) that is unique up to isomorphism.

Note that ‘%mono’ is strictly stronger than the ‘%cons’ annotation.

Definitional Extension

The annotation for definitional extension is written ‘%def’. It expresses that
SP ′ is a definitional extension of SP , i.e. each model of SP can be uniquely
expanded to a model of (SP then SP ′) (this implies a bijective correspon-
dence between the two model classes).

Note that ‘%def’ is strictly stronger than the ‘%mono’ annotation.

Implied Extension

The annotation for implied extension is written ‘%implies’. The annotation
‘%implies’ is well-formed iff the signature of (SP then SP ′) is the signature
of SP . A well-formed ‘%implies’ annotation holds iff the model class of (SP
then SP ′) is the model class of SP .

Note that ‘%implies’ is strictly stronger than the ‘%def’ annotation.

5.2.6 Miscellaneous Annotations

The annotations described in this section apply either to whole libraries or to
the single library items that follow them.

Authors

An authors annotation is written:

%authors name1 <email1>, ..., namen <emailn>

at the end of a line, or, possibly over several lines:

%authors(name1 <email1>, ..., namen <emailn>)%

It indicates the authors of the annotated construct. When a library item has
no authors annotation, its authors are assumed to be the same as those of the
enclosing library. The order of listing the authors is not constrained, and the
listing of e-mail addresses is optional.

Date

A date annotation is written:

%date date1, ..., daten

at the end of a line, or, possibly over several lines:

%date(date1, ..., daten)%

112 II:5 Comments and Annotations

It indicates the latest modification date of the annotated construct. Any ad-
ditional dates indicate some previous modification dates (possibly including
the creation date). The order of listing the dates may be either increasing or
decreasing. The format of the dates should be uniform and unambiguous.

Part III

CASL Semantics

Hubert Baumeister

Maura Cerioli

Anne Haxthausen

Till Mossakowski

Peter D. Mosses

Donald Sannella

Andrzej Tarlecki

Editors: Donald Sannella and Andrzej Tarlecki

1

Introduction

This part of the CASL Reference Manual defines the formal semantics of the
language CASL, as informally presented in the CASL Summary (Part I). Apart
from this Introduction, which is partly devoted to defining some basic nota-
tion and explaining the style of the semantics, the structure of this document
is deliberately almost identical to the structure of the CASL Summary to aid
cross-reference. As in the CASL Summary, Chap. 2 deals with many-sorted
basic specifications, and Chap. 3 extends this by adding features for subsorted
basic specifications. Chapter 4 provides structured specifications, together with
specification definitions, instantiations, and views. Chapter 5 summarizes ar-
chitectural and unit specifications, which, in contrast to structured specifi-
cations, prescribe the separate development of composable, reusable imple-
mentation units. Finally, Chap. 6 considers specification libraries. There are
two exceptions to the structural match between this document and the CASL

Summary. One is in Chap. 4, where the subsections of Sect. 4.1 define many
concepts and notations underlying the semantics of structured specifications
that were not mentioned in the CASL Summary. The other is in Chap. 5,
where Sect. 5.6 presents a more precise analysis of the constructs considered
in Sects. 5.2–5.5.

The first section of each chapter defines the semantic concepts underlying
the kind of specification concerned, with the remaining sections presenting
the abstract syntax of the associated CASL language constructs and defining
their semantics. The abstract syntax is identical to that given in the CASL

Summary; it is repeated here for ease of reference.

Brief informal summaries of the main concepts and constructs precede each
block of formal definitions. This material, which is in boxes (like this para-
graph) is provided as a supplement to the formal material; since it deliber-
ately glosses over the details, it should not be regarded as definitive. There
is other informal explanatory text in between the definitions, but nothing
that is likely to be mistaken for a definition.

116 III:1 Introduction

1.1 Notation

This section summarizes some of the basic notation used in the definitions
below.

Sets

Set(A) is the set of all subsets of A, and FinSet(A) is the set of finite subsets
of A. If A is a set then |A| is the cardinality of A. unit denotes the singleton
set {∗}.

Tuples

A1 × · · · × An is the set of n-tuples with jth component from Aj . Tuples
are written like this: (a1, . . . , an). Sometimes the parentheses are omitted,
especially when tuples are used as subscripts or superscripts.

Sequences

FinSeq(A) is the set of finite sequences of elements from A. Sequences are
written like this: 〈a1, . . . , an〉, where n ≥ 0. (This notation is different from
that used in the CASL Summary and the abstract syntax, where FinSeq(A)
is written A∗ and 〈a1, . . . , an〉 is written a1 . . . an.) If w = 〈a1, . . . , an〉 then
|w| = n.

Functions

A ⇀ B is the set of partial functions from A to B. Dom(f) ⊆ A is the domain
of f : A ⇀ B. A → B is the set of total functions from A to B. Any total
function f : A → B can also be regarded as a partial function f : A′ ⇀ B
for any A′ ⊇ A, and any partial function f : A ⇀ B is a total function
f : Dom(f) → B. Functions are written like this: {a1 �→ b1, . . . , an �→ bn},
where n ≥ 0, or {x �→ x + 3 | x ∈ Nat}. We use the notation f(x) for
application of a function f to an argument x. Sometimes the parentheses are
omitted, for instance when x is a tuple or a sequence. The graph of a function
f : A ⇀ B is the set of pairs graph(f) = {(x, f(x)) | x ∈ Dom(f)} and the
kernel of f is ker(f) = {(x, y) | x, y ∈ Dom(f) and f(x) = f(y)}. When f is
an indexed family (a function from an index set to a domain of elements) we
write fx instead of f(x). A

fin→ B is the set of finite maps (i.e. partial functions
with finite domain) from A to B.

Union and ∅

We use union (∪) to combine semantic objects of various kinds, with the
evident interpretation (e.g. component-wise union for tuples and point-wise
union for functions, that is (f ∪ g)(x) = f(x) ∪ g(x) if f and g are set-valued

III:1.1 Notation 117

functions such that Dom(f) = Dom(g)). More generally, for any set-valued
functions f and g we take

(f ∪ g)(x) =


f(x) ∪ g(x) if x ∈ Dom(f) ∩Dom(g)
f(x) if x ∈ Dom(f) \Dom(g)
g(x) if x ∈ Dom(g) \Dom(f)
undefined otherwise

which gives Dom(f∪g) = Dom(f)∪Dom(g). Similarly, ∅ is used for the empty
object of various kinds (e.g. empty signature, empty function). If n = 0 then
A1 ∪ · · · ∪An denotes ∅.

Disjoint union

A � B is the disjoint union of A and B. Injection from A and B to A �B is
implicit.

Given a union of syntactic categories, as in

OP-TYPE ::= TOTAL-OP-TYPE | PARTIAL-OP-TYPE

we distinguish between a ∈ TOTAL-OP-TYPE (resp. a ∈ PARTIAL-OP-TYPE)
and a ∈ OP-TYPE by writing the latter as ‘a qua OP-TYPE’. The syntactic
categories in question are always disjoint, with different constructors being
used to form their phrases (in this case, the constructors are total-op-type
and partial-op-type).

Function completion

We sometimes need to ‘complete’ a function f with Dom(f) ⊆ S to give
a function with domain S by mapping values in S \ Dom(f) to an appro-
priate neutral value. In particular, if f is a set-valued function, we define
complete(f, S) = f ∪ {x �→ ∅ | x ∈ S \Dom(f)}.

Categories

Some elementary category theory is used in places. A suitable introduction is
[52]. The category of sets is denoted Set and the (quasi)category of categories
is denoted CAT 1. We use the notation f◦g for (applicative order) composition
of morphisms in a category. In Set this gives (f ◦ g)(x) = f(g(x)). The class
of objects of a category C is written |C| and the identity morphism on A is
written idA.
1 There are foundational problems connected with the use of CAT – see [27] for

how to solve them.

118 III:1 Introduction

Semantic domains

We define various semantic domains below. By convention, semantic domains
containing ‘syntactic’ objects (e.g. Signature) are in italics and semantic do-
mains containing ‘semantic’ objects (e.g. Model) are in boldface. Here is an
example of a domain of ‘syntactic’ objects:

(w, s) or ws ∈ FunProfile = FinSeq(Sort)× Sort

This defines the set FunProfile as the set of pairs having finite sequences
of elements from Sort as first component and elements of Sort as second
component. The metavariable ws ranges over elements of FunProfile. When
we need to refer to the components of the pair we use the notation (w, s)
instead, so w ranges over elements of FinSeq(Sort) and s ranges over elements
of Sort .

Validity

Typically, semantic domains are constructed from ‘more basic’ domains to-
gether with some well-formedness requirements. Then a valid object is a value
in the given set that satisfies the given requirements. Here is an example:

X ∈ Variables = Sort fin→ FinSet(Var)

Requirements on an S-sorted set of variables X :
• Dom(X) = S
• for all s, s′ ∈ S such that s �= s′, Xs ∩Xs′ = ∅.

This says that a ‘set of variables’ is a finite map taking elements of Sort to
finite subsets of Var , while a ‘valid S-sorted set of variables’ is a finite map
of this kind that satisfies the two requirements given. Often, as in this case,
validity of an object is relative to some other (valid) object, here a set S of
sorts. We will tacitly require all objects that arise in defining the semantics
of CASL phrases to be valid.

Abstract syntax

For an introduction to the form of grammar used to define the abstract syntax
of language constructs, see Chap. II:2, which also contains the abstract syntax
of the entire CASL specification language.

1.2 Static Semantics and Model Semantics

The semantics of language constructs is given in two parts. The static seman-
tics checks well-formedness of phrases of the abstract syntax and produces a
‘syntactic’ object as result, failing to produce any result for ill-formed phrases.

III:1.3 Semantic Rules 119

For example, for a many-sorted basic specification (see Chap. 2) the static
semantics yields an enrichment containing the sorts, function symbols, predi-
cate symbols and axioms that belong to the specification. A judgement of the
static semantics has the following form: context � phrase � result . The model
semantics provides the corresponding model-theoretic part of the semantics,
and is intended to be applied only to phrases that are well-formed according
to the static semantics. For a basic specification, the model semantics yields a
class of models. A judgement of the model semantics has the following form:
context � phrase ⇒ result .

A statically well-formed phrase may still be ill-formed according to the
model semantics, and then no result is produced. This can never happen
in the semantics of basic constructs but it can happen in the semantics of
structured specifications and architectural specifications.

1.3 Semantic Rules

The judgements of the static semantics and model semantics are defined in-
ductively by means of rules in the style of Natural Semantics [30]. For each
phrase class we give a group of rules defining the semantics of the constructs
in that class. The group is preceded by a specification of the ‘type’ of the
judgement(s) being defined. This is followed by pre-conditions on the ‘inputs’
to the judgement(s) which, if satisfied, guarantee that the ‘outputs’ satisfy
the given post-conditions. Each of the rules should ensure that this is the
case. For example, here is the section of the semantics for the phrase class
AXIOM-ITEMS from Sect. 2.5 below, for which there is just one rule.

Σ, X � AXIOM-ITEMS� Ψ

X is required to be a valid set of variables over the sorts of Σ. Ψ is a
set of Σ-sentences.

Σ, X � AXIOM1 � ψ1 · · · Σ, X � AXIOMn � ψn

Σ, X � axiom-items AXIOM1 . . . AXIOMn � {ψ1, . . . , ψn}

The ‘type’ of the judgement is Σ, X � AXIOM-ITEMS � Ψ . Intuitively, this
says that in the local environment Σ with declared variables X , a phrase
AXIOM-ITEMS yields a set Ψ of sentences. The pre-condition on the ‘inputs’
is the requirement that X be a valid set of variables over the sorts of Σ.
(The requirement that Σ itself be valid is implicit – use of a metavariable
always refers to a valid object of the relevant kind.) The post-condition on
the ‘output’ is the assertion that Ψ will then be a set of Σ-sentences. It is easy
to see that the given rule satisfies the pre/post-condition: if Σ, X satisfy the
pre-condition then the post-condition associated with AXIOM guarantees that
all of ψ1, . . . , ψn will be Σ-sentences, and Ψ here is just {ψ1, . . . , ψn}.

120 III:1 Introduction

Rules in the static semantics and model semantics have the form
α1 · · · αn

β

where the conclusion β is a judgement and each premise αj is either a judge-
ment or a side-condition. When all the judgements occurring in all rules are
positive (i.e. not negated) then the rules unambiguously define a family of
relations via the usual notion of derivation tree, or equivalently as the small-
est family of relations that is closed under the rules. Conclusions are always
positive but there are situations in which negative premises are convenient.
These are potentially problematic for at least two reasons: first, there may be
no family of relations that is closed under the rules; second, there may be no
smallest family of relations that is closed under the rules. It follows that care is
required in situations where the natural choice of rules would involve negative
premises. One way out is to simultaneously define a relation and its negation
using rules with positive premises only, as in Sect. 2.1.4 below. Another is via
the use of stratification to ensure the absence of dangerous circularities, cf.
‘negation by failure’ in logic programming [53], as in Sect. 2.5.3. See [19] for
further discussion.

When a syntactic category C is defined as the disjoint union of other
syntactic categories C1, . . . , Cn, rules that merely translate a judgement for
C1 etc. to a judgement for C are elided. Here is a schematic example of the
kind of rules that are elided, for the static semantics:

context � phrase � result
context � phrase qua C � result

Whenever such a rule is elided there will be a statement to this effect in the
rule’s place.

1.4 Institution Independence

CASL is the heart of a family of languages. Sublanguages of CASL are obtained
by imposing syntactic or semantic restrictions, while extensions of CASL sup-
port various paradigms and applications.

The features of CASL for defining structured specifications, architectural
specifications and specification libraries do not depend on the details of the
features for basic specifications, so this part of the design is orthogonal to the
rest. As a consequence, sublanguages and extensions of CASL can be defined
by restricting or extending the language of basic specifications without the
need to reconsider or change the rest of the language. On a semantic level,
this is reflected by giving the semantics in an ‘institution independent’ style.
The semantics of basic specifications with subsorts defines an institution [20]
for CASL– actually, a variant of the notion of institution called an institution
with symbols [39] – and the rest of the semantics is based on an arbitrary
institution (with symbols). See Sect. 4.1 for more details.

III:1.4 Institution Independence 121

Acknowledgement. The formal semantics of each part of the CASL Summary was
written by one or more authors under the watchful gaze of a kibitzer2. The authors
were responsible for actually doing the work, while the kibitzer was to serve as first
reader, act as devil’s advocate, push the authors to do the work, and perhaps jump
in and help if needed. Authors and kibitzers were as follows:

Basic specifications: Don Sannella (kibitzer Hubert Baumeister)
Subsorted specifications: Maura Cerioli and Anne Haxthausen (kibitzer Till

Mossakowski)
Structured specifications: Hubert Baumeister and Till Mossakowski (kibitzer

Andrzej Tarlecki)
Architectural specifications: Andrzej Tarlecki (kibitzer Don Sannella)
Specification libraries: Peter Mosses (kibitzer Till Mossakowski)

This document was assembled by Don Sannella. The CoFI Semantics Group is co-
ordinated by Andrzej Tarlecki.

Alexandre Zamulin read drafts of all parts of this document and sent many useful
comments and suggestions, for which the authors are extremely grateful. Special
thanks to Piotr Hoffman for pointing out inadequacies in an earlier version of the
semantics of architectural specifications. Other useful suggestions were contributed
by Christian Maeder, Markus Roggenbach, and Lutz Schröder.

This research was partly supported by CoFI-WG (ESPRIT Working Group
29432). Hubert Baumeister’s work was partly supported by AGILE (FP5 project
IST-2001-32747). Till Mossakowski’s work was partly supported by the Deutsche
Forschungsgemeinschaft under grant KR 1191/5-1. Don Sannella’s work was partly
supported by MRG (FP5 project IST-2001-33149). Andrzej Tarlecki’s work was
partly supported by KBN grant no. 7 T11C 002 21 and by AGILE.

2 kibitzer, n. Meddlesome person, one who gives advice gratuitously; one who
watches a game of cards from behind the players.

2

Basic Specification Semantics

A basic specification describes an extension ∆ to the local environment Σ,
together with a set of sentences over Σ ∪∆. This describes in turn the class
of all models over Σ ∪∆ that satisfy those sentences.

To make this precise, Sect. 2.1 defines the underlying concepts, and the
remaining sections cover the language constructs provided by CASL for use in
such specifications, giving their abstract syntax and defining their interpreta-
tion. Consideration of the extra features concerned with subsorts is deferred
to Chap. 3.

2.1 Basic Concepts

The concepts underlying basic specifications in CASL are those involved in
defining an institution [20] for CASL. The following elements are required:

• a category Sig of signatures Σ, with signature morphisms σ : Σ → Σ′;
• a (contravariant) functor Mod : Sigop → CAT giving for each signature

Σ a category Mod(Σ) of models over Σ, with homomorphisms between
them, and for each signature morphism σ : Σ → Σ′ a reduct functor
Mod(σ) : Mod(Σ′) → Mod(Σ) (usually written .|σ) translating models
and homomorphisms over Σ′ to models and homomorphisms over Σ;

• a functor Sen : Sig → Set giving for each signature Σ a set Sen(Σ) of
sentences (or axioms) over Σ, and for each signature morphism σ : Σ → Σ′

a translation function Sen(σ), usually written σ(.), taking Σ-sentences to
Σ′-sentences; and

• a relation |= of satisfaction between models and sentences over the same
signature.

Satisfaction is required to be compatible with reducts of models and transla-
tion of sentences: for all ψ ∈ Sen(Σ) and M ′ ∈Mod(Σ′),

M ′|σ |= ψ ⇐⇒ M ′ |= σ(ψ).

124 III:2 Basic Specification Semantics

(Additional structure is required for Chaps. 4 and 5, including a functor |.| :
Sig → Set with certain properties which determines the set of signature
symbols of any signature.)

The rest of this section defines the signatures, models, sentences, and sat-
isfaction relation that underlie many-sorted basic specifications.

2.1.1 Signatures

A many-sorted signature Σ consists of: a set of sorts ; separate families of
sets of total and partial function symbols, indexed by function profile (a
sequence of argument sorts and a result sort – constants are treated as
functions with no arguments); and a family of sets of predicate symbols,
indexed by predicate profile (a sequence of argument sorts). Constants and
functions are also referred to as operations.

The internal structure of identifiers used to identify sorts, functions and
predicates is insignificant for the semantics of basic specifications, see Sect. 2.6.
Following the order of presentation in the CASL Summary, we therefore leave
this unspecified for now, promising that there will be no circularity when the
definitions of the sets Sort , FunName and PredName are eventually provided:

s ∈ Sort
f ∈ FunName
p ∈ PredName

(In Sect. 2.3 the internal structure of sorts will be defined as SORT-ID and the
internal structure of function and predicate symbols will be defined as ID.)

S ∈ SortSet = FinSet(Sort)
(w, s) or ws ∈ FunProfile = FinSeq(Sort)× Sort

TF ,PF ∈ FunSet = FunProfile ⇀ FinSet(FunName)
w ∈ PredProfile = FinSeq(Sort)
P ∈ PredSet = PredProfile ⇀ FinSet(PredName)

For a set of total function symbols TF over S it is required that Dom(TF) =
FinSeq(S) × S and that TFws �= ∅ for only finitely many function profiles
ws ∈ FinSeq(S)×S, and similarly for a set of partial function symbols PF . For
a set of predicate symbols P over S it is required that Dom(P) = FinSeq(S)
and that Pw �= ∅ for only finitely many predicate profiles w ∈ FinSeq(S).

(S,TF ,PF , P)
or Σ ∈ Signature =

SortSet × FunSet × FunSet × PredSet

III:2.1 Basic Concepts 125

Requirements on a signature (S,TF ,PF , P):

• TF and PF are sets of total resp. partial function symbols over S
• P is a set of predicate symbols over S
• for all ws ∈ FinSeq(S)× S, TFws ∩ PFws = ∅
(An alternative to the use of the separate signature components TF and PF
would be a single component F with a totality marker, so e.g. F : FunProfile×
{total, partial} ⇀ FinSet(FunName) cf. [38, 67].)

Later we will need signature extensions as well. These are signature frag-
ments that are interpreted relative to some other signature. First we define
signature fragments.

(S,TF ,PF , P) ∈ SigFragment =
SortSet × FunSet × FunSet × PredSet

These are simply signatures minus the validity requirements.
Union of signature fragments is defined as follows:

(S,TF ,PF , P) ∪ (S′,TF ′,PF ′, P ′) =
reconcile(S ∪ S′, complete(TF ∪ TF ′,FinSeq(S′′)× S′′),

complete(PF ∪ PF ′,FinSeq(S′′)× S′′),
complete(P ∪ P ′,FinSeq(S′′)))

where

S′′ = S ∪ S′ ∪ sorts(Dom(TF)) ∪ sorts(Dom(PF)) ∪ sorts(Dom(P))
∪ sorts(Dom(TF ′)) ∪ sorts(Dom(PF ′)) ∪ sorts(Dom(P ′))

and

reconcile(S,TF ,PF , P) = (S,TF , {ws �→ PFws\TFws | ws ∈ Dom(PF)}, P).

Here, sorts(T) is the set of sorts appearing in function/predicate profiles in T .
The idea of this definition is to give the same result as if signature fragments
were defined as sets of individual sort/function/predicate declarations. Note
that any signature is also a signature fragment so this definition also defines
the union of two signatures as well as the union of a signature and a signature
fragment. According to this definition, the union of two signatures will always
be a signature with S′′ = S ∪ S′. When a function name is declared as both
partial and total, the reconcile function causes it to be regarded as total in
the union, as required in Sects. I:2.3.2 and I:4.2.3.

(S,TF ,PF , P) or ∆ ∈ Extension = SigFragment

A signature extension relative to a signature Σ is a signature fragment ∆
such that Σ ∪∆ (the “target” of the signature extension) is a signature. This
guarantees that all the sorts used for function and predicate profiles in ∆ are
declared in either ∆ or Σ.

126 III:2 Basic Specification Semantics

Proposition 2.1. If ∆ and ∆′ are signature extensions relative to Σ then
∆ ∪∆′ is a signature extension relative to Σ.

Proof. Straightforward. ��

A signature Σ is a subsignature of a signature Σ′ if there is some extension
∆ relative to Σ such that Σ′ = Σ ∪∆. Note that this allows a function name
to be a partial function symbol in Σ but a total function symbol in Σ′.

Symbols used to identify sorts, operations, and predicates may be overloaded.
For example, it is possible that f ∈ TFws and f ∈ TFws′ for ws �= ws ′, as
well as f ∈ S. To ensure that there is no ambiguity in sentences at this level,
function symbols f and predicate symbols p are always qualified by profiles
when used, written fws and pw respectively. (The language considered later
in this chapter allows the omission of such qualifications when they are
unambiguously determined by the context.)

fws ∈ QualFunName = FunName × FunProfile
pw ∈ QualPredName = PredName × PredProfile

Requirements on a qualified function name fws over Σ = (S,TF ,PF , P):

• ws ∈ FinSeq(S)× S
• f ∈ TFws ∪ PFws

Requirements on a qualified predicate name pw over Σ = (S,TF ,PF , P):

• w ∈ FinSeq(S)
• p ∈ Pw

Following [39], Chaps. 4 and 5 below require that we define a set SigSym
of signature symbols and a function |.| taking any signature to the set of
signature symbols it contains (in fact we need a functor |.| : Sig → Set having
certain properties, see Prop. 2.4 below). Signature symbols are essentially just
qualified function/predicate names together with sort names.

SigSym =
s ∈ Sort �

fws ∈ QualFunName �
pw ∈ QualPredName

If Σ = (S,TF ,PF , P), we define |Σ| ⊆ SigSym as follows:

|Σ| = S ∪ {fws | ws ∈ FinSeq(S)× S, f ∈ TFws ∪ PFws}
∪ {pw | w ∈ FinSeq(S), p ∈ Pw}

A many-sorted signature morphism σ : Σ → Σ′ maps symbols in Σ to
symbols in Σ′. A partial function symbol may be mapped to a total function
symbol, but not vice versa.

III:2.1 Basic Concepts 127

σS ∈ SMap = Sort fin→ Sort
σTF ∈ TFMap = FunProfile ⇀ (FunName fin→ FunName)
σPF ∈ PFMap = FunProfile ⇀ (FunName fin→ FunName)
σP ∈ PMap = PredProfile ⇀ (PredName fin→ PredName)

(σS, σTF, σPF, σP) : Σ → Σ′

or σ : Σ → Σ′ ∈ SignatureMorphism =
Signature

×SMap × TFMap × PFMap × PMap
×Signature

Requirements on a signature morphism (σS, σTF, σPF, σP) : (S,TF ,PF , P) →
(S′,TF ′,PF ′, P ′):

• σS : S → S′

• Dom(σTF) = Dom(σPF) = FinSeq(S)× S
• for all ws ∈ FinSeq(S)× S:

– σTF
ws : TFws → TF ′

σS(ws)

– σPF
ws : PFws → TF ′

σS(ws) ∪ PF ′
σS(ws)

• Dom(σP) = FinSeq(S)
• for all w ∈ FinSeq(S), σP

w : Pw → P ′
σS(w)

where, for w = 〈s1, . . . , sn〉, σS(w) = 〈σS(s1), . . . , σS(sn)〉 and σS(w, s) =
(σS(w), σS(s)). If Σ is a subsignature of Σ′, we write Σ ↪→ Σ′ for the ev-
ident signature morphism. Such a signature morphism is called a signature
inclusion. Note that a signature extension ∆ relative to Σ can be viewed
more abstractly as the signature inclusion Σ ↪→ Σ ∪ ∆. However, informa-
tion about any re-declaration in ∆ of symbols in Σ is lost by this abstraction.
Therefore ∆ is kept explicitly together with the signature inclusion in Chap. 4.

If σ : Σ → Σ′ and ρ : Σ′ → Σ′′ are signature morphisms, where σ =
(σS, σTF, σPF, σP), ρ = (ρS, ρTF, ρPF, ρP) and Σ = (S,TF ,PF , P), then the
composition ρ◦σ : Σ → Σ′′ is the signature morphism (δS, δTF, δPF, δP) where

δS = ρS ◦ σS,

δTF = {ws �→ ρTF
σS(ws) ◦ σTF

ws | ws ∈ FinSeq(S)× S},

δPF = {ws �→ (ρTF
σS(ws) ∪ ρPF

σS(ws)) ◦ σPF
ws | ws ∈ FinSeq(S)× S},

δP = {w �→ ρP
σS(w) ◦ σP

w | w ∈ FinSeq(S)}

Identity morphisms idΣ are obvious.

Proposition 2.2. The composition of signature morphisms does indeed yield
a signature morphism.

Proof. In the definition of δPF, ρTF
σS(ws)∪ρPF

σS(ws) is a function because TF ′
σS(ws)∩

PF ′
σS(ws) = ∅. The rest of the proof is straightforward. ��

128 III:2 Basic Specification Semantics

Proposition 2.3. Signatures and signature morphisms form a finitely cocom-
plete category, Sig.

Proof. It is easy to see that Sig is a category. Regarding finite cocompleteness,
see [38] for a more general result. ��
If σ : Σ → Σ′ is a signature morphism, where σ = (σS, σTF, σPF, σP), Σ =
(S,TF ,PF , P) and Σ′ = (S′,TF ′,PF ′, P ′), then the function |σ| : |Σ| → |Σ′|
is defined as follows:

|σ|(s) = σS(s) for all s ∈ S

|σ|(fws) =
{

σTF
ws (f)σS(ws) for f ∈ TFws

σPF
ws (f)σS(ws) for f ∈ PFws

for all ws ∈ FinSeq(S)× S
|σ|(pw) = σP

w(p)σS(w)

for all w ∈ FinSeq(S) and p ∈ Pw

Proposition 2.4. |.| : Sig → Set is a faithful functor.

Proof. It is easy to see that |.| is a functor. Faithfulness is also obvious: |σ|
(together with the partiality data in Σ and Σ′) carries no less information
than σ : Σ → Σ′. ��
Proposition 2.5. A signature morphism σ : Σ → Σ′ is a signature inclusion
iff |σ| is an inclusion of |Σ| into |Σ′|.
Proof. Straightforward. It is essential that in a signature inclusion σ : Σ → Σ′,
a function name may be a partial function symbol in Σ but a total function
symbol in Σ′. ��

2.1.2 Models

For a many-sorted signature Σ, a many-sorted model M ∈Mod(Σ) assigns
a non-empty carrier set to each sort in Σ, a partial resp. total function to
each partial resp. total function symbol, and a predicate to each predicate
symbol. Requiring carriers to be non-empty simplifies deduction [21] and
will allow axioms in specifications to be implicitly universally quantified, see
Sect. 2.4.

SM (s) or sM ∈ Carrier = the class of all sets
SM ∈ Carriers = Sort fin→ Carrier

FM
ws (f) or fM ∈ PartialFun = the class of all partial functions

FM ∈ PartialFuns = FunProfile ⇀ (FunName fin→ PartialFun)
PM

w (p) or pM ∈ Pred = the class of all predicates
PM ∈ Preds = PredProfile ⇀ (PredName fin→ Pred)

(SM , FM , PM)
or M ∈ Model = Carriers×PartialFuns×Preds
M ∈ ModelClass = Set(Model)

III:2.1 Basic Concepts 129

Requirements on a Σ-model M = (SM , FM , PM) for Σ = (S,TF ,PF , P):

• Dom(SM) = S
• for all s ∈ S, SM (s) �= ∅
• Dom(FM) = FinSeq(S)× S
• for all w ∈ FinSeq(S) and s ∈ S:

– Dom(FM
w,s) = PFw,s ∪ TFw,s

– for all f ∈ TFw,s, FM
w,s(f) : wM → sM (a total function)

– for all f ∈ PFw,s, FM
w,s(f) : wM ⇀ sM

• Dom(PM) = FinSeq(S)
• for all w ∈ FinSeq(S):

– Dom(PM
w) = Pw

– for all p ∈ Pw, PM
w (p) ⊆ wM

where 〈s1, . . . , sn〉M = sM
1 × · · · × sM

n .
Every model in a Σ-model class M is required to be a valid Σ-model.

Given two Σ-models M, M ′ ∈ Mod(Σ), a many-sorted homomorphism h :
M →M ′ maps the values in the carriers of M to values in the corresponding
carriers of M ′ in such a way that the values of functions and their definedness
is preserved, as well as the truth of predicates.

h : M →M ′ ∈ Homomorphism =
Model× (Sort fin→ PartialFun)×Model

Requirements on a Σ-homomorphism h : M →M ′ for Σ = (S,TF ,PF , P):

• M and M ′ are valid Σ-models
• Dom(h) = S
• for all s ∈ S, hs : sM → sM ′

(a total function)
• for all w = 〈s1, . . . , sn〉 ∈ FinSeq(S), s ∈ S, f ∈ TFw,s ∪ PFw,s

and a1 ∈ sM
1 , . . . , an ∈ sM

n , whenever fM (a1, . . . , an) is defined then
so is fM ′

(hs1(a1), . . . , hsn(an)), and in that case hs(fM (a1, . . . , an)) =
fM ′

(hs1(a1), . . . , hsn(an))
• for all w = 〈s1, . . . , sn〉 ∈ FinSeq(S), p ∈ Pw and a1 ∈ sM

1 , . . . , an ∈ sM
n , if

(a1, . . . , an) ∈ pM then (hs1(a1), . . . , hsn(an)) ∈ pM ′
.

Composition of homomorphisms is as usual: if h : M → M ′ and h′ :
M ′ → M ′′ are Σ-homomorphisms for Σ = (S,TF ,PF , P), then the Σ-
homomorphism h′ ◦ h : M → M ′′ is given by (h′ ◦ h)s = h′

s ◦ hs for all
s ∈ S. Identity homomorphisms are S-sorted identity functions.

Proposition 2.6. The composition h′ ◦ h : M → M ′′ is indeed a Σ-
homomorphism.

Proof. Routine. ��

Proposition 2.7. Σ-models together with Σ-homomorphisms form a cate-
gory, Mod(Σ).

130 III:2 Basic Specification Semantics

Proof. Easy. ��

A signature morphism σ : Σ → Σ′ determines the many-sorted
reduct of each Σ′-model resp. Σ′-homomorphism to a Σ-model resp. Σ-
homomorphism, defined by interpreting symbols of Σ in the reduct in the
same way that their images under σ are interpreted.

Let M ′ = (SM ′
, FM ′

, PM ′
) be a Σ′-model and let σ : Σ → Σ′ be a

signature morphism where σ = (σS, σTF, σPF, σP) and Σ = (S,TF ,PF , P).
The reduct of M ′ with respect to σ is the Σ-model M ′|σ = (SM , FM , PM)
defined as follows:

SM = SM ′ ◦ σS

FM
ws (f) =

{
FM ′

σS(ws)(σ
TF
ws (f)) if f ∈ TFws

FM ′

σS(ws)(σ
PF
ws (f)) if f ∈ PFws

PM
w (p) = PM ′

σS(w)(σ
P
w(p))

Proposition 2.8. If σ : Σ → Σ′ is a signature morphism and M ′ is a Σ′-
model then M ′|σ is indeed a Σ-model.

Proof. Routine. ��

Suppose that Σ is a subsignature of Σ′, so there is a signature inclusion
Σ ↪→ Σ′. Then we sometimes write M ′|Σ as an abbreviation for M ′|Σ↪→Σ′ ,
and we say that a Σ′-model M ′ extends a Σ-model M if M ′|Σ = M . These
notations are extended to classes of models, so M′|σ = {M ′|σ | M ′ ∈ M′} if
σ : Σ → Σ′ and M′ is a class of Σ′-models, and M′|Σ = {M ′|Σ | M ′ ∈ M′}
if σ is a signature inclusion.

Let h′ : M1′ → M2′ be a Σ′-homomorphism and let σ : Σ → Σ′ be a
signature morphism where Σ = (S,TF ,PF , P) and σ = (σS, σTF, σPF, σP).
The reduct of h′ with respect to σ is the Σ-homomorphism h′|σ : M1′|σ →
M2′|σ defined by (h′|σ)s = h′

σS(s) for all s ∈ S. If Σ is a subsignature of Σ′

then we sometimes write h′|Σ as an abbreviation for h′|Σ↪→Σ′ .

Proposition 2.9. If σ : Σ → Σ′ is a signature morphism and h′ : M1′ →
M2′ is a Σ′-homomorphism then h′|σ : M1′|σ → M2′|σ is indeed a Σ-
homomorphism.

Proof. Easy. ��

Proposition 2.10. Reduct of models and homomorphisms extends Mod to
a finitely continuous functor Mod : Sigop → CAT (i.e. Mod takes finite
colimits in Sig to limits in CAT).

III:2.1 Basic Concepts 131

Proof. It is easy to see that Mod is a functor. For continuity, see [38] for a
sketch of the proof of a more general result; cf. [15]. ��

Let h : M → M ′ be a Σ-homomorphism. If there is a Σ-homomorphism
h−1 : M ′ → M such that h ◦ h−1 is the identity on M ′ and h−1 ◦ h is the
identity on M then h is a Σ- isomorphism and we write M ∼= M ′.

2.1.3 Sentences

The many-sorted terms on a signature Σ and a set X of variables consist of
variables from X together with applications of qualified function symbols to
argument terms of appropriate sorts. We refer to such terms as fully-qualified
terms, to avoid confusion with the terms of the language considered later in
this chapter, which allow explicit qualifications to be omitted when they are
determined by the context.

Following the order of presentation in the CASL Summary, we leave the
syntax of variables (Var) unspecified for now. It will be defined in Sect. 2.4
below.

x ∈ Var
X ∈ Variables = Sort fin→ FinSet(Var)
xs ∈ QualVarName = Var × Sort

Requirements on an S-sorted set of variables X :

• Dom(X) = S
• for all s, s′ ∈ S such that s �= s′, Xs ∩Xs′ = ∅.

In a qualified variable name xs, it is required that s ∈ S.
We write X + {xs} for the (S ∪ {s})-sorted set of variables such that

(X + {xs})s =
{

Xs ∪ {x} if s ∈ Dom(X)
{x} otherwise

and (X + {xs})s′ = Xs′ \ {x} for s′ ∈ S such that s′ �= s. We write X + X ′

for the extension of this to arbitrary S′-sorted sets of variables X ′.

Proposition 2.11. If X is valid for S and X ′ is valid for S′ then X + X ′ is
valid for S ∪ S′.

Proof. Easy. ��

If xi �= xj for all 1 ≤ i �= j ≤ n then we use {x1
s1

, . . . , xn
sn
} to abbreviate

{x1
s1
} + · · · + {xn

sn
}. (The pre-condition means that the order is immaterial,

as the set notation suggests.)
The definitions of fully-qualified terms and formulas are mutually recur-

sive.

132 III:2 Basic Specification Semantics

t ∈ FQTerm =
xs ∈ QualVarName �

fws〈t1, . . . , tn〉 ∈ QualFunName × FinSeq(FQTerm) �
ϕ→ t | t′ ∈ Formula × FQTerm × FQTerm

For any t ∈ FQTerm, define sort(t) ∈ Sort as follows:

sort(xs) = s
sort(fw,s〈t1, . . . , tn〉) = s

sort(ϕ → t′ | t′′) =
{

sort(t′) if sort(t′) = sort(t′′)
undefined otherwise

Requirements on a fully-qualified Σ-term t over an S-sorted set of variables
X , for Σ = (S,TF ,PF , P):

• if t is xs, then xs is valid for S and x ∈ Xs

• if t is fw,s〈t1, . . . , tn〉, then:
– fw,s is a valid qualified function name over Σ
– t1, . . . , tn are valid fully-qualified Σ-terms over X
– |w| = n
– w = 〈sort(t1), . . . , sort(tn)〉

• if t is ϕ→ t′ | t′′, then:
– ϕ is a valid Σ-formula over X
– t′ and t′′ are valid fully-qualified Σ-terms over X
– sort(t′) = sort(t′′)

The fully-qualified term ϕ → t | t′ is only needed to deal with the conditional
term construct, see Sect. 2.5.4 below. An alternative is to deal with these by
transformation as described in Sect. I:2.5.4 of the CASL Summary. Then fully-
qualified terms of the form ϕ → t | t′ are not required. Since these terms are
non-standard, this is what is done in the proof calculus for basic specifications
in Sect. IV:2.

The many-sorted sentences in Sen(Σ) are sort-generation constraints – de-
scribed below – and the usual closed many-sorted first-order logic formu-
las, built from atomic formulas (application of qualified predicate symbols
to argument terms of appropriate sorts, assertions about the definedness
of fully-qualified terms, and existential and strong equations between fully-
qualified terms of the same sort) using quantification and logical connectives.
Predicate application, existential equations, implication and universal quan-
tification are taken as primitive, the other forms being regarded as derived.

ϕ ∈ Formula =
pw〈t1, . . . , tn〉 ∈ QualPredName × FinSeq(FQTerm) �

t
e= t′ ∈ FQTerm × FQTerm �

false ∈ unit �
ϕ⇒ ϕ′ ∈ Formula × Formula �
∀xs.ϕ ∈ QualVarName × Formula

III:2.1 Basic Concepts 133

Requirements on a Σ-formula ϕ over an S-sorted set of variables X , for Σ =
(S,TF ,PF , P):

• if ϕ is pw〈t1, . . . , tn〉, then:
– pw is a valid qualified predicate name over Σ
– t1, . . . , tn are valid fully-qualified Σ-terms over X
– |w| = n
– w = 〈sort(t1), . . . , sort(tn)〉

• if ϕ is t
e= t′, then:

– t and t′ are valid fully-qualified Σ-terms over X
– sort(t) = sort(t′)

• if ϕ is ϕ′ ⇒ ϕ′′, then ϕ′ and ϕ′′ are valid Σ-formulas over X
• if ϕ is ∀xs.ϕ

′, then:
– xs is valid for S
– ϕ′ is a valid Σ-formula over X + {xs}
Abbreviations are defined as follows:

¬ϕ abbreviates ϕ⇒ false
ϕ ∨ ϕ′ abbreviates (¬ϕ) ⇒ ϕ′

ϕ ∧ ϕ′ abbreviates ¬(¬ϕ ∨ ¬ϕ′)
ϕ⇔ ϕ′ abbreviates (ϕ ⇒ ϕ′) ∧ (ϕ′ ⇒ ϕ)

true abbreviates ¬false
D(t) abbreviates t

e= t

t
s= t′ abbreviates (D(t) ⇒ t

e= t′) ∧ (D(t′) ⇒ t
e= t′)

∀{x1
s1 , . . . , xn

sn}.ϕ abbreviates ∀x1
s1 . · · · ∀xn

sn .ϕ
∃X.ϕ abbreviates ¬(∀X.¬ϕ)
∃!X.ϕ abbreviates ∃X.(ϕ ∧ ∀X̂.(ϕ[X̂/X]⇒ X

e= X̂))

where in the last clause the variables X̂ are variants of X chosen to avoid all
variable clashes, ϕ[X̂/X] is substitution, and X

e= X̂ abbreviates the evident
conjunction of equations. The notation for strong equations is deliberately
more explicit than that in CASL itself, where undecorated equality is used.

Let X be an S-sorted set of variables, for Σ = (S,TF ,PF , P). The set
FV (t) of free variables of a fully-qualified Σ-term t over X , and the set FV (ϕ)
of free variables of a Σ-formula ϕ over X , are defined simultaneously by
induction as follows, giving an S-sorted set of variables:

• FV (xs) = {xs}
• FV (fws〈t1, . . . , tn〉) = FV (t1) ∪ · · · ∪ FV (tn)
• FV (ϕ′ → t′ | t′′) = FV (ϕ′) ∪ FV (t′) ∪ FV (t′′)

• FV (pw〈t1, . . . , tn〉) = FV (t1) ∪ · · · ∪ FV (tn)
• FV (t1

e= t2) = FV (t1) ∪ FV (t2)
• FV (false) = ∅
• FV (ϕ′ ⇒ ϕ′′) = FV (ϕ′) ∪ FV (ϕ′′)
• FV (∀xs.ϕ

′) = FV (ϕ′) \ {xs}

134 III:2 Basic Specification Semantics

If n = 0 then ϕ1 ∧ · · · ∧ ϕn means true, ϕ1 ∨ · · · ∨ ϕn means false, and
∀x1

s1 . · · · ∀xn
sn .ϕ means ϕ. (This is metanotation: ellipses are not included in

the syntax of sentences.)
Let ϕ be a Σ-formula over X and let (σS, σTF, σPF, σP) be a signature mor-

phism σ : Σ → Σ′ where Σ = (S,TF ,PF , P) and Σ′ = (S′,TF ′,PF ′, P ′).
Let X ′ be the S′-sorted set of variables such that X ′

s′ =
⋃

σS(s)=s′ Xs for all
s′ ∈ S′. The translation of ϕ along σ is the Σ′-formula σ(ϕ) over X ′ obtained
by replacing each qualified variable name xs in ϕ by xσS(s), each qualified func-
tion name fws such that f ∈ TFws by σTF

ws (f)σS(ws), each qualified function
name fws such that f ∈ PFws by σPF

ws (f)σS(ws), and each qualified predicate
name pw by σP

w(p)σS(w).

Proposition 2.12. If σ : Σ → Σ′ is a signature morphism and ϕ is a Σ-
formula over X then σ(ϕ) is indeed a Σ′-formula over X ′. If X is empty then
so is X ′.

Proof. Straightforward. ��

The sentences Sen(Σ) also include sort-generation constraints, used to re-
quire that models are reachable on a subset of sorts.

(S′, F ′, σ) ∈ Constraint = SortSet × FunSet × SignatureMorphism

Requirements on a Σ-constraint (S′, F ′, σ):

• σ : Σ → Σ where Σ = (S,TF ,PF , P), and then:
• S′ ⊆ S
• Dom(F ′) = FinSeq(S)× S
• for all ws ∈ FinSeq(S)× S, F ′

ws ⊆ TFws ∪ PFws

Let σ′ : Σ → Σ′′ be a signature morphism. The translation σ′(S′, F ′, σ)
of a Σ-constraint (S′, F ′, σ) along σ′ is the Σ′′-constraint (S′, F ′, σ′ ◦ σ).

Proposition 2.13. Translating a Σ-constraint along σ : Σ → Σ′ gives a
Σ′-constraint.

Proof. Obvious. ��

We use the abbreviation (S′, F ′) for the Σ-constraint (S′, F ′, idΣ). Only
constraints of this kind are introduced by CASL specifications, see Sects. 2.3.4
and 2.3.5. Constraints with non-identity third components arise only when
constraints introduced by CASL specifications are translated along signature
morphisms.

ψ ∈ Sentence = Formula � Constraint

III:2.1 Basic Concepts 135

Requirements on a Σ-sentence ψ:

• if ψ is a formula, it is required to be a valid Σ-formula over the empty set
of variables

• if ψ is a constraint, it is required to be a valid Σ-constraint

Proposition 2.14. The mapping from signatures Σ to sets of Σ-sentences,
together with translation of sentences along signature morphisms, gives a func-
tor Sen : Sig→ Set.

Proof. The requirement that variables cannot be overloaded is crucial because
it allows the translated sets of variables X ′ above to be formed without the
use of disjoint union. Given this, the proof is straightforward. ��

(∆, Ψ) ∈ Enrichment = Extension × FinSet(Sentence)

Requirements on an enrichment (∆, Ψ) relative to a signature Σ:

• ∆ is a signature extension relative to Σ
• Each ψ ∈ Ψ is a Σ ∪∆-sentence

2.1.4 Satisfaction

The satisfaction of a Σ-formula in a Σ-model is determined as usual by
the holding of its atomic formulas w.r.t. assignments of values to all the
variables that occur in them. The value of a term may be undefined, due
to the presence of partial functions. Note, however, that the satisfaction of
sentences is two-valued.
A predicate application holds iff the values of all its argument terms are de-
fined and give a tuple that belongs to the predicate. A definedness assertion
holds iff the value of the term is defined. An existential equation holds iff the
values of both terms are defined and identical, whereas a strong equation
holds also when the values of both terms are undefined.

ρ ∈ Assignment = Sort fin→ PartialFun

Let Σ = (S,TF ,PF , P) be a signature, M a Σ-model, and X an S-sorted set
of variables. Requirements on an assignment ρ of X into M , written ρ : X →
M :

• Dom(ρ) = S
• for all s ∈ S, ρs : Xs → sM

If a ∈ sM then we write ρ[xs �→ a] for the assignment of X + {xs} into
M such that ρ[xs �→ a]s(x) = a, ρ[xs �→ a]s(x′) = ρs(x′) for x′ �= x, and
ρ[xs �→ a]s′(x′) = ρs′(x′) for s′ �= s and x′ �= x.

136 III:2 Basic Specification Semantics

We now simultaneously define three things inductively by means of inference
rules:

• the value [[t]]ρ of a fully-qualified Σ-term t over X in a Σ-model M with
respect to an assignment ρ : X →M ;

• satisfaction of a Σ-formula ϕ over X by a Σ-model M under an assignment
ρ : X →M , written M |=ρ ϕ; and

• non-satisfaction of ϕ by M under ρ, written M �|=ρ ϕ.

We define both |= and �|= so as to avoid negative occurrences of |= in its own
definition.

ρs(xs) = a

[[xs]]ρ= a

[[t1]]ρ= a1 · · · [[tn]]ρ= an fM (a1, . . . , an) = a

[[fws〈t1, . . . , tn〉]]ρ= a

According to this rule, the value of fws〈t1, . . . , tn〉 is defined only if the values
of t1, . . . , tn are defined and the resulting tuple of values is in Dom(fM).

M |=ρ ϕ [[t]]ρ= a

[[ϕ→ t | t′]]ρ= a

M �|=ρ ϕ [[t′]]ρ= a′

[[ϕ→ t | t′]]ρ= a′

[[t1]]ρ= a1 · · · [[tn]]ρ= an (a1, . . . , an) ∈ pM

M |=ρ pw〈t1, . . . , tn〉
[[tj]]ρ not defined for some 1 ≤ j ≤ n

M �|=ρ pw〈t1, . . . , tn〉

[[t1]]ρ= a1 · · · [[tn]]ρ= an (a1, . . . , an) �∈ pM

M �|=ρ pw〈t1, . . . , tn〉

[[t]]ρ= a [[t′]]ρ= a

M |=ρ t
e= t′

[[t]]ρ not defined

M �|=ρ t
e= t′

[[t′]]ρ not defined

M �|=ρ t
e= t′

[[t]]ρ= a [[t′]]ρ= a′ a �= a′

M �|=ρ t
e= t′

M �|=ρ false

III:2.1 Basic Concepts 137

M �|=ρ ϕ

M |=ρ ϕ⇒ ϕ′
M |=ρ ϕ′

M |=ρ ϕ⇒ ϕ′

M |=ρ ϕ M �|=ρ ϕ′

M �|=ρ ϕ ⇒ ϕ′

M |=ρ[xs �→a] ϕ for all a ∈ sM

M |=ρ ∀xs.ϕ

a ∈ sM M �|=ρ[xs �→a] ϕ

M �|=ρ ∀xs.ϕ

Proposition 2.15. M |=ρ ϕ iff ¬(M �|=ρ ϕ).

Proof. By induction on the structure of ϕ. ��

A sort-generation constraint (S′, F ′) is satisfied in a Σ-model M if the carri-
ers of the sorts in S′ are generated by the function symbols in F ′ from the val-
ues in the carriers of sorts not in S′. Then M |= (S′, F ′, σ) iff M |σ |= (S′, F ′).

Suppose M is a Σ-model and (S′, F ′, σ) is a Σ-constraint with σ : Σ → Σ.
Then M satisfies (S′, F ′, σ), written M |= (S′, F ′, σ), if the carriers of M |σ of
the sorts in S′ are generated by the function symbols in F ′, i.e. for every sort
s ∈ S′ and every value a ∈ sM|σ , there is a Σ-term t containing only function
symbols from F ′ and variables of sorts not in S′, and no conditional subterms
(terms of the form ϕ→ t′ | t′′), such that [[t]]ρ= a for some assignment ρ into
M |σ.

A Σ-model M satisfies a Σ-sentence ψ, written M |= ψ, if:

• ψ is a formula ϕ and M |=∅ ϕ, where ∅ is here the empty assignment from
the empty set of variables

• ψ is a constraint (S′, F ′, σ) and M |= (S′, F ′, σ)

We write M �|= ψ for ¬(M |= ψ).

Proposition 2.16. Satisfaction is compatible with reducts of models and
translation of sentences: if σ : Σ → Σ′ is a signature morphism, ψ is a
Σ-sentence and M ′ is a Σ′-model, then

M ′|σ |= ψ iff M ′ |= σ(ψ)

Proof. See Sect. 3.1 of [41]. ��

Theorem 2.17. Sig, Mod, Sen and |= form an institution [20]. Sig is
finitely cocomplete and Mod supports amalgamation of models and homo-
morphisms.

Proof. Directly from Props. 2.3, 2.10, 2.14 and 2.16. ��

138 III:2 Basic Specification Semantics

Proposition 2.18. Satisfaction is preserved and reflected by isomorphisms: if
M, M ′ are Σ-models such that M ∼= M ′ and ψ is a Σ-sentence, then M |= ψ
iff M ′ |= ψ.

Proof. Straightforward. ��

The rest of this chapter gives the abstract syntax of the constructs of many-
sorted basic specifications, and defines their intended interpretation. Well-
formedness of phrases of the abstract syntax is defined by the static semantics.
The model semantics, which yields a class of models as result, provides the
corresponding model-theoretic part of the semantics. In this chapter, only
basic specifications themselves (phrases of type BASIC-SPEC) are given both
static and model semantics; other phrase types are given only static semantics.
In this particular case, the result of the static semantics fully determines the
result of the model semantics, but that is not the case in other parts of CASL.

2.2 Basic Items

A many-sorted basic specification BASIC-SPEC is a sequence of BASIC-ITEMS
constructs. It determines an enrichment containing the sorts, function sym-
bols, predicate symbols and axioms that belong to the specification; these
may make reference to symbols in the local environment. This enrichment
in turn determines a class of models.

BASIC-SPEC ::= basic-spec BASIC-ITEMS*

Σ � BASIC-SPEC� (∆, Ψ) Σ,M � BASIC-SPEC⇒M′

(∆, Ψ) is an enrichment relative to Σ. M is required to be a model class over
Σ. Each model in M′ is a valid Σ ∪∆-model that extends a model in M and
satisfies Ψ .

As will become clear in Chap. 4, one use of basic specifications in CASL

is in extending existing specifications. Such a basic specification will often
make reference to the sorts, function symbols and predicate symbols of the
existing specification (the local environment), for instance to declare a new
function taking an argument of an existing sort. This context is captured by
the signature Σ in the above judgements, with the Σ-models in M giving all
the possible interpretations of these symbols. In contrast, variable declarations
are local to basic specifications.

Σ, ∅ � BASIC-ITEMS1 � (∆1, Ψ1), X1

· · ·
Σ ∪∆1 ∪ · · · ∪∆n−1, X1 + · · ·+ Xn−1 � BASIC-ITEMSn � (∆n, Ψn), Xn

Σ � basic-spec BASIC-ITEMS1 . . . BASIC-ITEMSn �

(∆1 ∪ · · · ∪∆n, Ψ1 ∪ · · · ∪ Ψn)

III:2.2 Basic Items 139

Making the incremental information from all the preceding BASIC-ITEMS avail-
able to the next one in sequence gives linear visibility. The use of + to combine
variable sets means that a later declaration of a given variable will override
an earlier declaration of the same variable.

Σ � basic-spec BASIC-ITEMS*� (∆, Ψ)
Σ,M � basic-spec BASIC-ITEMS*⇒

{(Σ ∪∆)-model M ′ |M ′|Σ↪→Σ∪∆ ∈M and M ′ |= ψ for all ψ ∈ Ψ}

Each BASIC-ITEMS construct determines part of a signature and/or some
sentences (except for VAR-ITEMS, which merely declares some global vari-
ables). There is linear visibility of declared symbols and variables in a list
of BASIC-ITEMS constructs, except within a list of datatype declarations.
Verbatim repetition of the declaration of a symbol is allowed, and does not
affect the semantics.

BASIC-ITEMS ::= SIG-ITEMS | FREE-DATATYPE | SORT-GEN
| VAR-ITEMS | LOCAL-VAR-AXIOMS | AXIOM-ITEMS

Σ, X � BASIC-ITEMS� (∆, Ψ), X ′

X is required to be a valid set of variables over the sorts of Σ. (∆, Ψ) is an
enrichment relative to Σ, and X ′ is a valid set of variables over the sorts of
Σ ∪∆. (Actually, X ′ will be a valid set of variables over the sorts of Σ since
there happens to be no construct of BASIC-ITEMS that both declares variables
and introduces signature components.)

Σ � SIG-ITEMS� (∆, ∆′, Ψ)
Σ, X � SIG-ITEMS qua BASIC-ITEMS� (∆ ∪∆′, Ψ), ∅

Σ � FREE-DATATYPE� (∆, Ψ)
Σ, X � FREE-DATATYPE qua BASIC-ITEMS� (∆, Ψ), ∅

Σ � SORT-GEN� (∆, Ψ)
Σ, X � SORT-GEN qua BASIC-ITEMS� (∆, Ψ), ∅

S � VAR-ITEMS� X ′

(S,TF ,PF , P), X � VAR-ITEMS qua BASIC-ITEMS� (∅, ∅), X ′

Σ, X � LOCAL-VAR-AXIOMS� Ψ

Σ, X � LOCAL-VAR-AXIOMSqua BASIC-ITEMS� (∅, Ψ), ∅
Σ, X � AXIOM-ITEMS� Ψ

Σ, X � AXIOM-ITEMS qua BASIC-ITEMS� (∅, Ψ), ∅

140 III:2 Basic Specification Semantics

2.3 Signature Declarations

A list SORT-ITEMS of sort declarations determines some sorts. A list
OP-ITEMS of operation declarations/definitions determines some operation
symbols, and possibly some sentences; similarly for predicate declara-
tions/definitions PRED-ITEMS. A list DATATYPE-ITEMS of datatype declara-
tions determines some sorts together with some constructor and (optional)
selector operations, and sentences defining the selector operations.

SIG-ITEMS ::= SORT-ITEMS | OP-ITEMS | PRED-ITEMS | DATATYPE-ITEMS

Σ � SIG-ITEMS� (∆, ∆′, Ψ)

(∆ ∪∆′, Ψ) is an enrichment relative to Σ.
Here, ∆′ are the selectors declared by DATATYPE-DECLs in SIG-ITEMS and

∆ is everything else declared in SIG-ITEMS. These need to be kept separate
here because they are treated differently by the sort-generation construct, see
Sect. 2.3.5.

Σ � SORT-ITEMS� (∆, Ψ)
Σ � SORT-ITEMS qua SIG-ITEMS� (∆, ∅, Ψ)

Σ � OP-ITEMS� (∆, Ψ)
Σ � OP-ITEMS qua SIG-ITEMS� (∆, ∅, Ψ)

Σ � PRED-ITEMS� (∆, Ψ)
Σ � PRED-ITEMS qua SIG-ITEMS� (∆, ∅, Ψ)

Σ � DATATYPE-ITEMS� (∆, ∆′, Ψ), W
Σ � DATATYPE-ITEMS qua SIG-ITEMS� (∆, ∆′, Ψ)

2.3.1 Sorts

SORT-ITEMS ::= sort-items SORT-ITEM+
SORT-ITEM ::= SORT-DECL

Σ � SORT-ITEMS� (∆, Ψ)

(∆, Ψ) is an enrichment relative to Σ.

Σ � SORT-ITEM1 � (∆1, Ψ1) · · · Σ � SORT-ITEMn � (∆n, Ψn)
Σ � sort-items SORT-ITEM1 . . . SORT-ITEMn �

(∆1 ∪ · · · ∪∆n, Ψ1 ∪ · · · ∪ Ψn)

III:2.3 Signature Declarations 141

The only reason why we have Σ � SORT-ITEMS� (∆, Ψ) rather than simply
� SORT-ITEMS�S (and similarly for SORT-ITEM below) is to accommodate the
extension to subsorts in Chap. 3 where ∆ will include a subsorting relation
and Ψ will include axioms for defined subsorts.

Σ � SORT-ITEM� (∆, Ψ)

(∆, Ψ) is an enrichment relative to Σ.

� SORT-DECL� S

Σ � SORT-DECL qua SORT-ITEM� ((S, ∅, ∅, ∅), ∅)

Sort Declarations

A sort declaration SORT-DECL declares each of the sorts given.

SORT-DECL ::= sort-decl SORT+
SORT ::= SORT-ID

� SORT-DECL� S

� sort-decl s1 . . . sn � {s1, . . . , sn}
As promised in Sect. 2.1.1, we now define the universe Sort of sort names.

Sort = SORT-ID

2.3.2 Operations

OP-ITEMS ::= op-items OP-ITEM+
OP-ITEM ::= OP-DECL | OP-DEFN

Σ � OP-ITEMS� (∆, Ψ)

(∆, Ψ) is an enrichment relative to Σ.

Σ � OP-ITEM1 � (∆1, Ψ1)
· · ·

Σ ∪∆1 ∪ · · · ∪∆n−1 � OP-ITEMn � (∆n, Ψn)
Σ � op-items OP-ITEM1 . . . OP-ITEMn � (∆1 ∪ · · · ∪∆n, Ψ1 ∪ · · · ∪ Ψn)

Making the signature extensions from all the preceding OP-ITEMs available
to the next one in sequence gives linear visibility. This is required here for

142 III:2 Basic Specification Semantics

the sake of UNIT-OP-ATTR attributes and operation definitions, both of which
may refer to previously-declared function symbols.

Σ � OP-ITEM� (∆, Ψ)

(∆, Ψ) is an enrichment relative to Σ.

Rules elided (see Sect. 1.3).

Operation Declarations

An operation declaration OP-DECL declares each given operation name as
a total or partial operation, with profile as specified, and having the given
attributes. If an operation is declared both as total and as partial with the
same profile, the resulting signature only contains the total operation.

OP-DECL ::= op-decl OP-NAME+ OP-TYPE OP-ATTR*
OP-NAME ::= ID
OP-TYPE ::= TOTAL-OP-TYPE | PARTIAL-OP-TYPE
TOTAL-OP-TYPE ::= total-op-type SORT-LIST SORT
PARTIAL-OP-TYPE ::= partial-op-type SORT-LIST SORT
SORT-LIST ::= sort-list SORT*

As promised in Sect. 2.1.1, we now define the universe FunName of oper-
ation names.

FunName = ID

(Recall from Sect. 2.1.1 that operations are also referred to as functions, hence
FunName.)

Σ � OP-DECL� (∆, Ψ)

(∆, Ψ) is an enrichment relative to Σ.

(S,TF ,PF , P) = Σ ws = (〈s1, . . . , sm〉, s)
{s1, . . . , sm, s} ⊆ S ∆ = (∅, {ws �→ {f1, . . . , fn}}, ∅, ∅)

Σ ∪∆, f1
ws � OP-ATTR1 � Ψ11 · · · Σ ∪∆, fn

ws � OP-ATTR1 � Ψn1

· · · · · ·
Σ ∪∆, f1

ws � OP-ATTRp � Ψ1p · · · Σ ∪∆, fn
ws � OP-ATTRp � Ψnp

Σ � op-decl f1 . . . fn

(total-op-type (sort-list s1 . . . sm) s)
OP-ATTR1 . . . OP-ATTRp �

(∆, (Ψ11 ∪ · · · ∪ Ψn1) ∪ · · · ∪ (Ψ1p ∪ · · · ∪ Ψnp))

III:2.3 Signature Declarations 143

(S,TF ,PF , P) = Σ ws = (〈s1, . . . , sm〉, s)
{s1, . . . , sm, s} ⊆ S ∆ = (∅, ∅, {ws �→ {f1, . . . , fn}}, ∅)

Σ ∪∆, f1
ws � OP-ATTR1 � Ψ11 · · · Σ ∪∆, fn

ws � OP-ATTR1 � Ψn1

· · · · · ·
Σ ∪∆, f1

ws � OP-ATTRp � Ψ1p · · · Σ ∪∆, fn
ws � OP-ATTRp � Ψnp

Σ � op-decl f1 . . . fn

(partial-op-type (sort-list s1 . . . sm) s)
OP-ATTR1 . . . OP-ATTRp �

(∆, (Ψ11 ∪ · · · ∪ Ψn1) ∪ · · · ∪ (Ψ1p ∪ · · · ∪ Ψnp))

The use of ∪ to combine the extensions produced by these rules, in the rules
for OP-ITEMS and BASIC-SPEC, ensures that when an operation is declared
both as total and as partial with the same profile, the resulting signature only
contains the total operation. This is the purpose of the reconcile function in
the definition of union, see Sect. 2.1.1.

Operation Attributes

Operation attributes assert that the operations being declared (which must
be binary) have certain common properties: associativity, commutativity,
idempotency and/or having a unit. (This can also be used to add attributes
to operations that have previously been declared without them.)

OP-ATTR ::= BINARY-OP-ATTR | UNIT-OP-ATTR
BINARY-OP-ATTR ::= assoc-op-attr | comm-op-attr | idem-op-attr
UNIT-OP-ATTR ::= unit-op-attr TERM

Σ, fws � OP-ATTR� Ψ

fws is required to be a qualified function name over Σ. Ψ is a set of Σ-
sentences.

ws = (〈s, s〉, s)
Σ, fws � assoc-op-attr�

{∀xs.∀ys.∀zs.fws〈xs, fws〈ys, zs〉〉 s= fws〈fws 〈xs, ys〉, zs〉}

ws = (〈s, s〉, s′)
Σ, fws � comm-op-attr� {∀xs.∀ys.fws〈xs, ys〉 s= fws〈ys, xs〉}

ws = (〈s, s〉, s)
Σ, fws � idem-op-attr� {∀xs.fws〈xs, xs〉

s= xs}
ws = (〈s, s〉, s) Σ, ∅ � F � ϕ Σ, ∅ � F ′ � ϕ′

Σ, fws � unit-op-attr TERM� {ϕ, ϕ′}
where F is

144 III:2 Basic Specification Semantics

quantification universal
(var-decl x s)
(strong-equation

(application (qual-op-name f (total-op-type (sort-list s s) s))
(terms TERM (qual-var x s)))

(qual-var x s))

and F ′ is

quantification universal
(var-decl x s)
(strong-equation

(qual-var x s)
(application (qual-op-name f (total-op-type (sort-list s s) s))

(terms TERM (qual-var x s))))

if f ∈ TFws , for (S,TF ,PF , P) = Σ, and similarly with partial-op-type
in place of total-op-type if f ∈ PFws .

This rule is more complicated than those for the other forms of operation
attribute because the term supplied may be ambiguous due to the presence
of overloaded operations that cannot be resolved. The static semantics of
formulas in Sect. 2.5 below yields a result only when this is not the case;
otherwise the attribute is ill-formed.

Operation Definitions

A total or partial operation may be defined at the same time as it is declared,
by giving its value (when applied to a list of argument variables) as a term.
The operation name may occur in the term, and may have any interpretation
satisfying the equation – not necessarily the least fixed point.

OP-DEFN ::= op-defn OP-NAME OP-HEAD TERM
OP-HEAD ::= TOTAL-OP-HEAD | PARTIAL-OP-HEAD
TOTAL-OP-HEAD ::= total-op-head ARG-DECL* SORT
PARTIAL-OP-HEAD ::= partial-op-head ARG-DECL* SORT
ARG-DECL ::= arg-decl VAR+ SORT

Σ � OP-DEFN� (∆, Ψ)

(∆, Ψ) is an enrichment relative to Σ.

(S,TF ,PF , P) = Σ S � ARG-DECL*� 〈x1
s1

, . . . , xn
sn
〉

w = 〈s1, . . . , sn〉 s ∈ S
∆ = (∅, {(w, s) �→ {f}}, ∅, ∅) X = complete({x1

s1
, . . . , xn

sn
}, S)

Σ ∪∆, X � F � t
s= t′

Σ � op-defn f (total-op-head ARG-DECL* s) TERM� (∆, {∀X.t
s= t′})

III:2.3 Signature Declarations 145

where F is

strong-equation
(application

(qual-op-name f (total-op-type (sort-list s1 . . . sn) s))
(terms (qual-var x1 s1) . . . (qual-var xn sn)))

TERM

(S,TF ,PF , P) = Σ S � ARG-DECL*� 〈x1
s1

, . . . , xn
sn
〉

w = 〈s1, . . . , sn〉 s ∈ S
∆ = (∅, ∅, {(w, s) �→ {f}}, ∅) X = complete({x1

s1
, . . . , xn

sn
}, S)

Σ ∪∆, X � F � t
s= t′

Σ � op-defn f (partial-op-head ARG-DECL* s) TERM� (∆, {∀X.t
s= t′})

where F is

strong-equation
(application

(qual-op-name f (partial-op-type (sort-list s1 . . . sn) s))
(terms (qual-var x1 s1) . . . (qual-var xn sn)))

TERM

S � ARG-DECL*� 〈x1
s1

, . . . , xn
sn
〉

Each xi
si

is a qualified variable name over S, and xi �= xj for all 1 ≤ i �= j ≤ n.

S � ARG-DECL1 � 〈x11, . . . , x1m1〉, s1

· · ·
S � ARG-DECLp � 〈xp1, . . . , xpmp〉, sp

{xi1, . . . , ximi} ∩ {xj1, . . . , xjmj } = ∅ for all 1 ≤ i �= j ≤ p

S � ARG-DECL1 . . . ARG-DECLp � 〈x11
s1

, . . . , x1m1
s1 , . . . , xp1

sp , . . . , x
pmp
sp 〉

S � ARG-DECL� 〈x1, . . . , xn〉, s

s is a sort in S and xi �= xj for all 1 ≤ i �= j ≤ n.

s ∈ S xi �= xj for all 1 ≤ i �= j ≤ n

S � arg-decl x1 . . . xn s � 〈x1, . . . , xn〉, s

2.3.3 Predicates

PRED-ITEMS ::= pred-items PRED-ITEM+
PRED-ITEM ::= PRED-DECL | PRED-DEFN
PRED-NAME ::= ID

146 III:2 Basic Specification Semantics

Σ � PRED-ITEMS� (∆, Ψ)

(∆, Ψ) is an enrichment relative to Σ.

Σ � PRED-ITEM1 � (∆1, Ψ1)
· · ·

Σ ∪∆1 ∪ · · · ∪∆n−1 � PRED-ITEMn � (∆n, Ψn)
Σ � pred-items PRED-ITEM1 . . . PRED-ITEMn �

(∆1 ∪ · · · ∪∆n, Ψ1 ∪ · · · ∪ Ψn)

Making the signature extensions from all the preceding PRED-ITEMs available
to the next one in sequence gives linear visibility. This is required here for the
sake of predicate definitions which may refer to previously-declared predicate
symbols.

Σ � PRED-ITEM� (∆, Ψ)

(∆, Ψ) is an enrichment relative to Σ.

Σ � PRED-DECL� ∆

Σ � PRED-DECL qua PRED-ITEM� (∆, ∅)
Rule for PRED-DEFN qua PRED-ITEM elided.

As promised in Sect. 2.1.1, we now define the universe PredName of pred-
icate names.

PredName = ID

Predicate Declarations

A predicate declaration PRED-DECL declares each given predicate name, with
profile as specified.

PRED-DECL ::= pred-decl PRED-NAME+ PRED-TYPE

Σ � PRED-DECL� ∆

∆ is a signature extension relative to Σ.

S � PRED-TYPE� w

(S,TF ,PF , P) � pred-decl p1 . . . pn PRED-TYPE�

(∅, ∅, ∅, {w �→ {p1, . . . , pn}})

III:2.3 Signature Declarations 147

Predicate Types

PRED-TYPE ::= pred-type SORT-LIST

S � PRED-TYPE� w

All the sorts in w are in S.

{s1, . . . , sn} ⊆ S

S � pred-type (sort-list s1 . . . sn) � 〈s1, . . . , sn〉

Predicate Definitions

A predicate may be defined at the same time as it is declared, by asserting its
equivalence with a formula. The predicate name may occur in the formula,
and may have any interpretation satisfying the equivalence.

PRED-DEFN ::= pred-defn PRED-NAME PRED-HEAD FORMULA
PRED-HEAD ::= pred-head ARG-DECL*

Σ � PRED-DEFN� (∆, Ψ)

(∆, Ψ) is an enrichment relative to Σ.

(S,TF ,PF , P) = Σ S � ARG-DECL*� 〈x1
s1

, . . . , xn
sn
〉

w = 〈s1, . . . , sn〉 ∆ = (∅, ∅, ∅, {w �→ {p}})
X = complete({x1

s1
, . . . , xn

sn
}, S) Σ ∪∆, X � FORMULA� ϕ

Σ � pred-defn p (pred-head ARG-DECL*) FORMULA�

(∆, {∀X.pw〈x1
s1

, . . . , xn
sn
〉 ⇔ ϕ})

2.3.4 Datatypes

The order of the datatype declarations in a list DATATYPE-ITEMS is not sig-
nificant: there is non-linear visibility of the declared sorts. A list of datatype
declarations must not declare a function symbol both as a constructor and
selector with the same profiles.

DATATYPE-ITEMS ::= datatype-items DATATYPE-DECL+

The semantics of datatype declarations is by far the most complicated
part of the semantics of basic specifications. Before proceeding, here is an
overview. Some examples of the results produced for free datatypes are given
just before Sect. 2.3.5; these should be helpful in understanding that part of

148 III:2 Basic Specification Semantics

the semantics, and working backwards to see why these results are produced
should help in clarifying the semantics of non-free datatypes.

The main judgements are Σ � DATATYPE-ITEMS � (∆, ∆′, Ψ), W and
Σ � FREE-DATATYPE � (∆, Ψ). The former, for a list of datatype declara-
tions, is subordinate to the latter, for free datatypes. It is also subordinate
to the judgement for SIG-ITEMS, when used to declare non-free datatypes.
All of the information in its result is required to determine the semantics of
free datatypes but some is not required in the case of non-free datatypes.
The judgements that are subordinate to DATATYPE-ITEMS collect information
about declared sorts, constructors and selectors and check that various re-
strictions are satisfied. A complicating factor in these is non-linear visibility
at the DATATYPE-ITEMS level.

Metavariables are used consistently in the judgement for DATATYPE-ITEMS
and all of its subordinate judgements. Here is a summary of what they stand
for, where these results are formed, and where and for what they are required.

1. ∆ contains the sorts and constructors declared by the list of datatype
declarations. It is formed by the rules for DATATYPE-DECL (sorts) and
ALTERNATIVE (constructors).

2. ∆′ contains the declared selectors. It is formed by the rules for COMPONENTS.
The selectors need to be kept separate from the other signature compo-
nents for the sake of the disjointness condition in the DATATYPE-ITEMS
rule, to generate sentences in the rule for FREE-DATATYPE, and, in the
case of a non-free datatypes, to produce the result for SIG-ITEMS, where
a separation is required for the sake of SORT-GEN where selectors receive
special treatment.

3. Ψ contains sentences defining the value of each selector on the values
produced by the corresponding constructor. It is formed by the rules for
COMPONENTS.

4. W is a finite map taking each constructor name in ∆ to the corresponding
set of partial selectors from ∆′ (or to ∅ in case there are none). It is formed
in the rules for ALTERNATIVEs. W is needed in the rule for FREE-DATATYPE
to generate sentences that require a partial selector to return an undefined
result when applied to a value produced by a constructor for which it has
not been declared.

Σ � DATATYPE-ITEMS� (∆, ∆′, Ψ), W

(∆ ∪ ∆′, Ψ) is an enrichment relative to Σ and W is a finite map taking
qualified function names over Σ ∪ ∆ from ∆ to sets of qualified function
names over Σ ∪∆ ∪∆′ from ∆′.

III:2.3 Signature Declarations 149

Σ′ � DATATYPE-DECL1 � (∆1, ∆
′
1, Ψ1), W1

· · ·
Σ′ � DATATYPE-DECLn � (∆n, ∆′

n, Ψn), Wn

disjoint-functions(∆1 ∪ · · · ∪∆n, ∆′
1 ∪ · · · ∪∆′

n)
Σ′ = Σ ∪∆1 ∪∆′

1 ∪ · · · ∪∆n ∪∆′
n

Σ � datatype-items DATATYPE-DECL1 . . . DATATYPE-DECLn �

(∆1 ∪ · · · ∪∆n, ∆′
1 ∪ · · · ∪∆′

n, Ψ1 ∪ · · · ∪ Ψn), W1 ∪ · · · ∪Wn

where disjoint-functions((S,TF ,PF , P), (S′,TF ′,PF ′, P ′)) means

for all ws ∈ Dom(TF ∪ PF) ∩Dom(TF ′ ∪ PF ′),
(TF ∪ PF)(ws) ∩ (TF ′ ∪ PF ′)(ws) = ∅

The ‘recursion’ in the premises of this rule is what provides non-linear
visibility, making the order of the DATATYPE-DECLs not significant. In the sub-
ordinate judgements, it is important to remember that the context will already
include the signature extensions being produced. The disjointness premise im-
plements the requirement that a list of datatype declarations must not declare
a function symbol both as a constructor and selector with the same profile.

Note that if a sort is declared several times in a DATATYPE-ITEMS, with
several lists of alternatives, the effect is the same as if the sort had been
declared only once, but with the union of the alternative lists.

Datatype Declarations

A datatype declaration DATATYPE-DECL declares the given sort, and for each
given alternative construct the given constructor and selector operations,
and determines sentences asserting the expected relationship between selec-
tors and constructors.

DATATYPE-DECL ::= datatype-decl SORT ALTERNATIVE+

Σ � DATATYPE-DECL� (∆, ∆′, Ψ), W

(∆ ∪ ∆′, Ψ) is an enrichment relative to Σ and W is a finite map taking
qualified function names over Σ ∪ ∆ from ∆ to sets of qualified function
names over Σ ∪∆ ∪∆′ from ∆′.

See the beginning of Sect. 2.3.4 for an explanation of the meaning of ∆,
∆′, Ψ and W in this part of the semantics.

Σ, s � ALTERNATIVE1 � (∆1, ∆
′
1, Ψ1), W1

· · ·
Σ, s � ALTERNATIVEn � (∆n, ∆′

n, Ψn), Wn

Σ � datatype-decl s ALTERNATIVE1 ALTERNATIVE2 . . . ALTERNATIVEn �

(({s}, ∅, ∅, ∅) ∪∆1 ∪ · · · ∪∆n, ∆′
1 ∪ · · · ∪∆′

n, Ψ1 ∪ · · · ∪ Ψn), W1 ∪ · · · ∪Wn

150 III:2 Basic Specification Semantics

Note that s will be a sort in Σ because of non-linear visibility. If a constructor
is declared several times for one sort in a DATATYPE-DECL, the effect is the same
as if only one constructor had been declared. If these multiple declarations
involved different selectors, all of them are provided with all selectors for a
given argument position of the constructor being semantically equal.

Alternatives

An ALTERNATIVE declares a constructor operation. Each component specifies
one or more argument sorts for the profile; the result sort is the one declared
by the enclosing datatype declaration.

ALTERNATIVE ::= TOTAL-CONSTRUCT | PARTIAL-CONSTRUCT
TOTAL-CONSTRUCT ::= total-construct OP-NAME COMPONENTS*
PARTIAL-CONSTRUCT ::= partial-construct OP-NAME COMPONENTS+

Σ, s � ALTERNATIVE� (∆, ∆′, Ψ), W

s is required to be a sort in Σ. (∆ ∪ ∆′, Ψ) is an enrichment relative to Σ
where ∆ contains exactly one function and this function has result sort s, and
W is a finite map taking this function to a set of qualified function names
over Σ ∪∆′ from ∆′.

See the beginning of Sect. 2.3.4 for an explanation of the meaning of ∆,
∆′, Ψ and W in this part of the semantics. In this judgement, s is the sort
declared by the enclosing DATATYPE-DECL, the function in ∆ is the constructor
for this alternative, and ∆′ are its selectors.

Σ, f,ws , 1 � COMPONENTS1 � 〈s11, . . . , s1m1〉, (∆′
1, Ψ1)

· · ·
Σ, f,ws, 1 + m1 + · · ·+ mn−1 � COMPONENTSn � 〈sn1, . . . , snmn〉, (∆′

n, Ψn)
disjoint-functions(∆′

1, . . . , ∆
′
n)

ws = (〈s11, . . . , s1m1 , . . . , sn1, . . . , snmn〉, s)
(S,TF ,PF , P) = Σ (S′,TF ′,PF ′, P ′) = ∆′

1 ∪ · · · ∪∆′
n

Σ, s � total-construct f COMPONENTS1 . . . COMPONENTSn �

((∅, {ws �→ {f}}, ∅, ∅), ∆′
1 ∪ · · · ∪∆′

n, Ψ1 ∪ · · · ∪ Ψn),
{fws �→ {g〈s〉,s′ | s′ ∈ S, g ∈ PF ′(〈s〉, s′)}}

where disjoint-functions((S1,TF 1,PF 1, P1), . . . , (Sn,TFn,PFn, Pn)) means

for all i, j and ws such that 1 ≤ i �= j ≤ n and
ws ∈ Dom(TF i ∪ PF i) ∩Dom(TF j ∪ PF j),
(TF i ∪ PF i)(ws) ∩ (TF j ∪ PF j)(ws) = ∅

Note that f will be a total function in Σ because of non-linear visibility.

III:2.3 Signature Declarations 151

Σ, f,ws , 1 � COMPONENTS1 � 〈s11, . . . , s1m1〉, (∆′
1, Ψ1)

· · ·
Σ, f,ws, 1 + m1 + · · ·+ mn−1 � COMPONENTSn � 〈sn1, . . . , snmn〉, (∆′

n, Ψn)
disjoint-functions(∆′

1, . . . , ∆
′
n)

ws = (〈s11, . . . , s1m1 , . . . , sn1, . . . , snmn〉, s)
(S,TF ,PF , P) = Σ (S′,TF ′,PF ′, P ′) = ∆′

1 ∪ · · · ∪∆′
n

Σ, s � partial-construct f COMPONENTS1 . . . COMPONENTSn �

((∅, ∅, {ws �→ {f}}, ∅), ∆′
1 ∪ · · · ∪∆′

n, Ψ1 ∪ · · · ∪ Ψn),
{fws �→ {g〈s〉,s′ | s′ ∈ S, g ∈ PF ′(〈s〉, s′)}}

where disjoint-functions is defined as in the previous rule. Note that f will be
a partial function in Σ because of non-linear visibility.

The disjointness premise in both rules implements the requirement that
the selectors within each ALTERNATIVE must be distinct.

Components

Each COMPONENTS construct specifies one or more argument sorts for the
constructor operation declared by the enclosing ALTERNATIVE, and optionally
some selector operations with sentences determining their result on values
produced by that constructor. All sorts used must be declared in the local
environment.

COMPONENTS ::= TOTAL-SELECT | PARTIAL-SELECT | SORT
TOTAL-SELECT ::= total-select OP-NAME+ SORT
PARTIAL-SELECT ::= partial-select OP-NAME+ SORT

Σ, f,ws, m � COMPONENTS� w′, (∆′, Ψ)

f is required to be a function name in Σ with profile ws = (〈s1, . . . , sn〉, s)
and 1 ≤ m ≤ n. w′ is a non-empty sequence of sorts in Σ and (∆′, Ψ) is an
enrichment relative to Σ.

See the beginning of Sect. 2.3.4 for an explanation of the meaning of
∆′ and Ψ in this part of the semantics. In this judgement, f is the con-
structor declared by the enclosing ALTERNATIVE, s is the sort declared by
the enclosing DATATYPE-DECL, and m is the first argument position corre-
sponding to these COMPONENTS. Then w′ are the sorts of these arguments, so
w′ = 〈sm, . . . , sm+|w′|−1〉.

s′ ∈ S

(S,TF ,PF , P), f,ws , m � s′ � 〈s′〉, (∅, ∅)

152 III:2 Basic Specification Semantics

s′ ∈ S (〈s1, . . . , sn〉, s) = ws xi �= xj for all 1 ≤ i �= j ≤ n

(S,TF ,PF , P), f,ws , m � total-select f1 . . . fp s′ �
〈 s′, . . . , s′︸ ︷︷ ︸

p times

〉, ((∅, {(〈s〉, s′) �→ {f1, . . . , fp}}, ∅, ∅),
{∀{x1

s1
, . . . , xn

sn
}.D(fws〈x1

s1
, . . . , xn

sn
〉) ⇒

f1
〈s〉,s′〈fws 〈x1

s1
, . . . , xn

sn
〉〉 s= xm

sm
,

· · · ,
∀{x1

s1
, . . . , xn

sn
}.D(fws〈x1

s1
, . . . , xn

sn
〉) ⇒

fp
〈s〉,s′〈fws 〈x1

s1
, . . . , xn

sn
〉〉 s= xm+p−1

sm+p−1
})

Note that f1, . . . , fp will be in TF because of non-linear visibility. If the con-
structor f is declared as total then the definedness conditions in the sentences
produced are redundant but harmless.

s′ ∈ S (〈s1, . . . , sn〉, s) = ws xi �= xj for all 1 ≤ i �= j ≤ n

(S,TF ,PF , P), f,ws , m � partial-select f1 . . . fp s′ �

〈 s′, . . . , s′︸ ︷︷ ︸
p times

〉, ((∅, ∅, {(〈s〉, s′) �→ {f1, . . . , fp}}, ∅),
{∀{x1

s1
, . . . , xn

sn
}.D(fws〈x1

s1
, . . . , xn

sn
〉) ⇒

f1
〈s〉,s′〈fws 〈x1

s1
, . . . , xn

sn
〉〉 s= xm

sm
,

· · · ,
∀{x1

s1
, . . . , xn

sn
}.D(fws〈x1

s1
, . . . , xn

sn
〉) ⇒

fp
〈s〉,s′〈fws 〈x1

s1
, . . . , xn

sn
〉〉 s= xm+p−1

sm+p−1
})

Note that f1, . . . , fp will be in PF because of non-linear visibility. If the con-
structor f is declared as total then the definedness conditions in the sentences
produced are redundant but harmless.

Free Datatype Declarations

A FREE-DATATYPE construct is only well-formed when its constructors are
total. The same sorts, constructors, and selectors are declared as in ordi-
nary datatype declarations. Apart from the sentences defining the values of
selectors, additional sentences require the constructors to be injective, the
ranges of constructors of the same sort to be disjoint, the declared sorts to be
generated by the constructors, and that applying a selector to a constructor
for which it has not been declared is undefined.

FREE-DATATYPE ::= free-datatype DATATYPE-ITEMS

Σ � FREE-DATATYPE� (∆, Ψ)

(∆, Ψ) is an enrichment relative to Σ.

III:2.3 Signature Declarations 153

Σ � DATATYPE-ITEMS� (∆, ∆′, Ψ), W
(S,TF ,PF , P) = Σ (S′,TF ′, ∅, P ′) = ∆ S′′ = S ∪ S′

Σ � free-datatype DATATYPE-ITEMS�

(∆ ∪∆′, Ψ ∪ {injective(fw,s) | w ∈ FinSeq(S′′), s ∈ S′′, f ∈ TF ′
w,s}

∪ {disjoint-ranges(fw,s, gw′,s)
| w, w′ ∈ FinSeq(S′′), s ∈ S′′, f ∈ TF ′

w,s, g ∈ TF ′
w′,s

such that w �= w′ or f �= g}
∪ {undefined-selection(fw,s, g〈s〉,s′)

| fw,s, f
′
w′,s ∈ Dom(W), g〈s〉,s′ ∈ W (f ′

w′,s) \W (fw,s)}
∪ {(S′, complete(TF ′,FinSeq(S′′)× S′′))})

where:

• injective(fw,s) is the following (Σ ∪ ∆ ∪ ∆′)-sentence which states that
fw,s is injective:

∀{x1
s1

, . . . , xn
sn

, y1
s1

, . . . , yn
sn
}.

fw,s〈x1
s1

, . . . , xn
sn
〉 s= fw,s〈y1

s1
, . . . , yn

sn
〉 ⇒

x1
s1

s= y1
s1
∧ · · · ∧ xn

sn

s= yn
sn

where 〈s1, . . . , sn〉 = w and x1, . . . , xn, y1, . . . , yn are distinct variables.
• disjoint-ranges(fw,s, gw′,s) is the following (Σ ∪ ∆ ∪ ∆′)-sentence which

states that fw,s and gw′,s have disjoint ranges:

∀{x1
s1

, . . . , xm
sm

, y1
s′
1
, . . . , yn

s′
n
}.¬(fw,s〈x1

s1
, . . . , xm

sm
〉 s= gw′,s〈y1

s′
1
, . . . , yn

s′
n
〉)

where 〈s1, . . . , sm〉 = w, 〈s′1, . . . , s′n〉 = w′ and x1, . . . , xm, y1, . . . , yn are
distinct variables.

• undefined-selection(fw,s, g〈s〉,s′) is the following (Σ ∪ ∆ ∪ ∆′)-sentence
which states that the value of applying the selector g〈s〉,s′ to values pro-
duced by the constructor fw,s (for which it has not been declared) is un-
defined:

∀{x1
s1

, . . . , xn
sn
}.¬D(g〈s〉,s′〈fw,s〈x1

s1
, . . . , xn

sn
〉〉)

where 〈s1, . . . , sn〉 = w and x1, . . . , xn are distinct variables.

See the beginning of Sect. 2.3.4 for an explanation of ∆, ∆′, Ψ and W as pro-
duced by the judgement for DATATYPE-ITEMS. The third premise imposes the
condition that all declared constructors are total. Note that (S′, complete(TF ′,
FinSeq(S′′)×S′′)) in the last line of the rule is a sort generation constraint, and
recall that this abbreviates (S′, complete(TF ′,FinSeq(S′′)× S′′), idΣ∪∆∪∆′).
This requires that all values of sorts declared by DATATYPE-ITEMS are gener-
ated by the declared constructors.

The following proposition states that the resulting model class is the same
as for a free extension with the datatype declarations.

Proposition 2.19.Consider a declaration free-datatype DATATYPE-ITEMS,
a signature Σ and a model class M over Σ, and suppose

154 III:2 Basic Specification Semantics

Σ � DATATYPE-ITEMS� (∆, ∆′, Ψ), W
Σ � free-datatype DATATYPE-ITEMS� (∆ ∪∆′, Ψ ′)

such that DATATYPE-ITEMS fulfills the following conditions (all referring to
fully qualified symbols):

• The sorts in ∆ (and hence the constructors in ∆ and the selectors in ∆′)
are not in the local environment Σ; and

• Any selector in ∆′ is total only when the same selector is present in all
ALTERNATIVEs for that sort.

Let C be the full subcategory of Mod(Σ ∪∆ ∪∆′) containing those (Σ ∪
∆∪∆′)-models M ′′ such that M ′′ |= ψ for all ψ ∈ Ψ , and let M′ and M′′ be
the (Σ ∪∆ ∪∆′)-model classes

M′ = {(Σ ∪∆ ∪∆′)-model M ′

|M ′|Σ↪→Σ∪∆∪∆′ ∈ M and M ′ ∈ C is free over M ′|Σ↪→Σ∪∆∪∆′

w.r.t. .|Σ↪→Σ∪∆∪∆′ : C →Mod(Σ)}
M′′ = {(Σ ∪∆ ∪∆′)-model M ′

|M ′|Σ↪→Σ∪∆∪∆′ ∈ M and M ′ |= ψ′ for all ψ′ ∈ Ψ ′}

Then M′ = M′′.

Proof. See Theorem 3.11 in Sect. 3.2.2 for a more general result. ��

A few examples should help to clarify the above definitions. Since there is
no overloading in these examples, ordinary function names are used instead of
qualified function names to reduce clutter, and the usual syntax for variable
typing is used.

Here is an example of a free datatype declaration where all alternatives
are constants, which corresponds to an unordered enumeration type:

free type Color ::= red | blue

The result is the following enrichment (relative to the empty signature):

(Σ, {red〈〉 s= red〈〉 ⇒ true,

blue〈〉 s= blue〈〉 ⇒ true,

¬(red〈〉 s= blue〈〉),
¬(blue〈〉 s= red〈〉),
({Color},TF , idΣ)}

where Σ = (S,TF ,PF , P) is the signature containing the sort Color , the total
function symbols red and blue, and no partial function symbols or predicate
symbols. The first two sentences are from the injective condition and are
tautologous, as always for nullary constructors. The next two sentences are
from the disjoint-ranges condition and are equivalent (such duplication will
always be present but it does no harm). The final sentence is a sort generation

III:2.3 Signature Declarations 155

constraint which requires every value of sort Color to be produced by either
red〈〉 or blue〈〉. Each model has a carrier of sort Color containing exactly two
values.

Here is the standard example of lists, with selectors:

free type List ::= nil | cons(first :?Elem ; rest :?List)

The result is the following enrichment (relative to a signature Σ containing
just the sort Elem):

(∆, {∀x:Elem , x′:List .D(cons〈x, x′〉) ⇒ first〈cons〈x, x′〉〉 s= x,

∀x:Elem , x′:List .D(cons〈x, x′〉) ⇒ rest〈cons〈x, x′〉〉 s= x′,
nil〈〉 s= nil〈〉 ⇒ true,
∀x:Elem , x′:List , y:Elem , y′:List .

cons〈x, x′〉 s= cons〈y, y′〉 ⇒ x
s= y ∧ x′ s= y′,

∀x:Elem , x′:List .¬(nil〈〉 s= cons〈x, x′〉),
∀x:Elem , x′:List .¬(cons〈x, x′〉 s= nil〈〉),
¬D(first〈nil〈〉〉),
¬D(rest〈nil〈〉〉),
({List},TF , idΣ∪∆)}

where ∆ = (S,TF ,PF , P) is the signature extension (relative to Σ) con-
taining the sort List , the total function symbols nil and cons, the partial
function symbols first and rest , and no predicate symbols. The first two sen-
tences are generated by the rules for COMPONENTS and specify the relationship
between the constructor cons and the selectors first and rest . The next two
sentences are from the injective condition. The next two sentences are from
the disjoint-ranges condition; again, they are equivalent. The next two sen-
tences are from the undefined-selection condition. The final sentence is a sort
generation constraint which requires each value of sort List to be produced
by a term of the form

cons〈x1, . . . , cons〈xn,nil〉 . . .〉.

for some assignment of values of sort Elem to the variables x1, . . . , xn. Mod-
els are as one would expect from this specification, with ‘no junk’ and ‘no
confusion’, and the selectors defined only for values produced by cons .

Here is a type containing two copies of the natural numbers, with the same
selector for both:

free type Twonats ::= left(get : Nat) | right(get : Nat)

The result is the following enrichment (relative to a signature Σ containing
just the sort Nat):

156 III:2 Basic Specification Semantics

(∆, {∀x:Nat .D(left〈x〉) ⇒ get〈left〈x〉〉 s= x,

∀x:Nat .D(right〈x〉) ⇒ get〈right〈x〉〉 s= x,

∀x:Nat , x′:Nat .left〈x〉 s= left〈x′〉 ⇒ x
s= x′,

∀x:Nat , x′:Nat .right〈x〉 s= right〈x′〉 ⇒ x
s= x′,

∀x:Nat , x′:Nat .¬(left〈x〉 s= right〈x′〉),
∀x:Nat , x′:Nat .¬(right 〈x〉 s= left〈x′〉),
(Twonats ,TF ′, idΣ∪∆)}

where ∆ is the signature extension (relative to Σ) containing the sort Twonats ,
the total function symbols left , right and get , and no partial function symbols
or predicate symbols, and TF ′ contains the total function symbols left and
right . The first two sentences are generated by the rules for COMPONENTS and
specify the relationship between the constructors left and right and the selec-
tor get . The next two sentences are from the injective condition. The next two
sentences are from the disjoint-ranges condition; once more, they are equiv-
alent. The final sentence is a sort generation constraint which requires each
value of sort Twonats to be produced by either left〈x〉 or right〈x〉 for some
assignment of a value of sort Nat to x. Models are as one would expect, with
two copies of Nat – one produced using left , the other produced using right .
Note that the total selector get : Twonats → Nat which is present in both
ALTERNATIVEs becomes a single selector in the rule for DATATYPE-DECL: we
have

Σ,Twonats � total-construct left (total-select get Nat) �

(∆1, ∆
′
1, Ψ1), W1

Σ,Twonats � total-construct right (total-select get Nat) �

(∆2, ∆
′
2, Ψ2), W2

where ∆1 contains left , ∆2 contains right , ∆′
1 = ∆′

2 contains get , Ψ1 contains
∀x:Nat .D(left〈x〉) ⇒ get〈left〈x〉〉 s= x, Ψ2 contains ∀x:Nat .D(right〈x〉) ⇒
get〈right〈x〉〉 s= x, and W1 and W2 map left and right respectively to ∅.

Changing the declaration to

free type Twonats ::= left(get : Nat) | right(Nat)

would cause the sentence ∀x:Nat .D(right〈x〉) ⇒ get〈right〈x〉〉 s= x to be omit-
ted from the result, but otherwise there would be no difference. Note that the
term get〈right〈x〉〉 is still required to have some defined value for every x, since
get and right are total function symbols, but that value is unconstrained. This
is an example where the equivalence stated by Prop. 2.19 does not hold, and
indeed the total selector get violates one of its conditions.

Finally, here is what happens when an attempt is made to define an empty
type as a free datatype:

free type Empty ::= f(Empty)

III:2.4 Variables 157

The result is the following enrichment (relative to the empty signature):

(Σ, {∀x:Empty , y:Empty .f〈x〉 s= f〈y〉 ⇒ x
s= y,

(Empty ,TF , idΣ)}

where Σ = (S,TF ,PF , P) is the signature containing the sort Empty , the
total function symbol f , and no partial function symbols or predicate symbols.
The first sentence is from the injective condition. The second sentence is a sort
generation constraint which requires every value of sort Empty to be produced
by a Σ-term containing no variables. There are no such terms since there are
no constants of sort Empty; hence this requires the carrier of sort Empty to
be empty. But models are required to have non-empty carriers, and therefore
there are no models.

2.3.5 Sort Generation

A sort generation SORT-GEN determines the same signature elements and
sentences as its list of SIG-ITEMSs, together with a sort generation constraint
requiring the declared sorts to be generated by the declared operations, but
excluding operations declared as selectors.

SORT-GEN ::= sort-gen SIG-ITEMS+

Σ � SORT-GEN� (∆, Ψ)

(∆, Ψ) is an enrichment relative to Σ.

Σ � SIG-ITEMS1 � (∆1, ∆
′
1, Ψ1)

· · ·
Σ ∪∆1 ∪∆′

1 ∪ · · · ∪∆n−1 ∪∆′
n−1 � SIG-ITEMSn � (∆n, ∆′

n, Ψn)
(S,TF ,PF , P) = ∆ = ∆1 ∪ · · · ∪∆n ∆′ = ∆′

1 ∪ · · · ∪∆′
n

(S′,TF ′,PF ′, P ′) = Σ ∪∆ ∪∆′ S �= ∅
Σ � sort-gen SIG-ITEMS1 . . . SIG-ITEMSn �

(∆ ∪∆′, Ψ1 ∪ · · · ∪ Ψn ∪ {(S, complete(TF ∪ PF ,FinSeq(S′)× S′))})

In this rule, ∆ represents the signature extension declared by SIG-ITEMS1 . . .
SIG-ITEMSn, excluding the operations declared as selectors since these do not
contribute to the resulting sort generation constraint. The predicate symbols
in ∆ also make no contribution.

2.4 Variables

Variables for use in terms may be declared globally, locally, or with explicit
quantification. Globally or locally declared variables are implicitly univer-
sally quantified in subsequent axioms of the enclosing basic specification.

158 III:2 Basic Specification Semantics

2.4.1 Global Variable Declarations

VAR-ITEMS ::= var-items VAR-DECL+

S � VAR-ITEMS� X

X is a valid set of variables over S.

S � VAR-DECL1 � X1 · · · S � VAR-DECLn � Xn

S � var-items VAR-DECL1 . . . VAR-DECLn � X1 + · · ·+ Xn

A variable declaration VAR-DECL declares the given variables to be of the
given sort for use in subsequent axioms. This adds a universal quantification
on those variables to the subsequent axioms of the enclosing basic specifica-
tion.

VAR-DECL ::= var-decl VAR+ SORT
VAR ::= SIMPLE-ID

S � VAR-DECL� X

X is a valid set of variables over S.

s ∈ S

S � var-decl x1 . . . xn s � complete({s �→ {x1, . . . , xn}}, S)

A later declaration for a variable overrides an earlier declaration for the same
identifier because of the use of + to combine variable sets in the rules for
BASIC-SPEC and VAR-ITEMS. Universal quantification over all declared vari-
ables, both global and local, is added in the rule for AXIOM, see Sect. 2.5
below.

Var = SIMPLE-ID

2.4.2 Local Variable Declarations

A LOCAL-VAR-AXIOMS construct declares variables for local use in the given
axioms, and adds a universal quantification on those variables to all those
axioms.

LOCAL-VAR-AXIOMS ::= local-var-axioms VAR-DECL+ AXIOM+

Σ, X � LOCAL-VAR-AXIOMS� Ψ

X is required to be a valid set of variables over the sorts of Σ. Ψ is a set of
Σ-sentences.

III:2.5 Axioms 159

(S,TF ,PF , P) = Σ
S � VAR-DECL1 � X1 · · · S � VAR-DECLm � Xm

Σ, X + X1 + · · ·+ Xm � AXIOM1 � ψ1

· · ·
Σ, X + X1 + · · ·+ Xm � AXIOMn � ψn

Σ, X � local-var-axioms VAR-DECL1 . . . VAR-DECLm

AXIOM1 . . . AXIOMn � {ψ1, . . . , ψn}

2.5 Axioms

Each well-formed axiom determines a sentence of the underlying basic spec-
ification (closed by universal quantification over all declared variables).

AXIOM-ITEMS ::= axiom-items AXIOM+
AXIOM ::= FORMULA

Σ, X � AXIOM-ITEMS� Ψ

X is required to be a valid set of variables over the sorts of Σ. Ψ is a set of
Σ-sentences.

Σ, X � AXIOM1 � ψ1 · · · Σ, X � AXIOMn � ψn

Σ, X � axiom-items AXIOM1 . . . AXIOMn � {ψ1, . . . , ψn}

Σ, X � AXIOM� ψ

X is required to be a valid set of variables over the sorts of Σ. ψ is a Σ-
sentence.

Σ, X � FORMULA� ϕ

Σ, X � FORMULA qua AXIOM� ∀X.ϕ

All declared variables are universally quantified. Quantification over variables
that do not occur free in the axiom has no effect since carriers are assumed
to be non-empty.

A formula is constructed from atomic formulas using quantification and the
usual logical connectives.

FORMULA ::= QUANTIFICATION | CONJUNCTION | DISJUNCTION
| IMPLICATION | EQUIVALENCE | NEGATION | ATOM

Σ, X � FORMULA� ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a Σ-formula
over X .

160 III:2 Basic Specification Semantics

Rules elided, except the one for ATOMquaFORMULA which is near the beginning
of Sect. 2.5.3 below to keep it together with subordinate rules for atomic
formulas.

2.5.1 Quantifications

Universal, existential and unique-existential quantification are as usual. An
inner declaration for a variable with the same identifier as in an outer decla-
ration overrides the outer declaration, regardless of whether the sorts of the
variables are the same.

QUANTIFICATION ::= quantification QUANTIFIER VAR-DECL+ FORMULA
QUANTIFIER ::= universal | existential | unique-existential

Σ, X � QUANTIFICATION� ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a Σ-formula
over X .

(S,TF ,PF , P) = Σ
S � VAR-DECL1 � X1 · · · S � VAR-DECLn � Xn

Σ, X + X1 + · · ·+ Xn � FORMULA� ϕ

Σ, X � quantification universal
VAR-DECL1 . . . VAR-DECLn FORMULA� ∀X1 + · · ·+ Xn.ϕ

(S,TF ,PF , P) = Σ
S � VAR-DECL1 � X1 · · · S � VAR-DECLn � Xn

Σ, X + X1 + · · ·+ Xn � FORMULA� ϕ

Σ, X � quantification existential
VAR-DECL1 . . . VAR-DECLn FORMULA� ∃X1 + · · ·+ Xn.ϕ

(S,TF ,PF , P) = Σ
S � VAR-DECL1 � X1 · · · S � VAR-DECLn � Xn

Σ, X + X1 + · · ·+ Xn � FORMULA� ϕ

Σ, X � quantification unique-existential
VAR-DECL1 . . . VAR-DECLn FORMULA� ∃!X1 + · · ·+ Xn.ϕ

2.5.2 Logical Connectives

The logical connectives are as usual, except that conjunction and disjunction
apply to lists of two or more formulas.

III:2.5 Axioms 161

Conjunction

CONJUNCTION ::= conjunction FORMULA+

Σ, X � CONJUNCTION� ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a Σ-formula
over X .

Σ, X � FORMULA1 � ϕ1

Σ, X � FORMULA2 � ϕ2

· · ·
Σ, X � FORMULAn � ϕn

Σ, X � conjunction FORMULA1 FORMULA2 . . . FORMULAn �

(· · · (ϕ1 ∧ ϕ2) ∧ · · ·) ∧ ϕn

Disjunction

DISJUNCTION ::= disjunction FORMULA+

Σ, X � DISJUNCTION� ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a Σ-formula
over X .

Σ, X � FORMULA1 � ϕ1

Σ, X � FORMULA2 � ϕ2

· · ·
Σ, X � FORMULAn � ϕn

Σ, X � disjunction FORMULA1 FORMULA2 . . . FORMULAn �

(· · · (ϕ1 ∨ ϕ2) ∨ · · ·) ∨ ϕn

Implication

IMPLICATION ::= implication FORMULA FORMULA

Σ, X � IMPLICATION� ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a Σ-formula
over X .

Σ, X � FORMULA� ϕ Σ, X � FORMULA′ � ϕ′

Σ, X � implication FORMULA FORMULA′ � ϕ⇒ ϕ′

162 III:2 Basic Specification Semantics

Equivalence

EQUIVALENCE ::= equivalence FORMULA FORMULA

Σ, X � EQUIVALENCE� ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a Σ-formula
over X .

Σ, X � FORMULA� ϕ Σ, X � FORMULA′ � ϕ′

Σ, X � equivalence FORMULA FORMULA′ � ϕ⇔ ϕ′

Negation

NEGATION ::= negation FORMULA

Σ, X � NEGATION� ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a Σ-formula
over X .

Σ, X � FORMULA� ϕ

Σ, X � negation FORMULA� ¬ϕ

2.5.3 Atomic Formulas

An atomic formula is well-formed if it is well-sorted and expands to a unique
atomic formula for constructing sentences. The notions of when an atomic
formula is well-sorted, of when a term is well-sorted for a particular sort,
and of the expansions of atomic formulas and terms, are captured by the
rules below.

ATOM ::= TRUTH | PREDICATION | DEFINEDNESS
| EXISTL-EQUATION | STRONG-EQUATION

(The following rule really belongs just before Sect. 2.5.1 above. It is here
in order to keep it together with the subordinate rules for atomic formulas,
because of the complications introduced by the ‘unique expansion’ require-
ment.)

there is a unique ϕ such that Σ, X � ATOM� ϕ
Σ, X � ATOM� ϕ

Σ, X � ATOM qua FORMULA� ϕ

III:2.5 Axioms 163

The first premise of this rule imposes the requirement that ATOM expands to
a unique (fully-qualified) atomic formula. In this premise, the static seman-
tics of ATOM occurs in a negative position (introduced by “there is a unique
ϕ”). This is potentially problematic, especially since there is a circularity: the
judgement Σ, X � ATOM� ϕ depends on the judgement Σ, X � FORMULA� ϕ′

if ATOM contains a conditional term. But since FORMULA will then be strictly
contained within ATOM, there is no problem: we can (implicitly) impose a
stratification on the judgements for FORMULA and ATOM where the semantics
of larger formulas/atoms is based on the (fixed) semantics of strictly smaller
formulas/atoms.

Σ, X � ATOM� ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a Σ-formula
over X .

Rules elided, except for the following one:

� TRUTH� ϕ

Σ, X � TRUTH qua ATOM� ϕ

Truth

The atomic formulas for truth and falsity are always well-sorted, and expand
to primitive sentences.

TRUTH ::= true-atom | false-atom

� TRUTH� ϕ

ϕ is a Σ-formula over X for any Σ and X .

� true-atom� true

� false-atom� false

Predicate Application

The application of a predicate symbol is well-sorted when there is a declara-
tion of the predicate name such that all the argument terms are well-sorted
for the respective argument sorts. It then expands to an application of the
qualified predicate name to the fully-qualified expansions of the argument
terms for those sorts.

164 III:2 Basic Specification Semantics

PREDICATION ::= predication PRED-SYMB TERMS
PRED-SYMB ::= PRED-NAME | QUAL-PRED-NAME
QUAL-PRED-NAME ::= qual-pred-name PRED-NAME PRED-TYPE

Σ, X � PREDICATION� ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a Σ-formula
over X .

Σ � PRED-SYMB� p, 〈s1, . . . , sn〉 Σ, X � TERMS� 〈t1, . . . , tn〉
sort(t1) = s1 · · · sort(tn) = sn

Σ, X � predication PRED-SYMB TERMS� p〈s1,...,sn〉〈t1, . . . , tn〉

Σ � PRED-SYMB� p, w

p is a predicate symbol in Σ with profile w.

{s1, . . . , sn} ⊆ S p ∈ P〈s1,...,sn〉
(S,TF ,PF , P) � p � p, 〈s1, . . . , sn〉

S � PRED-TYPE� w p ∈ Pw

(S,TF ,PF , P) � qual-pred-name p PRED-TYPE� p, w

Definedness
A definedness formula is well-sorted when the term is well-sorted for some
sort. It then expands to a definedness assertion on the fully-qualified expan-
sion of the term.

DEFINEDNESS ::= definedness TERM

Σ, X � DEFINEDNESS� ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a Σ-formula
over X .

Σ, X � TERM� t

Σ, X � definedness TERM� D(t)

Equations

An equation is well-sorted if both terms are well-sorted for some sort. It then
expands to the corresponding equation on the fully-qualified expansions of
the terms for that sort.

III:2.5 Axioms 165

EXISTL-EQUATION ::= existl-equation TERM TERM
STRONG-EQUATION ::= strong-equation TERM TERM

Σ, X � EXISTL-EQUATION� ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a Σ-formula
over X .

Σ, X � TERM� t Σ, X � TERM′ � t′ sort(t) = sort(t′)

Σ, X � existl-equation TERM TERM′ � t
e= t′

Σ, X � STRONG-EQUATION� ϕ

X is required to be a valid set of variables over the sorts of Σ. ϕ is a Σ-formula
over X .

Σ, X � TERM� t Σ, X � TERM′ � t′ sort(t) = sort(t′)

Σ, X � strong-equation TERM TERM′ � t
s= t′

2.5.4 Terms

A term is constructed from variables by applications of operations. All names
used in terms may be qualified by the intended types, and the intended sort
of the term may be specified.

TERM ::= SIMPLE-ID | QUAL-VAR | APPLICATION
| SORTED-TERM | CONDITIONAL

Σ, X � TERM� t

X is required to be a valid set of variables over the sorts of Σ. t is a fully-
qualified Σ-term over X .

Rules elided, except for the two rules in the next subsection which are for the
case SIMPLE-ID.

Identifiers

An unqualified simple identifier in a term may be a variable or a constant,
depending on the local environment and the variable declarations. Either is
well-sorted for the sort specified in its declaration; a variable expands to the
(sorted) variable itself, whereas a constant expands to an application of the
qualified symbol to the empty list of arguments.

166 III:2 Basic Specification Semantics

s ∈ S x ∈ Xs

(S,TF ,PF , P), X � x � xs

s ∈ S f ∈ TF 〈〉,s ∪ PF 〈〉,s
(S,TF ,PF , P), X � f � f〈〉,s〈〉

Qualified Variables

A qualified variable is well-sorted for the given sort.

QUAL-VAR ::= qual-var VAR SORT

Σ, X � QUAL-VAR� t

X is required to be a valid set of variables over the sorts of Σ. t is a fully-
qualified Σ-term over X .

s ∈ S x ∈ Xs

(S,TF ,PF , P), X � qual-var x s � xs

Operation Application

An application is well-sorted for some sort s when there is a declaration of
the operation name such that all the argument terms are well-sorted for the
respective argument sorts, and the result sort is s. It then expands to an
application of the qualified operation name to the fully-qualified expansions
of the argument terms for those sorts.

APPLICATION ::= application OP-SYMB TERMS
OP-SYMB ::= OP-NAME | QUAL-OP-NAME
QUAL-OP-NAME ::= qual-op-name OP-NAME OP-TYPE
TERMS ::= terms TERM*

Σ, X � APPLICATION� t

X is required to be a valid set of variables over the sorts of Σ. t is a fully-
qualified Σ-term over X .

Σ � OP-SYMB� f, (〈s1, . . . , sn〉, s) Σ, X � TERMS� 〈t1, . . . , tn〉
sort(t1) = s1 · · · sort(tn) = sn

Σ, X � application OP-SYMB TERMS� f〈s1,...,sn〉,s〈t1, . . . , tn〉

III:2.5 Axioms 167

Σ � OP-SYMB� f,ws

f is a function symbol in Σ with profile ws .

{s1, . . . , sn, s} ⊆ S f ∈ TF 〈s1,...,sn〉,s ∪ PF 〈s1,...,sn〉,s
(S,TF ,PF , P) � f � f, (〈s1, . . . , sn〉, s)
{s1, . . . , sn, s} ⊆ S f ∈ TF 〈s1,...,sn〉,s

(S,TF ,PF , P) �
qual-op-name f (total-op-type (sort-list s1 . . . sn) s) �

f, (〈s1, . . . , sn〉, s)

{s1, . . . , sn, s} ⊆ S f ∈ PF 〈s1,...,sn〉,s
(S,TF ,PF , P) �

qual-op-name f (partial-op-type (sort-list s1 . . . sn) s) �

f, (〈s1, . . . , sn〉, s)

Σ, X � TERMS� 〈t1, . . . , tn〉

X is required to be a valid set of variables over the sorts of Σ. t1, . . . , tn are
fully-qualified Σ-terms over X .

Σ, X � TERM1 � t1 · · · Σ, X � TERMn � tn
Σ, X � terms TERM1 . . . TERMn � 〈t1, . . . , tn〉

Sorted Terms

A sorted term is well-sorted if the given term is well-sorted for the given
sort. It then expands to those fully-qualified expansions of the component
term that have the specified sort.

SORTED-TERM ::= sorted-term TERM SORT

Σ, X � SORTED-TERM� t

X is required to be a valid set of variables over the sorts of Σ. t is a fully-
qualified Σ-term over X .

Σ, X � TERM� t sort(t) = s

Σ, X � sorted-term TERM s � t

168 III:2 Basic Specification Semantics

Conditional Terms

A conditional term is well-sorted for some sort when both given terms are
well-sorted for that sort and the given formula is well-formed. It then ex-
pands to a fully-qualified term built from that formula and the fully-qualified
expansions of the given terms for that sort.

CONDITIONAL ::= conditional TERM FORMULA TERM

Σ, X � CONDITIONAL� t

X is required to be a valid set of variables over the sorts of Σ. t is a fully-
qualified Σ-term over X .

Σ, X � TERM� t Σ, X � FORMULA� ϕ Σ, X � TERM′ � t′

sort(t) = sort(t′)
Σ, X � conditional TERM FORMULA TERM′ � ϕ → t | t′

Conditional terms are interpreted as fully-qualified terms, as explained in
Sect. 2.1.3, rather than being handled by transformation of the enclosing
atomic formula as is suggested in the CASL Summary; such a transformation
would be difficult to define using this style of semantics.

2.6 Identifiers

The internal structure of identifiers ID is insignificant in the context of basic
specifications. (ID is extended with compound identifiers, whose structure is
significant, in connection with generic specifications in Sect. 4.6.)

SIMPLE-ID ::= WORDS
SORT-ID ::= WORDS
TOKEN ::= WORDS | DOT-WORDS | SIGNS | DIGIT | QUOTED-CHAR
ID ::= id MIX-TOKEN+
MIX-TOKEN ::= TOKEN | PLACE | BRACED-ID | BRACKET-ID | EMPTY-BRS
BRACED-ID ::= braced-id ID
BRACKET-ID ::= bracket-id ID
EMPTY-BRS ::= empty-braces | empty-brackets

3

Subsorting Specification Semantics

The semantics of subsorted specifications is explained largely via reduction to
the many-sorted case, already covered in Chap. 2. Section 3.1 defines the un-
derlying concepts for subsorted specifications and explains their relationship
to the corresponding concepts of many-sorted specifications. The remaining
sections cover the language constructs for subsorted basic specifications, pre-
sented as extensions to the constructs for many-sorted specifications.

3.1 Subsorting Concepts

This section extends the institution presented in Sect. 2.1, in order to cope
with subsorting.

We represent subsort inclusion by embedding (which is not required to be
identity), commuting, as usual in order-sorted approaches, with overloaded
operation symbols.

3.1.1 Signatures

A subsorted signature Σ consists of a many-sorted signature together with
a pre-order of subsort embedding on its set of sorts.

≤ ∈ SortRelation = FinSet(Sort × Sort)
(S,TF ,PF , P,≤)

or Σ ∈ SubSig =
SortSet × FunSet × FunSet × PredSet × SortRelation

Requirements on a subsorted signature (S,TF ,PF , P,≤):

• (S,TF ,PF , P) is a valid many-sorted signature
• ≤ ∈ FinSet(S × S)
• s ≤ s for all s ∈ S
• s ≤ s′ and s′ ≤ s′′ implies s ≤ s′′ for all s, s′, s′′ ∈ S

170 III:3 Subsorting Specification Semantics

≤ is extended pointwise to sequences of sorts, that is, w ≤ w′ iff w =
〈s1, . . . , sn〉, w′ = 〈s′1, . . . , s′n〉 and sj ≤ s′j for all 1 ≤ j ≤ n.

A subsorted signature fragment (S,TF ,PF , P,≤) consists of a (many-
sorted) signature fragment (S,TF ,PF , P) and a relation ≤ ∈ SortRelation .

(S,TF ,PF , P,≤) ∈ SubsortedSigFragment =
SortSet × FunSet × FunSet × PredSet × SortRelation

The union of subsorted signature fragments requires the resulting subsorting
relation to be computed as reflexive and transitive closure, and is defined as
follows:

(S,TF ,PF , P,≤) ∪ (S′,TF ′,PF ′, P ′,≤′) = (S,TF ,PF , P ,RTClos(≤ ∪ ≤′))

where (S,TF ,PF , P) = (S,TF ,PF , P) ∪ (S′,TF ′,PF ′, P ′) and RTClos :
SortRelation → SortRelation associates each relation with its reflexive and
transitive closure, that is, for each ∼ ∈ SortRelation such that Ŝ = {s |
∃s′.s ∼ s′ ∨ s′ ∼ s}, the result RTClos(∼) is the relation ∗∼, inductively
defined by the following rules:

s ∼ s′

s
∗∼ s′

s ∈ Ŝ

s
∗∼ s

s
∗∼ s′ s′ ∗∼ s′′

s
∗∼ s′′

For each subsorted signature Σ = (S,TF ,PF , P,≤) the relation ≤ is reflexive
and transitive, so that ≤ and RTClos(≤) coincide.

Analogously to the many-sorted case, a subsorted signature extension ∆
relative to a subsorted signature Σ is a subsorted signature fragment such
that Σ ∪∆ is a subsorted signature.

(S,TF ,PF , P,≤)
or ∆ ∈ SubsortedExtension = SubsortedSigFragment

It is trivial to extend Prop. 2.1 to the subsorted case.

Proposition 3.1. If ∆ and ∆′ are subsorted signature extensions relative to
Σ then ∆ ∪∆′ is a subsorted signature extension relative to Σ.

Proof. Straightforward. ��

As in the many-sorted case, a subsorted signature Σ is a subsignature of
a subsorted signature Σ′ if there is some subsorted extension ∆ relative to Σ
such that Σ′ = Σ ∪∆.

For a subsorted signature (S,TF ,PF , P,≤), we define overloading rela-
tions for operation and predicate symbols. Let f ∈ (TFw1,s1 ∪ PFw1,s1) ∩

III:3.1 Subsorting Concepts 171

(TFw2,s2 ∪PFw2,s2). Two qualified operation symbols fw1,s1 and fw2,s2 are in
the overloading relation (written fw1,s1 ∼F fw2,s2) iff there exists a w ∈ S∗

and s ∈ S such that w ≤ w1, w2 and s1, s2 ≤ s. Similarly, two qualified predi-
cate symbols pw1 and pw2 are in the overloading relation (written pw1 ∼P pw2)
iff there exists a w ∈ S∗ such that w ≤ w1, w2. We say that two profiles of a
symbol are in the overloading relation if the corresponding qualified symbols
are in the overloading relation.

Let Σ = (S,TF ,PF , P,≤) and Σ′ = (S′,TF ′,PF ′, P ′,≤′) be subsorted
signatures. Then a subsorted signature morphism σ = (σS, σTF, σPF, σP)
from Σ to Σ′ is a many sorted signature morphism from (S,TF ,PF , P) to
(S′,TF ′,PF ′, P ′) preserving the subsort relation and the overloading rela-
tions, that is:

• s ≤ s′ implies σS(s) ≤′ σS(s′);
• fws ∼F f ′

ws′ implies that one of the following holds:
– σTF

ws (f)σS(ws) ∼′
F σTF

ws′ (f ′)σS(ws′), where fws ∈ TF and f ′
ws′ ∈ TF ,

– σTF
ws (f)σS(ws) ∼′

F σPF
ws′(f ′)σS(ws′), where fws ∈ TF and f ′

ws′ ∈ PF ,
– σPF

ws (f)σS(ws) ∼′
F σTF

ws′ (f ′)σS(ws′), where fws ∈ PF and f ′
ws′ ∈ TF , or

– σPF
ws (f)σS(ws) ∼′

F σPF
ws′(f ′)σS(ws′), where fws ∈ PF and f ′

ws′ ∈ PF ; and
• pw ∼P p′w′ implies σP

w (p)σS(w) ∼′
P σP

w′(p′)σS(w′).

Notice that the preservation of overloading relations is equivalent to the re-
quirement that any two qualified function (predicate) symbols that are in the
overloading relation are translated into the same (unqualified) symbol.

If Σ is a subsignature of Σ′, we write Σ ↪→ Σ′ for the evident subsorted
signature morphism, called a subsorted signature inclusion.

Proposition 3.2. The composition of subsorted signature morphisms does in-
deed yield a subsorted signature morphism.

Proof. Straightforward. ��

Proposition 3.3. Subsorted signatures and subsorted signature morphisms
form a finitely cocomplete category, SubSig.

Proof. It is easy to see that SubSig is a category. Regarding finite cocom-
pleteness, see [38]. ��

For a subsorted signature Σ = (S,TF ,PF , P,≤), we define |Σ| ⊆ SigSym
to be |(S,TF ,PF , P)|, and for a subsorted signature morphism σ : Σ → Σ′,
we define |σ| : |Σ| → |Σ′| as in the many-sorted case.

Proposition 3.4. |.| : SubSig → Set is a faithful functor.

Proof. Straightforward. ��

Proposition 3.5. A subsorted signature morphism σ : Σ → Σ′ is a signature
inclusion iff |σ| is an inclusion of |Σ| into |Σ′|.

172 III:3 Subsorting Specification Semantics

Proof. Straightforward. ��

Any subsorted signature Σ is associated with a many-sorted signature Σ#,
where the embeddings of subsorts into their supersorts are explicitly added
as operations.

In order to define a reduction of subsorted signatures to many-sorted sig-
natures, we first redefine the universes FunName of operation names and
PredName of predicate names from Sect. 2.3, adding embedding, projection
and membership symbols that differ from all those already present:

FunName = ID � {em} � {pr}
PredName = ID � {in(s) | s ∈ Sort}

Here, ‘em’, ‘pr ’ and ‘in(s)’ refer to arbitrary objects, the only requirement
being that in(s) �= in(s′) whenever s �= s′.

Then the many-sorted signature Σ# consists of (S#,TF#,PF#, P#),
where

S# = S

TF#
w,s′ =

{
TFw,s′ ∪ {em} if w = 〈s〉 and s ≤ s′

TFw,s′ otherwise

PF#
w,s =

{
PFw,s ∪ {pr} if w = 〈s′〉 and s ≤ s′

PFw,s otherwise

P#
w =

{
Pw ∪ {in(s) | s ≤ s′} if w = 〈s′〉
Pw otherwise

Any subsorted signature morphism σ = (σS, σTF, σPF, σP) from Σ to Σ′ ex-
tends to a many-sorted signature morphism σ# = (σ#S

, σ#TF
, σ#PF

, σ#P)
from Σ# to Σ′# as follows:

σ#S = σS

σ#TF
w,s′(f) =

{
em if w = 〈s〉, s ≤ s′ and f = em
σTF

w,s′(f) otherwise

σ#PF
w,s(f) =

{
pr if w = 〈s′〉, s ≤ s′ and f = pr
σPF

w,s(f) otherwise

σ#P
w(p) =

{
in(σS(s)) if w = 〈s′〉, s ≤ s′ and p = in(s)
σP

w(p) otherwise

Proposition 3.6. The construction (.)# is a functor from SubSig to Sig.

Proof. It is easy to see that if σ and σ′ are composable subsorted signature
morphisms, then (σ ◦ σ′)# = σ# ◦ σ′#, and that identity is preserved. ��

III:3.1 Subsorting Concepts 173

3.1.2 Models

Subsorted models over Σ are the many-sorted Σ#-models in which the em-
bedding and projection functions and the membership predicates are well-
behaved.

For a subsorted signature Σ = (S,TF ,PF , P,≤), the subsorted models are
ordinary many-sorted models for Σ# satisfying the following axioms:

Identity: ∀xs.em〈s〉,s〈xs〉 e= xs

Transitivity: ∀xs.em〈s′〉,s′′〈em〈s〉,s′〈xs〉〉 e= em〈s〉,s′′〈xs〉 for s ≤ s′ ≤ s′′

Projection: ∀xs.pr 〈s′〉,s〈em〈s〉,s′〈xs〉〉 e= xs for s ≤ s′

Projection-injectivity: ∀{xs′ , ys′}.pr 〈s′〉,s〈xs′〉 e= pr 〈s′〉,s〈ys′〉 ⇒ xs′
e= ys′

for s ≤ s′

Membership: ∀xs′ .in(s)〈s′〉〈xs′〉 ⇔ D(pr 〈s′〉,s〈xs′ 〉) for s ≤ s′

Function-monotonicity:
∀{x1

s1
, . . . , xn

sn
}.em〈s〉,s′′〈fw,s〈em〈s1〉,s1〈x1

s1
〉, . . . , em〈sn〉,sn

〈xn
sn
〉〉〉

s= em〈s′〉,s′′〈fw′,s′〈em〈s1〉,s′
1
〈x1

s1
〉, . . . , em〈sn〉,s′

n
〈xn

sn
〉〉〉

for fw,s ∼F f ′
w′,s′ , where w′ = 〈s′1, . . . , s′n〉 and w = 〈s1, . . . , sn〉, with

w ≤ w, w′ for some w = 〈s1, . . . , sn〉, and s, s′ ≤ s′′

Predicate-monotonicity:
∀{x1

s1
, . . . , xn

sn
}. pw〈em〈s1〉,s1〈x1

s1
〉, . . . , em〈sn〉,sn

〈xn
sn
〉〉

⇔ p′w′〈em〈s1〉,s′
1
〈x1

s1
〉, . . . , em〈sn〉,s′

n
〈xn

sn
〉〉

for pw ∼P p′w′ , where w′ = 〈s′1, . . . , s′n〉 and w = 〈s1, . . . , sn〉, with w ≤
w, w′ for some w = 〈s1, . . . , sn〉

Proposition 3.7. In every subsorted model the following axiom holds:

Embedding-injectivity: ∀{xs, ys}.em〈s〉,s′〈xs〉 e= em〈s〉,s′〈ys〉 ⇒ xs
e= ys

for all s ≤ s′.

Proof. Let us assume that em〈s〉,s′〈xs〉 e= em〈s〉,s′〈ys〉 is satisfied by a sub-
sorted model M with respect to some assignment ρ for {xs, ys}; then the
equation pr 〈s′〉,s〈em〈s〉,s′〈xs〉〉 e= pr 〈s′〉,s〈em〈s〉,s′〈ys〉〉 is also satisfied by M

w.r.t. ρ. By the projection axioms, both pr 〈s′〉,s〈em〈s〉,s′〈xs〉〉 e= xs and
pr 〈s′〉,s〈em〈s〉,s′〈ys〉〉 e= ys must be satisfied by M w.r.t. ρ, since M is a sub-
sorted model. Therefore, xs

e= ys must be satisfied by M w.r.t. ρ. ��

Notice that, as usual, the same class of models may be described by several
different axiomatic theories that may be convenient for different purposes; for
instance, one might wish to use a certain automatic deduction system that
requires a specific form of axioms. For example, we can replace the projection-
injectivity axiom by the following axiom:

Defined-projection: ∀{xs′}.D(pr 〈s′〉,s〈xs′〉) ⇒ em〈s〉,s′〈pr 〈s′〉,s〈xs′ 〉〉 e= xs′

for all s ≤ s′.

174 III:3 Subsorting Specification Semantics

This gives a set of existentially conditioned equations (ECE) in the sense of
Burmeister [10].

Proposition 3.8. Projections are always undefined on elements that are not
in the image of the corresponding embedding.

Proof. Follows from the defined-projection axiom. ��

Subsorted Σ-model morphisms are ordinary Σ#-homomorphisms, that is
the category of subsorted Σ-models SubMod(Σ) is the full subcategory of
Mod(Σ#), whose objects are all the many-sorted models satisfying the above
axioms.

Therefore, all notions defined for many-sorted models, and in particular all
functors having many-sorted model categories as source, apply to subsorted
models as well, via the embedding of SubMod(Σ) into Mod(Σ#).

The reduct of a subsorted Σ′-model along a subsorted signature morphism
σ : Σ → Σ′ is the many-sorted reduct along the signature morphism σ#, and
similarly for subsorted Σ′-model morphisms. This defines a functor SubMod :
SubSigop → CAT.

Since subsorted signature morphisms preserve overloading relations, the
reducts of subsorted models satisfy the above axioms, too, and are, hence,
subsorted models.

Notice that SubMod is not finitely cocontinuous. The following coun-
terexample is from [45]. Let Σ be the signature with sorts s and t and no
operations, and let Σ1 be the extension of Σ by the subsort relation s ≤ t.
Then the pushout

Σ ��

��

Σ1

��
Σ1

�� Σ1

in SubSig is not mapped to a pullback in CAT since two models of Σ1 that
are compatible w.r.t. the inclusion of Σ may interpret the subsort injection
differently.

3.1.3 Sentences

The subsorted Σ-sentences are simply the many-sorted Σ#-sentences.

For a subsorted signature Σ, the subsorted sentences are the ordinary
many-sorted sentences (as defined in Sect. 2.1.3) for the associated many-
sorted signature Σ#. The subsorted translation of sentences along a sub-
sorted signature morphism σ is the ordinary many-sorted translation along
σ#. That is, subsorted sentences are given by the composition of the or-
dinary functor yielding many-sorted sentences with the functor (.)#, i.e.
SubSen : SubSig → Set is defined as Sen ◦ (.)#.

III:3.2 Signature Declarations 175

A subsorted enrichment (∆, Ψ) relative to a subsorted signature Σ consists
of a subsorted extension ∆ relative to Σ and a set Ψ of subsorted sentences
over Σ ∪∆.

Satisfaction over Σ is many-sorted satisfaction over Σ#.

Subsorted satisfaction for a subsorted signature Σ is ordinary many-sorted
satisfaction for the signature Σ#. Since reducts and sentence translation are
ordinary many-sorted reducts and sentence translation, the satisfaction con-
dition is satisfied for the subsorted case as well.

Theorem 3.9. SubSig, SubMod, SubSen and |= form an institution with
SubSig being finitely cocomplete.

Proof. Straightforward. Cocompleteness follows from Prop. 3.3. ��

The relationship between formula satisfaction and isomorphism is the same
for subsorted as for standard many-sorted models.

Proposition 3.10. Satisfaction is preserved and reflected by isomorphisms:
if M, M ′ are subsorted Σ-models such that M ∼= M ′ and ψ is a subsorted
Σ-sentence, then M |= ψ iff M ′ |= ψ.

Proof. Straightforward. ��

3.2 Signature Declarations

The rest of this chapter gives the abstract syntax of the additional subsorting
constructs used in subsorted basic specifications, and defines their intended
interpretation, extending what was provided for many-sorted specifications in
Chap. 2. Unless otherwise stated, the rules for static and model semantics of
the constructs given in Chap. 2 are the same, with the convention that the
signatures in each rule are enriched by an implicit subsorting relation that is
not modified by the rules.

As in the many-sorted case, a well-formed subsorted basic specification
BASIC-SPEC of the CASL language determines an extension ∆ to the local
environment Σ together with a set of Σ ∪∆-sentences of the form described
in Sect. 3.1.3. This in turn describes the class of all subsorted Σ ∪∆-models
that satisfy those sentences.

3.2.1 Sorts

SORT-ITEM has three more alternatives than in Chap. 2:

SORT-ITEM ::= ... | SUBSORT-DECL | ISO-DECL | SUBSORT-DEFN

176 III:3 Subsorting Specification Semantics

Subsort Declarations

A subsort declaration declares all the sorts, as well as the embedding of each
subsort into the supersort, which must be a different sort.

SUBSORT-DECL ::= subsort-decl SORT+ SORT

Σ � SUBSORT-DECL� (∆, Ψ)

(∆, Ψ) is an enrichment relative to Σ.

si �= s for all i = 1, . . . , n �S = {(si, s) | 1 ≤ i ≤ n}
(S,TF ,PF , P,≤) � subsort-decl s1 . . . sn s �

(({s1, . . . , sn, s}, ∅, ∅, ∅,�S), ∅)
The first condition checks that each subsort is distinct from the supersort.

Isomorphism Declarations

An isomorphism declaration declares all the sorts, as well as their embed-
dings as subsorts of each other.

ISO-DECL ::= iso-decl SORT+

Σ � ISO-DECL� (∆, Ψ)

(∆, Ψ) is an enrichment relative to Σ.

si �= sj for all i �= j n ≥ 2
�S = {(si, sj) | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ n}

(S,TF ,PF , P,≤) � iso-decl s1 . . . sn � (({s1, . . . , sn}, ∅, ∅, ∅,�S), ∅)

The first condition checks that each sort occurs once and the second checks
that there are at least two sorts.

Subsort Definitions

A subsort definition provides an explicit specification of the values of the
subsort, stating which values of the supersort belong to the subsort by means
of a formula with one free variable in it.

SUBSORT-DEFN ::= subsort-defn SORT VAR SORT FORMULA

Σ � SUBSORT-DEFN� (∆, Ψ)

III:3.2 Signature Declarations 177

(∆, Ψ) is an enrichment relative to Σ.

(S,TF ,PF , P,≤) = Σ s′ ∈ S FV (F) ⊆ {v : s′}
Σ � subsort-decl s s′ � (∆, ∅) Σ ∪∆, ∅ � F ′ � ϕ

Σ � subsort-defn s v s′ F � (∆, {ϕ})

where F ′ is

quantification forall var-decl v s′(equivalence F (membership v s))

The second condition checks that s′ is already declared, the third that the
all variables in F but v are explicitly bound, and the fourth and the fifth1

conditions are equivalent to expanding the subsort definition into the subsort
declaration plus an axiom stating which values of the supersort belong to the
subsort.

3.2.2 Datatypes

Alternatives

Datatype declarations have a new kind of alternative, for the embedding of
known subsorts into the datatype.

ALTERNATIVE ::= ... | SUBSORTS
SUBSORTS ::= subsorts SORT+

Σ, s � SUBSORTS� (∆, ∆′, Ψ)

s is required to be a sort in Σ. (∆ ∪∆′, Ψ) is an enrichment relative to Σ.

si ∈ S for all i = 1, . . . , n �S = {(si, s) | 1 ≤ i ≤ n}
(S,TF ,PF , P,≤), s � subsort s1 . . . sn � ((∅, ∅, ∅, ∅,�S), ∅, ∅), {}

The first condition checks that the subsorts are declared elsewhere.
Note that this kind of alternative does not contribute a constructor, in

contrast to the other kinds – the subsort embeddings are treated as implicit
constructors, see below.
1 Actually, if free variables different from v appear in F , this condition cannot be

satisfied, so that the third condition is superfluous and required only for stressing
the point.

178 III:3 Subsorting Specification Semantics

Free Datatype Declarations

The embeddings of subsorts are treated as implicit constructors.

The rule for free datatypes given in Sect. 2.3.4 has to be modified to treat
the embedding of subsorts as constructors as well.

Thus, the rule:

Σ � DATATYPE-ITEMS� (∆, ∆′, Ψ), W
(S,TF ,PF , P) = Σ (S′,TF ′, ∅, P ′) = ∆ S′′ = S ∪ S′

Σ � free-datatype DATATYPE-ITEMS�

(∆ ∪∆′, Ψ ∪ {injective(fw,s) | w ∈ FinSeq(S′′), s ∈ S′′, f ∈ TF ′
w,s}

∪ {disjoint-ranges(fw,s, gw′,s)
| w, w′ ∈ FinSeq(S′′), s ∈ S′′, f ∈ TF ′

w,s, g ∈ TF ′
w′,s

such that w �= w′ or f �= g}
∪ {undefined-selection(fw,s, g〈s〉,s′)

| fw,s, f
′
w′,s ∈ Dom(W), g〈s〉,s′ ∈ W (f ′

w′,s) \W (fw,s)}
∪ {(S′, complete(TF ′,FinSeq(S′′)× S′′))})

is replaced by:

Σ � DATATYPE-ITEMS� (∆, ∆′, Ψ), W
(S,TF ,PF , P,≤) = Σ (S′,TF ′, ∅, P ′,≺) = ∆ S′′ = S ∪ S′

F = TF ′ ∪ {(〈s〉, s′) �→ em | s ≺ s′}
Σ � free-datatype DATATYPE-ITEMS�

(∆ ∪∆′, Ψ ∪ {injective(fw,s) | w ∈ FinSeq(S′′), s ∈ S′′, f ∈ TF ′
w,s}

∪ {disjoint-ranges(fw,s, gw′,s)
| w, w′ ∈ FinSeq(S′′), s ∈ S′′, f ∈ Fw,s, g ∈ Fw′,s

such that w �= w′ or f �= g}
∪ {undefined-selection(fw,s, g〈s〉,s′)

| fw,s, f
′
w′,s ∈ Dom(W), g〈s〉,s′ ∈W (f ′

w′,s) \W (fw,s)}
∪ {undefined-selection(em〈s′′〉,s, g〈s〉,s′)

| s′′ �= s ∈ S′′, s′′ ≺ s,
fw,s ∈ Dom(W), g〈s〉,s′ ∈W (fw,s)}

∪ {(S′, complete(F ,FinSeq(S′′)× S′′))})

where injective, disjoint-ranges and undefined-selection are defined as in
Sect. 2.3.4.

Theorem 3.11. Consider a declaration free-datatype DATATYPE-ITEMS, a
signature Σ and a model class M over Σ, and suppose

Σ � DATATYPE-ITEMS� (∆, ∆′, Ψ), W
Σ � free-datatype DATATYPE-ITEMS� (∆ ∪∆′, Ψ ′)

such that DATATYPE-ITEMS fulfills the following conditions (all referring to
fully qualified symbols):

III:3.2 Signature Declarations 179

• The sorts in ∆ (and hence the constructors in ∆ and the selectors in ∆′)
are not in the local environment Σ;

• Any selector in ∆′ is total only when the same selector is present in all
ALTERNATIVEs for that sort;

• Each constructor in ∆ and each selector in ∆′ is in the overloading relation
of Σ ∪∆ ∪∆′ only with itself; and

• Distinct sorts in ∆ have no common subsort in Σ ∪∆ ∪∆′.

Let C be the full subcategory of Mod(Σ ∪∆ ∪∆′) containing those (Σ ∪
∆∪∆′)-models M ′′ such that M ′′ |= ψ for all ψ ∈ Ψ , and let M′ and M′′ be
the (Σ ∪∆ ∪∆′)-model classes

M′ = {(Σ ∪∆ ∪∆′)-model M ′

|M ′|Σ↪→Σ∪∆∪∆′ ∈ M and M ′ ∈ C is free over M ′|Σ↪→Σ∪∆∪∆′

w.r.t. .|Σ↪→Σ∪∆∪∆′ : C →Mod(Σ)}
M′′ = {(Σ ∪∆ ∪∆′)-model M ′

|M ′|Σ↪→Σ∪∆∪∆′ ∈ M and M ′ |= ψ′ for all ψ′ ∈ Ψ ′}

Then M′ = M′′.

Proof. Employing the notation of the above rule, let us use S′ for the sorts in
∆ and F for the functions from ∆ and the embeddings relative to the subsorts
explicitly given in ∆ (that is, for the constructors).

Let us first show that M′′ ⊆M′.
It suffices to show that every model M ∈ M′′, satisfying the axioms in

Ψ ′, is free w.r.t. .|Σ↪→Σ∪∆∪∆′ : C → Mod(Σ), that is, that it belongs to C
and that any homomorphism h from its Σ-reduct to the Σ-reduct of a model
N ∈ C extends uniquely to a homomorphism from M to N on the overall
signature.

Since, by construction, Ψ ⊆ Ψ ′,M′′ ⊆ C hence M ∈ C. Thus, we only have
to prove the existence of the Σ ∪∆ ∪∆′-homomorphism extending h.

As the sorts in S′ are new in the environment, to extend the homomor-
phism we have to give the new components hs for each s ∈ S′.

Because of the sort-generation constraint in Ψ ′ (see the last axiom of the
rule), for every element a in the carrier of sort s (with s ∈ S′), there is a term
t = f〈t1, . . . , tn〉 containing only function symbols from F and variables of
sorts not in S′ such that [[t]]ρ= a for some assignment ρ into M |Σ↪→Σ∪∆∪∆′ .
Let us show that such a term t is unique (up to variable renaming). Since
t = f〈t1, . . . , tn〉 and [[t]]ρ= a, we have a = fM (a1, . . . , an) for some f ∈ F
and ai = [[ti]]ρ. Moreover,

• because of the disjointness axioms in Ψ ′ the leading symbol is unique
• because of injectivity axioms in Ψ ′ the argument tuple is unique

For each ai ∈ sM
i , if si /∈ S′, then ti is a variable; otherwise, we can recursively

apply this argument to ai (and ti).
Therefore, for each s ∈ S′ and each a ∈ sM there exists a unique term

ta containing only function symbols from F and variables of sorts not in S′

180 III:3 Subsorting Specification Semantics

such that [[ta]]ρ= a for some assignment ρ into M |Σ↪→Σ∪∆∪∆′ . Hence, we can
(inductively) define hs as hs(a) = hs(fM (a1, . . . , an)) = fN(h(a1), . . . , h(an))
and since the decomposition is unique, this equation yields a function. More-
over, such hs is the unique possible candidate homomorphism because it is
defined by the homomorphism condition itself.

Finally, h satisfies the homomorphism condition for each function symbol
f in Σ′#, where Σ′ = Σ ∪∆ ∪∆′, because:

• if f is a function symbol in Σ#, as h is a subsorted Σ-homomorphism,
that is a many-sorted Σ#-homomorphism;

• if f belongs to F , by construction;
• if f belongs to ∆′ (i.e. is a selector), because selectors in M are defined

only on the image of their constructor(s), where their value is fixed by the
constructor/selector axioms in Ψ , so that they have to be defined in N as
well (with compatible values); and

• if f is a projection, because projections are defined only on the image of
their embeddings and their value is fixed by the axioms required from M
and N to be subsorted models.

The homomorphism condition for predicates is trivially fulfilled, since ∆ and
∆′ do not contain any new predicates, and for those in Σ#, we already know
that it holds2.

Vice versa, let us show now that M′ ⊆M′′; let us fix an arbitrary model
M ′ ∈ M′. Let us consider the Σ-model M = M ′|Σ and directly build an
extension M ′′, satisfying the axioms of Ψ ′. Thus, because of the previous point,
such an extension M ′′ is free. Then, as M ′ and M ′′ are isomorphic, being both
free models over M , and isomorphic models satisfy the same formulas, we get
that M ′ satisfies the axioms of Ψ ′. The extension M ′′ is built as follows:

• For all s ∈ S′ we (simultaneously) inductively define the carriers to consist
of formal applications of embeddings and constructors, that is elements of
the form f(a1, . . . , an) where f ∈ F 〈s1,...,sn〉,s and ai ∈ sM

i if si /∈ S′ and
otherwise ai ∈ sM ′′

i . Thus, the ai may be formal applications as well as
elements of M .

• The interpretation of functions and predicates from Σ# is as in M .
• The interpretation of embeddings and constructors from ∆ yields the for-

mal interpretation (so the resulting model is generated by F , and the
axioms of injectiveness and disjointness hold).

2 The homomorphism condition for membership predicates, possibly introduced by
the new subsorting relations in ∆, is obviously satisfied, because of the axioms
required from M and N to be subsorted models that define the validity of the
membership predicate.

III:3.2 Signature Declarations 181

• The interpretation of any selector from ∆′ is defined for values in the im-
age(s) of its corresponding constructor(s) so that the selector-constructor
axioms are satisfied3. For all other values it is undefined (so that the ax-
ioms concerning undefinedness of selectors are satisfied).

• Analogously, the interpretation of projections is defined only on the image
of their embeddings (and their composition yields the identity) and the
membership predicates are true only on the image of the corresponding
embedding (so the axioms required for M ′′ to be a Σ ∪∆ ∪∆′-model are
satisfied).

Finally such construction yields a subsorted model M ′′. The identities required
for overloaded symbols are satisfied for the functions and predicates in Σ,
because M is the reduct of a subsorted model M ′ on the overall signature,
and they are satisfied for the constructors and selectors in ∆ ∪ ∆′, because
for them the overloading relation is the identity. Moreover, the transitivity
axioms are satisfied because the alternatives being sorts do not have common
subsorts. ��

Below we give an example of a typical free datatype declaration and discuss
some ways in which specifications may accidentally become inconsistent.

Here is an example of a free datatype declaration where all alternatives
are sorts that are declared beforehand, which corresponds to a declaration of
a disjoint union type:

free type Vehicle ::= sort Car | sort Bicycle

The semantics of the free datatype declaration is the following enrichment
(relative to a signature Σ containing the two sorts Car and Bicycle):

(∆, {∀x:Car , y:Bicycle .¬(em〈Car〉,Vehicle〈x〉
s= em〈Bicycle〉,Vehicle〈y〉),

∀x:Car , y:Bicycle .¬(em〈Bicycle〉,Vehicle〈x〉
s= em〈Car〉,Vehicle〈y〉),

({Vehicle}, F , idΣ∪∆)}

where ∆ is the signature extension (relative to Σ) containing the sort Vehicle ,
no function symbols or predicate symbols, and the subsort relation ≤ which
is the reflexive and transitive closure of {(Car ,Vehicle), (Bicycle ,Vehicle)}.
Moreover, F contains the two embedding function symbols em〈Car〉,Vehicle

and em〈Bicycle〉,Vehicle . The first two sentences are from the disjoint-ranges
condition; they are equivalent. The third sentence is a sort generation con-
straint which requires each value of sort Vehicle to be produced by either
em〈Car〉,Vehicle〈x〉 or em〈Bicycle〉,Vehicle〈y〉 for some assignment of a value of
sort Car to x or a value of sort Bicycle to y, respectively. Since there are
no explicit constructors and selectors, there are no injectivity sentences (but
embeddings that play the same role as constructors are instead required to be
3 There are no contradictions in these axioms, as elements built from different

constructors are different because of the disjointness axioms in Ψ ′, and the same
selector cannot belong to two different components of the same alternative.

182 III:3 Subsorting Specification Semantics

injective by the axioms for subsorted models), no sentences relating selectors
to their constructors (but projections that play the same role as selectors are
instead related to their embeddings by the axioms for subsorted models) and
no sentences expressing undefined-selection conditions (but the disjoint-ranges
conditions and the axioms for subsorted models ensure that it is undefined to
apply a projection function to a value generated by an embedding function
from a different sort, e.g. ∀x:Car .¬D(pr 〈V ehicle〉,Bicycle〈em〈Car〉,Vehicle〈x〉〉)).

Notice that if, after a correct definition of a free datatype s, other basic
items are added to the specification that modify the overloading relation or
the subsort relation, then the resulting overall specification may be inconsis-
tent because the explicit axioms of the free datatype and the implicit axioms
for subsorted models may conflict. To be more specific, the disjointness axioms
require the constructors and embeddings of a free datatype to have disjoint
images, but at the same time some applications of its constructors and embed-
dings may be required to yield the same value by the implicit monotonicity
axioms or transitivity axioms for subsorted models. This may happen if addi-
tional basic items cause a constructor to enter the overloading relation with
a function that has as range sort a subsort of one of the alternatives of the
free datatype, or if a common subsort of two alternatives (sorts) of the free
datatype is added.

Let us consider two instances of this kind of problem. The first case ex-
emplifies the danger of modifying the subsorting relation. The second one
demonstrates how problems may arise from an extension of the overloading
relation.

Consider the following specification of the union of two sorts s1 and s2 :

sorts s1, s2;
free type Union ::= sort s1 | sort s2

Now we add a sort representing an intersection of the two sorts, and declare
a constant a of that new sort to guarantee that the intersection is non-empty:

sort Intersection < s1; Intersection < s2;
op a : Intersection

Then
em〈s1〉,Union〈em〈Intersection〉,s1〈a〈〉,Intersection〉〉

is equal to
em〈s2〉,Union〈em〈Intersection〉,s2〈a〈〉,Intersection〉〉

as both are equal to

em〈Intersection〉,Union〈a〈〉,Intersection〉

due to the transitivity axioms for subsorted models. However, the images of
em〈s1〉,Union and em〈s2〉,Union are required to be disjoint by the axioms of the
free datatype. Hence, the resulting specification is inconsistent.

Now, consider the following specification of non-empty lists of elements
taken from a sort s:

III:3.2 Signature Declarations 183

free type NEList ::= sort s | cons(first : s ; rest : NEList)

Now, let us refine the sort s into non-empty lists of elements from another
sort Elem :

free type s ::= sort Elem | cons(first : Elem ; rest : s)

Then, if e is any term of sort Elem , we have that

cons〈s,NEList〉,NEList 〈em〈Elem〉,s〈e〉, em〈Elem〉,NEList 〈e〉〉

and

em〈s〉,NEList 〈cons〈Elem,s〉,s〈e, em〈Elem〉,s〈e〉〉〉

are equal, because of the function-monotonicity axioms for subsorted models.
However, the images of cons〈s,NEList〉,NEList and em〈s〉,NEList are required to
be disjoint by the axioms of the free datatype. Hence, the resulting specifica-
tion is inconsistent.

Notice that both of these examples are quite artificial and, though the
technical problem may be subtle, intuitively the inconsistencies arise from a
change of the expected meaning of the given free datatype specifications.

Consider for instance the first example. Since we are requiring the datatype
Union to be free, we are actually describing the disjoint union of the sorts
s1 and s2 , as with Vehicle above. Thus, adding a non-empty sort for their
intersection is actually an attempt to change the understanding of what the
union is and hence correctly results in an inconsistency.

Analogously, the second example is based on a naive refinement of the sort
s where the problem comes from using the same name for the constructors of
the two levels of lists. Due to the axiom of function monotonicity, the choice of
the same name corresponds to requiring that the two constructors represent
the same function on common arguments (up to embedding). This, in turn,
means that we are describing (in an overly complex way) lists of elements of
sort Elem , instead of lists of lists, as one would expect from the structure of
the specification (and as it would be if we had used a different name for the
lower level constructor).

Sort Generation

The treatment of a sort generation SORT-GEN is as in Sect. 2.3.5 except that
the embeddings of subsorts are treated as implicit constructors.

In order to treat the embedding operations as declared operations, the
following rule, given in Sect. 2.3.5:

184 III:3 Subsorting Specification Semantics

Σ � SIG-ITEMS1 � (∆1, ∆
′
1, Ψ1)

· · ·
Σ ∪∆1 ∪∆′

1 ∪ · · · ∪∆n−1 ∪∆′
n−1 � SIG-ITEMSn � (∆n, ∆′

n, Ψn)
(S,TF ,PF , P) = ∆ = ∆1 ∪ · · · ∪∆n ∆′ = ∆′

1 ∪ · · · ∪∆′
n

(S′,TF ′,PF ′, P ′) = Σ ∪∆ ∪∆′ S �= ∅
Σ � sort-gen SIG-ITEMS1 . . . SIG-ITEMSn �

(∆ ∪∆′, Ψ1 ∪ · · · ∪ Ψn ∪ {(S, complete(TF ∪ PF ,FinSeq(S′)× S′))})

is replaced by:

Σ � SIG-ITEMS1 � (∆1, ∆
′
1, Ψ1)

· · ·
Σ ∪∆1 ∪∆′

1 ∪ · · · ∪∆n−1 ∪∆′
n−1 � SIG-ITEMSn � (∆n, ∆′

n, Ψn)
(S,TF ,PF , P,≤) = ∆ = ∆1 ∪ · · · ∪∆n ∆′ = ∆′

1 ∪ · · · ∪∆′
n

(S′,TF ′,PF ′, P ′,≤′) = Σ ∪∆ ∪∆′ S �= ∅
TF ′′ = TF ∪ {(〈s〉, s′) �→ em | s ≤ s′}

Σ � sort-gen SIG-ITEMS1 . . . SIG-ITEMSn �

(∆ ∪∆′, Ψ1 ∪ · · · ∪ Ψn ∪ {(S, complete(TF ′′ ∪ PF ,FinSeq(S′)× S′))})

Note that projections, like selectors, are not included in the set of func-
tions of the sort generation constraint, since the axioms of subsorted models
guarantee that projections can never generate new elements.

3.3 Axioms

3.3.1 Atomic Formulas

ATOM has one more alternative than in Chap. 2:

ATOM ::= ... | MEMBERSHIP

As for many-sorted specifications, an atomic formula is well-formed (with
respect to the current declarations) if it is well-sorted and expands to a
unique atomic formula for constructing sentences of the underlying insti-
tution – but now for subsorted specifications, uniqueness is required only
up to an equivalence on atomic formulas and terms. This equivalence is the
least one including fully-qualified terms that are the same up to profiles of
operation symbols in the overloading relation ∼F and embedding, and fully-
qualified atomic formulas that are the same up to the profiles of predicate
symbols in the overloading relation ∼P and embedding.

The relaxation of the well-formedness requirement for subsorted specifi-
cations means that the rule for well-formedness of atomic formulas given in
Sect. 2.5.3 has to be modified, requiring the existence of a unique expansion
up to the equivalence relation defined below.

III:3.3 Axioms 185

Thus, the following rule

there is a unique ϕ such that Σ, X � ATOM� ϕ
Σ, X � ATOM� ϕ

Σ, X � ATOM qua FORMULA� ϕ

is replaced by

ϕ � ϕ′ for all ϕ′ such that Σ, X � ATOM� ϕ′

Σ, X � ATOM� ϕ

Σ, X � ATOM qua FORMULA� ϕ

where � is defined below. In the first premise – which is equivalent to
∀ϕ′.(Σ, X � ATOM � ϕ′ implies ϕ � ϕ′) – the static semantics of ATOM oc-
curs in a negative position. This potential problem can be eliminated in the
same way as in the many-sorted case.

The equivalence between fully-qualified terms is the congruence generated
by the following axioms:

em〈s〉,s〈t〉 � t
em〈s′〉,s′′〈em〈s〉,s′〈t〉〉 � em〈s〉,s′′〈t〉 for s ≤ s′ ≤ s′′

pr 〈s′〉,s〈em〈s〉,s′〈t〉〉 � t for s ≤ s′

em〈s〉,s′′〈fw,s〈em〈s1〉,s1〈x1
s1
〉, . . . , em〈sn〉,sn

〈xn
sn
〉〉〉 �

� em〈s′〉,s′′〈fw′,s′〈em〈s1〉,s′
1
〈x1

s1
〉, . . . , em〈sn〉,s′

n
〈xn

sn
〉〉〉

for fw,s ∼F f ′
w′,s′ , w = 〈s1, . . . , sn〉, w′ = 〈s′1, . . . , s′n〉, with

w ≤ w, w′ for w = 〈s1, . . . , sn〉, and s, s′ ≤ s′′

The equivalence between atomic formulas is the natural extension of the
equivalence between fully qualified terms and is inductively defined by:

Equivalence:

ϕ � ϕ

ϕ � ϕ′

ϕ′ � ϕ

ϕ � ϕ′ ϕ′ � ϕ′′

ϕ � ϕ′′

Replacement of equivalent terms:

t � t′ sort(t) = sort(t′)
D(t) � D(t′)

t1 � t′1 t2 � t′2 sort(t1) = sort(t2) = sort(t′1) = sort(t′2)

t1
e= t2 � t′1

e= t′2

t1 � t′1 t2 � t′2 sort(t1) = sort(t2) = sort(t′1) = sort(t′2)

t1
s= t2 � t′1

s= t′2

186 III:3 Subsorting Specification Semantics

t � t′ sort(t) = s′ = sort(t′) s ≤ s′

in(s)〈s′〉〈t〉 � in(s)〈s′〉〈t′〉

ti � t′i sort(ti) = si = sort(t′i) for 1 ≤ i ≤ n w = 〈s1, . . . , sn〉
pw〈t1, . . . , tn〉 � pw〈t′1, . . . , t′n〉

Embedding and projection:

sort(t) = s = sort(t′) s ≤ s′

em〈s〉,s′〈t〉 e= em〈s〉,s′〈t′〉 � t
e= t′

sort(t) = s = sort(t′) s ≤ s′

em〈s〉,s′〈t〉 s= em〈s〉,s′〈t′〉 � t
s= t′

pr 〈s′〉,s〈t′〉 � pr 〈s′′〉,s〈t′′〉
sort(t′) = s′ sort(t′′) = s′′ s ≤ s′ s ≤ s′′

in(s)〈s′〉〈t′〉 � in(s)〈s′′〉〈t′′〉

sort(t) = s s ≤ s′ s ≤ s′′

D(em〈s〉,s′〈t〉) � D(em〈s〉,s′′〈t〉)

Predicate overloading:

sort(ti) = si pw ∼P p′w′

w = 〈s1, . . . , sn〉 w′ = 〈s′1, . . . , s′n〉 〈s1, . . . , sn〉 ≤ w, w′

pw〈em〈s1〉,s1〈t1〉, . . . , em〈sn〉,sn
〈tn〉〉 � p′w′〈em〈s1〉,s′

1
〈t1〉, . . . , em〈sn〉,s′

n
〈tn〉〉

Membership

A membership formula is well-sorted if the term is well-sorted for a supersort
of the specified sort. It expands to an application of the pre-declared predi-
cate symbol for testing values of the sort of the given term for membership
in the image of the embedding of the given sort.

MEMBERSHIP ::= membership TERM SORT

(S,TF ,PF , P,≤), X � TERM� t sort(t) = s′ s ≤ s′

(S,TF ,PF , P,≤), X � membership TERM s � in(s)〈s′〉〈t〉

III:3.3 Axioms 187

3.3.2 Terms

Term formation is extended by letting a well-sorted term of a subsort be
regarded as a well-sorted term of a supersort.

(S,TF ,PF , P,≤), X � TERM� t sort(t) = s s ≤ s′

(S,TF ,PF , P,≤), X � TERM� em〈s〉,s′〈t〉
Analogously for sorted terms we have

(S,TF ,PF , P,≤), X � TERM� t sort(t) = s s ≤ s′

(S,TF ,PF , P,≤), X � sorted-term TERM s′ � em〈s〉,s′〈t〉

Casts

Terms have one more alternative, representing the (partial) projection of
values from a supersort onto a subsort. A cast term is well-sorted if the term
is well-sorted for a supersort of the sort. It expands to an application of
the pre-declared operation symbol for projecting the sort of the term to the
given sort.

TERM ::= ... | CAST
CAST ::= cast TERM SORT

(S,TF ,PF , P,≤), X � TERM� t sort(t) = s′ s ≤ s′

(S,TF ,PF , P,≤), X � cast TERM s � pr 〈s′〉,s〈t〉

4

Structured Specification Semantics

The semantics of a well-formed structured specification is of the same form as
that of a basic specification: a signature Σ together with a class of Σ-models.
While the model class of a basic specification can be characterized by a set of
sentences, this is not possible for structured specifications, due to the presence
of constructs such as hiding and freeness. Hence, the semantics of structured
specifications is essentially based on model classes.

The structure of a specification is not reflected in its models: it is used
only to present the specification in a modular style. (Specification of the ar-
chitecture of models in the CoFI framework is addressed by architectural
specifications, see Chap. I:5, with the semantics given in Chap. 5.)

Within a structured specification, the current signature may vary. It is
also called the local environment. On the other hand, the current association
between names and the specifications that they reference is called the global
environment.

For the semantics of structured specifications (in particular, those involv-
ing hiding) the axiom of choice is assumed. Note that hiding is as expressive
as second-order existential quantification, the semantics of which may depend
on properties of the background set theory, like the axiom of choice. For in-
stance, one can express the proposition that every vector space has a basis as
a view in CASL (see Chap. V:9), and indeed the well-formedness of this view
is equivalent to the axiom of choice.

4.1 Structuring Concepts

The CASL structuring concepts and constructs and their semantics do not
depend on the choice of institution used to write basic specifications. This
means that Chaps. 2 and 3 are orthogonal to Chap. 4 (and also to Chaps. 5
and 6). Therefore, CASL basic specifications as given in Chaps. 2 and 3 can
be restricted to sublanguages or extended in various ways without the need
to reconsider or to change Chaps. 4, 5, and 6.

190 III:4 Structured Specification Semantics

The concepts defined in Chaps. 2 and 3 lead to a CASL institution, here
formalized as an institution with qualified symbols (Sect. 4.1.1). Institution
independence of the semantics of structured specifications is achieved by in-
troducing a vocabulary of derived notions (Sect. 4.1.2) that can be defined
over an arbitrary institution with qualified symbols, and writing the semantics
in terms of this vocabulary. At various places, we detail what these notions
mean in the CASL institution.

The derived notions are used mainly in the computation of signature mor-
phisms out of symbol maps, which is addressed in Sect. 4.1.3. Signature mor-
phisms (and the corresponding reducts on models) occur at many places in
the semantics of structured specifications. For instance, hiding some symbols
in a specification involves a signature morphism that injects the non-hidden
symbols into the original signature; the models, after hiding the symbols, are
the reducts of the original models along this morphism. Translation goes the
other way: the reducts of models over the translated signature back along the
morphism give the original models. CASL uses symbol maps to denote signa-
ture morphisms; the semantics of symbol maps is of course institution specific
(Sect. 4.5).

Finally, in Sect. 4.1.4, we slightly modify (in an institution independent
way) the institution, equipping so-called extended signatures with a set of
symbols as a further component.

Let us stress that, though the following details are a bit complicated, once
the reader has accepted the concept of signature unions and has learned that
signature morphisms are generated by maps between symbols in a more or less
expected way, the semantics of structured and architectural specifications may
be understood in terms of an arbitrary institution, with the qualified symbol
structure put aside. For the first reading of this chapter, it may therefore be a
good idea to continue with the institution independent structuring concepts
in Sect. 4.1.5, and refer to the sections before that only when needed.

4.1.1 Institution Independence and the CASL Institution

The CASL structuring concepts and constructs and their semantics do not
depend on a specific institution; hence, they are given here in an institution-
independent way.

In order to achieve institution independence, below we introduce a min-
imal vocabulary of notions required for the semantics of structured spec-
ifications. Together they form the CASL institution with qualified symbols.
In order to change the framework of basic specifications, one just has to
change the institution with qualified symbols. While Chaps. 2 and 3 are com-
pletely institution-specific, in Chap. 4 we explicitly indicate those parts that
are institution-specific. These are:

III:4.1 Structuring Concepts 191

• the definition of the CASL institution with qualified symbols;
• some propositions about what some institution-independent derived no-

tions mean in the CASL institution (Props. 4.1, 4.2, 4.4, 4.5, and 4.6);
• the semantic rule for treating a basic specification as a structured specifi-

cation (see page 204); and
• some of the rules for symbol lists and maps in Sect. 4.5.

A more formal treatment of this issue can be found in [39].
We now come to the components of the CASL institution with qualified

symbols. We first recall the components of the CASL institution with symbols
that have been introduced in Chaps. 2 and 3.

Category of signatures and signature morphisms: A category SubSig
of signatures with subsorting was introduced in Chap. 3.

Sentences: A sentence functor Sen : Sig→Set was introduced in Chap. 2,
see page 135, and extended to subsorted signatures via composition with
the functor (.)# : SubSig→Sig, yielding a functor SubSen : SubSig→
Set.

Models: A model functor Mod : Sigop→CAT was introduced in Chap. 2,
see page 130, and extended to subsorted signatures via composition with
the functor (.)# : SubSig→Sig and further restriction by axioms, yield-
ing a functor SubMod : SubSigop→CAT.

Satisfaction: A satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) was intro-
duced in Chap. 2, see page 135, and extended to subsorted signatures,
models and sentences via composition with the functor (.)# : SubSig→
Sig.

Signature symbols: A set of signature symbols SigSym and a faithful func-
tor |.| : Sig→Set giving, for each signature Σ, a set of signature symbols
|Σ| ⊆ SigSym, and for each signature morphism σ : Σ→Σ′, a translation
of signature symbols |σ| : |Σ|→|Σ′|, were introduced in Chap. 2, pages 126
and 128, and extended to subsorted signatures in Chap. 3, page 171.

We now extend this institution with more notions, mainly regarding the
computation of signature morphisms out of symbol maps.

Symbols:

k ∈ SymKind = {implicit , sort , fun, pred}
SY ∈ Sym =

s ∈ Sort �
f t
ws ∈ QualFunName �

fp
ws ∈ QualFunName �
pw ∈ QualPredName �

(k, Ident) ∈ (SymKind × ID)

192 III:4 Structured Specification Semantics

Identifiers can be regarded as symbols using the injection

IDAsSym : ID→Sym

defined by IDAsSym(Ident) = (implicit , Ident).
For simplicity, we regard SORT-ID as a subset of ID, although there is only
an embedding between the two sets. The embedding maps WORDS to id
WORDS and comp-sort-id WORDS ID+ to id (comp-mix-token ID+).

Factorization of signature symbol functor: There is a partial function
SymAsSigSym : Sym ⇀ SigSym, such that the object part of the signature
symbol functor |.| : SubSig → Set can be can be factorized through a
symbol function

||.|| : : |SubSig|→|Set|,
such that ||Σ || ⊆ Sym and for each Σ ∈ |SubSig|, SymAsSigSym(||Σ ||)
is defined and equal to |Σ|.
We define SymAsSigSym as follows:

SymAsSigSym(s) = s s ∈ Sort
SymAsSigSym(f t

ws) = fws fws ∈ QualFunName
SymAsSigSym(fp

ws) = fws fws ∈ QualFunName
SymAsSigSym(pw) = pw pw ∈ QualPredName
SymAsSigSym(k, Ident) = undefined

If Σ = (S,TF ,PF , P,≤), we define ||Σ || ⊆ Sym as follows:

||Σ || = S ∪ {f t
ws | ws ∈ FinSeq(S)× S, f ∈ TFws}

∪ {fp
ws | ws ∈ FinSeq(S)× S, f ∈ PFws}

∪ {pw | w ∈ FinSeq(S), p ∈ Pw}

Signature symbols matching symbols: The matching relation

matches ⊆ SigSym × Sym

between signature symbols and symbols is the least relation satisfying
• s matches (implicit , s) for s ∈ Sort , fws matches (implicit , f) for fws ∈

QualFunName and f ∈ ID, and pw matches (implicit , p) for pw ∈
QualPredName and p ∈ ID,

• s matches (sort , s) for s ∈ Sort , fws matches (fun, f) for fws ∈
QualFunName and f ∈ ID, and pw matches (pred , p) for pw ∈
QualPredName and p ∈ ID,

• s matches s for s ∈ Sort ,
• fws matches fp

ws for fws ∈ QualFunName,
• fws matches f t

ws for fws ∈ QualFunName,
• pw matches pw for pw ∈ QualPredName.

Names of signature symbols: There is a function nameSigSym ⇀ ID as-
signing a name name(SSY) to each signature symbol SSY , such that,
whenever name(SSY) is defined,

III:4.1 Structuring Concepts 193

SSY matches IDAsSym(name(SSY))

It is defined as follows:
name(s) = s, for s ∈ Sort ,

name(fws) =
{

f, if fws ∈ QualFunName and f ∈ ID
undefined, otherwise ,

name(pw) =
{

p, if pw ∈ QualPredName and p ∈ ID
undefined, otherwise .

Note that name is defined on the actual signature symbols of a signature,
since these exclude the special embedding, projection and membership
symbols introduced in Sect. 3.1.1, and the latter are the only ones that
are not based on an ID.

Empty signature: The empty signature, denoted by ∅, has been defined in
Sect. 1.1. We define M⊥ = Mod(∅). M⊥ consists of exactly one object.

Signature unions: The union of signatures has been defined in Sect. 3.1.1,
see page 170. The union of Σ1 and Σ2, written Σ1 ∪Σ2, comes with two
injections ιΣ1⊆Σ1∪Σ2 and ιΣ2⊆Σ1∪Σ2 .
In the CASL institution, unions are always defined, but in other frame-
works, this need not be the case. In the rules for the semantics below,
when we use a union inside a condition (e.g. within the premises of a rule)
it is implicitly assumed that the definedness of the union is added with a
conjunction to this condition (e.g. yielding an extra premise).

Generating signature morphisms: A signature morphism

σ = (σS, σTF, σPF, σP) : (S,TF ,PF , P,≤) → (S′,TF ′,PF ′, P ′,≤′)

is said to be generating if
• |σ| is surjective,
• σ detects totality (i.e. f ′ ∈ TF ′

w′s′ implies that there is some ws with
σS(ws) = ws and some f ∈ TFws with σTF

ws (f) = f ′), and
• ≤′ is the least pre-order on S′ satisfying

σS(s1) ≤′ σS(s2) if s1 ≤ s2.

It can be shown that generating signature morphisms σ : Σ1→Σ2 are final,
that is, any function h : |Σ2|→|Σ3| is a signature morphism provided that
h ◦ |σ| : |Σ1|→|Σ3| is1.

It is possible to replace the CASL institution with a different one, provided
that it comes equipped with the components listed above.

4.1.2 Derived Notions

We now introduce, in an institution independent way, some further notions,
derived from those introduced above, that are needed for the semantics of
1 Here, h : |Σ2| → |Σ3| is said to be a signature morphism if there is a signature

morphism θ : Σ2→Σ3 with |θ| = h.

194 III:4 Structured Specification Semantics

structured specifications. At various places, we detail what these notions mean
in the CASL institution.

Subsignatures, signature inclusions and extensions: We say that a sig-
nature morphism ι : Σ→Σ′ is a signature inclusion if |ι| is an inclusion
(of |Σ| into |Σ′|). If there exists a signature inclusion from Σ to Σ′, we
call Σ a subsignature of Σ′ and write Σ ⊆ Σ′. Notice that in this case
the signature inclusion is unique, and we denote it by ιΣ⊆Σ′ . Σ′ is then
called an extension of Σ.

Reducts along signature inclusions: Given a subsignature Σ of a signa-
ture Σ′ and a Σ′-model M , we write M |Σ for M |ιΣ⊆Σ′ . Similarly, given
a Σ′-homomorphism h : M→M ′, we write h|Σ for h|ιΣ⊆Σ′ .

Final signature unions: A sink is a pair of morphisms with common
codomain. A sink (σ1 : Σ1 → Σ, σ2 : Σ2 → Σ) is called final, if for
each function h : |Σ| → |Σ′|, h is a signature morphism2 provided that
h ◦ |σ1| : |Σ1| → |Σ′| and h ◦ |σ2| : |Σ2| → |Σ′| are. A union is said to be
final if the sink consisting of the two inclusions is final.

Proposition 4.1 (CASL-specific). Let ≡F and ≡P denote the transi-
tive closures of the overloading relations ∼F and ∼P , respectively. Then
signature morphisms preserve ≡F and ≡P .

Proof. By induction on the transitive closure, using the fact that signature
morphisms preserve ∼F and ∼P as basis for the induction. ��

Proposition 4.2 (CASL-specific). For a union Σ1 ∪ Σ2, the following
are equivalent:
1. The union is final.
2. The relation ≡Σ1∪Σ2

F of Σ1 ∪Σ2 is the transitive closure of the union
of the relations ≡Σ1

F and ≡Σ2
F (and similarly for ≡P).

Proof. ¬(2) ⇒ ¬(1): We here argue for ≡F only, the argument for ≡P

being entirely analogous. Let ≡F be the transitive closure of the union
of the relations ≡Σ1

F and ≡Σ2
F . Suppose without loss of generality that

f : w→ s ≡Σ1∪Σ2
F f : w′→ s′, but not f : w→ s ≡Σ1

F f : w′→ s′. Extend
Σ1∪Σ2 to Σ by adding, for any w′′, s′′ such that f : w′′→s′′ ≡F f : w→s,
an operation symbol g : w′′→ s′′ not in Σ1 ∪ Σ2. Let σ : |Σ1 ∪ Σ2|→ |Σ|
be the identity, except that f : w′′→ s′′ is mapped to g : w′′→ s′′ for any
f : w′′→s′′ ≡F f : w→s. Since σ(f : w′→s′) = f : w′→s′ �≡Σ

F g : w→s =
σ(f : w→ s), σ does not preserve the overloading relations and therefore
is not a signature morphism. But σ ◦ ιΣ1⊆Σ1∪Σ2 and σ ◦ ιΣ2⊆Σ1∪Σ2 are
signature morphisms (any two function symbols in the overloading relation
of Σ1 ∪Σ2 are either both ≡F f : w→s or both �≡F f : w→s). Thus, the
union is not final.

2 See the previous footnote.

III:4.1 Structuring Concepts 195

(2) ⇒ (1): In order to show finality of the union, consider a function
σ : |Σ1 ∪ Σ2| → |Σ| such that σ ◦ ιΣ1⊆Σ1∪Σ2 and σ ◦ ιΣ2⊆Σ1∪Σ2 are sig-
nature morphisms. Now the subsorting relation and the transitive clo-
sure of overloading relations are the transitive closure of the respective
component-wise union. Therefore, σ preserves these relations (and also
profiles of symbols) because σ ◦ ιΣ1⊆Σ1∪Σ2 and σ ◦ ιΣ2⊆Σ1∪Σ2 do so. Thus,
σ is a signature morphism. ��

Signature symbol maps: A signature symbol map is a binary relation on
the set of signature symbols3:

h ∈ SigSymMap = FinSet(SigSym × SigSym)

Fully qualified symbols: A symbol SY is said to be fully qualified if SY ∈
Dom(SymAsSigSym)).

Symbol maps:
r ∈ SymMap = Set(Sym × Sym)4

Symbol map induced by a signature morphism: Given a signature
morphism σ : Σ1 → Σ2, the symbol map induced by σ is defined to be

||σ|| = {(SY 1,SY 2) | SY i ∈ ||Σi || fully qualified for i = 1, 2, and
|σ|(SymAsSigSym(SY 1)) matches SY 2}

Signature morphisms matching symbol maps: Given a signature sym-
bol SSY and a symbol map r, we say that SSY is not directly mapped by
r if SymAsSigSym−1(SSY) ∩ dom(r) = ∅.
Given a signature morphism σ : Σ→Σ′ and a symbol map r ⊆ Sym×Sym,
we say that σ matches r if:
• for all (SY ,SY ′) ∈ r with SY fully qualified, we have SY ∈ ||Σ || and
|σ|(SymAsSigSym(SY)) matches SY ′, and

• for all (SY ,SY ′) ∈ r such that SY is not fully qualified,
– SY ∈ ||Σ ||,
– there exists some SSY ∈ |Σ| not directly mapped by r that matches

SY , and moreover
– for all such SSY ∈ |Σ| not directly mapped by r and matching

SY , we have |σ|(SSY) matches SY ′.
Signature morphisms leaving names unchanged: Given a signature

morphism σ : Σ → Σ′ and a symbol map r ⊆ Sym × Sym, we say that
σ leaves names unchanged outside r if for any SSY ∈ |Σ| matching no
SY ∈ dom(r), name(|σ|(SSY)) = name(SSY).

Compatibility of signature morphisms: A pair of signature morphisms
σ1 : Σ1 →Σ′

1 and σ2 : Σ2 → Σ′
2 are compatible if their signature symbol

maps |σ1| and |σ2| coincide on the intersection |Σ1|∩|Σ2| of their domains
(i.e., graph(|σ1|) ∪ graph(|σ2|) is a function).

3 A motivation of this choice can be found in [39].
4 We also need infinite symbol mappings because of the function Ext , see page 196.

196 III:4 Structured Specification Semantics

Unions of signature morphisms: Given a pair of signature morphisms
σ1 : Σ1→Σ′

1 and σ2 : Σ2→Σ′
2, if graph(|σ1|) ∪ graph(|σ2|) is (the graph

of) a signature morphism from Σ1∪Σ2 to Σ′
1∪Σ′

2, then σ1∪σ2 is defined
to be this signature morphism (it is unique since |.| is faithful), otherwise,
it is undefined.

Σ1
σ1 ��� �

����������� Σ′
1 � �

����
��

���
��

Σ1 ∪Σ2
σ1∪σ2 �� Σ′

1 ∪Σ′
2

Σ2
σ2 ��

� �

�����������
Σ′

2

� �

�����������

Proposition 4.3. Given signature morphisms σ1 : Σ1→Σ′
1 and σ2 : Σ2→

Σ′
2, consider the following conditions:
1. Σ1 ∪Σ2 is final and σ1 and σ2 are compatible.
2. σ1 ∪ σ2 is defined.
3. σ1 and σ2 are compatible.

We have that (1) ⇒ (2) ⇒ (3) (but the converse implications do not hold
in general).

Proof. (1) ⇒ (2): Compatibility of σ1 and σ2 means that graph(|σ1|) ∪
graph(|σ2|) is a function. By finality of the union Σ1 ∪ Σ2, it is also a
signature morphism.
(2) ⇒ (3): If σ1 ∪ σ2 exists, graph(|σ1|) ∪ graph(|σ2|) is a function. Thus,
σ1 and σ2 are compatible. ��

Extension of symbol maps: There is a function

Ext : FinSet(Sym × Sym)→Set(Sym × Sym)

giving for each symbol map r ⊆ Sym×Sym an extension Ext(r) ⊆ Sym×
Sym of r, i.e. r ⊆ Ext(r). At this point, we take Ext(r) to be just r.
This will be modified in Sect. 4.6 when giving the semantics of compound
identifiers.

4.1.3 Signature Morphisms

A set SSYs of signature symbols in |Σ| determines the inclusion of the
smallest subsignature Σ|SSYs of Σ that contains these symbols. (When an
operation or predicate symbol is included, all the sorts in its profile have to
be included too.)

A subsignature Σ′ of a signature Σ is said to be full if every subsignature
of Σ with the same set of names as Σ′ is a subsignature of Σ′.

III:4.1 Structuring Concepts 197

We call a set of signature symbols SSYs ⊆ |Σ| closed in Σ if there is a
subsignature Σ′ of Σ with the set of signature symbols SSYs, i.e. such that
|Σ′| = SSYs.

Given a set SSYs ⊆ |Σ|, if there is a unique full subsignature Σ′ of Σ
such that |Σ′| is the smallest set containing SSYs and closed in Σ, then Σ′ is
called the signature generated in Σ by SSYs and is denoted by Σ|SSYs .

Proposition 4.4 (CASL-specific). The following are equivalent for a sub-
signature Σ of Σ′:

1. Σ is a full subsignature of Σ′.
2. Σ inherits the subsort relation from Σ′ (i.e. ≤ = ≤′ ∩ (S × S)) and to-

tality of function symbols (i.e. a function symbol of Σ that is total in Σ′

must already be total in Σ – formally this means PFws ∩ TF ′
ws = ∅ for

each ws ∈ S∗ × S).

Proof. (1) ⇒ (2): Let Σ = (S, TF, PF, P,≤) be a full subsignature of Σ′ =
(S′, TF ′, PF ′, P ′,≤′). Then Σ′′ = (S, TF ′′, PF ′′, P,≤′′) with

• ≤′′ = ≤′ ∩ (S × S)),
• TF ′′

ws = TF ′
ws ∩ (TFws ∪ PFws),

• PF ′′
ws = PF ′

ws ∩ (TFws ∪ PFws)

is a subsignature of Σ′ with |Σ| = |Σ′′|. By fullness, Σ′′ ⊆ Σ, hence, ≤′∩(S×
S) ⊆ ≤ (while the converse inclusion holds since Σ ⊆ Σ′). Moreover, by Σ′′ ⊆
Σ, PF ′′

ws = PF ′
ws ∩ (TFws ∪PFws) ⊆ PFws , which implies TFws ∩PF ′

ws = ∅
(note that TFws and PFws are disjoint).

(2)⇒ (1): Let Σ = (S, TF, PF, P,≤′ ∩ (S×S)) be a subsignature of Σ′ =
(S′, TF ′, PF ′, P ′,≤′). Given any subsignature Σ′′ = (S′′, TF ′′, PF ′′, P ′′,≤′′)
of Σ′ with |Σ| = |Σ′′|, Σ and Σ′′ can differ only in the subsort relation and in
totality of function symbols. Since ≤′′ ⊆ ≤′ by the subsignature property, and
S = S′′ by |Σ| = |Σ′′|, we have ≤′′ ⊆ ≤′ ∩ (S×S). Moreover, if f ∈ TF ′′

ws , by
the subsignature property, also f ∈ TF ′

ws . Since TFws∪PFws = TF ′′
ws∪PF ′′

ws ,
TFws ∩ PFws = ∅ and moreover, PFws ∩ TF ′

ws = ∅ by assumption, we get
f ∈ TFws . Thus, Σ′′ ⊆ Σ. ��

Proposition 4.5 (CASL-specific). For any set SSYs ⊆ |Σ|, Σ|SSYs exists.

Proof. Let Σ = (S,TF ,PF , P,≤). Given SSYs ⊆ |Σ|, let SSYs ′ be the union
of SSYs with all the sort symbols occurring in profiles of signature symbols
in SSYs. Obviously, SSYs′ is the smallest set containing SSYs and closed in
Σ. Let Σ|SSYs = (S′, TF ′, PF ′, P ′,≤) ∩ (S′ × S′)) where

S′ = {s ∈ S | s ∈ SSYs ′},
TF ′

ws = {f ∈ TFws | fws ∈ SSYs ′},
PF ′

ws = {f ∈ PFws | fws ∈ SSYs ′},
P ′(w) = {p ∈ P (w) | pw ∈ SSYs′}.

198 III:4 Structured Specification Semantics

By Prop. 4.4, Σ|SSYs is a full subsignature of Σ with set of signature sym-
bols SSYs′. Clearly, Σ|SSYs is unique with this property. Together with the
property that SSYs ′ is the smallest set containing SSYs and closed in Σ, this
gives the desired result. ��

A set of signature symbols SSYs in |Σ| also determines the inclusion of
the largest subsignature Σ|SSYs of Σ that does not contain any of these
signature symbols. (When a sort is not included, no operation or predicate
symbol with that sort in its profile can be included either.)

Given a set SSYs ⊆ |Σ|, if there is a unique full subsignature Σ′ of Σ
such that |Σ′| is the largest set disjoint from SSYs and closed in Σ, then Σ′

is called the signature co-generated in Σ by SSYs and is denoted by Σ|SSYs .

Proposition 4.6 (CASL-specific). For any set SSYs ⊆ |Σ|, Σ|SSYs exists.

Proof. Analogous to the proof of Prop. 4.5. ��

A mapping r of symbols in ||Σ || determines the morphism r|Σ from Σ that
extends this mapping with identity maps for all the remaining names in ||Σ ||.
In case such a signature morphism does not exist, the enclosing construct is
ill-formed.

Given a signature Σ and a symbol map r ⊆ Sym × Sym, a generating
signature morphism σ : Σ → Σ′ matching r and leaving names unchanged
outside r is called the signature morphism from Σ induced by r, provided that
σ is unique with these properties. If it exists, we will denote it by r|Σ .

Given signatures Σ and Σ′, a mapping r of symbols in ||Σ || to symbols in
||Σ ′|| determines the unique signature morphism r|ΣΣ′ from Σ to Σ′ that
extends the given mapping, and then is the identity, as far as possible, on
common names of Σ and Σ′. (Mapping an operation or predicate symbol
implies mapping the sorts in the profile consistently.) In case such a signature
morphism does not exist or is not unique, the enclosing construct is ill-
formed.

Let signatures Σ and Σ′ and a symbol map r ⊆ Sym × Sym be given.
Now r determines the set of all signature morphisms σ : Σ→Σ′ such that

there is some set SSYs of signature symbols with

1. σ matches r and leaves names unchanged on SSYs (where the latter means
that name(|σ|(SSY)) = name(SSY) for each SSY ∈ SSYs), and

2. SSYs is maximal with the property that for some signature morphism θ :
Σ → Σ′, θ matches r and leaves names unchanged on SSYs (the maxi-
mality here implements the ‘as far as possible’ requirement on page 35 of
the Summary).

III:4.1 Structuring Concepts 199

If this set is a singleton, its unique element (also called r|ΣΣ′) is the signature
morphism from Σ to Σ′ induced by r.

When a generic specification (given by the inclusion ∆ : Σ→Σ′ of its for-
mal parameters into the body) is instantiated, the fitting arguments yield
a signature morphism σ : Σ → ΣA, which is then extended to a signature
morphism σ(∆) : Σ′→ΣA ∪ΣA(∆) that is applicable to the signature Σ′ of
the body of the generic specification. The resulting signature ΣA ∪ ΣA(∆)
is the union of the fitting arguments with the translated body.
An instantiation of a generic specification is not well-formed if the result
signature is not a pushout of the body and argument signatures.

At the level of symbols, the construction is basically a set-theoretic union,
where some side conditions ensure that this gives a set-theoretic pushout.
Since we use final signature morphisms and final unions to lift this to the
level of signatures, and final lifts of colimits are again colimits, we can show
that the construction, if defined, always yields a pushout.

Given a signature extension ∆ : Σ→Σ′ and a signature morphism σ : Σ→
ΣA, if:

• the signature morphism r|Σ′
from Σ′ induced by

r = Ext(||σ||) ∩ (||Σ ′|| × Sym)

exists5 (let its target be denoted by ΣA(∆));
• the union ΣA ∪ΣA(∆) exists, and moreover, is final6;
• |ΣA| ∩ |ΣA(∆)| ⊆ |σ|(|Σ|) 7; and
• ker(|(r|Σ′

)|) ⊆ ker(|σ|) 8,

then ιΣA(∆)⊆ΣA∪ΣA(∆) ◦ r|Σ′
is called the extension of σ along ∆, denoted by

σ(∆) : Σ′→ΣA ∪ΣA(∆).

Proposition 4.7. If the extension of σ : Σ → ΣA along ∆ : Σ → Σ′ exists,
then
5 This may fail to exist for several reasons. One is that the symbol map r is not a

function for reasons that are discussed in footnotes 10 and 11 of Sect. 4.6; another
is that r is a function, but there is no signature morphism matching it. In CASL,
the latter can happen for example if r does not preserve the overloading relations.
An example is given in [38].

6 The union may fail to be final in CASL if symbols newly enter the overloading
relation, cf. Prop. 4.2.

7 This property may fail if the actual parameter and the body share symbols that
are in neither the formal parameter nor the import.

8 This property may fail if the fitting morphism σ is not injective (say, it maps both
elem1 and elem2 to nat) and this leads to new identifications in the extension
(say, both list[elem1] and list[elem2] occur in the body, so σ(∆) maps both to
list[nat]), see Sect. 4.6.

200 III:4 Structured Specification Semantics

Σ

σ

��

⊆ Σ′

σ(∆)

��
ΣA ⊆ ΣA ∪ΣA(∆)

is a pushout in Sig.

Proof. The diagram commutes because ||σ|| ⊆ r ⊆ ||σ(∆)||. Given any cocone
(σA : ΣA→Σ̂, σ′ : Σ′→Σ̂) define θ : |ΣA| ∪ |ΣA(∆)|→Σ̂ as follows:

θ(sy) = |σA|(sy), if sy ∈ |ΣA|

θ(sy) = |σ′|(sy′), if sy ∈ |ΣA(∆)|, |σ(∆)|(sy′) = sy

The second line is well-defined because ker(|(r|Σ′
)|) ⊆ ker(|σ|), and the two

lines agree on their overlapping part because |ΣA| ∩ |ΣA(∆)| ⊆ |σ|(|Σ|) and
the cocone commutes.

Clearly, θ is the unique function from |ΣA| ∪ |ΣA(∆)| to |Σ̂| with θ ◦
|ιΣA⊆ΣA∪ΣA(∆)| = |σA| and θ ◦ |σ(∆)| = |σ′|.

Now θ ◦ ιΣA(∆)⊆ΣA∪ΣA(∆) ◦ r|Σ′
= σ′ is a signature morphism. By fi-

nality of r|Σ′
, θ ◦ ιΣA(∆)⊆ΣA∪ΣA(∆) is also a signature morphism. Since

θ ◦ ιΣA⊆ΣA∪ΣA(∆) = σA is a signature morphism as well, by finality of the
union, θ is also a signature morphism. ��

4.1.4 Extended Signatures

Any symbol declared explicitly in the parameter (and not only in the import)
must be mapped to a symbol declared explicitly in the argument specification
(cf. Sect. 4.3.2 below).

This requirement eases the use of the default mechanism for symbol maps
occurring in instantiations of generic specifications. The reason is that argu-
ment specifications are regarded as extensions of the imports. While the latter
are always instantiated with an identity map, the fitting map for the former
may be computed by the default mechanism. However, in the presence of im-
ports, in most cases ambiguities will arise, since e.g. the imports as well as the
actual parameter will declare sorts symbols. By concentrating on the symbols
declared explicitly in the parameter and the argument specification, respec-
tively, and excluding the symbols from the import, there are fewer potential
ambiguities.

However, a prerequisite for realizing this is the ability to distinguish be-
tween symbols in the argument specification that only come from the import
and those that are explicitly declared or re-declared in the argument specifi-
cation. As mentioned on page 127, when abstracting signature fragments ∆
to signature inclusions Σ ↪→ Σ ∪∆, information about any re-declaration in
∆ of symbols in Σ is lost. In order to regain this information, we now extend

III:4.1 Structuring Concepts 201

signatures with an additional signature symbol set, called the set of explicitly
declared signature symbols.

Technically, we replace the institution with symbols above by a new
one that can be obtained from the old one in a generic (i.e. institution-
independent) way. References below to the derived notions from Sect. 4.1.2
above should be taken to refer to this new institution.

Category of signatures and signature morphisms: Signatures are pairs
(Σbasic,SSY), where Σbasic is a signature from SubSig and SSY ⊆
|Σbasic| is a set of signature symbols. Signature morphisms σ : (Σbasic

1 ,
SSY 1) → (Σbasic

2 ,SSY 2) are such that σ : Σbasic
1 →Σbasic

2 is a signature
morphism from SubSig and |σ|(SSY 1) ⊆ SSY 2.

Sentences: The sentence functor is just SubSen, acting on the first compo-
nent of signatures.

Models: The model functor is just SubMod, acting on the first component
of signatures.

Satisfaction: Satisfaction is just as before.
Signature symbols: The signature symbol functor is just the signature sym-

bol functor from before, acting on the first component of signatures.
Symbols: Symbols are defined as before.
Signature symbols matching symbols: The matching relation between

signature symbols and symbols is defined as before.
Factorization of signature symbol functor: The factorization of the sig-

nature symbol functor is defined as before (the symbol function acting on
the first component of signatures).

Names of signature symbols: Names of signature symbols are defined as
before.

Empty signature: The empty signature is defined as before, except that it
is paired with the empty set of signature symbols.

Signature unions: Signature unions are defined component-wise.
Generating signature morphisms: A signature morphism

σ : (Σbasic
1 ,SSY 1)→(Σbasic

2 ,SSY 2)

is said to be generating if σ : Σbasic
1 →Σbasic

2 is generating in the earlier
sense, and moreover |σ| : SSY 1→SSY 2 is surjective.

We additionally define the function EmptyExplicit on extended signatures,
given by

EmptyExplicit (Σbasic,SSY) = (Σbasic, ∅).

4.1.5 Institution Independent Structuring Concepts

Abusing the notation somewhat, in the rest of the semantics of CASL we will
work with the institution with fully qualified symbols defined in the preceding
section. The category of extended signatures will be denoted simply by Sig;

202 III:4 Structured Specification Semantics

the same notation will be used for the class of its objects, with Σ used as the
main meta-variable ranging over it, and σ as the main meta-variable ranging
over signature morphisms. Similarly, the sentence and model functors of this
institutions will be denoted by Sen and Mod, respectively, with the rest of
the components of the institution with symbols denoted as they have been so
far.

The use of this generic notation is to remind the reader that everywhere
except for a number of rules concerned with the details of symbol maps in
Sect. 4.5, no specific assumptions are made about these concepts, except that
they form an institution with fully qualified symbols (satisfying the properties
listed in Sect. 4.1.1).

Specification Morphisms

For a specification morphism, it is required that the reduct of each model of
the target specification is a model of the source specification; otherwise the
semantics is undefined.

Given specifications SPEC1 and SPEC2 with signatures Σ1 and Σ2 and
model classesM1 andM2, respectively, a specification morphism σ : SPEC1→
SPEC2 is a signature morphism σ : Σ1→Σ2 such that M2|σ ⊆M1.

Generic Specifications

The static semantics GS s of a generic specification is a generic signature
consisting of two signatures (the import and the body) and a sequence of
signatures (the formal parameters). (If there is more than one import specifi-
cation, the imports can be united to a single import. This is not possible for
the parameter specifications: they have to be instantiated individually.)

(ΣI , 〈Σ1, . . . , Σn〉, ΣB)
or GS s ∈ GenSig = Sig× FinSeq(Sig)× Sig

The requirements on a generic signature GSs = (ΣI , 〈Σ1, . . . , Σn〉, ΣB) ∈
GenSig are:

• ΣI ⊆ Σi for 1 ≤ i ≤ n, and
• Σ1 ∪ · · · ∪Σn ⊆ ΣB.

Let pairs (ΣA
i , σi) be given where σi : Σi→ΣA

i is a signature morphism,
for 1 ≤ i ≤ n. We assume that σf = σ1∪· · ·∪σn∪idΣI is defined, which implies
by Prop. 4.3 that all the σi are compatible with each other and compatible
with the identity idΣI . Let ∆ denote the signature extension given by the
inclusion of Σ1 ∪ · · · ∪Σn into ΣB. If ΣA = ΣA

1 ∪ . . . ∪ΣA
n is defined then:

GS s((ΣA
1 , σ1), . . . , (ΣA

n , σn)) = (ΣA ∪ΣA(∆), σf (∆)).

The notations ΣA(∆) and σf (∆) are defined on page 199.

III:4.1 Structuring Concepts 203

The model semantics GSm of a generic specification consists of a model
class for the import, a sequence of model classes for the formal parameters,
and a model class for the body of the generic specification.

(MI , 〈M1, . . . ,Mn′〉,MB)
or GSm ∈ GenSpec =

ModelClass× FinSeq(ModelClass)
×ModelClass

A generic signature GS s = (ΣI , 〈Σ1, . . . , Σn〉, ΣB) ∈ GenSig and an element
GSm = (MI , 〈M1, . . . ,Mn′〉,MB) of GenSpec are compatible if

• n = n′,
• MI is a class of ΣI -models,
• each Mi is a class of Σi-models and each element of Mi extends some

model of MI for 1 ≤ i ≤ n, and
• MB is a class of ΣB-models, each model of which extends some model of
Mi for each 1 ≤ i ≤ n.

Let pairs (MA
i , σi) be given where MA

i is a class of models over ΣA
i and

σi is a signature morphism from Σi to ΣA
i , for 1 ≤ i ≤ n. Provided that

(Σ, σ′
f) = GS s((ΣA

1 , σ1), . . . , (ΣA
n , σn))

is defined and MA
i |σi ⊆Mi for all 1 ≤ i ≤ n then

GSm((MA
1 , σ1), . . . , (MA

n , σn)) = M

where M is the class of models over Σ given by

M = {M ∈Mod(Σ) | M |ΣA
i
∈ MA

i , 1 ≤ i ≤ n, M |σ′
f
∈MB}.

Views

The static semantics of a view consists of a signature (the source signature),
a signature morphism, and a generic signature (the target signature of the
view).

(Σs, σ,GS s)
or Vs ∈ ViewSig = Sig× SignatureMorphism ×GenSig

For an element (Σs, σ,GS s) in ViewSig we require that σ is a signature mor-
phism from Σs to ΣB, where GS s = (ΣI , 〈Σ1, . . . , Σn〉, ΣB).

The model semantics of a view consists of a model class and the model
semantics of a generic specification.

(Ms,GSm)
or Vm ∈ ViewSpec = ModelClass×GenSpec

An element Vs = (Σs, σ,GS s) in ViewSig and an element Vm = (Ms,GSm)
in ViewSpec are compatible if

204 III:4 Structured Specification Semantics

• Ms is a class of Σs-models,
• GSs = (ΣI , 〈Σ1, . . . , Σn〉, ΣB) and GSm = (MI , 〈M1, . . . ,Mn〉,MB) are

compatible, and
• MB|σ ⊆Ms.

Local and Global Environment

Within a structured specification, the current signature, also called the local
environment, may vary. The current association between names and the
specifications that they reference is called the global environment.

As introduced elsewhere (cf. Sect. 6.1), model (resp., static) global en-
vironments Γm (resp., Γs) contain a generic specification component Gm :
SpecName fin→ GenSpec (resp. Gs : SpecName fin→ GenSig), as well as a
view component Vm : ViewName fin→ ViewSpec (resp. Vs : ViewName fin→
ViewSig).

A static global environment and a model global environment are compatible
if their components are compatible, see Sect. 6.1. Compatibility for the generic
specification and view components has been defined above.

The rest of this chapter indicates the semantics of the constructs of struc-
tured specifications.

4.2 Structured Specifications

The static semantics of a specification has been given as a signature extension
∆ of the local environment Σ in Chap. 2, where signature extension referred
to a signature fragment. At the institution independent level, where we do
not have signature fragments, this is abstracted to the signature inclusion
Σ ↪→ Σ∪∆. As mentioned on page 127, information about any re-declaration
in ∆ of symbols in Σ is lost by this abstraction. Therefore, in Sect. 4.1.4 we
provide a mechanism that keeps the symbols of ∆ together with Σ ∪∆.

In structured specifications, a specification SPEC may occur in a context
where it is to extend other specifications, providing itself only part of a
signature. Hence, its interpretation determines an extended signature Σ′,
given a signature Σ (the local environment), together with a model class
over Σ′ (when defined), given a model class over Σ.
Translations and reductions in a SPEC are not allowed to affect symbols that
are already in the local environment that is being extended.

SPEC ::= BASIC-SPEC | TRANSLATION | REDUCTION
| UNION | EXTENSION | FREE-SPEC | LOCAL-SPEC
| CLOSED-SPEC

CASL-specific rules for basic specifications

III:4.2 Structured Specifications 205

Σ, Γs � SPEC� Σ′ Σ,M, Γs, Γm � SPEC⇒M′

Γs and Γm are compatible global environments and M is a class of models
over Σ; then Σ′ is an extension of Σ, and M′ is a class of models over Σ′

with each model extending some model in M. Recall that signatures Σ are
pairs (Σbasic,SSY) with SSY ⊆ |Σbasic|.

Σbasic � BASIC-SPEC� (∆, Ψ)
(Σbasic,SSY), Γs � BASIC-SPEC qua SPEC� (Σbasic ∪∆,SSY ∪ |∆|)

Σ,M � BASIC-SPEC⇒M′

Σ,M, Γs, Γm � BASIC-SPEC qua SPEC⇒M′

end of CASL-specific rules

Other rules elided (see Sect. 1.3).

4.2.1 Translations

The symbols mapped by SYMB-MAP-ITEMS+must be among those declared by
SPEC. The signature Σ given by SPEC and the mapping SYMB-MAP-ITEMS+
then determine a signature morphism to a signature Σ′, as explained in
Sect. 4.1, which must not affect the symbols already declared in the local
environment. The class of models of the translation consists exactly of those
models over Σ′ whose reducts along the morphism are models of SPEC.

TRANSLATION ::= translation SPEC RENAMING
RENAMING ::= renaming SYMB-MAP-ITEMS+

Σ � RENAMING� σ : Σ→Σ′

Σ is a signature; then σ : Σ→Σ′ is a final signature morphism.

� SYMB-MAP-ITEMS+� r

Σ � renaming SYMB-MAP-ITEMS+� r|Σ

Σ, Γs � TRANSLATION� Σ′ Σ,M, Γs, Γm � TRANSLATION⇒M′

Γs and Γm are compatible global environments, and M is a class of models
over Σ; then Σ′ is an extension of Σ andM′ is a class of models over Σ′ with
each model extending some model in M.

206 III:4 Structured Specification Semantics

Σ, Γs � SPEC� Σ′

Σ′ � RENAMING� σ : Σ′→Σ′′

|σ| is the identity on signature symbols in |Σ|
Σ, Γs � translation SPEC RENAMING� Σ′′

Note that Σ ⊆ Σ′′ because |σ| is the identity on signature symbols in |Σ|.

Σ, Γs � SPEC� Σ′

Σ′ � RENAMING� σ : Σ′→Σ′′

Σ,M, Γs, Γm � SPEC⇒M′

Σ,M, Γs, Γm � translation SPEC RENAMING⇒
{M ∈Mod(Σ′′) |M |σ ∈ M′}

4.2.2 Reductions

In the case of a hiding reduction, the signature Σ given by SPEC and the
set of symbols listed by SYMB-ITEMS+ determine the inclusion of the largest
subsignature Σ′ of Σ that does not contain any of the listed symbols, as
explained in Sect. 4.1.
In the case of a revealing reduction, the signature Σ given by SPEC and the
set of symbols mapped by SYMB-MAP-ITEMS+ determine the inclusion of the
smallest subsignature Σ′ of Σ that contains all of the listed symbols, as
explained in Sect. 4.1. This signature then may be further translated.
A reduction must not affect the symbols already declared in the local envi-
ronment.

REDUCTION ::= reduction SPEC RESTRICTION
RESTRICTION ::= HIDDEN | REVEALED
HIDDEN ::= hidden SYMB-ITEMS+
REVEALED ::= revealed SYMB-MAP-ITEMS+

(Σ, Σ′) � RESTRICTION� σ : Σ1→Σ′′

Σ′ is an extension of Σ; then Σ ⊆ Σ1 ⊆ Σ′, and |σ| is the identity on signature
symbols in |Σ|.

|Σ′| � SYMB-ITEMS+� SSYs
SSYs ∩ |Σ| = ∅ Σ1 = Σ′|SSYs

(Σ, Σ′) � hidden SYMB-ITEMS+� idΣ1

The second premise ensures that no symbols from Σ are hidden.

� SYMB-MAP-ITEMS+� r
SSYs = {SY ∈ |Σ′| | SSY matches some SY ∈ dom(r)}

Σ1 = Σ′|SSYs∪|Σ| σ : Σ1→Σ′′ = r|Σ1

|σ| is the identity on signature symbols in |Σ|
(Σ, Σ′) � revealed SYMB-MAP-ITEMS+� σ : Σ1→Σ′′

III:4.2 Structured Specifications 207

The third premise generates all symbols from the symbol map and also the
symbols from the local environment into the revealed signature. The fifth
premise ensures that the local environment is not renamed. Note that Σ ⊆ Σ1.

Σ, Γs � REDUCTION� Σ′ Σ,M, Γs, Γm � REDUCTION⇒M′

Γs and Γm are compatible global environments and M is a class of models
over Σ; then Σ′ is an extension of Σ, and M′ is a class of models over Σ′

with each model extending some model in M.

Σ, Γs � SPEC� Σ′

(Σ, Σ′) � RESTRICTION� σ : Σ1→Σ′′

Σ, Γs � reduction SPEC RESTRICTION� Σ′′

Note that Σ ⊆ Σ′′ because Σ ⊆ Σ1 and |σ| is the identity on signature
symbols in |Σ|.

Σ, Γs � SPEC� Σ′

(Σ, Σ′) � RESTRICTION� σ : Σ1→Σ′′

Σ,M, Γs, Γm � SPEC⇒M′

Σ,M, Γs, Γm � reduction SPEC RESTRICTION⇒
{M ′′ ∈Mod(Σ′′) | there is some M ′ ∈M′ with M ′|Σ1 = M ′′|σ}

4.2.3 Unions

The signature of the union is the union of the signatures of each SPEC. Thus
all occurrences of a symbol in the SPECs are interpreted uniformly. The
models are those models of the union signature for which the reduct to the
signature of the ith SPEC is a model of that SPEC.

UNION ::= union SPEC+

Σ, Γs � UNION� Σ′ Σ,M, Γs, Γm � UNION⇒M′

Γs and Γm are compatible global environments and M is a class of models
over Σ; then Σ′ is an extension of Σ, and M′ is a class of models over Σ′

with each model extending some model in M.

Σ, Γs � SPEC1 � Σ1

. . .
Σ, Γs � SPECn � Σn

Σ, Γs � union SPEC1 . . . SPECn � Σ1 ∪ . . . ∪Σn

208 III:4 Structured Specification Semantics

Σ, Γs � SPEC1 � Σ1

. . .
Σ, Γs � SPECn � Σn

Σ,M, Γs, Γm � SPEC1 ⇒M1

. . .
Σ,M, Γs, Γm � SPECn ⇒Mn

Σ,M, Γs, Γm � union SPEC1 . . .SPECn ⇒
{M ∈Mod(Σ1 ∪ . . . ∪Σn) | M |Σi ∈ Mi, 1 ≤ i ≤ n}

4.2.4 Extensions

SPEC1 determines an extension from the local environment to a signature
Σ1. For i = 2, . . . , n each SPECi determines an extension from Σi−1 to a
signature Σi. The signature determined by the entire extension is then Σn.
Models are determined similarly, with each SPECi determining a class Mi of
Σi-models whose Σi−1-reducts are in Mi−1.

EXTENSION ::= extension SPEC+

Σ, Γs � EXTENSION� Σ′ Σ,M, Γs, Γm � EXTENSION⇒M′

Γs and Γm are compatible global environments and M is a class of models
over Σ; then Σ′ is an extension of Σ, and M′ is a class of models over Σ′

with each model extending some model in M.

Σ, Γs � SPEC1 � Σ1

. . .
Σn−1, Γs � SPECn � Σn

Σ, Γs � extension SPEC1 . . . SPECn � Σn

Σ, Γs � SPEC1 � Σ1

. . .
Σn−1, Γs � SPECn � Σn

Σ,M, Γs, Γm � SPEC1 ⇒M1

. . .
Σn−1,Mn−1, Γs, Γm � SPECn ⇒Mn

Σ,M, Γs, Γm � extension SPEC1 . . .SPECn ⇒Mn

A semantic annotation can occur at any point in the list of extensions and
then concerns only the extension at that point. If the annotation is attached
to the i − 1th extension (i.e. between SPECi−1 and SPECi, where 2 ≤ i ≤ n)),
then it holds under the following conditions.

III:4.2 Structured Specifications 209

• %cons (conservative): each model M ∈Mi−1 has an Mi-extension, i.e. a
model M ′ ∈ Mi such that M ′|Σi−1 = M .

• %mono (monomorphic): each model M ∈ Mi−1 has a unique Mi-
extension up to isomorphism, i.e. any two Mi-extensions are isomorphic.

• %def (definitional): each model in Mi−1 has a unique Mi-extension
• %implies (implicational): Σi = Σi−1 and Mi = Mi−1.

4.2.5 Free Specifications

SPEC determines an extension from the local environment to a signature Σ′.
free-spec SPEC determines the class of Σ′-models that are free extensions
for SPEC of their own reducts to models of the current local environment.

FREE-SPEC ::= free-spec SPEC

Σ, Γs � FREE-SPEC� Σ′ Σ,M, Γs, Γm � FREE-SPEC⇒M′

Γs and Γm are compatible global environments and M is a class of models
over Σ; then Σ′ is an extension of Σ, and M′ is a class of models over Σ′

with each model extending some model in M.

Σ, Γs � SPEC� Σ′

Σ, Γs � free-spec SPEC� Σ′

Σ,M, Γs, Γm � SPEC⇒M1

Σ,M, Γs, Γm � free-spec SPEC⇒
{M ∈M1 |M is a free extension of M |Σ w.r.t. M1}

A model M is a free extension of M |Σ w.r.t. a class of models M1 if for all
elements M1 of M1 and homomorphisms h : M |Σ → M1|Σ there exists a
unique homomorphism h# : M → M1 with h#|Σ = h.

If Σ is the empty local environment ∅ then M |∅ is the only element of
Mod(∅) and for each M1 in M1 the identity id on M |Σ is a homomorphism
from M |Σ to M1|Σ . If M is a free extension of M |∅ w.r.t. M1 then id extends
to a unique homomorphism id# from M to M1, which makes M an initial
object of M1.

In the CASL institution, under some minor restrictions the basic specification
written:

free types DD1; . . . DDn;

has the same interpretation as the free structured specification written:

free { types DD1; . . . DDn; }

210 III:4 Structured Specification Semantics

See Theorem 3.11 in Sect. 3.2.2 for an equivalence between free types as
CASL basic specifications and structured free datatypes, and for details of
what the minor restrictions are.

4.2.6 Local Specifications

Declaring SPEC1 as local to SPEC2 is equivalent to an extension of SPEC1 by
SPEC2, followed by a hiding of all the symbols declared by SPEC1 that are
not already in the current local environment.

LOCAL-SPEC ::= local-spec SPEC SPEC

Σ, Γs � LOCAL-SPEC� Σ′ Σ,M, Γs, Γm � LOCAL-SPEC⇒M′

Γs and Γm are compatible global environments and M is a class of models
over Σ; then Σ′ is an extension of Σ, and M′ is a class of models over Σ′

with each model extending some model in M.

Σ, Γs � SPEC1 � Σ′ Σ′, Γs � SPEC2 � Σ′′

Σ1 = Σ′′||Σ′|\|Σ| |Σ′′| \ |Σ′| ⊆ |Σ1|
Σ, Γs � local-spec SPEC1 SPEC2 � Σ1

The last premise ensures that symbols newly introduced in SPEC2 are not
hidden.

Σ, Γs � SPEC1 � Σ′ Σ′, Γs � SPEC2 � Σ′′

Σ1 = Σ′′||Σ′|\|Σ|

Σ,M, Γs, Γm � SPEC1 ⇒M′ Σ′,M′, Γs, Γm � SPEC2 ⇒M′′

Σ,M, Γs, Γm � local-spec SPEC1 SPEC2 ⇒ {M |Σ1 |M ∈M′′}

4.2.7 Closed Specifications

A closed specification determines the same signature and class of models as
SPEC determines in the empty local environment.

CLOSED-SPEC ::= closed-spec SPEC

Σ, Γs � CLOSED-SPEC� Σ′ Σ,M, Γs, Γm � CLOSED-SPEC⇒M′

III:4.3 Named and Generic Specifications 211

Γs and Γm are compatible global environments and M is a class of models
over Σ; then Σ′ is an extension of Σ, and M′ is a class of models over Σ′

with each model extending some model in M.

∅, Γs � SPEC� Σ′

Σ, Γs � closed-spec SPEC� Σ ∪Σ′

∅, Γs � SPEC� Σ′

∅,M⊥, Γs, Γm � SPEC⇒M′

M′′ = {M ∈Mod(Σ ∪Σ′) |M |Σ ∈M, M |Σ′ ∈ M′}
Σ,M, Γs, Γm � closed-spec SPEC⇒M′′

The union Σ ∪ Σ′ and the construction of M′′ ensure the invariant that
the resulting signature extends the local environment signature Σ, and that
each resulting model extends one from M.

4.3 Named and Generic Specifications

4.3.1 Specification Definitions

A generic specification definition defines the name SN to refer to the
specification that has parameter and import specifications as indicated by
GENERICITY, and body specification SPEC. This extends the global environ-
ment (which must not already include a definition for SN).
The declared parameters show just which parts of the generic specification
are intended to vary between different references to it. The imports, in con-
trast, are fixed, and common to the parameters, body, and arguments.

SPEC-DEFN ::= spec-defn SPEC-NAME GENERICITY SPEC
GENERICITY ::= genericity PARAMS IMPORTED
PARAMS ::= params SPEC*
IMPORTED ::= imported SPEC*
SPEC-NAME ::= SIMPLE-ID

Though possible in the abstract syntax, the concrete syntax does not allow
an import to be specified for non-generic specifications. Thus, if the import is
not empty for a non-generic specifications, the static semantics will be unde-
fined. This is captured in the rule for GENERICITY below. As a consequence, the
static semantics of a non-generic specification is always of the form (∅, 〈〉, ΣB)
and the model semantics is of the form (M⊥, 〈〉,MB) where MB is a class of
ΣB-models.

Γs � SPEC-DEFN� Γ ′
s Γs, Γm � SPEC-DEFN⇒ Γ ′

m

212 III:4 Structured Specification Semantics

Γs and Γm are compatible global environments; then Γ ′
s and Γ ′

m are compatible
environments extending Γs and Γm, respectively.

Γs = (Gs,Vs,As, Ts)
SN �∈ Dom(Gs) ∪Dom(Vs) ∪Dom(As) ∪Dom(Ts)

Γs � GENERICITY� (ΣI , 〈Σ1, . . . , Σn〉)
Σ1 ∪ · · · ∪Σn, Γs � SPEC� ΣB

Γs � spec-defn SN GENERICITY SPEC�

(Gs ∪ {SN �→ (ΣI , 〈Σ1, . . . , Σn〉, ΣB)},Vs,As, Ts)

Γm = (Gm,Vm,Am, Tm)
Γs � GENERICITY� (ΣI , 〈Σ1, . . . , Σn〉)

Γs, Γm � GENERICITY⇒ (MI , 〈M1, . . . ,Mn〉)
MP = {M ∈Mod(Σ1 ∪ . . . ∪Σn) |M |ΣI ∈MI , M |Σi ∈Mi, 1 ≤ i ≤ n}

Σ1 ∪ · · · ∪Σn,MP , Γs, Γm � SPEC⇒MB

Γs, Γm � spec-defn SN GENERICITY SPEC⇒
(Gm ∪ {SN �→ (MI , 〈M1, . . . ,Mn〉,MB)},Vm,Am, Tm)

Γs � GENERICITY� (ΣI , 〈Σ1, . . . , Σn〉)
Γs, Γm � GENERICITY⇒ (MI , 〈M1, . . . ,Mn〉)

Γs and Γm are compatible global environments; then MI is a class of models
over ΣI , Σi is an extension of ΣI and Mi is a class of models over Σi with
each model extending some model in MI for 1 ≤ i ≤ n.

Γs � IMPORTS� ΣI

ΣI , Γs � PARAMS� 〈Σ1, . . . , Σn〉
n ≥ 1

Γs � genericity PARAMS IMPORTS� (ΣI , 〈Σ1, . . . , Σn〉)

Γs � IMPORTS� ΣI

Γs, Γm � IMPORTS⇒MI

ΣI ,MI , Γs, Γm � PARAMS⇒ 〈M1, . . . ,Mn〉
Γs, Γm � genericity PARAMS IMPORTS⇒ (MI , 〈M1, . . . ,Mn〉)

In case there are no parameters, the import should be empty. If not, the
semantics of GENERICITY is undefined:

Γs � IMPORTS� ∅
∅, Γs � PARAMS� 〈〉

Γs � genericity PARAMS IMPORTS� (∅, 〈〉)

III:4.3 Named and Generic Specifications 213

∅,M⊥, Γs, Γm � PARAMS⇒ 〈〉
Γs, Γm � genericity PARAMS IMPORTS⇒ (M⊥, 〈〉)

Σ, Γs � PARAMS� 〈Σ1, . . . , Σn〉
Σ,M, Γs, Γm � PARAMS⇒ 〈M1, . . . ,Mn〉

Γs and Γm are compatible global environments and M is a class of models
over Σ; then Σi is an extension of Σ andMi is a class of models over Σi with
each model extending some model in M for 1 ≤ i ≤ n.

Σ, Γs � SPEC1 � Σ1

. . .
Σ, Γs � SPECn � Σn

Σ, Γs � params SPEC1 . . . SPECn � 〈Σ1, . . . , Σn〉

Σ,M, Γs, Γm � SPEC1 ⇒M1

. . .
Σ,M, Γs, Γm � SPECn ⇒Mn

Σ,M, Γs, Γm � params SPEC1 . . . SPECn ⇒ 〈M1, . . . ,Mn〉

Γs � IMPORTS� Σ Γs, Γm � IMPORTS⇒M

Γs and Γm are compatible global environments; then M is a class of models
over Σ.

If the list of imported specifications is empty then the semantics of the
import construct is the empty signature ∅ with M⊥ as its class of models.

Γs � imports� ∅

Γm � imports⇒M⊥
For a non-empty list of imported specifications, the semantics of

imports SPEC1 . . . SPECn

is the same as union SPEC1 . . . SPECn with respect to the empty local environ-
ment.

∅, Γs � union SPEC1 . . . SPECn � Σ

Γs � imports SPEC1 . . .SPECn � EmptyExplicit (Σ)

For the definition of EmptyExplicit , see Sect. 4.1.4.

∅,M⊥, Γs, Γm � union SPEC1 . . . SPECn ⇒M
Γm � imports SPEC1 . . .SPECn ⇒M

214 III:4 Structured Specification Semantics

4.3.2 Specification Instantiation

An instantiation SPEC-INST of a generic specification with some fitting ar-
gument refers to the specification named SN in the global environment,
providing a fitting argument FIT-ARGi for each declared parameter (in the
same order).
When there is more than one parameter, the separate fitting argument mor-
phisms have to be compatible, and their union has to yield a single morphism
from the union of the parameters to the union of the arguments.
Each model of a fitting argument, when reduced by the signature morphism
for that fitting argument, is required to be a model of the corresponding
parameter specification, otherwise the instantiation is undefined.

SPEC ::= ... | SPEC-INST
SPEC-INST ::= spec-inst SPEC-NAME FIT-ARG*
FIT-ARG ::= FIT-SPEC
FIT-SPEC ::= fit-spec SPEC SYMB-MAP-ITEMS*

Σ, Γs � SPEC-INST� Σ′ Σ,M, Γs, Γm � SPEC-INST⇒M′

Γs and Γm are compatible global environments and M is a class of models
over Σ; then Σ′ is an extension of Σ andM′ is a class of models over Σ′ with
each model extending some model in M.

First, we study the case where the specification name refers to a non-
generic specification with static semantics (∅, 〈〉, ΣB) and model semantics
(M⊥, 〈〉,MB).

Γs = (Gs,Vs,As, Ts)
Gs(SN) = (∅, 〈〉, ΣB))

Σ, Γs � spec-inst SN � Σ ∪ΣB

Γs = (Gs,Vs,As, Ts)
Gs(SN) = (∅, 〈〉, ΣB)

Γm = (Gm,Vm,Am, Tm)
Gm(SN) = (M⊥, 〈〉,MB))

Σ,M, Γs, Γm � spec-inst SN ⇒
{M ∈Mod(Σ ∪ΣB) |M |Σ ∈ M, M |ΣB ∈MB}

Now the generic case, i.e., the a generic specification with static seman-
tics (ΣI , 〈Σ1, . . . , Σn〉, ΣB) and model semantics (MI , 〈M1, . . . ,Mn〉,MB),
where n ≥ 1.

III:4.3 Named and Generic Specifications 215

Γs = (Gs,Vs,As, Ts)
Gs(SN) = GS s = (ΣI , 〈Σ1, . . . , Σn〉, ΣB), n ≥ 1

ΣI , Σ1, Γs � FIT-ARG1 � σ1, Σ
A
1

. . .
ΣI , Σn, Γs � FIT-ARGn � σn, ΣA

n

(Σ′, σf) = GS s((ΣA
1 , σ1), . . . , (ΣA

n , σn)) is defined9

Σ, Γs � spec-inst SN FIT-ARG1 . . . FIT-ARGn � Σ ∪Σ′

Γs = (Gs,Vs,As, Ts)
Gs(SN) = GSs = (ΣI , 〈Σ1, . . . , Σn〉, ΣB), n ≥ 1

ΣI , Σ1, Γs � FIT-ARG1 � σ1, Σ
A
1

. . .
ΣI , Σn, Γs � FIT-ARGn � σn, ΣA

n

(Σ′, σf) = GS s((ΣA
1 , σ1), . . . , (ΣA

n , σn)) is defined
Γm = (Gm,Vm,Am, Tm)

Gm(SN) = GSm = (MI , 〈M1, . . . ,Mn〉,MB)
ΣI , Σ1,MI ,M1, Γs, Γm � FIT-ARG1 ⇒MA

1

. . .
ΣI , Σn,MI ,Mn, Γs, Γm � FIT-ARGn ⇒MA

n

Σ,M, Γs, Γm � spec-inst SN FIT-ARG1 . . . FIT-ARGn ⇒
{M ∈Mod(Σ ∪Σ′) | M |Σ ∈ M, M |Σ′ ∈ GSm((MA

1 , σ1), . . . , (MA
n , σn))}

For a fitting argument specification, the signature ΣA given by its argument
specification, the signature ΣP given by the corresponding parameter spec-
ification, and the symbol mapping SYMB-MAP-ITEMS+ determine a signature
morphism from ΣP to ΣA, as explained in Sect. 4.1.5.

ΣI , ΣP , Γs � FIT-ARG� σ, ΣA

ΣI , ΣP ,MI ,MP , Γs, Γm � FIT-ARG⇒MA

Γs and Γm are compatible global environments, ΣP is an extension of ΣI ,
MI a class of models over ΣI and MP is a class of models over ΣP with each
model extending some model in MI ; then ΣA is an extension of ΣI , σ is a
signature morphism from ΣP to ΣA which is the identity when restricted to
ΣI , and MA is a class of models over ΣA. Furthermore, the σ-reduct of each
model in MA is a model of MP .

(ΣP ,MP) is one formal parameter of a generic specification. (ΣA,MA)
is the corresponding actual parameter and σ is the fitting morphism between
formal and actual parameter.
9 See Sect. 4.1.5 for an explanation of the notation GS s(. . .).

216 III:4 Structured Specification Semantics

Rules elided, including the case of FIT-VIEW added in Sect. 4.4.2 below.

ΣI , ΣP , Γs � FIT-SPEC� σ, ΣA

ΣI , ΣP ,MI ,MP , Γs, Γm � FIT-SPEC⇒MA

Γs and Γm are compatible global environments, ΣP is an extension of ΣI ,
MI a class of models over ΣI and MP is a class of models over ΣP with each
model extending some model in MI ; then ΣA is an extension of ΣI , σ is a
signature morphism from ΣP to ΣA which is the identity when restricted to
ΣI , and MA is a class of models over ΣA. Furthermore, the σ-reduct of each
model in MA is a model of MP .

ΣI , Γs � SPEC� ΣA

� SYMB-MAP-ITEMS*� r

σ = (r ∪ {(SY ,SY)|SY ∈ ||ΣI ||})|ΣP

ΣA

ΣI , ΣP , Γs � fit-spec SPEC SYMB-MAP-ITEMS*� σ, ΣA

See Sect. 4.1.3 for the definition of r|ΣP

ΣA
:ΣP→ΣA, the signature morphism

induced by the symbol map r.

ΣI , Γs � SPEC� ΣA

� SYMB-MAP-ITEMS*� r

σ = (r ∪ {(SY ,SY)|SY ∈ ||ΣI ||})|ΣP

ΣA

ΣI ,MI , Γs, Γm � SPEC⇒MA

MA|σ ⊆MP

ΣI , ΣP ,MI ,MP , Γs, Γm � fit-spec SPEC SYMB-MAP-ITEMS*⇒MA

4.4 Views

4.4.1 View Definitions

A view definition declares the view name VN to have the type of spec-
ification morphisms from SPEC1 to SPEC2, parameter and import specifi-
cations as given by GENERICITY, and defines it by the symbol mapping
SYMB-MAP-ITEMS+.
SPEC1 gets the empty local environment. The well-formedness conditions for
SPEC2 are as if SPEC2 were the body of a generic specification with formal
parameter and import specifications as given by GENERICITY.
It is required that the reduct by the specification morphism of each model
of the target is a model of the source; otherwise the semantics is undefined.

III:4.4 Views 217

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE SYMB-MAP-ITEMS*
VIEW-TYPE ::= view-type SPEC SPEC
VIEW-NAME ::= SIMPLE-ID

Γs � VIEW-DEFN� Γ ′
s Γs, Γm � VIEW-DEFN⇒ Γ ′

m

Γs and Γm are compatible global environments; then Γ ′
s and Γ ′

m are compatible
environments extending Γs and Γm, respectively.

Γs = (Gs,Vs,As, Ts)
VN �∈ Dom(Vs) ∪Dom(Gs) ∪Dom(As) ∪Dom(Ts)

Γs � GENERICITY� (ΣI , 〈Σ1, . . . , Σn〉)
Σ1 ∪ · · · ∪Σn, Γs � VIEW-TYPE� (Σs, Σt)
� SYMB-MAP-ITEMS*� r σ = r|Σs

Σt

Γs � view-defn VN GENERICITY VIEW-TYPE SYMB-MAP-ITEMS*�

(Gs,Vs ∪ {VN �→ (Σs, σ, (ΣI , 〈Σ1, . . . , Σn〉, Σt))},As, Ts)

See Sect. 4.1.3 for the definition of r|Σs

Σt
:Σs→Σt, the signature morphism in-

duced by the symbol map r.

Γm = (Gm,Vm,Am, Tm)
Γs � GENERICITY� (ΣI , 〈Σ1, . . . , Σn〉)

Σ1 ∪ · · · ∪Σn, Γs � VIEW-TYPE� (Σs, Σt)
� SYMB-MAP-ITEMS*� r σ = r|Σs

Σt

Γs, Γm � GENERICITY⇒ (MI , 〈M1, . . . ,Mn〉)
MP = {M ∈Mod(ΣP) |M |ΣI ∈ MI , M |Σi ∈Mi, 1 ≤ i ≤ n}

Σ1 ∪ · · · ∪Σn,MP , Γs, Γm � VIEW-TYPE⇒ (Ms,Mt)
Mt|σ ⊆Ms

Γs, Γm � view-defn VN GENERICITY VIEW-TYPE SYMB-MAP-ITEMS*⇒
(Gm,Vm ∪ {VN �→ (Ms, (MI , 〈M1, . . . ,Mn〉,Mt))},Am, Tm)

Σ, Γs � VIEW-TYPE� (Σs, Σt) Σ,M, Γs, Γm � VIEW-TYPE⇒ (Ms,Mt)

Γs and Γm are compatible global environments and M is a class of models
over Σ; then Σt is an extension of Σ, Mt is a class of models over Σt with
each model extending some model of M, and Ms is a class of models over
Σs.

∅, Γs � SPEC1 � Σs

Σ, Γs � SPEC2 � Σt

Σ, Γs � view-type SPEC1 SPEC2 � (Σs, Σt)

∅,M⊥, Γs, Γm � SPEC1 ⇒Ms

Σ,M, Γs, Γm � SPEC2 ⇒Mt

Σ,M, Γs, Γm � view-type SPEC1 SPEC2 ⇒ (Ms,Mt)

218 III:4 Structured Specification Semantics

4.4.2 Fitting Views

A reference to a fitting argument view refers to the current global environ-
ment, and is well-formed as an argument for a parameter SPECi only when
the global environment includes a (possibly generic) view definition for VN
(possibly with parameters that can be instantiated by the indicated fitting
arguments FIT-ARG+) to give a view of type from SPEC to SPEC′, such that
the signatures of SPEC and of SPECi are the same. The view definition then
provides the fitting morphism from the parameter SPECi to the argument
specification given by the target SPEC′ of the view.
Each model of SPEC is required to be a model of SPECi, otherwise the instan-
tiation is undefined. The instantiation of a generic view with some fitting
arguments is not well-formed if the instantiation of the target SPEC′ of the
view with the same fitting arguments is not well-formed.

FIT-ARG ::= ... | FIT-VIEW
FIT-VIEW ::= fit-view VIEW-NAME FIT-ARG*

ΣI , ΣP , Γs � FIT-VIEW� σ, ΣA

ΣI , ΣP ,MI ,MP , Γs, Γm � FIT-VIEW⇒MA

Γs and Γm are compatible global environments, ΣP is an extension of ΣI ,
MI a class of models over ΣI and MP is a class of models over ΣP with each
model extending some model in MI ; then ΣA is an extension of ΣI , σ is a
signature morphism from ΣP to ΣA which is the identity when restricted to
ΣI , and MA is a class of models over ΣA. Furthermore, the σ-reduct of each
model in MA is a model of MP .

First we study the situation where VN denotes a non-generic view.

Γs = (Gs,Vs,As, Ts)
Vs(VN) = (Σs, σ, (∅, 〈〉, Σt)))

Σs ∪ΣI = ΣP

ΣI , ΣP , Γs � fit-view VN � σ ∪ idΣI , ΣI ∪Σt

Here, ΣI is the import signature, ΣP is the parameter signature, which is
the source of the view, and ΣA is the argument signature, which is the target
of the view.

Σs
σ ��

� �

��

Σt� �

��
ΣI

� � �� Σs ∪ΣI

σ∪idΣI �� ΣI ∪Σt

ΣP

III:4.4 Views 219

Γs = (Gs,Vs,As, Ts)
Vs(VN) = (Σs, σ, (∅, 〈〉, Σt)))

Γm = (Gm,Vm,Am, Tm)
Vm(VN) = (Ms, (M⊥, 〈〉,Mt))

{M ∈Mod(ΣP) | M |Σs ∈Ms, M |ΣI ∈ MI} ⊆ MP

ΣI , ΣP ,MI ,MP , Γs, Γm � fit-view VN ⇒
{M ∈Mod(ΣI ∪Σt) |M |ΣI ∈MI , M |Σt ∈Mt}

Note that MA|σ∪idΣI
⊆ MP follows from MA|σ∪idΣI

⊆ M′
s and M′

s ⊆
MP , where M′

s = {M ∈Mod(ΣP) |M |Σs ∈Ms, M |ΣI ∈MI}.
To show that MA|σ∪idΣI

⊆ M′
s holds, consider M ∈ MA. We have to

show that M |σ∪idΣI
∈M′

s, that is, (M |σ∪idΣI
)|Σs ∈Ms and (M |σ∪idΣI

)|ΣI ∈
MI . The following equality holds by the definition of σ ∪ idΣI :

σ ∪ idΣI ◦ ιΣI⊆ΣI∪Σs = ιΣI⊆ΣI∪Σt

Then we have:

(M |σ∪idΣI
)|Σs = (M |Σt)|σ ∈ Ms

since M ∈ MA implies M |Σt ∈ Mt by the definition of MA and because
Mt|σ ⊆Ms by the properties of view morphisms.

Further, the following equality holds by the above diagram:

ιΣt⊆ΣI∪Σt ◦ σ = σ ∪ idΣI ◦ ιΣs⊆ΣI∪Σs

This implies

(M |σ∪idΣI
)|ΣI = M |ΣI ∈ MI

since M ∈MA implies M |ΣI ∈ MI by the definition of MA.
Now we come to the generic case:

Γs = (Gs,Vs,As, Ts)
Vs(VN) = (Σs, σ,GS s))

Σs ∪ΣI = ΣP

GS s = (Σ′
I , 〈Σ1, . . . , Σn〉, ΣB), n ≥ 1

Σ′
I , Σ1, Γs � FIT-ARG1 � σ1, Σ

A
1

. . .
Σ′

I , Σn, Γs � FIT-ARGn � σn, ΣA
n

(ΣA, σ′
f) = GS s((ΣA

1 , σ1), . . . , (ΣA
n , σn)) is defined

ΣI , ΣP , Γs � fit-view VN FIT-ARG1 . . .FIT-ARGn �

(σ′
f ◦ σ) ∪ idΣI , ΣI ∪ΣA

220 III:4 Structured Specification Semantics

Σ′
I� �

��
Σi� �

��

σi �� ΣA
i� �

��
Σs

σ ��
� �

��

ΣB

σ′
f �� ΣA� �

��
ΣI

� � �� Σs ∪ΣI

(σ′
f◦σ)∪idΣI �� ΣA ∪ΣI

ΣP

Γs = (Gs,Vs,As, Ts)
Vs(VN) = (Σs, σ,GS s))

GS s = (Σ′
I , 〈Σ1, . . . , Σn〉, ΣB), n ≥ 1

Σ′
I , Σ1, Γs � FIT-ARG1 � σ1, Σ

A
1

. . .
Σ′

I , Σn, Γs � FIT-ARGn � σn, ΣA
n

Γm = (Gm,Vm,Am, Tm)
Vm(VN) = (Ms,GSm))

{M ∈Mod(ΣP) | M |Σs ∈Ms, M |ΣI ∈ MI} ⊆ MP

GSm = (M′
I , 〈M1, . . . ,Mn〉,MB)

Σ′
I , Σ1,M′

I ,M1, Γs, Γm � FIT-ARG1 ⇒MA
1

. . .
Σ′

I , Σn,M′
I ,Mn, Γs, Γm � FIT-ARGn ⇒MA

n

MA = GSm((MA
1 , σ1), . . . , (MA

n , σn))
ΣI , ΣP ,MI ,MP , Γs, Γm � fit-view VN FIT-ARG1 . . .FIT-ARGn ⇒

{M ∈Mod(ΣI ∪ΣA) | M |ΣI ∈ MI , M |ΣA ∈MA}

A similar argument as for the non-generic case shows thatM′|(σ′
f◦σ)∪idΣI

⊆
M′

s, where M′ = {M ∈Mod(ΣI ∪ΣA) | M |ΣI ∈ MI , M |ΣA ∈MA}. Then,
M′|(σ′

f◦σ)∪idΣI
⊆MP follows from M′|(σ′

f◦σ)∪idΣI
⊆M′

s and M′
s ⊆MP .

4.5 Symbol Lists and Mappings

The semantics of a part of this section is necessarily dependent on the un-
derlying basic specification framework formalized as an institution with sym-
bols [39].

III:4.5 Symbol Lists and Mappings 221

4.5.1 Symbol Lists

Symbol lists are used in hiding reductions. They can be identifiers (matching
to any symbol with the identifier as name) or fully-qualified symbols. Sub-
lists may also be qualified with kinds (sort, function, predicate).

SYMB-ITEMS ::= symb-items SYMB-KIND SYMB+
SYMB-KIND ::= implicit | sorts-kind | ops-kind | preds-kind
SYMB ::= ID | QUAL-ID
QUAL-ID ::= qual-id ID TYPE
TYPE ::= OP-TYPE | PRED-TYPE

Note that the described behavior is achieved by the definitions from
Sect. 4.1.3; here, only symbol lists are assembled.

CASL-specific rules for symbol lists

k � SYMB� SY

k ∈ SYMB-KIND; then SYs ∈ Sym is a symbol.

Ident ∈ ID
implicit � Ident � (implicit , Ident)

implicit � qual-id f (total-op-type(sort-list s1 . . . sn) s) �

f t
〈s1,...,sn〉,s

implicit � qual-id f (partial-op-type(sort-list s1 . . . sn) s) �

fp
〈s1,...,sn〉,s

implicit � qual-id p (pred-type(sort-list s1 . . . sn)) � p〈s1,...,sn〉
s ∈ ID

sorts-kind � s � s

ops-kind � f � (fun, f)

ops-kind � qual-id f (total-op-type(sort-list s1 . . . sn) s) �

f t
〈s1,...,sn〉,s

ops-kind � qual-id f (partial-op-type(sort-list s1 . . . sn) s) �

fp
〈s1,...,sn〉,s

preds-kind � p � (pred , p)

preds-kind � qual-id p (pred-type(sort-list s1 . . . sn)) � p〈s1,...,sn〉

end of CASL-specific rules

222 III:4 Structured Specification Semantics

� SYMB-ITEMS� SYs

SYs ⊆ Sym is a set of symbols.

k � SYMB1 � SY 1 · · · k � SYMBn � SY n

� symb-items k SYMB1 · · · SYMBn � {SY 1, . . . ,SY n}

A symbol list determines a set of qualified symbols, obtained from the listed
symbols with reference to a given signature.

SSYs � SYMB-ITEMS+� SSYs ′

SSYs ⊆ SigSym is a set of signature symbols; then SSYs ′ ⊆ SSYs.

� SYMB-ITEMS1 � SYs1 · · · � SYMB-ITEMSn � SYsn

SSYs � SYMB-ITEMS1 · · · SYMB-ITEMSn �

{SY ∈ SSYs | SSY matches some SY ∈ SYs1 ∪ · · · ∪ SYsn}

4.5.2 Symbol Mappings

Symbol mappings are used in translations, revealing reductions, fitting ar-
guments, and views. They can map identifiers (matching to any symbol with
the identifier as name) or fully-qualified symbols. Sub-lists in the mapping
may also be qualified with kinds (sort, function, predicate).

SYMB-MAP-ITEMS ::= symb-map-items SYMB-KIND SYMB-OR-MAP+
SYMB-OR-MAP ::= SYMB | SYMB-MAP
SYMB-MAP ::= symb-map SYMB SYMB

Note that the described behavior is achieved by the definitions from
Sect. 4.1.3; here, only symbol maps are assembled.

CASL-specific rules for symbol maps

k � SYMB-OR-MAP� r

k ∈ SymKind is a qualification kind; then r ∈ SymMap is a symbol map.

k � SYMB� SY
k � SYMB qua SYMB-OR-MAP� {(SY ,SY)}

k � SYMB� SY
k � SYMB’� SY ′

k � symb-map SYMB SYMB’� {(SY ,SY ′)}

III:4.6 Compound Identifiers 223

� SYMB-MAP-ITEMS� r

r ∈ SymMap is a symbol map.

k � SYMB-OR-MAP1 � r1 · · · k � SYMB-OR-MAPn � rn

� symb-map-items k SYMB-OR-MAP1 · · · SYMB-OR-MAPn � r1 ∪ · · · ∪ rn

end of CASL-specific rules

A list of symbol maps determines a set of qualified symbols, obtained from
the first components of the listed symbol maps with reference to a given
signature, together with a mapping of these symbols to qualified symbols
obtained from the second components of the listed symbol maps.

� SYMB-MAP-ITEMS*� r

r ∈ SymMap is a symbol map.

� SYMB-MAP-ITEMS1 � r1 · · · � SYMB-MAP-ITEMSn � rn

� SYMB-MAP-ITEMS1 · · · SYMB-MAP-ITEMSn � r1 ∪ · · · ∪ rn

Note that SYMB-MAP-ITEMS+, as used in a RENAMING and a REVEALED, is just
the case where n ≥ 1.

The transition to the level of qualified symbols is performed in the seman-
tics rules for translations, instantiation etc, using the definitions of Sect. 4.1.3.

4.6 Compound Identifiers

The components of a compound identifier may (but need not) themselves
identify symbols that are specified in the declared parameters of a generic
specification.

SORT-ID ::= ... | COMP-SORT-ID
MIX-TOKEN ::= ... | COMP-MIX-TOKEN
COMP-SORT-ID ::= comp-sort-id WORDS ID+
COMP-MIX-TOKEN ::= comp-mix-token ID+

Note that by the above additions to the grammar of the abstract syntax,
the definitions of SORT-ID and ID have changed.

224 III:4 Structured Specification Semantics

This also influences the semantic domains introduced in Sect. 2.3 and 3.1.1:

Sort = SORT-ID
FunName = ID � {em} � {pr}
PredName = ID � {in(s) | s ∈ Sort}

Also note that in the definition of the set of symbols of a signature
in Sect. 4.1.1, we have adopted the convention that SORT-ID is regarded
as a subset of ID; hence comp-sort-id WORDS ID+ is identified with id
(comp-mix-token ID+).

When a compound identifier is used to name a symbol in the body of a
generic specification, the translation determined by fitting arguments to pa-
rameters applies to the components of the compound identifier as well.

Given an identifier map h ⊆ ID × ID, define ExtID(h) ⊆ ID × ID and
ExtMIX -TOKEN (h) ⊆ MIX-TOKEN× MIX-TOKEN as the least relations satis-
fying

• h ⊆ ExtID(h),
• (id mixt1 . . . mixtn, id mixt′1 . . . mixt′n) ∈ ExtID(h) if (mixti, mixt′i) ∈

ExtMIX -TOKEN (h) or mixti = mixt′i for i = 1, . . . , n and mixtj �= mixt′j
for some 1 ≤ j ≤ n,

• ((comp-mix-token ci1 . . . cin), (comp-mix-token ci′1 . . . ci′n)) ∈ ExtMIX -
TOKEN (h), provided that (cii, ci′i) ∈ ExtID(h) or cii = ci′i for i =
1, . . . , n.

The definition of Ext on page 196 has to be changed in the following way
to accommodate compound identifiers: Given a signature symbol map h ⊆
SigSym × SigSym ,

Ext(h) = h ∪ IDAsSym(ExtID(h′))10

where

h′ = {(Ident , Ident ′) | Ident , Ident ′ ∈ ID,
(SSY ,SSY ′) ∈ h,
SSY matches IDAsSym(Ident),
SSY ′ matches IDAsSym(Ident ′)}11.

10 IDAsSym is applied to a binary relation by applying it component-wise. The
union of h and IDAsSym(ExtID(h′)) may lead to a relation that is not a function
(and, therefore, undefinedness of the instantiation of the generic specification,
because the symbol map does not induce a signature morphism), if a compound
identifier is mapped both explicitly by the fitting morphism and implicitly by the
extension mechanism. Note that this can happen in CASL only for sort symbols,
since fully qualified symbols are never identifiers.

11 Notice that h′ may fail to be a function even if h is one, destroying the definedness
of the instantiation of a generic specification. In CASL, this may happen, for
example, if two different profiles of a function are mapped to different names, and
the function name occurs in a compound identifier.

III:4.6 Compound Identifiers 225

The embedding, projection and membership symbols em , pr and in(s)
are not contained in ID and hence are not subject to the above extension
mechanism for compound identifiers.

Subsort embeddings between component sorts do not induce subsort em-
beddings between the compound sorts.
Instantiation, however, does preserve subsorts. Compound identifiers must
not be identified through the identification of components by the fitting
morphism.

This behavior is automatically achieved by the use of a final signature
morphism in the definition of signature morphism induced by a symbol map
(which is used in the definition of the extension of a signature morphism along
a signature extension, which is in turn used in the semantics of instantiations
of generic specifications).

5

Architectural Specification Semantics

Architectural specifications are for imposing structure on models, expressing
their composition from component units.

The component units may all be regarded as unit functions : functions
without arguments give self-contained units; functions with arguments use
such units in constructing further units.

The specification of a unit function indicates the properties to be assumed
of the arguments, and the properties to be guaranteed of the result. In CASL,
self-contained units are simply subsorted models as defined in Chap. 3, and
their properties are expressed by ordinary (perhaps structured) specifications.

Thus a unit function maps models of argument specifications to models of
a result specification. A specification of such functions can be simply a list of
the argument specifications together with the result specification. Thinking of
argument and result specifications as types of models, a specification of a unit
function may be regarded as a function type. Such a specification describes
the class of all persistent functions from compatible tuples of models of the
argument specifications to models of the result specification.

An entire architectural specification is a collection of unit function specifi-
cations, together with a description of how the functions are to be composed
to give a resulting unit. A model of an architectural specification is a collec-
tion of unit functions with the specified types or definitions, together with the
result of composing them as described.

In Sect. 5.1 we define semantic domains to model the concepts mentioned
above. At the risk of stretching informality and neglecting precision, the vo-
cabulary of key semantic notions to be introduced may be summarized as
follows:

concept static semantics model semantics
(individual entities)

model semantics
(classes of entities)

unit unit signature unit unit specification
unit expression unit signature unit evaluator —

unit declarations
and definitions static unit context unit environment unit context

architectural
specification

architectural
signature

architectural
model

architectural
specification

228 III:5 Architectural Specification Semantics

Sections 5.2–5.5 then give static and model semantics for architectural specifi-
cations, extending what was provided for basic and structured specifications.
Finally, in Sect. 5.6, we refine the static analysis for architectural specifica-
tions by giving an extended static semantics, which gathers considerably more
static information and helps to discharge some of the requirements in the
model semantics.

5.1 Architectural Concepts

To formally explicate the meaning of architectural constructs we need seman-
tic domains to model the new notions hinted at above.

First, some very preliminary definitions:

UN ∈ UnitName = SIMPLE-ID
ASN ∈ ArchSpecName = SIMPLE-ID
USN ∈ UnitSpecName = SIMPLE-ID

Unit signatures, static unit contexts and architectural signatures carry static
information necessary for ‘typing’ unit terms and expressions, unit declara-
tions and definitions, and architectural specifications.

An architectural signature consists of a unit signature (for the result unit)
together with a static unit context : unit signatures for the component units
named by unit names (see below). A unit signature gives a sequence of sig-
natures1 for the unit arguments and a signature that extends their union for
the result of the unit applications. For non-generic units this reduces to their
(result) signature. To take into account constraints on applications of generic
units, the signatures of their imports are stored as well.

Σ1, . . . , Σn→Σ

or Σ→Σ ∈ ParUnitSig = FinSeq(Sig)× Sig
UΣ ∈ UnitSig = ParUnitSig ∪ Sig

1 Unless explicitly stated otherwise, in this chapter signature means subsorted sig-
nature, as introduced in Chap. 3.

However, the semantics of CASL architectural constructs given here is inde-
pendent of the underlying institution, provided the institution comes equipped
with the structure introduced in Chap. 4 for the semantics of CASL structured
specifications. The only extra assumptions we rely on here, which hold for the
(subsorted) institution of CASL, are that the empty signature is included in all
signatures, it has exactly one model, and that the sinks of signature morphisms
given by signature unions are mapped by the model functor to sources that are
jointly injective.

III:5.1 Architectural Concepts 229

(ΣI , Σ1, . . . , Σn→Σ)
or (ΣI , Σ→Σ)

or (ΣI , UΣ) ∈ ImpUnitSig = Sig×UnitSig
Cs ∈ StUnitCtx = UnitName fin→ (ImpUnitSig ∪ Sig)

(Cs, UΣ) or AΣ ∈ ArchSig = StUnitCtx × UnitSig

For a unit signature Σ1, . . . , Σn→Σ in ParUnitSig , we require n ≥ 1 and Σ to
be an extension of Σ1∪ . . .∪Σn. For a unit with import signature (ΣI , UΣ) in
ImpUnitSig, we require UΣ ∈ ParUnitSig and then, for UΣ = Σ1, . . . , Σn→Σ,
that Σ is an extension of ΣI ∪Σ1∪ . . .∪Σn. We write C ∅

s for the empty static
context.

Units may be regarded as unit functions: functions without arguments give
self-contained units, which are CASL models; functions with arguments use
such units in constructing further units.

A non-generic unit is just a CASL model. A generic unit over a unit signa-
ture Σ1, . . . , Σn→Σ is a (partial) function mapping sequences of compatible
models over Σ1, . . . , Σn to models over Σ. Models over Σ1, . . . , Σn are com-
patible if they can be amalgamated to a model over Σ1 ∪ . . . ∪Σn.

M ∈ Unit(Σ) = Mod(Σ)
〈M1, . . . , Mn〉

or M ∈ CompMod(Σ1, . . . , Σn) =
{〈M |Σ1, . . . , M |Σn〉 |M ∈Mod(Σ1 ∪ . . . ∪Σn)}

F ∈ Unit(Σ1, . . . , Σn→Σ) =
CompMod(Σ1, . . . , Σn) ⇀ Mod(Σ)

U ∈ Unit =
⋃

UΣ∈UnitSig Unit(UΣ)

A generic unit F ∈ Unit(Σ1, . . . , Σn→Σ) is required to protect its argu-
ments, i.e., for each 〈M1, . . . , Mn〉 ∈ Dom(F), (F 〈M1, . . . , Mn〉)|Σ1 = M1,
. . . , (F 〈M1, . . . , Mn〉)|Σn = Mn.

Given compatible models (M1, . . . , Mn) ∈ CompMod(Σ1, . . . , Σn), we
write M1 ⊕ . . . ⊕ Mn for their amalgamation, i.e., the unique model in
Mod(Σ1 ∪ . . . ∪ Σn) such that (M1 ⊕ . . . ⊕ Mn)|Σ1 = M1, . . . , (M1 ⊕
. . . ⊕ Mn)|Σn = Mn (uniqueness is ensured by the property of signature
unions mentioned in footnote 1). For M1 ⊆Mod(Σ1), . . . ,Mn ⊆Mod(Σn),
M1⊕. . .⊕Mn = {M ∈Mod(Σ1 ∪ . . . ∪Σn) |M |Σ1 ∈M1, . . . M |Σn ∈Mn}.

We extend this to ‘amalgamate’ models with generic units.
Given a generic unit signature Σ1, . . . , Σn→Σ and a signature Σ′, we

write (Σ1, . . . , Σn→Σ) ∪ Σ′ for Σ1, . . . , Σn→(Σ ∪ Σ′). Then we say that a
unit F ∈ Unit(Σ1, . . . , Σn→Σ) is compatible with a model M ′ ∈ Mod(Σ′)
if for all M ∈ Dom(F) such that M and M ′ are compatible, F (M) and M ′

are compatible as well. If this is the case, we define

F ⊕M ′ = {M �→ (F (M)⊕M ′) | M, M ′are compatible, M ∈ Dom(F)},

so that F ⊕M ′ ∈ Unit((Σ1, . . . , Σn→Σ) ∪Σ′).

230 III:5 Architectural Specification Semantics

An architectural specification denotes a class of architectural models over
an architectural signature.

An architectural model over an architectural signature (Cs, UΣ) consists of
a (result) unit over the unit signature UΣ and a unit environment : a collection
of (component) units over the signatures given in Cs, named by the respective
unit names. In CASL, all architectural specifications are deterministic in the
sense that no environment determines more than one result unit.

E ∈ UnitEnv(Cs) ⊆ UnitEnv = UnitName fin→ Unit
(E ,U) or AM ∈ ArchMod(Cs, UΣ) = UnitEnv(Cs)×Unit(UΣ)

ArchSpec(AΣ) = Set(ArchMod(AΣ))
AM ∈ ArchSpec =

⋃
AΣ∈ArchSig ArchSpec(AΣ)

A unit environment E is in UnitEnv(Cs) if Dom(E) ⊇ Dom(Cs) and for
each UN ∈ Dom(Cs) with Cs(UN) = (ΣI , UΣ) or Cs(UN) = UΣ, E (UN) ∈
Unit(UΣ).

Any architectural specification AM ∈ ArchSpec is required to be func-
tional: if for some E ∈ UnitEnv, (E ,UN 1) ∈ AM and (E ,UN 2) ∈ AM
then UN 1 and UN 2 coincide.

Unit specifications denote sets of units:

UnitSpec(UΣ) = Set(Unit(UΣ))
U ∈ UnitSpec =

⋃
UΣ∈UnitSig UnitSpec(UΣ)

Unit terms and unit expressions, used for instance to define the result units,
denote unit evaluators which build a unit from a unit environment that
records the units the term might involve.

UnitEval(UΣ) = UnitEnv ⇀ Unit(UΣ)
UEv ∈ UnitEval =

⋃
UΣ∈UnitSig UnitEval(UΣ)

ModEval(Σ) = UnitEnv ⇀ Mod(Σ)
MEv ∈ ModEval =

⋃
Σ∈Sig ModEval(Σ)

We require that unit evaluators are monotone in the following sense: for UEv ∈
UnitEval, if E ∈ Dom(UEv) then for all E ′ ⊇ E , UEv(E ′) = UEv(E)
(in particular E ′ ∈ Dom(UEv) as well). Similar requirement is imposed on
model evaluators in ModEval; note also that since signatures are in fact unit
signatures as well, we have ModEval ⊆ UnitEval.

Given any unit signature UΣ, unit specification U ⊆ Unit(UΣ), signature
ΣI , and model evaluator MEv ∈ ModEval(ΣI), the import extension of U
by MEv ,

U ⊕MEv ⊆ UnitEval(UΣ ∪ΣI)

is the empty set if for some E ∈ Dom(MEv) there is no F ∈ U that is com-
patible with MEv (E); otherwise U ⊕ MEv is the set of all unit evaluators

III:5.1 Architectural Concepts 231

UEv ∈ UnitEval(UΣ ∪ ΣI) such that Dom(UEv) = Dom(MEv) and for
E ∈ Dom(UEv), UEv (E) = F ⊕ MEv (E) for some F ∈ U that is compat-
ible with MEv (E). (Notice that due to the definitions of compatibility and
amalgamation above, this notion applies to both non-generic and generic unit
specifications.)

Unit contexts are sets of unit environments, and thus record constraints on
units as well as dependencies between them.

One might think that all we need to know about units declared within an
architectural specification are their individual specifications. However, since
declared units may rely on imported units, non-trivial dependencies between
them occur and should be taken into account. Consequently, unit contexts are
sets of unit environments, thus recording constraints on as well as dependen-
cies between units introduced.

C ∈ UnitCtx = Set(UnitEnv)

Unit contexts are required to be ‘closed’ in the sense that if E ∈ C then for
all E ′ ⊇ E , E ′ ∈ C as well.

The ‘empty’ unit context C ∅ = UnitEnv(C ∅
s) = UnitEnv imposes no

constraints on units, and so consists of all unit environments.
We use two auxiliary notations to manipulate unit contexts. Given any

unit context C , unit name UN , class U of units, and unit evaluator UEv with
C ⊆ Dom(UEv), we define

C [UN /U] = {E + {UN �→ U} | E ∈ C , U ∈ U}

and
C [UN /UEv] = {E + {UN �→ UEv(E)} | E ∈ C}.

‘+’ denotes the ‘overwriting’ union of partial functions: given two unit en-
vironments E and E ′, Dom(E + E ′) = Dom(E) ∪ Dom(E ′) and then for
UN ∈ Dom(E + E ′), (E + E ′)(UN) = E ′(UN) if UN ∈ Dom(E ′) while
(E + E ′)(UN) = E (UN) otherwise.

The entities used in the model semantics are required to be compatible with
the corresponding entities of the static semantics.

A unit context C ∈ UnitCtx is compatible with a static unit context
Cs ∈ StUnitCtx if C ⊆ UnitEnv(Cs). Moreover, given a unit context C
that is compatible with a static unit context Cs, and C ′

s ∈ StUnitCtx and
C ′ ∈ UnitCtx, C ′

s and C ′ are compatible extensions of Cs and C if Dom(C ′
s)

and Dom(Cs) are disjoint, and C∩C ′ is compatible with Cs∪C ′
s. Furthermore,

UΣ ∈ UnitSig and UEv ∈ UnitEval are compatible additions to Cs and C if
UEv ∈ UnitEval(UΣ) and C ⊆ Dom(UEv).

As introduced elsewhere (cf. Sect. 6.1), model (resp., static) global en-
vironments Γm (resp., Γs) contain an architectural specification component

232 III:5 Architectural Specification Semantics

Am : ArchSpecName fin→ ArchSpec (resp., As : ArchSpecName fin→ ArchSig).
Moreover, the definition of compatibility of static and model global en-
vironments is extended here in the obvious way: Γs = (. . . ,As, . . .) and
Γm = (. . . ,Am, . . .) are compatible only if Dom(As) = Dom(Am) and for
each ASN ∈ Dom(As), Am(ASN) ∈ ArchSpec(As(ASN)).

Similarly, model (resp., static) global environments Γm (resp., Γs) con-
tain a unit specification component Tm : UnitSpecName fin→ UnitSpec (resp.,
Ts : UnitSpecName fin→ UnitSig). Moreover, the definition of compatibility of
static and model global environments is further extended in the obvious way:
Γs = (. . . , Ts, . . .) and Γm = (. . . , Tm, . . .) are compatible only if Dom(Ts) =
Dom(Tm) and for each USN ∈ Dom(Ts), Tm(USN) ∈ UnitSpec(Ts(USN)).

The rest of this chapter indicates the semantics of the constructs of archi-
tectural specifications, extending what was provided for basic and structured
specifications.

5.2 Architectural Specification Definitions

An architectural specification definition ARCH-SPEC-DEFN defines the name
ARCH-SPEC-NAME to refer to the architectural specification ARCH-SPEC, ex-
tending the global environment (which must not already include a definition
for ARCH-SPEC-NAME). The local environment given to ARCH-SPEC is empty.

ARCH-SPEC-DEFN ::= arch-spec-defn ARCH-SPEC-NAME ARCH-SPEC
ARCH-SPEC ::= BASIC-ARCH-SPEC | ARCH-SPEC-NAME
ARCH-SPEC-NAME ::= SIMPLE-ID

Γs � ARCH-SPEC-DEFN� Γ ′
s Γs, Γm � ARCH-SPEC-DEFN⇒ Γ ′

m

Γs and Γm are compatible global environments; then Γ ′
s and Γ ′

m are compatible
as well, and extend Γs and Γm, respectively.

Γs = (Gs,Vs,As, Ts)
ASN �∈ Dom(Gs) ∪Dom(Vs) ∪Dom(As) ∪Dom(Ts)

Γs � ARCH-SPEC� AΣ

Γs � arch-spec-defn ASN ARCH-SPEC� (Gs,Vs,As ∪ {ASN �→ AΣ}, Ts)

Γm = (Gm,Vm,Am, Tm)
Γs, Γm � ARCH-SPEC⇒ AM

Γs, Γm � arch-spec-defn ASN ARCH-SPEC⇒
(Gm,Vm,Am ∪ {ASN �→ AM}, Tm)

III:5.2 Architectural Specification Definitions 233

Γs � ARCH-SPEC� AΣ Γs, Γm � ARCH-SPEC⇒ AM

Γs and Γm are compatible global environments; then AM ∈ ArchSpec(AΣ).

Γs � BASIC-ARCH-SPEC� AΣ

Γs � BASIC-ARCH-SPECqua ARCH-SPEC� AΣ

Γs, Γm � BASIC-ARCH-SPEC⇒ AM
Γs, Γm � BASIC-ARCH-SPECqua ARCH-SPEC⇒ AM

ASN ∈ Dom(As)
(Gs,Vs,As, Ts) � ASN qua ARCH-SPEC�As(ASN)

Γs, (Gm,Vm,Am, Tm) � ASN qua ARCH-SPEC⇒ Am(ASN)

A basic architectural specification BASIC-ARCH-SPEC consists of a list of unit
declarations and definitions together with a unit expression describing how
such units are to be composed. A model of such an architectural specification
consists of a unit for each unit declaration and definition in the list and the
composition of these units as described by the result unit expression.

BASIC-ARCH-SPEC ::= basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT
UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN
RESULT-UNIT ::= result-unit UNIT-EXPRESSION

Γs � BASIC-ARCH-SPEC� AΣ Γs, Γm � BASIC-ARCH-SPEC⇒ AM

Γs and Γm are compatible global environments; then AM ∈ ArchSpec(AΣ).

Γs � UNIT-DECL-DEFN+ � Cs

Γs,Cs � RESULT-UNIT� UΣ

Γs � basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT� (Cs, UΣ)

Γs � UNIT-DECL-DEFN+ � Cs

Γs, Γm � UNIT-DECL-DEFN+ ⇒ C
Γs, Γm,Cs,C � RESULT-UNIT⇒ UEv

Γs, Γm � basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT⇒
{(E ,UEv (E)) | E ∈ C}

Γs � UNIT-DECL-DEFN+ � Cs Γs, Γm � UNIT-DECL-DEFN+ ⇒ C

Γs and Γm are compatible global environments; then C is compatible with Cs

too.

234 III:5 Architectural Specification Semantics

Γs,C ∅
s � UNIT-DECL-DEFN1 � (Cs)1

· · ·
Γs, (Cs)n−1 � UNIT-DECL-DEFNn � (Cs)n

Γs � UNIT-DECL-DEFN1 . . . UNIT-DECL-DEFNn � (Cs)n

Γs,C ∅
s � UNIT-DECL-DEFN1 � (Cs)1

Γs, Γm,C ∅
s ,C ∅ � UNIT-DECL-DEFN1 ⇒ C1

· · ·
Γs, (Cs)n−1 � UNIT-DECL-DEFNn � (Cs)n

Γs, Γm, (Cs)n−1,Cn−1 � UNIT-DECL-DEFNn ⇒ Cn

Γs, Γm � UNIT-DECL-DEFN1 . . .UNIT-DECL-DEFNn ⇒ Cn

Γs,Cs � UNIT-DECL-DEFN� C ′
s Γs, Γm,Cs,C � UNIT-DECL-DEFN⇒ C ′

Γs and Γm are compatible global environments, and C is compatible with Cs;
then C ′ and C ′

s are compatible, Cs ⊆ C ′
s and C ⊇ C ′.

Γs,Cs � UNIT-DECL� C ′
s

Γs,Cs � UNIT-DECL qua UNIT-DECL-DEFN� Cs ∪ C ′
s

Γs, Γm,Cs,C � UNIT-DECL⇒ C ′

Γs, Γm,Cs,C � UNIT-DECL qua UNIT-DECL-DEFN⇒ C ∩C ′

Γs,Cs � UNIT-DEFN� C ′
s

Γs,Cs � UNIT-DEFN qua UNIT-DECL-DEFN� Cs ∪ C ′
s

Γs, Γm,Cs,C � UNIT-DEFN⇒ C ′

Γs, Γm,Cs,C � UNIT-DEFN qua UNIT-DECL-DEFN⇒ C ∩C ′

Γs,Cs � RESULT-UNIT� UΣ Γs, Γm,Cs,C � RESULT-UNIT⇒ UEv

Γs and Γm are compatible global environments, and C is a unit context that is
compatible with static unit context Cs; then UΣ and UEv ∈ UnitEval(UΣ)
are compatible additions to Cs and C .

Γs,Cs � UNIT-EXPRESSION� UΣ

Γs,Cs � result-unit UNIT-EXPRESSION� UΣ

Γs, Γm,Cs,C � UNIT-EXPRESSION⇒ UEv
Γs, Γm,Cs,C � result-unit UNIT-EXPRESSION⇒ UEv

5.3 Unit Declarations and Definitions

The visibility of unit names in architectural specifications is linear, and no
unit name may be introduced more than once in a particular architectural
specification. Declarations and definitions of units do not affect the global en-
vironment: a unit may be referenced only within the architectural specification
in which it occurs.

III:5.3 Unit Declarations and Definitions 235

5.3.1 Unit Declarations

A unit declaration UNIT-DECL provides a unit specification UNIT-SPEC and
a unit name UNIT-NAME, which is used for referring to the unit in subsequent
unit expressions.
In addition, the UNIT-IMPORTED lists any units that are imported for the im-
plementation of the declared unit (corresponding to implementing a generic
unit function and applying it only once, to the imported units). The unit
specification UNIT-SPEC is treated as an extension of the signatures of the
imported units; see Sect. 5.4.

UNIT-DECL ::= unit-decl UNIT-NAME UNIT-SPEC UNIT-IMPORTED
UNIT-IMPORTED ::= unit-imported UNIT-TERM*
UNIT-NAME ::= SIMPLE-ID

Γs,Cs � UNIT-DECL� C ′
s Γs, Γm,Cs,C � UNIT-DECL⇒ C ′

Γs and Γm are compatible global environments, and C is a unit context that
is compatible with static unit context Cs; then C ′

s and C ′ are compatible
extensions of Cs and C .

Cs � UNIT-IMPORTED� ΣI

ΣI , Γs � UNIT-SPEC� Σ

UN �∈ Dom(Cs)
Γs,Cs � unit-decl UN UNIT-SPEC UNIT-IMPORTED� {UN �→ (ΣI ∪Σ)}

Cs � UNIT-IMPORTED� ΣI

ΣI , Γs � UNIT-SPEC� Σ→Σ0

UN �∈ Dom(Cs)
Γs,Cs � unit-decl UN UNIT-SPEC UNIT-IMPORTED�

{UN �→ (ΣI , Σ→Σ0 ∪ΣI)}
We treat non-generic and generic unit specifications separately, as slightly

different signature information is stored in static contexts in each case. How-
ever, the uniform notation adopted for import extensions allows us to capture
the model semantics for both cases in a single rule.

Cs,C � UNIT-IMPORTED⇒ MEv I

ΣI , {MEvI(E) | E ∈ C}, Γm, Γs � UNIT-SPEC⇒ U
Γs, Γm,Cs,C � unit-decl UN UNIT-SPEC UNIT-IMPORTED⇒

C ∅[UN /(U ⊕MEv I)]

Cs � UNIT-IMPORTED� Σ Cs,C � UNIT-IMPORTED⇒ MEv

236 III:5 Architectural Specification Semantics

C is a unit context that is compatible with static unit context Cs; then Σ
and MEv are compatible additions to Cs and C .

Cs � UNIT-TERM1 � Σ1 · · · Cs � UNIT-TERMk � Σk

Cs � unit-imported UNIT-TERM1,...,UNIT-TERMk � Σ1 ∪ . . . ∪Σk

By definition, the union of the empty family of signatures (considered here if
k = 0) is the empty signature.

Cs,C � UNIT-TERM1 ⇒ MEv1 · · · Cs,C � UNIT-TERMk ⇒ MEvk

for each E ∈ C ,MEv1(E), . . . ,MEvk(E) are compatible
Cs,C � unit-imported UNIT-TERM1,...,UNIT-TERMk ⇒

λE ∈ C ·MEv1(E)⊕ . . .⊕MEvk(E)

5.3.2 Unit Definitions

A unit definition UNIT-DEFN defines the name UNIT-NAME to refer to
the unit resulting from the composition described by the unit expression
UNIT-EXPRESSION.

UNIT-DEFN ::= unit-defn UNIT-NAME UNIT-EXPRESSION

Γs,Cs � UNIT-DEFN� C ′
s Γs, Γm,Cs,C � UNIT-DEFN⇒ C ′

Γs and Γm are compatible global environments, and C is a unit context that
is compatible with static unit context Cs; then C ′

s and C ′ are compatible
extensions of Cs and C , and moreover, if two unit environments in C ∩ C ′

coincide on the unit names outside the domain of C ′
s then they are in fact

equal.

Γs,Cs � UNIT-EXPRESSION� Σ

UN �∈ Dom(Cs)
Γs,Cs � unit-defn UN UNIT-EXPRESSION� {UN �→ Σ}

Γs,Cs � UNIT-EXPRESSION� Σ→Σ

UN �∈ Dom(Cs)
Γs,Cs � unit-defn UN UNIT-EXPRESSION� {UN �→ (∅, Σ→Σ)}

∅ is the empty signature here: no imports are given to defined units.
The above rules prevent unit names from being re-introduced in local unit

definitions (in agreement with the requirement that each unit name is intro-
duced only once in a given architectural specification). However, according
to the usual visibility rules, the same unit name may be used for local unit
definitions that are not in the scope of one another.

Γs, Γm,Cs,C � UNIT-EXPRESSION⇒ UEv
Γs, Γm,Cs,C � unit-defn UN UNIT-EXPRESSION⇒ C ∅[UN /UEv]

III:5.4 Unit Specifications 237

5.4 Unit Specifications

A unit specification definition UNIT-SPEC-DEFN defines the name SPEC-NAME
to refer to the unit specification UNIT-SPEC, extending the global environ-
ment (which must not already include a definition for SPEC-NAME). The local
environment given to UNIT-SPEC is empty, i.e., the unit specification is im-
plicitly closed.

UNIT-SPEC-DEFN ::= unit-spec-defn SPEC-NAME UNIT-SPEC

Γs � UNIT-SPEC-DEFN� Γ ′
s Γs, Γm � UNIT-SPEC-DEFN� Γ ′

m

Γs and Γm are compatible global environments; then Γ ′
s and Γ ′

m are compatible
as well, and extend Γs and Γm, respectively.

Γs = (Gs,Vs,As, Ts)
USN �∈ Dom(Gs) ∪Dom(Vs) ∪Dom(As) ∪Dom(Ts)

∅, Γs � UNIT-SPEC� UΣ

Γs � unit-spec-defn USN UNIT-SPEC� (Gs,Vs,As, Ts ∪ {USN �→ UΣ})

Γm = (Gm,Vm,Am, Tm)
∅,Mod(∅), Γs, Γm � UNIT-SPEC⇒ U

Γs, Γm � unit-spec-defn USN UNIT-SPEC⇒
(Gm,Vm,Am, Tm ∪ {USN �→ U})

∅ is the empty signature here, and Mod(∅) is the (singleton) class of models
over this signature. This captures the fact that UNIT-SPEC is being closed, so
no dependencies on imports and hence on the unit environment can occur.

A unit specification may be a unit type, the name of another unit specifica-
tion, an architectural specification (either a reference to the defined name of
an architectural specification, or an anonymous architectural specification),
or an explicitly-closed unit specification. In unit declarations, unit specifica-
tions are used as extensions of imported units, see Sect. 5.3.1.

UNIT-SPEC ::= UNIT-TYPE | SPEC-NAME | ARCH-UNIT-SPEC
| CLOSED-UNIT-SPEC

Σ, Γs � UNIT-SPEC� UΣ ΣI ,MI , Γs, Γm � UNIT-SPEC⇒ U

Γs and Γm are compatible global environments, ΣI is a signature and MI ⊆
Mod(ΣI); then UΣ is a unit signature and U ∈ UnitSpec(UΣ).

238 III:5 Architectural Specification Semantics

ΣI , Γs � UNIT-TYPE� UΣ

ΣI , Γs � UNIT-TYPE qua UNIT-SPEC� UΣ

ΣI ,MI , Γs, Γm � UNIT-TYPE⇒ U
ΣI ,MI , Γs, Γm � UNIT-TYPE qua UNIT-SPEC⇒ U

USN ∈ Dom(Ts)
ΣI , (Gs,Vs,As, Ts) � USN qua UNIT-SPEC� Ts(USN)

ΣI ,MI , Γs, (Gm,Vm,Am, Tm) � USN qua UNIT-SPEC⇒ Tm(USN)

Γs � ARCH-UNIT-SPEC� UΣ

ΣI , Γs � ARCH-UNIT-SPEC qua UNIT-SPEC� UΣ

Γs, Γm � ARCH-UNIT-SPEC⇒ U
ΣI ,M, Γs, Γm � ARCH-UNIT-SPECqua UNIT-SPEC⇒ U

Γs � CLOSED-UNIT-SPEC� UΣ

ΣI , Γs � CLOSED-UNIT-SPECqua UNIT-SPEC� UΣ

Γs, Γm � CLOSED-UNIT-SPEC⇒ U
ΣI ,MI , Γs, Γm � CLOSED-UNIT-SPECqua UNIT-SPEC⇒ U

5.4.1 Unit Types

A unit type lists argument specifications and the result specification. A unit
satisfies a unit type when it is a persistent function that maps compatible
tuples of models of the argument specifications to models of their extension
by the result specification.

UNIT-TYPE ::= unit-type SPEC* SPEC

Σ, Γs � UNIT-TYPE� UΣ ΣI ,MI , Γs, Γm � UNIT-TYPE⇒ U

Γs and Γm are compatible global environments, ΣI is a signature and MI ⊆
Mod(ΣI); then UΣ is a unit signature and U ∈ UnitSpec(UΣ).

ΣI , Γs � SPEC� Σ

ΣI , Γs � unit-type SPEC� Σ

ΣI ,MI , Γs, Γm � SPEC⇒M
ΣI ,MI , Γs, Γm � unit-type SPEC⇒M

III:5.4 Unit Specifications 239

∅, Γs � SPEC1 � Σ1 · · · ∅, Γs � SPECn � Σn

ΣI ∪Σ1 ∪ . . . ∪Σn, Γs � SPEC� Σ

ΣI , Γs � unit-type SPEC1,...,SPECn SPEC� Σ1, . . . , Σn→Σ

∅, Γs � SPEC1 � Σ1 · · · ∅, Γs � SPECn � Σn

∅,Mod(∅), Γs, Γm � SPEC1 ⇒M1 · · · ∅,Mod(∅), Γs, Γm � SPECn ⇒Mn

ΣI ∪Σ1 ∪ . . . ∪Σn, Γs � SPEC� Σ

M0 =MI ⊕M1 ⊕ . . .⊕Mn

ΣI ∪Σ1 ∪ . . . ∪Σn,M0, Γs, Γm � SPEC⇒M
ΣI ,MI , Γs, Γm � unit-type SPEC1,...,SPECn SPEC⇒
{F ∈ Unit(Σ1, . . . , Σn→Σ) | for some M I ∈MI ,

for all M ∈ M0 with M |ΣI = M I , 〈M |Σ1 , . . . , M |Σn〉 ∈ Dom(F),
F 〈M |Σ1 , . . . , M |Σn〉 ∈ M, and (F 〈M |Σ1 , . . . , M |Σn〉)|ΣI = M I}

Imports are not taken as local environment for parameter specifications here,
in accordance with the interpretation of imports as ‘already instantiated pa-
rameters’.

The semantics of SPEC is given in Sect. 4.2.

5.4.2 Architectural Unit Specifications

A unit satisfies ARCH-UNIT-SPEC when it is the result unit of some model of
the architectural specification ARCH-SPEC.

ARCH-UNIT-SPEC ::= arch-unit-spec ARCH-SPEC

Γs � ARCH-UNIT-SPEC� UΣ Γs, Γm � ARCH-UNIT-SPEC⇒ U

Γs and Γm are compatible global environments; then UΣ is a unit signature
and U ∈ UnitSpec(UΣ).

Γs � ARCH-SPEC� (Cs, UΣ)
Γs � ARCH-SPEC qua ARCH-UNIT-SPEC� UΣ

Γs, Γm � ARCH-SPEC⇒ AM
Γs, Γm � ARCH-SPEC qua ARCH-UNIT-SPEC⇒ {U | (E ,U)∈AM for some E}

5.4.3 Closed Unit Specifications

A closed unit specification CLOSED-UNIT-SPEC determines the same type as
UNIT-SPEC determines in the empty local environment.

240 III:5 Architectural Specification Semantics

CLOSED-UNIT-SPEC ::= closed-unit-spec UNIT-SPEC

Γs � CLOSED-UNIT-SPEC� UΣ Γs, Γm � CLOSED-UNIT-SPEC⇒ U

Γs and Γm are compatible global environments; then UΣ is a unit signature
and U ∈ UnitSpec(UΣ).

∅, Γs � UNIT-SPEC� UΣ

Γs � closed UNIT-SPEC� UΣ

∅,Mod(∅), Γs, Γm � UNIT-SPEC⇒ U
Γs, Γm � closed UNIT-SPEC⇒ U

5.5 Unit Expressions

A unit expression (with some unit bindings) describes a composition of units
declared (or defined) in the enclosing architectural specification. The result
unit is a function, mapping the arguments specified by the unit bindings (if
any) to the unit described by the unit term UNIT-TERM.

UNIT-EXPRESSION ::= unit-expression UNIT-BINDING* UNIT-TERM
UNIT-BINDING ::= unit-binding UNIT-NAME UNIT-SPEC

Γs,Cs � UNIT-EXPRESSION� UΣ
Γs, Γm,Cs,C � UNIT-EXPRESSION⇒ UEv

Γs and Γm are compatible global environments, and C is a unit context that
is compatible with static unit context Cs; then UΣ and UEv are compatible
additions to Cs and C .

Γs,Cs � UNIT-TERM� Σ

Γs,Cs � unit-expression UNIT-TERM� Σ

Γs, Γm,Cs,C � UNIT-TERM⇒ MEv
Γs, Γm,Cs,C � unit-expression UNIT-TERM⇒ MEv

Γs � UNIT-BINDING1 � (UN 1, Σ1) · · · Γs � UNIT-BINDINGn � (UN n, Σn)
UN 1, . . . ,UN n are distinct {UN 1, . . . ,UN n} ∩Dom(Cs) = ∅

C ′
s = {UN 1 �→ Σ1, . . . ,UN n �→ Σn}

Γs,Cs ∪ C ′
s � UNIT-TERM� Σ Σ1 ∪ . . . ∪Σn ⊆ Σ

Γs,Cs � unit-expression UNIT-BINDING1,...,UNIT-BINDINGn UNIT-TERM
� Σ1, . . . , Σn→Σ

III:5.5 Unit Expressions 241

Γs � UNIT-BINDING1 � (UN 1, Σ1) · · · Γs � UNIT-BINDINGn � (UN n, Σn)
Γs, Γm � UNIT-BINDING1 ⇒ (UN 1,M1)

· · ·
Γs, Γm � UNIT-BINDINGn ⇒ (UN n,Mn)

ΣP = Σ1 ∪ . . . ∪Σn MP = M1 ⊕ . . .⊕Mn

UN P �∈ Dom(Cs) ∪ {UN 1, . . . ,UN n}
C ′

s = {UN P �→ ΣP ,UN 1 �→ Σ1, . . . ,UN n �→ Σn}
C ′ = C ∅[UN P /MP][UN 1/(λE ·E (UN P)|Σ1)] . . . [UN n/(λE ·E (UN P)|Σn)]

Γs, Γm,Cs ∪ C ′
s,C ∩ C ′ � UNIT-TERM⇒ MEv

for all E ∈ C ∩C ′,MEv (E)|ΣP = E (UN P)
UEv ∈ UnitEval(Σ1, . . . , Σn→Σ) is such that Dom(UEv) = C and
for E ∈ C ,
〈M1, . . . , Mn〉 ∈ Dom(UEv(E)) ⊆ CompMod(Σ1, . . . , Σn) iff
E + {UN P �→ (M1 ⊕ . . .⊕Mn),UN 1 �→M1, . . . ,UN n �→ Mn} ∈ C ∩ C ′

and then for 〈M1, . . . , Mn〉 ∈ Dom(UEv (E)),
UEv(E)〈M1, . . . , Mn〉 =

MEv (E + {UN P �→ (M1 ⊕ . . .⊕Mn),UN 1 �→M1, . . . ,UN n �→Mn})
Γs, Γm,Cs,C �
unit-expression UNIT-BINDING1,...,UNIT-BINDINGn UNIT-TERM

⇒ UEv

The trick with the use of a new unit name UN P restricts attention to envi-
ronments with formal parameter names denoting compatible models only.

Γs � UNIT-BINDING� (UN , Σ) Γs, Γm � UNIT-BINDING⇒ (UN ,M)

Γs and Γm are compatible global environments; then UN is a unit name (the
same for the static and model semantics) and M⊆Mod(Σ).

∅, Γs � UNIT-SPEC� Σ

Γs � unit-binding UN UNIT-SPEC� (UN , Σ)

The above rule imposes the restriction that only non-generic units can be
bound in unit bindings.

∅,Mod(∅), Γs, Γm � UNIT-SPEC⇒M
Γs, Γm � unit-binding UN UNIT-SPEC⇒ (UN ,M)

242 III:5 Architectural Specification Semantics

5.5.1 Unit Terms

Unit terms provide counterparts to most of the constructs of structured
specifications: translations, reductions, amalgamations (corresponding to
unions), local unit definitions, and applications (corresponding to instanti-
ations) – but with a crucially different semantics. For units, enough sharing
is required so that the constructs as applied to the given units will always
produce results. Sharing between symbols is understood here semantically:
two symbols share if they coincide semantically. See Sect. 5.6 for further
elaboration on this issue.
Taking the unit type of each unit name from its declaration, the unit term
must be well-typed. All the constructs involved must get argument units
over the appropriate signatures.

UNIT-TERM ::= UNIT-REDUCTION | UNIT-TRANSLATION | AMALGAMATION
| LOCAL-UNIT | UNIT-APPL

Γs,Cs � UNIT-TERM� Σ Γs, Γm,Cs,C � UNIT-TERM⇒ MEv

Γs and Γm are compatible global environments; C is a unit context that
is compatible with static unit context Cs; then Σ and MEv are compatible
additions to Cs and C .

Rules elided.

Due to the semantic verification condition in the model semantics for ap-
plications, in general we may not be able to derive Cs,C � UNIT-TERM⇒ MEv
even if the static semantics works (Cs � UNIT-TERM� Σ can be derived).

The only reason to keep the global environments available for the semantic
of unit terms is that they are needed for the semantics of unit expressions in
local definitions (Sect. 5.5.1).

Unit Translations

A unit translation allows some of the unit symbols to be renamed. Any
symbols that happen to be glued together by the renaming must share.

UNIT-TRANSLATION ::= unit-translation UNIT-TERM RENAMING

Γs,Cs � UNIT-TRANSLATION� Σ
Γs, Γm,Cs,C � UNIT-TRANSLATION⇒ MEv

Γs and Γm are compatible global environments; C is a unit context that
is compatible with static unit context Cs; then Σ and MEv are compatible
additions to Cs and C .

III:5.5 Unit Expressions 243

Γs,Cs � UNIT-TERM� Σ

Σ � RENAMING� σ:Σ→Σ′

Γs,Cs � unit-translation UNIT-TERM RENAMING� Σ′

Γs,Cs � UNIT-TERM� Σ

Γs, Γm,Cs,C � UNIT-TERM⇒ MEv
Σ � RENAMING� σ:Σ→Σ′

for all E ∈ C , there exists a unique M ′ ∈Mod(Σ′) with M ′|σ = MEv (E)
Γs, Γm,Cs,C � unit-translation UNIT-TERM RENAMING⇒

{E �→M ′ | E ∈ C , M ′ ∈Mod(Σ′), M ′|σ = MEv (E)}
The semantics of RENAMING is given in Sect. 4.2.1.

Unit Reductions

A unit-reduction allows parts of the unit to be hidden and other parts to be
simultaneously renamed.

UNIT-REDUCTION ::= unit-reduction UNIT-TERM RESTRICTION

Γs,Cs � UNIT-REDUCTION� Σ Γs, Γm,Cs,C � UNIT-REDUCTION⇒ MEv

Γs and Γm are compatible global environments; C is a unit context that
is compatible with static unit context Cs; then Σ and MEv are compatible
additions to Cs and C .

Γs,Cs � UNIT-TERM� Σ

(∅, Σ) � RESTRICTION� σ:Σ′→Σ′′

Γs,Cs � unit-reduction UNIT-TERM RESTRICTION� Σ′′

Γs,Cs � UNIT-TERM� Σ

Γs, Γm,Cs,C � UNIT-TERM⇒ MEv
(∅, Σ) � RESTRICTION� σ:Σ′→Σ′′

for all E ∈ C ,
there exists a unique M ′′ ∈Mod(Σ′′) with M ′′|σ = MEv (E)|Σ′

Γs, Γm,Cs,C � unit-reduction UNIT-TERM RESTRICTION⇒
{E �→M ′′ | E ∈ C , M ′′ ∈Mod(Σ′′), M ′′|σ = MEv (E)|Σ′}

The semantics for RESTRICTION is given in Sect. 4.2.2.

244 III:5 Architectural Specification Semantics

Amalgamations

An amalgamation produces a unit that consists of the components of all the
amalgamated units put together. Compatibility of the unit terms must be
ensured.

AMALGAMATION ::= amalgamation UNIT-TERM+

Γs,Cs � AMALGAMATION� Σ Γs, Γm,Cs,C � AMALGAMATION⇒ MEv

Γs and Γm are compatible global environments; C is a unit context that
is compatible with static unit context Cs; then Σ and MEv are compatible
additions to Cs and C .

Γs,Cs � UNIT-TERM1 � Σ1 · · · Γs,Cs � UNIT-TERMn � Σn

Γs,Cs � amalgamation UNIT-TERM1,...,UNIT-TERMn � Σ1 ∪ . . . ∪Σn

Γs, Γm,Cs,C � UNIT-TERM1 ⇒ MEv1

· · ·
Γs, Γm,Cs,C � UNIT-TERMn ⇒ MEvn

for all E ∈ C ,MEv1(E), . . . ,MEvn(E) are compatible
Γs, Γm,Cs,C � amalgamation UNIT-TERM1,...,UNIT-TERMn ⇒

λE ∈ C ·MEv1(E) ⊕ . . .⊕MEvk(E)

Local Units

This construct allows for naming units that are locally defined for use in a
unit term, these units being intermediate results that are not to be visible
in the models of the enclosing architectural specification.

LOCAL-UNIT ::= local-unit UNIT-DEFN+ UNIT-TERM

Γs,Cs � LOCAL-UNIT� Σ Γs, Γm,Cs,C � LOCAL-UNIT⇒ MEv

Γs and Γm are compatible global environments; C is a unit context that
is compatible with static unit context Cs; then Σ and MEv are compatible
additions to Cs and C .

Γs,Cs � UNIT-DEFN1 � (Cs)1
· · ·

Γs,Cs ∪ (Cs)1 ∪ . . . ∪ (Cs)n−1 � UNIT-DEFNn � (Cs)n

Γs,Cs ∪ (Cs)1 ∪ . . . ∪ (Cs)n � UNIT-TERM� Σ

Γs,Cs � local-unit UNIT-DEFN1,...,UNIT-DEFNn UNIT-TERM� Σ

III:5.5 Unit Expressions 245

Γs,Cs � UNIT-DEFN1 � (Cs)1
Γs, Γm,Cs,C � UNIT-DEFN1 ⇒ C1

· · ·
Γs,Cs ∪ (Cs)1 ∪ . . . ∪ (Cs)n−1 � UNIT-DEFNn � (Cs)n

Γs, Γm,Cs ∪ (Cs)1 ∪ . . . ∪ (Cs)n−1,C ∩ C1 ∩ . . . ∩ Cn−1 �
UNIT-TERMn ⇒ Cn

Γs, Γm,Cs ∪ (Cs)1 ∪ . . . ∪ (Cs)n,C ∩ C1 ∩ . . . ∩ Cn � UNIT-TERM⇒ MEv
MEv ′ = {E �→ MEv (E + EL) |

E ∈ C ,Dom(EL) = Dom(CL
s), (E + EL) ∈ C ∩ CL}

Γs, Γm,Cs,C �
local-unit UNIT-DEFN1,...,UNIT-DEFNn UNIT-TERM⇒ MEv ′

Notice that by the semantic properties of unit definitions, for each E there is
at most one EL with Dom(EL) = Dom(CL

s) such that (E + EL) ∈ C ∩ CL.

Unit Applications

A unit application UNIT-APPL refers to a generic unit named UNIT-NAME that
has already been declared or defined in the enclosing architectural specifica-
tion, providing a fitting argument for each declared parameter. The fitting
argument fits the argument unit given by the unit term to the corresponding
formal argument for the generic unit via a signature morphism determined
by the symbol mapping. The signature morphism is obtained in the same
way as for generic specifications. Each fitting argument unit is required to
be a model of the corresponding argument specification.

UNIT-APPL ::= unit-appl UNIT-NAME FIT-ARG-UNIT*
FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*

Γs,Cs � UNIT-APPL� Σ Γs, Γm,Cs,C � UNIT-APPL⇒ MEv

Γs and Γm are compatible global environments; C is a unit context that
is compatible with static unit context Cs; then Σ and MEv are compatible
additions to Cs and C .

Cs(UN) = Σ

Γs,Cs � unit-appl UN � Σ

Γs, Γm,Cs,C � unit-appl UN ⇒ {E �→ E (UN) | UN ∈ Dom(E)}

246 III:5 Architectural Specification Semantics

Cs(UN) = (ΣI , (Σ1, . . . , Σn→Σ))
ΣF = ΣI ∪Σ1 ∪ . . . ∪Σn

Σ1, Γs,Cs � FIT-ARG-UNIT1 � σ1:Σ1→ΣA
1

· · ·
Σn, Γs,Cs � FIT-ARG-UNITn � σn:Σn→ΣA

n

ΣA = ΣI ∪ΣA
1 ∪ . . . ∪ΣA

n σA = (idΣI ∪ σ1 ∪ . . . ∪ σn) : ΣF → ΣA

σA(∆) : Σ → (ΣA ∪ΣA(∆)), where ∆:ΣF→Σ is the signature extension
Γs,Cs � unit-appl UN FIT-ARG-UNIT1,...,FIT-ARG-UNITn�

ΣA ∪ΣA(∆)

See Sect. 4.1.3 for the definition of σA(∆), the extension of a signature mor-
phism along a signature extension.

Cs(UN) = (ΣI , (Σ1, . . . , Σn→Σ))
ΣF = ΣI ∪Σ1 ∪ . . . ∪Σn

Σ1, Γs,Cs � FIT-ARG-UNIT1 � σ1:Σ1→ΣA
1

Σ1, Γs, Γm,Cs,C � FIT-ARG-UNIT1 ⇒ MEv1

· · ·
Σn, Γs,Cs � FIT-ARG-UNITn � σn:Σn→ΣA

n

Σn, Γs, Γm,Cs,C � FIT-ARG-UNITn ⇒ MEvn

for all E ∈ C , 〈MEv 1(E)|σ1 , . . . ,MEvn(E)|σn〉 ∈ Dom(E (UN))
ΣA = ΣI ∪ΣA

1 ∪ . . . ∪ΣA
n σA = (idΣI ∪ σ1 ∪ . . . ∪ σn) : ΣF → ΣA

σA(∆) : Σ → (ΣA ∪ΣA(∆)), where ∆:ΣF→Σ is the signature extension
for all E ∈ C , there exists a unique M ∈Mod(ΣA ∪ΣA(∆))

such that M |ΣA
1

= MEv1(E), . . . , M |ΣA
n

= MEvn(E) and
M |σA(∆) = E (UN)〈MEv1(E)|σ1 , . . . ,MEvn(E)|σn〉

MEv = {E �→M | E ∈ C , M ∈Mod(ΣA ∪ΣA(∆)),
M |ΣA

1
= MEv1(E), . . . , M |ΣA

n
= MEvn(E),

M |σA(∆) = E (UN)〈MEv 1(E)|σ1 , . . . ,MEvn(E)|σn 〉}
Γs, Γm,Cs,C �

unit-appl UN FIT-ARG-UNIT1,..., FIT-ARG-UNITn ⇒ MEv

Σ, Γs,Cs � FIT-ARG-UNIT� σ:Σ→ΣA

Σ, Γs, Γm,Cs,C � FIT-ARG-UNIT⇒ MEvA

Γs and Γm are compatible global environments; C is a unit context that
is compatible with static unit context Cs; then σ : Σ → ΣA is a signature
morphism, and ΣA and MEvA are compatible additions to Cs and C .

Γs,Cs � UNIT-TERM� ΣA

� SYMB-MAP-ITEMS*� r

Σ, Γs,Cs � fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*� r|Σ
ΣA

III:5.6 Extended Static Semantics 247

See Sect. 4.1.3 for the definition of r|ΣΣA :Σ→ΣA, the signature morphism
induced by the symbol map r.

Γs, Γm,Cs,C � UNIT-TERM⇒ MEv
Σ, Γs, Γm,Cs,C � fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*⇒ MEv

The semantics of SYMB-MAP-ITEMS* is given in Sect. 4.5.2.

5.6 Extended Static Semantics

The static semantics of architectural specifications given above performs only
a rough static analysis, collecting only very limited static information from
what is potentially available about units being defined by unit terms. Conse-
quently, many conditions (notably those concerning amalgamability of models
built by unit terms) that one would expect to be discharged by a static seman-
tics have to be checked in the rules for the model semantics. On one hand, this
gives extra flexibility: the model semantics by definition stores all the infor-
mation we have about units. On the other hand though, this is inconvenient in
practice, because a static analysis tool that follows the static semantics would
fail to detect some errors that could be caught using typechecking methods,
without resorting to a theorem prover.

In this section we present an extended static semantics for architectural
specifications, which gathers considerably more information than before, and
therefore allows for simplification of the model semantics, with some condi-
tions removed. To make the simplification visible below we will repeat the
rules of the model semantics, explicitly crossing out the conditions that can
be removed thanks to the extended static analysis. The extended static se-
mantics, although presented here in a technically somewhat different form, is
essentially equivalent to the one worked out in [62] for a simplified fragment
of CASL architectural specifications.

In a way, the extended static semantics is more restrictive than necessary:
there are cases where the extended static semantics fails while the seman-
tics given in the previous sections produces a valid result (see Sect. 5.6.6 for
the statement of some form of correctness of the extended static semantics).
These cases are rare in practice and typically indicate that some conditions
follow, often incidentally, from subtle constraints on the models imposed by
specifications. We recommend therefore that CASL support tools realize the
extended analysis as much as possible2, and when it fails issue a warning to
the user that (s)he has to rely on more powerful tools (e.g., proof mechanisms)
to ensure correctness of the specification (or, perhaps more likely, modify the
specification).
2 The conditions used in extended static semantics are undecidable in general;

however, there are efficient methods to check them in most cases of interest – see
[31] for a more complete analysis.

248 III:5 Architectural Specification Semantics

5.6.1 Architectural Concepts

Signature diagrams are used to keep track of dependencies between units.
Diagram nodes correspond to the units declared or built so far and record
their signatures. Diagram edges are labelled by signature morphisms that in-
dicate how the unit corresponding to the source of each edge is incorporated
as a part of the unit corresponding to its target.

The extended static semantics keeps track of the sharing information on
units stored in unit environments. Therefore, a more complicated form of
static contexts is necessary: rather than just naming signatures of these units,
they also store a diagram of their signatures, keeping track of the mutual
dependencies between units.

A signature diagram D : Shape(D)→Sig is a functor from its shape (small)
category Shape(D) to the category Sig of signatures. We will often identify
the shape category with its graph. We write Nodes(D) for the set of objects
of Shape(D) and Edges(D) for the set of its edges, using the notation e : p→q
for e ∈ Shape(D) and p, q ∈ Nodes(D) to indicate the source and target of an
edge e. Consequently, for p ∈ Nodes(D), D(p) is a signature and for e : p→q
in Shape(D), D(e) : D(p)→D(q) is a signature morphism.

Although we do not rely on this here, it is worth noticing that the shapes
of all diagrams we consider are in fact dags (directed acyclic graphs).

It is convenient to assume that both nodes and edges of the diagrams
considered come from a given infinite set Item; to make the choice of ‘new’
nodes and edges deterministic, we may assume that Item comes equipped with
a fixed enumeration – then ‘new’ always means ‘first not used as yet’.

Diag denotes the class of all signature diagrams.
We say that a diagram D ∈ Diag extends D′ ∈ Diag (or that D′ is a

subdiagram of D) if Shape(D′) is a subcategory of Shape(D) and D′ coincides
with D on nodes and edges in Shape(D). Somewhat informal statements that
one diagram extends another by a (new) node or by an edge will be used with
the obvious meaning.

Diagrams Di, i ∈ I (for an arbitrary set of indices I) disjointly extends
D′ if each Di, i ∈ I, extends D′ and moreover, for all distinct i, j ∈ I,
Shape(Di) ∩ Shape(Dj) = Shape(D′). If this is the case then the union⋃

i∈I Di is well-defined, its shape Shape(
⋃

i∈I Di) is the obvious free closure
of

⋃
i∈I Shape(Di), and the union

⋃
i∈I Di extends D′.

Whenever such a ‘disjointness’ requirement occurs in the rules below, it
may be eliminated by the appropriate choices of new nodes and edges in the
diagrams involved. Spelling this out in the semantics would require carrying
around the set of nodes and edges already used – rather than cluttering the
rules and judgements with this extra parameter, we state the disjointness
requirement explicitly when necessary.

III:5.6 Extended Static Semantics 249

The extended static semantics takes signatures from signature diagrams,
indicating for each non-generic unit the corresponding node in the current
signature diagram, in which the unit signature is recorded.

In the extended static semantics, unit contexts carry the diagram of de-
pendencies between unit signatures. The signatures of non-generic units (both
those stored in environments as well as those imported by generic units) are
‘based’ on this diagram, and are given by reference to its nodes.

Bs ∈ StBasedUnitCtx = UnitName fin→ Item
(p, Σ1, . . . , Σn→Σ)

or (p, Σ→Σ)
or (p, UΣ) ∈ BasedParUnitSig = Item × ParUnitSig

Ps ∈ StParUnitCtx = UnitName fin→ BasedParUnitSig
(Ps,Bs, D) or Cs ∈ ExtStUnitCtx =

StParUnitCtx × StBasedUnitCtx ×Diag

The following requirements are imposed on any extended static unit context
(Ps,Bs, D) in ExtStUnitCtx :

• the domains of Ps and Bs are disjoint;
• for each UN ∈ Dom(Bs), Bs(UN) is a node in D; and
• for each UN ∈ Dom(Ps) with (p, UΣ) = Ps(UN), p is a node in D and

(D(p), UΣ) ∈ ImpUnitSig .

There is an obvious map ctx : ExtStUnitCtx→StUnitCtx given by

ctx(Ps,Bs, D) = {UN �→ D(Bs(UN)) | UN ∈ Dom(Bs)} ∪
{UN �→ (D(p), UΣ) | UN ∈ Dom(Ps),Ps(UN) = (p, UΣ)}.

We define the projection dgm : ExtStUnitCtx→Diag by dgm(Ps,Bs, D) = D.
We write Dom(Cs) for Dom(ctx(Cs)) (spelling this out: Dom(Ps,Bs, D) =
Dom(Ps) ∪Dom(Bs)), and C∅s for the empty extended static context (where
both maps and the diagram are empty: C∅s = ({}, {}, {})).

We say that (P ′
s,B

′
s, D

′) extends (Ps,Bs, D) if D′ extends D, Ps ⊆ P ′
s,

and Bs ⊆ B ′
s.

(P ′
s,B

′
s, D

′) is an admissible addition to (Ps,Bs, D) if they have disjoint
domains (i.e., Dom(P ′

s,B ′
s, D

′)∩Dom(Ps,Bs, D) = ∅) and D′ extends D. We
then write (Ps,Bs, D) + (P ′

s,B
′
s, D

′) for (Ps ∪ P ′
s,Bs ∪ B ′

s, D
′).

The entities used in the model semantics are required to be compatible with
the corresponding entities of the extended static semantics.

Given a diagram D ∈ Diag , we write Mod(D) for the class of all
Nodes(D)-indexed model families consistent with D: 〈Mp〉p∈Nodes(D) is con-
sistent with D if for each p ∈ Nodes(D), Mp ∈ Mod(D(p)) and for each
e : p→q in D, Mp = Mq|D(e).

250 III:5 Architectural Specification Semantics

As for static contexts in the previous sections, for any extended static
context Cs, we define a class UnitEnv(Cs) ⊆ UnitEnv of unit environments.
Let Cs = (Ps,Bs, D). Then E ∈ UnitEnv(Cs) if Dom(E) ⊇ Dom(Cs) and
there exists a model family 〈Mp〉p∈Nodes(D) ∈Mod(D) such that:

• for all UN ∈ Dom(Bs), E (UN) = MBs(UN); and
• for all UN ∈ Dom(Ps) with (p, UΣ) = Ps(UN), E (UN) ∈ Unit(UΣ) and

E (UN) is compatible with Mp.

The definition of compatibility of a unit context with a static context carries
over to the extended case: a unit context C ∈ UnitCtx is compatible with an
extended static context Cs ∈ ExtStUnitCtx if C ⊆ UnitEnv(Cs).

Moreover, given a unit context C compatible with an extended static con-
text Cs, and C′s ∈ ExtStUnitCtx and C ′ ∈ UnitCtx, C′s and C ′ are compatible
extensions of Cs and C if C′s is an admissible addition to Cs and C ∩C ′ is com-
patible with Cs + C′s. Furthermore, given a diagram D′ that extends dgm(Cs),
a node p ∈ Nodes(D′), and a model evaluator MEv , (p, Σ, D′) and MEv
are compatible additions to Cs and C if D′(p) = Σ and for some unit name
UN �∈ Dom(Cs), C [UN /MEv] is compatible with Cs + ({}, {UN �→ p}, D′).
Similarly, given a diagram D′ that extends dgm(Cs), a node p ∈ Nodes(D′),
a generic unit signature UΣ, and a unit evaluator UEv , (p, UΣ, D′) and UEv
are compatible additions to Cs and C if D′(p) is a subsignature of the result
signature in UΣ and for some unit name UN �∈ Dom(Cs), C [UN /UEv] is
compatible with Cs + ({UN �→ (p, UΣ)}, {}, D′).

Amalgamability requirements are formulated statically, with reference to the
signature diagram.

Given a diagram D ∈ Diag , a sink α on a set of nodes K ⊆ Nodes(D) is a
signature Σ together with a family of signature morphisms αp : D(p)→Σ, p ∈
K. We say that D ensures amalgamability along α = (Σ, 〈αp : D(p)→Σ〉p∈K)
if for every model family 〈Mq〉q∈Nodes(D) consistent with D there exists a
unique model M ∈ Mod(Σ) such that for all p ∈ K, M |αp = Mp. We use
slightly different but hopefully self-explanatory variants of this terminology
and notation for special cases when K consists of one or two elements, is given
by enumeration, etc.

Although we have formulated this amalgamability condition in terms of
model families, it is an essentially static property: the class of model families
considered is not restricted by any axioms, but only by signatures and mor-
phisms between them. This static nature of the condition may be made explicit
by embedding the underlying institution into an institution that admits amal-
gamation. For CASL this can be given by considering so-called enriched CASL

signatures, where, roughly, one admits an arbitrary category, rather than just
a pre-order, of subsort embeddings. See [62] for details.

Given the above definitions, we define below the extended static seman-
tics, enriching the static semantics above by the analysis of sharing between

III:5.6 Extended Static Semantics 251

units. The judgements of this extended static semantics will be written using
the symbols � �� . As with the semantics above, we give the rules
for extended static semantics for all constructs of the abstract syntax. The
headings corresponding to each syntactic category will be given, quoting also
the corresponding judgements of the semantics above. We recall the condi-
tions linking the static and model semantics from the previous sections, and
add to these formal properties of the extended static semantics as well as
conditions linking the extended static semantics with the static and model se-
mantics above. Many of the rules of the extended static semantics differ only
in uninteresting details from the rules of the static semantics given above. The
essential changes are mainly in the rules for the static analysis of unit terms.

For the sake of readability, we recall the abstract syntax, although we skip
the explanation included above.

Finally, in Sect. 5.6.6 we discuss correctness and completeness of the ex-
tended static semantics w.r.t. the simple static and model semantics given in
the previous section.

5.6.2 Architectural Specification Definitions

ARCH-SPEC-DEFN ::= arch-spec-defn ARCH-SPEC-NAME ARCH-SPEC
ARCH-SPEC ::= BASIC-ARCH-SPEC | ARCH-SPEC-NAME

Γs � ARCH-SPEC-DEFN� Γ ′
s Γs, Γm � ARCH-SPEC-DEFN⇒ Γ ′

m

Γs � ARCH-SPEC-DEFN�� Γ ′
s

Γs and Γm are compatible global environments; then Γ ′
s and Γ ′

m are compatible
as well, and extend Γs and Γm, respectively.

If Γs � ARCH-SPEC-DEFN�� Γ ′
s then Γs � ARCH-SPEC-DEFN� Γ ′

s.

Γs = (Gs,Vs,As, Ts)
ASN �∈ Dom(Gs) ∪Dom(Vs) ∪Dom(As) ∪Dom(Ts)

Γs � ARCH-SPEC �� AΣ

Γs � arch-spec-defn ASN ARCH-SPEC ��

(Gs,Vs,As ∪ {ASN �→ AΣ}, Ts)

Γs � ARCH-SPEC� AΣ Γs, Γm � ARCH-SPEC⇒ AM
Γs � ARCH-SPEC �� AΣ

Γs and Γm are compatible global environments; then AM ∈ ArchSpec(AΣ).
If Γs � ARCH-SPEC �� AΣ then Γs � ARCH-SPEC� AΣ.

Γs � BASIC-ARCH-SPEC�� AΣ

Γs � BASIC-ARCH-SPECqua ARCH-SPEC �� AΣ

252 III:5 Architectural Specification Semantics

ASN ∈ Dom(As)
(Gs,Vs,As, Ts) � ASN qua ARCH-SPEC �� As(ASN)

BASIC-ARCH-SPEC ::= basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT
UNIT-DECL-DEFN ::= UNIT-DECL | UNIT-DEFN
RESULT-UNIT ::= result-unit UNIT-EXPRESSION

Γs � BASIC-ARCH-SPEC� AΣ Γs, Γm � BASIC-ARCH-SPEC⇒ AM
Γs � BASIC-ARCH-SPEC�� AΣ

Γs and Γm are compatible global environments; then AM ∈ ArchSpec(AΣ).
If Γs � BASIC-ARCH-SPEC�� AΣ then Γs � BASIC-ARCH-SPEC� AΣ.

Γs � UNIT-DECL-DEFN+ �� Cs

Γs, Cs � RESULT-UNIT �� UΣ

Γs � basic-arch-spec UNIT-DECL-DEFN+ RESULT-UNIT �� (ctx(Cs), UΣ)

Γs � UNIT-DECL-DEFN+ � Cs Γs, Γm � UNIT-DECL-DEFN+ ⇒ C
Γs � UNIT-DECL-DEFN+ �� Cs

Γs and Γm are compatible global environments; then C is compatible with Cs

too.
If Γs � UNIT-DECL-DEFN+ �� Cs then Γs � UNIT-DECL-DEFN+ � Cs, with

Cs = ctx(Cs).

Γs, C∅s � UNIT-DECL-DEFN1 �� (Cs)1
· · ·

Γs, (Cs)n−1 � UNIT-DECL-DEFNn �� (Cs)n

Γs � UNIT-DECL-DEFN1 . . .UNIT-DECL-DEFNn �� (Cs)n

Γs,Cs � UNIT-DECL-DEFN� C ′
s Γs, Γm,Cs,C � UNIT-DECL-DEFN⇒ C ′

Γs, Cs � UNIT-DECL-DEFN�� C′s

Γs and Γm are compatible global environments, and C is compatible with Cs;
then C ′ and C ′

s are compatible, Cs ⊆ C ′
s and C ⊇ C ′.

C′s extends Cs.
If Γs, Cs � UNIT-DECL-DEFN�� C′s then Γs, ctx (Cs) � UNIT-DECL-DEFN�C ′

s

and C ′
s = ctx(C′s). Moreover, if Γs, Γm, ctx(Cs),C � UNIT-DECL-DEFN ⇒ C ′

and C is compatible with Cs then C ′ and C′s are compatible.

Γs, Cs � UNIT-DECL �� C′s
Γs, Cs � UNIT-DECL qua UNIT-DECL-DEFN�� Cs + C′s

III:5.6 Extended Static Semantics 253

Γs, Cs � UNIT-DEFN �� C′s
Γs, Cs � UNIT-DEFN qua UNIT-DECL-DEFN�� Cs + C′s

Γs,Cs � RESULT-UNIT� UΣ Γs, Γm,Cs,C � RESULT-UNIT⇒ UEv
Γs, Cs � RESULT-UNIT �� UΣ

Γs and Γm are compatible global environments, and C is a unit context that is
compatible with static unit context Cs; then UΣ and UEv ∈ UnitEval(UΣ)
are compatible additions to Cs and C .

If Γs, Cs � RESULT-UNIT �� UΣ then Γs, ctx(Cs) � RESULT-UNIT� UΣ.

Γs, Cs � UNIT-EXPRESSION�� (p, UΣ, D)
Γs, Cs � result-unit UNIT-EXPRESSION�� UΣ

5.6.3 Unit Declarations and Definitions

Unit Declarations

UNIT-DECL ::= unit-decl UNIT-NAME UNIT-SPEC UNIT-IMPORTED
UNIT-IMPORTED ::= unit-imported UNIT-TERM*
UNIT-NAME ::= SIMPLE-ID

Γs,Cs � UNIT-DECL� C ′
s Γs, Γm,Cs,C � UNIT-DECL⇒ C ′

Γs, Cs � UNIT-DECL �� C′s

Γs and Γm are compatible global environments, and C is a unit context that
is compatible with static unit context Cs; then C ′

s and C ′ are compatible
extensions of Cs and C .
C′s is an admissible addition to Cs.
If Γs, Cs � UNIT-DECL �� C′s then Γs, ctx(Cs) � UNIT-DECL � C ′

s, with
C ′

s = ctx (C′s). Moreover, if Γs, Γm, ctx(Cs),C � UNIT-DECL ⇒ C ′ and C is
compatible with Cs then C ′ and C′s are compatible extensions of C and Cs.

Cs � UNIT-IMPORTED�� (p, D)
D(p), Γs � UNIT-SPEC� Σ

UN �∈ Dom(Cs)
D′ extends D by new node q with D′(q) = D(p) ∪Σ

and edge e : p→q with D′(e) = ιD(p)⊆D′(q) being the inclusion
Γs, Cs � unit-decl UN UNIT-SPEC UNIT-IMPORTED ��

({}, {UN �→ q}, D′)

254 III:5 Architectural Specification Semantics

Cs � UNIT-IMPORTED �� (p, D)

D(p), Γs � UNIT-SPEC� Σ→Σ0

UN �∈ Dom(Cs)
Γs,Cs � unit-decl UN UNIT-SPEC UNIT-IMPORTED��

({UN �→ (p, Σ→Σ0 ∪ΣI)}, {}, D)

Cs � UNIT-IMPORTED� Σ Cs,C � UNIT-IMPORTED⇒ MEv
Cs � UNIT-IMPORTED�� (p, D)

C is a unit context that is compatible with static unit context Cs; then Σ
and MEv are compatible additions to Cs and C .

D extends dgm(Cs) and p ∈ Nodes(D).
If Cs � UNIT-IMPORTED �� (p, D) then ctx (Cs) � UNIT-IMPORTED � Σ,

with Σ = D(p). Moreover, if ctx(Cs),C � UNIT-IMPORTED⇒ MEv and C is
compatible with Cs then (p, D) and MEv are compatible additions to C and
Cs.

Cs � UNIT-TERM1 �� (p1, D1) · · · Cs � UNIT-TERMk �� (pk, Dk)
Σ = D1(p1) ∪ . . . ∪Dk(pk)

D1, . . . , Dk disjointly extend dgm(Cs) D′ = D1 ∪ . . . ∪Dk

D′ ensures amalgamability along (Σ, 〈ιDi(pi)⊆Σ : D′(pi)→Σ〉i=1,...,k)
D′′ extends D′ by new node q with D′′(q) = Σ

and edges ei : pi→q with D′′(ei) = ιDi(pi)⊆Σ , for i = 1, . . . , k

Cs � unit-imported UNIT-TERM1,...,UNIT-TERMk �� (q, D′′)

Assuming that the extended static analysis is successful for the phrase
unit-imported UNIT-TERM1,...,UNIT-TERMk, we can simplify the corre-
sponding rule in the model semantics as follows:

Cs,C � UNIT-TERM1 ⇒ MEv1 · · · Cs,C � UNIT-TERMk ⇒ MEvk

for each E ∈ C ,MEv1(E), . . . ,MEvk(E) are compatible
Cs,C � unit-imported UNIT-TERM1,...,UNIT-TERMk ⇒

λE ∈ C ·MEv1(E)⊕ . . .⊕MEvk(E)

Unit Definitions

UNIT-DEFN ::= unit-defn UNIT-NAME UNIT-EXPRESSION

Γs,Cs � UNIT-DEFN� C ′
s Γs, Γm,Cs,C � UNIT-DEFN⇒ C ′

Γs, Cs � UNIT-DEFN �� C′s

III:5.6 Extended Static Semantics 255

Γs and Γm are compatible global environments, and C is a unit context that
is compatible with static unit context Cs; then C ′

s and C ′ are compatible
extensions of Cs and C , and moreover, C ′ maps any unit in its domain to a
one-element set of unit evaluators.
C′s is an admissible addition to Cs.
If Γs, Cs � UNIT-DEFN �� C′s then Γs, ctx(Cs) � UNIT-DEFN � C ′

s, with
C ′

s = ctx (C′s). Moreover, if Γs, Γm, ctx(Cs),C � UNIT-DEFN ⇒ C ′ and C is
compatible with Cs then C′s and C ′ are compatible extensions of C and Cs.

Γs, Cs � UNIT-EXPRESSION�� (p, Σ, D)
UN �∈ Dom(Cs)

Γs, Cs � unit-defn UN UNIT-EXPRESSION�� ({}, {UN �→ p}, D)

Γs, Cs � UNIT-EXPRESSION�� (p, Σ→Σ, D)
UN �∈ Dom(Cs)

Γs,Cs � unit-defn UN UNIT-EXPRESSION�� ({UN �→ (p, Σ→Σ)}, {}, D)

5.6.4 Unit Specifications

For unit specifications, extended static semantics coincides with the static
semantics above, so no new rules are needed.

5.6.5 Unit Expressions

UNIT-EXPRESSION ::= unit-expression UNIT-BINDING* UNIT-TERM
UNIT-BINDING ::= unit-binding UNIT-NAME UNIT-SPEC

Γs,Cs � UNIT-EXPRESSION� UΣ
Γs, Γm,Cs,C � UNIT-EXPRESSION⇒ UEv

Γs, Cs � UNIT-EXPRESSION�� (p, UΣ, D)

Γs and Γm are compatible global environments, and C is a unit context that
is compatible with static unit context Cs; then UΣ and UEv are compatible
additions to Cs and C .

D extends dgm(Cs), p ∈ Nodes(D). For UΣ = Σ ∈ Sig, D(p) = Σ. For
UΣ = Σ→Σ ∈ ParUnitSig , D(p) is the empty signature.

If we have Γs, Cs � UNIT-EXPRESSION �� (p, UΣ, D) then Γs, ctx(Cs) �
UNIT-EXPRESSION � UΣ. Moreover, if we also have Γs, Γm, ctx(Cs),C �
UNIT-EXPRESSION ⇒ UEv and C is compatible with Cs then UEv and
(p, UΣ, D) are compatible additions to C and Cs.

Γs, Cs � UNIT-TERM �� (p, D)
Γs,Cs � unit-expression UNIT-TERM �� (p, D(p), D)

256 III:5 Architectural Specification Semantics

Γs � UNIT-BINDING1 �� (UN 1, Σ1) · · · Γs � UNIT-BINDINGn �� (UN n, Σn)

Σ = 〈Σ1, . . . , Σn〉 Σ = Σ1 ∪ . . . ∪Σn

UN 1, . . . ,UN n are distinct {UN 1, . . . ,UN n} ∩Dom(Cs) = ∅
D′ extends dgm(Cs) by new node q with D′(q) = Σ,

nodes pi and edges ei : pi→q with D′(ei) = ιΣi⊆Σ , for i = 1, . . . , n

C′s = ({}, {UN 1 �→ p1, . . . ,UN n �→ pn}, D′)
Γs, Cs + C′s � UNIT-TERM �� (p, D′′)

D′′ ensures amalgamability along (D′′(p), 〈idD′′(p), ιΣi⊆D′′(p)〉i=1,...,n)
D′′′ extends D′′ by new node z with D′′′(z) = ∅

Γs, Cs �
unit-expression UNIT-BINDING1,...,UNIT-BINDINGn UNIT-TERM

�� (z, Σ→D′′(p), D′′′)

Assuming that the extended static analysis is successful for the phrase
unit-expression UNIT-BINDING1,...,UNIT-BINDINGn UNIT-TERM, we can
simplify the corresponding rule in the model semantics as follows:

Γs � UNIT-BINDING1 � (UN 1, Σ1) · · · Γs � UNIT-BINDINGn � (UN n, Σn)
Γs, Γm � UNIT-BINDING1 ⇒ (UN 1,M1)

· · ·
Γs, Γm � UNIT-BINDINGn ⇒ (UN n,Mn)

ΣP = Σ1 ∪ . . . ∪Σn MP = M1 ⊕ . . .⊕Mn

UN P �∈ Dom(Cs) ∪ {UN 1, . . . ,UN n}
C ′

s = {UN P �→ ΣP ,UN 1 �→ Σ1, . . . ,UN n �→ Σn}
C ′ = C ∅[UN P /MP][UN 1/(λE ·E (UN P)|Σ1)] . . . [UN n/(λE ·E (UN P)|Σn)]

Γs, Γm,Cs ∪ C ′
s,C ∩C ′ � UNIT-TERM⇒ MEv

for all E ∈ C ∩ C ′,MEv (E)|ΣP = E (UN P)
UEv ∈ UnitEval(Σ1, . . . , Σn→Σ) is such that Dom(UEv) = C and
for E ∈ C ,
〈M1, . . . , Mn〉 ∈ Dom(UEv(E)) ⊆ CompMod(Σ1, . . . , Σn) iff
E + {UN P �→ (M1 ⊕ . . .⊕Mn),UN 1 �→M1, . . . ,UN n �→Mn} ∈ C ∩ C ′

and then for 〈M1, . . . , Mn〉 ∈ Dom(UEv (E)),
UEv (E)〈M1, . . . , Mn〉 =

MEv (E + {UN P �→ (M1 ⊕ . . .⊕Mn),UN 1 �→M1, . . . ,UN n �→Mn})
Γs, Γm,Cs,C �
unit-expression UNIT-BINDING1,...,UNIT-BINDINGn UNIT-TERM

⇒ UEv

Γs � UNIT-BINDING� (UN , Σ) Γs, Γm � UNIT-BINDING⇒ (UN ,M)
Γs � UNIT-BINDING �� (UN , Σ)

III:5.6 Extended Static Semantics 257

Γs and Γm are compatible global environments; then UN is a unit name (the
same for the static and model semantics) and M⊆Mod(Σ).

If Γs � UNIT-BINDING �� (UN , Σ) then Γs � UNIT-BINDING� (UN , Σ).

∅, Γs � UNIT-SPEC �� Σ

Γs � unit-binding UN UNIT-SPEC �� (UN , Σ)

Unit Terms

UNIT-TERM ::= UNIT-REDUCTION | UNIT-TRANSLATION | AMALGAMATION
| LOCAL-UNIT | UNIT-APPL

Γs,Cs � UNIT-TERM� Σ Γs, Γm,Cs,C � UNIT-TERM⇒ MEv
Γs, Cs � UNIT-TERM �� (p, D)

Γs and Γm are compatible global environments; C is a unit context that
is compatible with static unit context Cs; then Σ and MEv are compatible
additions to Cs and C .

D extends dgm(Cs), p ∈ Nodes(D).
If Γs, Cs � UNIT-TERM �� (p, D) then Γs, ctx(Cs) � UNIT-TERM � Σ, with

Σ = D(p). Moreover, if Γs, Γm,Cs,C � UNIT-TERM ⇒ MEv and C is com-
patible with Cs then MEv and (p, Σ, D) are compatible additions to C and
Cs.

Rules elided.

Unit Translations

UNIT-TRANSLATION ::= unit-translation UNIT-TERM RENAMING

Γs,Cs � UNIT-TRANSLATION� Σ
Γs, Γm,Cs,C � UNIT-TRANSLATION⇒ MEv

Γs, Cs � UNIT-TRANSLATION�� (p, D)

See the requirements for the semantics of UNIT-TERM.

Γs, Cs � UNIT-TERM �� (p, D)
D(p) � RENAMING� σ:D(p)→Σ′

D ensures amalgamability along (Σ′, 〈σ:D(p)→Σ′〉)
D′ extends D by new node q and edge e : p→q with D′(e) = σ

Γs, Cs � unit-translation UNIT-TERM RENAMING �� (q, D′)

258 III:5 Architectural Specification Semantics

Assuming that the extended static analysis is successful for the phrase
unit-translation UNIT-TERM RENAMING, we can simplify the corresponding
rule in the model semantics as follows:

Γs,Cs � UNIT-TERM� Σ

Γs, Γm,Cs,C � UNIT-TERM⇒ MEv
Σ � RENAMING� σ:Σ→Σ′

for all E ∈ C , there exists a unique M ′ ∈Mod(Σ′) with M ′|σ = MEv (E)
Γs, Γm,Cs,C � unit-translation UNIT-TERM RENAMING⇒

{E �→M ′ | E ∈ C , M ′ ∈Mod(Σ′), M ′|σ = MEv (E)}

The semantics of RENAMING is given in Sect. 4.2.1.

Unit Reductions

UNIT-REDUCTION ::= unit-reduction UNIT-TERM RESTRICTION

Γs,Cs � UNIT-REDUCTION� Σ Γs, Γm,Cs,C � UNIT-REDUCTION⇒ MEv
Γs, Cs � UNIT-REDUCTION�� (p, D)

See the requirements for the semantics of UNIT-TERM.

Γs,Cs � UNIT-TERM �� (p, D)
(∅, D(p)) � RESTRICTION� σ:Σ′→Σ′′

D′ extends D by new node q and edge e : q→p with D′(e) = ιΣ′⊆D(p)

D′ ensures amalgamability along (Σ′′, 〈σ : D′(q)→Σ′′〉)
D′′ extends D′ by new node q′ and edge e : q→q′ with D′′(e) = σ

Γs,Cs � unit-reduction UNIT-TERM RESTRICTION �� (q′, D′′)

Assuming that the extended static analysis is successful for the phrase
unit-reduction UNIT-TERM REDUCTION, we can simplify the corresponding
rule in the model semantics as follows:

Γs,Cs � UNIT-TERM� Σ

Γs, Γm,Cs,C � UNIT-TERM⇒ MEv
(∅, Σ) � REDUCTION� σ:Σ′→Σ′′

for all E ∈ C ,
there exists a unique M ′′ ∈Mod(Σ′′) with M ′′|σ = MEv (E)|Σ′

Γs, Γm,Cs,C � unit-reduction UNIT-TERM RESTRICTION⇒
{E �→M ′′ | E ∈ C , M ′′ ∈Mod(Σ′′), M ′′|σ = MEv (E)|Σ′}

The semantics for RESTRICTION is given in Sect. 4.2.2.

III:5.6 Extended Static Semantics 259

Amalgamations

AMALGAMATION ::= amalgamation UNIT-TERM+

Γs,Cs � AMALGAMATION� Σ Γs, Γm,Cs,C � AMALGAMATION⇒ MEv
Γs, Cs � AMALGAMATION �� (p, D)

See the requirements for the semantics of UNIT-TERM.

Γs, Cs � UNIT-TERM1 �� (p1, D1) · · · Γs, Cs � UNIT-TERMn �� (pn, Dn)
Σ = D1(p1) ∪ . . . ∪Dn(pn)

D1, . . . , Dn disjointly extend dgm(Cs) D′ = D1 ∪ . . . ∪Dn

D′ ensures amalgamability along (Σ, 〈ιDi(pi)⊆Σ : D′(pi)→Σ〉i=1,...,n)
D′′ extends D′ by new node q with D′′(q) = Σ

and edges ei : pi→q with D′′(ei) = ιDi(pi)⊆Σ, i = 1, . . . , n

Γs,Cs � amalgamation UNIT-TERM1,...,UNIT-TERMn �� (q, D′′)

Assuming that the extended static analysis is successful for the phrase
amalgamation (UNIT-TERM1,...,UNIT-TERMn), we can simplify the corre-
sponding rule in the model semantics as follows:

Γs, Γm,Cs,C � UNIT-TERM1 ⇒ MEv1

· · ·
Γs, Γm,Cs,C � UNIT-TERMn ⇒ MEvn

for all E ∈ C ,MEv1(E), . . . ,MEvn(E) are compatible
Γs, Γm,Cs,C � amalgamation UNIT-TERM1,...,UNIT-TERMn ⇒

λE ∈ C ·MEv1(E) ⊕ . . .⊕MEvk(E)

Local Units

LOCAL-UNIT ::= local-unit UNIT-DEFN+ UNIT-TERM

Γs,Cs � LOCAL-UNIT� Σ Γs, Γm,Cs,C � LOCAL-UNIT⇒ MEv
Γs, Cs � LOCAL-UNIT �� (p, D)

See the requirements for the semantics of UNIT-TERM.

Γs, Cs � UNIT-DEFN1 �� (Cs)1
· · ·

Γs, Cs + (Cs)1 + . . . + (Cs)n−1 � UNIT-DEFNn �� (Cs)n

Γs, Cs + (Cs)1 + . . . + (Cs)n � UNIT-TERM �� (p, D)
Γs, Cs � local-unit UNIT-DEFN1,...,UNIT-DEFNn UNIT-TERM �� (p, D)

260 III:5 Architectural Specification Semantics

Unit Applications

UNIT-APPL ::= unit-appl UNIT-NAME FIT-ARG-UNIT*
FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*

Γs,Cs � UNIT-APPL� Σ Γs, Γm,Cs,C � UNIT-APPL⇒ MEv
Γs,Cs � UNIT-APPL �� (p, D)

See the requirements for the semantics of UNIT-TERM.

Bs(UN) = p

Γs, (Ps,Bs, D) � unit-appl UN �� (p, D)

Cs = (Ps,Bs, D)
Ps(UN) = (pI , (Σ1, . . . , Σn→Σ))

ΣF = D(pI) ∪Σ1 ∪ . . . ∪Σn

Σ1, Γs, Cs � FIT-ARG-UNIT1 �� (σ1:Σ1→ΣA
1 , pA

1 , D1)
· · ·

Σn, Γs, Cs � FIT-ARG-UNITn �� (σn:Σn→ΣA
n , pA

n , Dn)
D1, . . . , Dk disjointly extend D DA = D1 ∪ . . . ∪Dk

ΣA = D(pI) ∪ΣA
1 ∪ . . . ∪ΣA

n σA = (idD(pI) ∪ σ1 ∪ . . . ∪ σn) : ΣF → ΣA

σA(∆) : Σ → (ΣA ∪ΣA(∆)), where ∆:ΣF→Σ is the signature extension
ΣR = ΣA ∪ΣA(∆)

DA ensures amalgamability along
(ΣA, 〈ιD(pI)⊆ΣA : D(pI)→ΣA, ιΣA

i ⊆ΣA : ΣA
i →ΣA〉i=1,...,n)

D′ extends DA by new node qB, edge eI : pI→qB with D′(eI) = ιD(pI)⊆Σ ,
nodes pF

i and edges eF
i : pF

i →qB with D′(eF
i) = ιΣi⊆Σ

and ei : pF
i →pA

i with D′(ei) = σi, for i = 1, . . . , n,

D′ ensures amalgamability along
(ΣR, 〈σA(∆) : Σ→ΣR, ιΣA

i ⊆ΣR : ΣA
i →ΣR〉i=1,...,n)

D′′ extends D′ by new node q, edge e′ : qB→q with D′′(e′) = σA(∆)
and edges e′i : pA

i →q with D′′(e′i) = ιΣA
i ⊆ΣR , for i = 1, . . . , n

Γs, Cs � unit-appl UN FIT-ARG-UNIT1,...,FIT-ARG-UNITn �� (q, D′′)

See Sect. 4.1.3 for the definition of σA(∆), the extension of a signature mor-
phism along a signature extension.

Assuming that the extended static analysis is successful for the phrase
unit-appl UN FIT-ARG-UNIT1,...,FIT-ARG-UNITn, we can simplify the
corresponding rule in the model semantics as in Fig. 5.1.

III:5.6 Extended Static Semantics 261

Cs(UN) = (ΣI , (Σ1, . . . , Σn→Σ))

ΣF = ΣI ∪ Σ1 ∪ . . . ∪ Σn

Σ1, Γs,Cs
 FIT-ARG-UNIT1 � σ1:Σ1→ΣA
1

Σ1, Γs, Γm, Cs,C
 FIT-ARG-UNIT1 ⇒ MEv1

· · ·
Σn, Γs,Cs
 FIT-ARG-UNITn � σn:Σn→ΣA

n

Σn, Γs, Γm, Cs,C
 FIT-ARG-UNITn ⇒ MEvn

for all E ∈ C , 〈MEv1(E)|σ1 , . . . ,MEvn(E)|σn〉 ∈ Dom(E (UN))

ΣA = ΣI ∪ ΣA
1 ∪ . . . ∪ ΣA

n σA = (idΣI ∪ σ1 ∪ . . . ∪ σn) : Σ
F → ΣA

σA(∆) : Σ → (ΣA ∪ ΣA(∆)), where ∆:ΣF→Σ is the signature extension

for all E ∈ C , there exists a unique M ∈ Mod(ΣA ∪ ΣA(∆))
such that M |ΣA

1
= MEv1(E), . . . , M |ΣA

n
= MEvn(E) and

M |σA(∆) = E (UN)〈MEv1(E)|σ1 , . . . ,MEvn(E)|σn〉
MEv = {E �→ M | E ∈ C , M ∈ Mod(ΣA ∪ ΣA(∆)),

M |σA(∆) = E (UN)〈MEv1(E)|σ1 , . . . , MEvn(E)|σn〉,
M |ΣA

1
= MEv1(E), . . . , M |ΣA

n
= MEvn(E)}

Γs, Γm,Cs,C

unit-appl UN FIT-ARG-UNIT1,..., FIT-ARG-UNITn ⇒ MEv

Fig. 5.1. Simplified model semantics rule for unit applications

Note also that the verification of the condition

for all E ∈ C , 〈MEv 1(E)|σ1 , . . . ,MEvn(E)|σn〉 ∈ Dom(E (UN))

may be somewhat simplified here – the extended static analysis ensures the
compatibility of the actual parameters with the imports (implicitly required
here) used to define the generic unit.

Σ, Γs,Cs � FIT-ARG-UNIT� σ:Σ→ΣA

Σ, Γs, Γm,Cs,C � FIT-ARG-UNIT⇒ MEvA

Σ, Γs, Cs � FIT-ARG-UNIT �� (σ:Σ→ΣA, p, D)

Γs and Γm are compatible global environments; C is a unit context that
is compatible with static unit context Cs; then σ : Σ → ΣA is a signature
morphism, and ΣA and MEvA are compatible additions to Cs and C .

D extends dgm(Cs), p ∈ Nodes(D), and D(p) = ΣA.
If Σ, Γs, Cs � FIT-ARG-UNIT �� (σ:Σ→ΣA, p, D) then Σ, Γs, ctx(Cs) �

FIT-ARG-UNIT� σ:Σ→ΣA. Moreover, if Σ, Γs, Γm,Cs,C � FIT-ARG-UNIT⇒
MEvA and C is compatible with Cs then MEvA and (p, ΣA, D) are compatible
additions to C and Cs.

262 III:5 Architectural Specification Semantics

Γs, Cs � UNIT-TERM �� (p, D)
� SYMB-MAP-ITEMS*� r

Σ, Γs, Cs � fit-arg-unit UNIT-TERM SYMB-MAP-ITEMS*�� (r|ΣD(p), p, D)

See Sect. 4.1.3 for the definition of r|ΣD(p):Σ→D(p), the signature morphism
induced by the symbol map r.

The semantics of SYMB-MAP-ITEMS* is given in Sect. 4.5.2.

5.6.6 Discussion

The requirements stated above on the semantic judgements for each syntactic
category provide the kernel of an inductive proof of the correctness of the
extended static semantics: if the extended static semantics is successful then
the simple static semantics of the previous sections is successful as well and
yields corresponding results. Moreover, the requirements stated there justify
the simplifications of the model semantics indicated above, given that the
extended static semantics has been successful.

Of course, no completeness result can be expected: even when the simple
static semantics and the model semantics are successful for a given phrase,
the extended static semantics may fail: it additionally requires that the amal-
gamability conditions must be discharged on the basis of the information on
sharing between symbols as stored in the signature diagram in the extended
static context. This is stricter than the simple static and model semantics in
two respects. First, the requirements imposed on units by their specifications
are disregarded, and so symbols may be viewed as distinct even if these spec-
ifications ensure that they always have the same interpretation. Second, in
order for two symbols to share here they must be traced to the same sym-
bol in some (non-generic) unit declaration or definition. This implies that the
symbols in the result of application of a generic unit to an argument share
with the environment only via the argument (and the imports, if any). In
particular, new symbols in the results of two applications of a generic unit
do not share, even if the arguments coincide. This gives a so-called generative
semantics of generic modules, and the corresponding generative type disci-
pline is often adopted for module systems of programming languages (e.g.,
Standard ML, cf. [26]).

The generative and applicative (non-generative) semantics coincide if ev-
ery generic unit is used at most once. For any architectural specification
ARCH-SPEC, one can build its generative version ̂ARCH-SPEC as follows. For
each generic unit F declared in ARCH-SPEC, let nF be the number of applica-
tions of F used in unit terms in ARCH-SPEC. If nF > 1 then we replace the
declaration of F by declarations of nF new units with distinct names and the
same specification as F , and replace each application of F by a single appli-
cation of one of the new units. Now, the (applicative) semantics of ̂ARCH-SPEC
gives a generative semantics for ARCH-SPEC.

III:5.6 Extended Static Semantics 263

Then, let | ̂ARCH-SPEC| result from ̂ARCH-SPEC by removing all the axioms in
all the specifications involved, so that all the specifications used in ARCH-SPEC
are reduced to signatures in | ̂ARCH-SPEC|. (This is very informal, but hopefully
intuitively quite clear: a precise definition would have to go recursively through
the specification as well as through the global environments it relies on.)

If the simple static semantics and model semantics are successful for both
̂ARCH-SPEC and | ̂ARCH-SPEC|, and neither ̂ARCH-SPEC nor | ̂ARCH-SPEC| involves

generic units with inconsistent specifications, then the extended static seman-
tics and modified model semantics are successful on ARCH-SPEC as well and the
results of the simple and extended semantics for ARCH-SPECmatch. The key to
this property is the fact that if axioms are removed from specifications then
for any syntactic phrase, given the signature diagram and the unit context
constructed for it, any model family that is compatible with this signature
diagram may be obtained for a unit environment that fits the unit context.
Then, by definition, the extra amalgamability requirements imposed by the
extended static semantics coincide with the requirements eliminated from the
original model semantics. See Chap. IV:5 for more details.

6

Specification Library Semantics

A local library in CASL is a named sequence of definitions, each of which names
a (structured, generic, view, architectural, or unit) specification. The (static
and model) semantics of such a definition compute extensions of given global
environments, as defined in Chaps. 4 and 5. The semantics of a library consists
of the name of the library, together with the global environment obtained by
composing the extensions given by the semantics of its definitions, starting
from the empty global environment.

CASL supports the installation of distributed libraries on the Internet, also
allowing different versions of the same library. A library can either be identified
by a URL that gives direct access to (all existing versions of) the library, or it
can be registered with a hierarchical path name in a global directory, giving
indirect access. In both cases, there may be more than one URL giving access
to the same library (due to mirrors, caches, and redirections).

A so-called downloading item in a library refers to particular definitions
that are supposed to be provided by a different library. The semantics of the
downloading item extends the global environment (of the enclosing library)
with part of the global environment given by the semantics of the referenced
library (possibly providing different names for the downloaded items, e.g. to
avoid clashes with names already in use in the enclosing library). A reference to
another library can either specify a particular version, or leave the version open
(in which case the version that has the largest version number is obtained).
Downloading must not lead to cyclic chains of references.

The rest of this chapter gives a formal semantics for specification libraries,
extending what was provided for basic, structured, and architectural speci-
fications in Chaps. 2–5. Section 6.1 defines some semantic domains: global
environments and directories, and universal environments. Section 6.2 defines
the semantics of local libraries, and Sect. 6.3 extends the semantics to cover
the downloadings used in distributed libraries. Finally, Sect. 6.4 deals with
library names and versions.

266 III:6 Specification Library Semantics

6.1 Library Concepts

Specifications may be named by definitions and collected in libraries. In
the context of a library, the (re)use of a specification may be replaced by
a reference to it through its name. The current association between names
and the specifications that they reference is called the global environment ;
the global environment for a named specification is determined exclusively
by the definitions that precede it.

A static global environment Γs = (Gs,Vs,As, Ts) consists of finite func-
tions from names to the static denotations of generic specifications, views,
architectural specifications and unit specifications:

• Gs : SpecName fin→ GenSig
• Vs : ViewName fin→ ViewSig
• As : ArchSpecName fin→ ArchSig
• Ts : UnitSpecName fin→ UnitSig

Similarly, a model global environment Γm = (Gm,Vm,Am, Tm) consists of
finite functions from names to the model denotations of generic specifications,
views, architectural specifications and unit specifications:

• Gm : SpecName fin→ GenSpec
• Vm : ViewName fin→ ViewSpec
• Am : ArchSpecName fin→ ArchSpec
• Tm : UnitSpecName fin→ UnitSpec

The domains of the various components of static and model global environ-
ments are disjoint.

The semantic domains GenSig , GenSpec, ViewSig , ViewSpec are de-
fined in Chap. 4, while ArchSpecSig , ArchSpec, UnitSpecSig and UnitSpec
are defined in Chap. 5.

A static global environment Γs = (Gs,Vs,As, Ts) and a model global
environment Γm = (Gm,Vm,Am, Tm) are compatible if for each compo-
nent F of the global environment (F ∈ {G,V ,A, T }) and for each name
Name ∈ SIMPLE-ID either its static and model denotations are compatible,
that is, Fs(Name) and Fm(Name) are compatible, or both Fs(Name) and
Fm(Name) are undefined. Compatibility of static and model semantics is de-
fined in the respective sections of Chaps. 4 and 5.

IN ∈ ItemName = SpecName = ViewName =
ArchSpecName = UnitSpecName = SIMPLE-ID

III:6.1 Library Concepts 267

A library may be located at a particular site on the Internet. The library
is referenced from other sites by a name which determines the location and
perhaps identifies a particular version of the library. To allow libraries to
be relocated without this invalidating existing references to them, library
names may be interpreted relative to a global directory that maps names
to URLs. Libraries may also be referenced directly by their (relative or ab-
solute) URLs, independently of their registration in the global directory. A
library may incorporate the downloading of (the semantics of) named speci-
fications from (perhaps particular versions of) other libraries, whenever the
library is used.

The semantics of libraries involves URLs, paths, and version numbers:

u ∈ Url
p ∈ Path
v ∈ Version = FinSeq(Nat)

The internal structure of Url and Path is irrelevant in the semantics. Version
numbers are ordered lexicographically: 〈n1, . . . , nj〉 < 〈n′

1, . . . , n
′
k〉 iff either

• there exists i ≤ j, k such that ni < n′
i and for all l < i, nl = n′

l, or
• j < k and for all l ≤ j, nl = n′

l.

A (canonical) library name LN is a library identifier LI (i.e. a URL or a
path) together with a (possibly empty) version:

LI ∈ LibId = Url � Path
LN ∈ LibName = LibId ×Version

The empty version 〈〉 may only be used to name a library that exists in
just one version: if a second version of the same library is installed, the two
versions must both be distinguished by non-empty version numbers. (This is
the only case where an already-installed version of a library can be given a
new version number.) However, 〈〉 may always be used to refer to the version
of a library that has the largest version number.

A static universal environment Us is a finite function from URLs and
versions to static global environments:

Us ∈ UnivEnvs = Url ×Version fin→ GlobalEnv s

such that for all u ∈ Url , when v is the largest version number with (u, v) ∈
Dom(Us), we have Us(u, 〈〉) = Us(u, v).

Similarly, a model universal environment Um is a finite function from URLs
and versions to model global environments:

Um ∈ UnivEnvm = Url ×Version fin→ GlobalEnvm

268 III:6 Specification Library Semantics

such that for all u ∈ Url , when v is the largest version number with (u, v) ∈
Dom(Um), we have Um(u, 〈〉) = Um(u, v).

A global directory GD is a finite function from paths and versions to URLs:

GD ∈ GlobalDir = Path ×Version fin→ Url

such that for all p ∈ Path, when v is the largest version number with (p, v) ∈
Dom(GD), we have GD(p, 〈〉) = GD(p, v).

Us, Um, and GD are compatible iff:

• Dom(Us) = Dom(Um);
• for all (u, v) ∈ Dom(Us), the global environments Us(u, v) and Um(u, v)

are compatible, as defined above; and
• for all (p, v) ∈ Dom(GD), (GD(p, v), v) ∈ Dom(Us).

6.2 Local Libraries

LIB-DEFN ::= lib-defn LIB-NAME LIB-ITEM*
LIB-ITEM ::= SPEC-DEFN | VIEW-DEFN | ARCH-SPEC-DEFN | UNIT-SPEC-DEFN

A library definition LIB-DEFN provides a collection of specification (and per-
haps also view) definitions. It is well-formed only when the defined names
are distinct, and not referenced until (strictly) after their definitions. The
global environment for each definition is that determined by the preceding
definitions. Thus a library in CASL provides linear visibility, and mutual or
cyclic chains of references are not allowed.

The semantics of distributed libraries in the next section involves universal
environments Us, Um that map URLs and versions to global environments,
as well as a global directory GD that maps paths and versions to URLs, as
defined in Sect. 6.1. These components are incorporated but ignored by the
semantics of local library items.

The effect of processing a library definition may depend not only on Us,
Um, and GD , but also on the URL at which the library is to be located (and
possibly registered). The details of library installation and registration are out
of the scope of this semantics.

Us,GD � LIB-DEFN� (LN , Γs) Us, Um,GD � LIB-DEFN⇒ (LN , Γm)

Us, Um, and GD are required to be compatible. Γs and Γm are then compatible
too.

� LIB-NAME� LN versionOK (Us,GD ,LN)
Us,GD , ∅ � LIB-ITEM*� Γ ′

s

Us,GD � lib-defn LIB-NAME LIB-ITEM*� (LN , Γ ′
s)

III:6.2 Local Libraries 269

where for all u ∈ Url , v ∈ Version , versionOK (Us,GD , (u, v)) means

v = 〈〉 implies {v′ | (u, v′) ∈ Dom(Us)} = {〈〉}

and for all p ∈ Path, v ∈ Version, versionOK (Us,GD , (p, v)) means

v = 〈〉 implies {v′ | (p, v′) ∈ Dom(GD)} = {〈〉}

� LIB-NAME� LN versionOK (Um,GD ,LN)
Us, Um,GD , ∅, ∅ � LIB-ITEM*⇒ Γ ′

m

Us, Um,GD � lib-defn LIB-NAME LIB-ITEM*⇒ (LN , Γ ′
m)

where for all u ∈ Url , v ∈ Version , versionOK (Um,GD , (u, v)) means

v = 〈〉 implies {v′ | (u, v′) ∈ Dom(Um)} = {〈〉}

and for all p ∈ Path, v ∈ Version, versionOK (Um,GD , (p, v)) means

v = 〈〉 implies {v′ | (p, v′) ∈ Dom(GD)} = {〈〉}

Us,GD , Γs � LIB-ITEM� Γ ′
s Us, Um,GD , Γs, Γm � LIB-ITEM⇒ Γ ′

m

Us, Um, and GD are required to be compatible; so are Γs and Γm. Then Γ ′
s

and Γ ′
m are compatible, and extend Γs, resp. Γm.

Γs � SPEC-DEFN� Γ ′
s

Us,GD , Γs � SPEC-DEFN qua LIB-ITEM� Γ ′
s

Γs, Γm � SPEC-DEFN⇒ Γ ′
m

Us, Um,GD , Γs, Γm � SPEC-DEFN qua LIB-ITEM⇒ Γ ′
m

Similar rules for VIEW-DEFN, ARCH-SPEC-DEFN, and UNIT-SPEC-DEFN are
elided. The semantics of SPEC-DEFN and VIEW-DEFN is defined in Chap, 4, and
the semantics of ARCH-SPEC-DEFN and UNIT-SPEC-DEFN is defined in Chap, 5.

Us,GD , Γs � LIB-ITEM*� Γ ′
s Us, Um,GD , Γs, Γm � LIB-ITEM*⇒ Γ ′

m

Us, Um, and GD are required to be compatible; so are Γs and Γm. Then Γ ′
s

and Γ ′
m are compatible, and extend Γs, resp. Γm.

Us,GD , (Γs)0 � LIB-ITEM1 � (Γs)1
· · ·

Us,GD , (Γs)n−1 � LIB-ITEMn � (Γs)n

Us,GD , (Γs)0 � LIB-ITEM1 . . . LIB-ITEMn � (Γs)n

270 III:6 Specification Library Semantics

Us,GD , (Γs)0 � LIB-ITEM1 � (Γs)1
Us, Um,GD , (Γs)0, (Γm)0 � LIB-ITEM1 ⇒ (Γm)1

· · ·
Us,GD , (Γs)n−1 � LIB-ITEMn � (Γs)n

Us, Um,GD , (Γs)n−1, (Γm)n−1 � LIB-ITEMn ⇒ (Γm)n

Us, Um,GD , (Γs)0, (Γm)0 � LIB-ITEM1 . . . LIB-ITEMn ⇒ (Γm)n

6.3 Distributed Libraries

LIB-ITEM ::= ... | DOWNLOAD-ITEMS
DOWNLOAD-ITEMS ::= download-items LIB-NAME ITEM-NAME-OR-MAP+
ITEM-NAME-OR-MAP ::= ITEM-NAME | ITEM-NAME-MAP
ITEM-NAME-MAP ::= item-name-map ITEM-NAME ITEM-NAME
ITEM-NAME ::= SIMPLE-ID

The ITEM-NAME-OR-MAP in a DOWNLOAD-ITEMS determines a selection and
possible renaming of definitions from the named library, resulting in a global
environment to be added to the current global environment. The following
rules complete the definition of the semantics of library items, initiated in
Sect. 6.2.

� LIB-NAME� (u, v) (u, v) ∈ Dom(Us)
Us(u, v) � ITEM-NAME-OR-MAP+� Γ ′

s

Us,GD , Γs � download-items LIB-NAME ITEM-NAME-OR-MAP+� Γs ∪ Γ ′
s

� LIB-NAME� (p, v) (p, v) ∈ Dom(GD) (GD(p, v), v) ∈ Dom(Us)
Us(GD(p, v), v) � ITEM-NAME-OR-MAP+� Γ ′

s

Us,GD , Γs � download-items LIB-NAME ITEM-NAME-OR-MAP+� Γs ∪ Γ ′
s

The rules for the model semantics are elided.

Γs � ITEM-NAME-OR-MAP� Γ ′
s Γm � ITEM-NAME-OR-MAP⇒ Γ ′

m

Γs = (Gs,Vs,As, Ts) IN ∈ Dom(Gs)
Γs � IN qua ITEM-NAME-OR-MAP� ({IN �→ Gs(IN)}, ∅, ∅, ∅)

Γs = (Gs,Vs,As, Ts) IN 1 ∈ Dom(Gs)
Γs � item-name-map IN 1 IN 2 � ({IN 2 �→ Gs(IN 1)}, ∅, ∅, ∅)

The rules for the model semantics of ITEM-NAME-OR-MAP are elided, as are
those for item names which refer to views, architectural specifications, and
unit specifications.

III:6.4 Library Names 271

Γs � ITEM-NAME-OR-MAP+� Γ ′
s Γm � ITEM-NAME-OR-MAP+⇒ Γ ′

m

Γ ′
s and Γ ′

m correspond to subsets of Γs, resp. Γm, except that some of the
item names may have been replaced.

Γs � ITEM-NAME-OR-MAP1 � (Γ ′
s)1

· · ·
Γs � ITEM-NAME-OR-MAPn � (Γ ′

s)n

Γs � ITEM-NAME-OR-MAP1 . . . ITEM-NAME-OR-MAPn � (Γ ′
s)1 ∪ · · · ∪ (Γ ′

s)n

The rules for the model semantics of ITEM-NAME-OR-MAP+ are elided.

6.4 Library Names

LIB-NAME ::= LIB-ID | LIB-VERSION
LIB-VERSION ::= lib-version LIB-ID VERSION-NUMBER

VERSION-NUMBER ::= version-number NUMBER+

LIB-ID ::= DIRECT-LINK | INDIRECT-LINK
DIRECT-LINK ::= direct-link URL
INDIRECT-LINK ::= indirect-link PATH

The following judgements provide canonical library names.

� LIB-NAME� LN

� LIB-ID� LI
� LIB-ID qua LIB-NAME� (LI , 〈〉)

� LIB-ID� LI � VERSION-NUMBER� v

� lib-version LIB-ID VERSION-NUMBER� (LI , v)

� VERSION-NUMBER� v

v is a non-empty sequence of natural numbers.

NUMBERi is decimal notation for ni, i = 1, . . . , m

� version-number NUMBER1 . . . NUMBERm � 〈n1, . . . , nm〉

� LIB-ID� LI

� direct-link u � u � indirect-link p � p

Part IV

CASL Logic

Till Mossakowski

Piotr Hoffman

Serge Autexier

Dieter Hutter

Editor: Till Mossakowski

1

Introduction

This part of the CASL Reference Manual provides proof calculi for the various
levels of CASL specifications. It should be read together with the the CASL

semantics (Part III).
The aim of the CASL proof calculus is to support the users of CASL in the

proof activities necessary in the process of software specification and develop-
ment. Essentially, the goals are threefold. First, in a number of situations the
model semantics for a CASL specification may fail even if the static semantics
succeeds. This is the case for instance when a generic specification is instanti-
ated with an actual parameter (which must then entail the formal parameter
specification), when a view between two specifications is formed, or when a
generic unit is applied to an argument in an architectural specification. One
aim of the calculi developed here is to (make explicit and help the user to)
discharge proof obligations such situations imply. Once this is done, we can
be sure that the specification in question denotes a class of models. Then,
the second aim of the calculi developed here is to prove consequences of such
specifications – formulas that hold in all the models. Finally, this can be used
to prove various relationships between CASL specifications.

This program is carried through the various layers of CASL. For basic spec-
ifications, no proof obligations arise, and proving their consequences amounts
to proving consequences of a set of logical formulas. The corresponding calcu-
lus for the logic of CASL is given in Chap. 2. Actually, the calculus is for the
many-sorted sublanguage of CASL, but via the reduction of subsorted CASL

to many-sorted CASL given in the semantics (Chap. III:3), it can also be used
for subsorted CASL, see Chap. 3.

Structured specifications are treated in Chap. 4. Since CASL structured
specifications are quite complex, a simpler core formalism, called develop-
ment graphs, is introduced. A development graph consists of a set of nodes
(corresponding to whole structured specifications or parts thereof), and a set
of arrows called definition links, indicating the dependency of each involved
structured specification on its subparts. The proof calculus is given for devel-
opment graphs, which makes the calculus much simpler than a calculus that

276 IV:1 Introduction

would directly act on CASL structured specifications. The proof calculus makes
use of the calculus for basic specifications. The link between CASL structured
specifications and development graphs is given by a verification semantics. It
is similar to the static semantics of structured specifications, but simultane-
ously extracts a development graph and a set of proof obligations (the latter
are called theorem links). The proof obligations arise e.g. from instantiations
of generic specifications. Once they have been extracted, they can be tack-
led with the proof calculus. Indeed, the proof obligations can be discharged
if and only if the model semantics of the structured specification under con-
sideration succeeds. The proof calculus can also be used to prove intended
consequences of structured specifications or check their consistency. In fact,
for this purpose, there are CASL annotations such as %implies and %cons,
and the verification semantics leads to appropriate further proof obligations
(i.e. going beyond those capturing the model semantics).

For the sake of simplicity, only a sublanguage of architectural specifications
is covered in Chap. 5. The sublanguage is introduced with syntax, (extended)
static and model semantics. The relation between extended static and model
semantics is studied, continuing the discussion in Sect. III:5.6.6. Based on the
calculus for structured specifications, a calculus is developed that can be used
for proving that a given architectural specification has a denotation w.r.t. its
model semantics (i.e., is correct) and that the units produced using it satisfy
a given unit specification.

Finally, Chap. 6 points out how the various calculi may be integrated in
order to obtain a calculus for proving the correctness of whole libraries.

1.1 Institution Independence

The proof calculi for structured and architectural specifications and libraries
are independent of the framework that is used for basic specifications (this is
similar to the institution independence discussed in Sect. III:4.1). The seman-
tics of basic specification defines an institution [20], while the proof calculus
for basic specifications extends this to a logic [34] (which is an institution
equipped with a proof theoretic entailment relation). Hence, the proof cal-
culi for structured and architectural specifications are parametrized over an
arbitrary logic. The logic is required to fulfill some mild technical conditions.

The actual subdivision between institution dependent and institution in-
dependent calculi is not quite as clean as stated above. Namely, despite the
fact that the calculus for structured specifications is institution independent
in general, at some points, institution dependent proof rules are needed. This
is due to the need to deal with free specifications and with checks for conser-
vativity of extensions1. Up to now, these two problems have not been treated
1 Note that checks for conservativity of extensions not only arise from explicit

conservativity annotations; they may also arise during a proof of a proof obligation
generated by a view whose source involves hiding.

IV:1.3 Soundness and Completeness 277

in a logic independent way, and such a treatment seems to be rather difficult.
Hence, one needs logic-specific rules at these places (see Sect. 4.6).

1.2 Style of the Proof Calculi

The proof calculi follow a natural deduction style. This makes the rules com-
pact and easy to read. However, in the calculus for basic specifications, side
conditions such as Eigenvariable conditions are not so easy to understand,
compared to a Gentzen style presentation. We therefore indicate at some
places how a Gentzen style presentation would look.

1.3 Soundness and Completeness

We prove the soundness of all the calculi for the different layers of CASL, which
shows that only logical consequences can be proved. The converse property,
that all logical consequences can be proved, is known as completeness. Un-
fortunately, the presented calculi are not complete, and they cannot be so in
principle. There are different sources of incompleteness:

• sort generation constraints in CASL basic specifications,
• CASL structured specifications involving hiding and freeness (the former

need some form of check for conservativity of extensions), and
• consistency checks in CASL architectural specifications.

For these constructs of CASL, there cannot be a recursively axiomatized com-
plete calculus. However, we prove relative completeness results in the sense
that if these constructs are omitted or if there is an oracle that deals with
them, we obtain a complete calculus. Even then, completeness of the logic
independent proof calculus for structured and architectural specifications of
course requires completeness of the proof calculus of the logic for basic speci-
fications.

Acknowledgement. The authors of the various chapters are:

Basic specifications: Till Mossakowski
Subsorting specifications: Till Mossakowski
Structured specifications: Till Mossakowski, Serge Autexier and Dieter Hutter
Architectural specifications: Piotr Hoffman
Libraries: Till Mossakowski

This document was assembled by Till Mossakowski. Proofreading was done by An-
drzej Tarlecki.

This research was partly supported by CoFI-WG (ESPRIT Working Group
29432). Till Mossakowski’s work was partly supported by the Deutsche Forschungs-
gemeinschaft under grant KR 1191/5-1. Piotr Hoffman’s work was partly supported
by the Polish State Committee for Research (KBN) under grant no. 7 T11C 002 21.

2

Basic Specification Calculus

Here, we define a proof calculus for many-sorted basic specifications as in-
troduced in Chap. I:2. In Chap. 3 below, also subsorted specifications are
treated.

The semantics of a basic specification is a signature together with a set of
axioms; see Chap. III:2. The proof calculus for basic specifications allows for
deriving consequences from such a set of sentences. More specifically, the proof
calculus is given by a set of rules, which together generate a proof-theoretic
entailment relation. The proof calculus is shown to be sound, i.e. only logical
consequences can be derived in the calculus. The converse, completeness, can-
not be achieved due to the presence of sort generation constraints; however,
the calculus is complete if the latter are omitted.

Before we present the proof calculus, a few remarks on the syntax of for-
mulas as defined in Sect. III:2.1.3 are in order. As stated there, we restrict
ourselves to a kernel language consisting of predicate applications, existen-
tial equations, false, implication, and universal quantification – all the other
types of equations, connectives and quantifiers can be expressed in terms of
these. Moreover, we follow the remark stated there that it is possible to omit
conditional terms of the form ϕ ← t′|t′′; these can be eliminated as described
in Sect. I:2.5.4 of the CASL Summary. Finally, for the sake of readability, we
will deviate from the notation for formulas that has been introduced in the
semantics of many-sorted basic specifications: within quantifications, instead
of ∀xs.ϕ we write ∀x :s . ϕ, and we omit the sorts of variables and profiles of
function and predicate symbols, if these are clear from the context.

We now introduce some auxiliary notions about substitutions that are
needed in the calculus rules. In the sequel, fix a many-sorted signature Σ =
(S, TF, PF, P).

Given an S-sorted variable systems X , the S-sorted set of Σ-terms over
X is denoted by TΣ(X).

Definition 2.1. Given an S-sorted variable systems X and Y , an S-sorted
function ν : X→TΣ(Y) is called a substitution. Given a substitution ν : X→

280 IV:2 Basic Specification Calculus

TΣ(Y) and an S -sorted variable system Z, we denote by ν \ Z : X ∪ Z →
TΣ(Y ∪ Z) the substitution being the identity on Z and being ν on X \ Z.

We now come to the definition of what it means to apply a substitution to
a term or a formula. The application of a substitution to a formula is not
defined in all cases because of the variable capture problem: if a term that is
substituted for a variable contains free variables, the latter must not newly
get into the scope of a quantifier in the term or formula resulting from the
substitution.

Definition 2.2. The term t[ν] ∈ TΣ(Y) resulting from applying the substitu-
tion ν to a term t ∈ TΣ(X) is defined by

• x[ν] = νs(x) for x ∈ Xs

• fws(t1, . . . , tn)[ν] = fws(t1[ν], . . . , tn[ν])

Given a Σ-formula ϕ over X, the formula ϕ[ν], which is either undefined
or a Σ-formula over Y resulting from applying the substitution ν to ϕ, is
defined inductively over ϕ:

• (t1
e= t2)[ν] = t1[ν] e= t2[ν]

• pw(t1, . . . , tn)[ν] = pw(t1[ν], . . . , tn[ν])
• false[ν] = false
• (ϕ⇒ ψ)[ν] = (ϕ[ν]) ⇒ (ψ[ν])

• (∀z :s′ . ϕ)[ν] =


∀z :s′ . (ϕ[ν \ {zs′}]), if for all x ∈ Xs, s ∈ S ,

x[ν] �= x and x ∈ FV (∀z :s′ . ϕ)
imply z �∈ FV (x[ν])

undefined, otherwise

The last case causes (∀z : s′ . ϕ)[ν] to be undefined if a name clash occurs
(where a name clash means that a free variable in x[ν] becomes bound by
the quantification over zs′). This restriction is important to keep the intended
semantics of substitutions.

The rules of derivation are given in Fig. 2.1 (the first-order rules) and
Fig. 2.2 (the induction rules). They are given in a natural deduction style.
Some rules such as (⇒-intro) need local assumptions, which means that
their premises are of the form ‘if ψ can be derived from ϕ’ (here, ϕ is the local

assumption). In the calculus, this is written
[ϕ]
...
ψ

.

The rule (Congruence) captures the usual congruence (take ν(xs) to be
a variable) as well as symmetry and transitivity of existential equality.

Recall from Sect. III:2.1.3 that D(t) abbreviates t
e= t, and ϕ∧ψ is defined

as a complicated term using ⇒ and false. For simplicity, we here consider
(
∧

i=1,...,n ϕi) ⇒ ψ as an abbreviation for ϕ1 ⇒ . . . ⇒ ϕn ⇒ ψ, with ⇒
grouping to the right.

For the induction rules (Fig. 2.2), without loss of generality we assume
that for a sort generation constraint

IV:2 Basic Specification Calculus 281

(Absurdity) false
ϕ (Tertium non datur)

[ϕ] [ϕ ⇒ false]
...

...
ψ ψ

ψ

(⇒-intro)

[ϕ]
...
ψ

ϕ ⇒ ψ
(⇒-elim)

ϕ
ϕ ⇒ ψ

ψ
(∀-elim) ∀x :s . ϕ

ϕ

(∀-intro) ϕ
∀x :s . ϕ

where xs occurs freely only in local assumptions

(Reflexivity)
xs

e
= xs

if xs is a variable

(Congruence) ϕ

(
∧

xs∈F V (ϕ) xs
e
= ν(xs))⇒ ϕ[ν]

if ϕ[ν] defined

(Totality)
D(fw,s(xs1 , . . . , xsn))

if w = s1 . . . sn, f ∈ TFw,s

(Substitution) ϕ
(
∧

xs∈F V (ϕ) D(ν(xs)))⇒ ϕ[ν]

if ϕ[ν] defined and FV (ϕ) occur freely only in local assumptions

(Function Strictness) t1
e
= t2

D(t)
t some subterm of t1 or t2

(Predicate Strictness) pw(t1, . . . , tn)
D(ti)

i ∈ {1, . . . , n}

Fig. 2.1. First-order deduction rules for CASL basic specifications

(S′, F ′, θ : Σ̄→Σ),

all the result sorts of function symbols in F ′ occur in S′. If not, we can just
leave out from F ′ those function symbols not satisfying this requirement. The
satisfaction of the sort generation constraint in any model will not be affected
by this: in the Σ̄-term t that (jointly with an appropriate assignment of its
variables) witnesses the satisfaction of the constraint, any application of a
function symbol with result sort outside S′ can just be replaced by a variable
of that sort, which then gets the value of the function application as assigned
value.

A derivation of Φ � ϕ is a tree (called derivation tree) such that

• the root of the tree is ϕ,
• all the leaves of the tree are either in Φ or marked as local assumption,

282 IV:2 Basic Specification Calculus

(Induction)

(S′, F ′, θ : Σ̄→Σ)
ϕ1 ∧ · · · ∧ ϕk∧

s∈S′ ∀x : θ(s) . Ψs(x)

F ′ = {f1 : s
1
1 . . . s1

m1 →s1; . . . ; fk : s
k
1 . . . sk

mk
→sk},

Ψs is a formula with one free variable of sort θ(s), for s ∈ S′,

ϕj = ∀x1 : θ(s
j
1), . . . , xmj : θ(s

j
mj
) .(

D(θ(fj)(x1, . . . , xmj)) ∧
∧

i∈{1,...,mj}; s
j
i∈S′ Ψ

s
j
i
(xi)

)
⇒ Ψsj

(
θ(fj)(x1, . . . , xmj)

)
(Sortgen-intro)

ϕ1 ∧ · · · ∧ ϕk ⇒
∧

s∈S′ ∀x : θ(s) . ps(x)

(S′, F ′, θ : Σ̄→Σ)

F ′ = {f1 : s
1
1 . . . s1

m1 →s1; . . . ; fk : s
k
1 . . . sk

mk
→sk},

the predicates ps : θ(s) (s ∈ S′) occur only in local assumptions,
ϕj = ∀x1 : θ(s

j
1), . . . , xmj : θ(s

j
mj
) .(

D(θ(fj)(x1, . . . , xmj)) ∧
∧

i∈{1,...,mj}; s
j
i∈S′ p

s
j
i
(xi)

)
⇒ psj

(
θ(fj)(x1, . . . , xmj)

)
Fig. 2.2. Induction rules for CASL basic specifications

• each non-leaf node is the (instance of the) conclusion of some rule, with
its children being the (instances of the) premises,

• all assumptions marked with [. . .] in the proof rules are marked as local
assumptions.

If Φ and ϕ consist of Σ-formulas, we also write Φ �Σ ϕ. In practice, one
will work with acyclic graphs instead of trees, since this allows the re-use of
lemmas.

Some rules contain a condition that some variables occur freely only in
local assumptions. These conditions are the usual Eigenvariable conditions of
natural deduction style calculi. More precisely, they mean that if the men-
tioned variables occur freely in an assumption in a proof tree, the assumption
must be marked as local and have been used in the proof of the premise of
the respective rule (that is, it must not be an undischarged assumption that
gets discharged only by a different rule).

Some readers might prefer a Gentzen-style presentation of the calculus,
since this makes the role of the local assumptions and the Eigenvariable con-
ditions more explicit. In order to help clarifications, we reformulate two of the
rules in Gentzen style here:

(⇒-intro)
Φ ∪ {ϕ} � ψ

Φ � ϕ⇒ ψ

IV:2 Basic Specification Calculus 283

(Substitution)
Φ � ϕ

Φ � (
∧

xs∈FV (ϕ) D(ν(xs)))⇒ ϕ[ν]

if ϕ[ν] is defined and the free variables of ϕ do not occur freely in Φ.
We now come to soundness and completeness of the calculus, largely fol-

lowing the presentation in [9]. We present only the (easier) soundness proof,
in order to allow the reader to get familiar with the rules. The completeness
proof (for the first-order fragment) is more complex, but follows the standard
techniques for first-order completeness proofs; hence, we do not repeat it here.

We say that a Σ-sentence ϕ semantically follows from a set of Σ-sentences
Φ, written Φ |=Σ ϕ, if each Σ-model satisfying all sentences in Φ also satis-
fies ϕ.

Theorem 2.3. The calculus is sound i.e.

Φ |=Σ ϕ if Φ �Σ ϕ

Moreover, the calculus is complete if sort generation constraints are not used,
i.e.

Φ |=Σ ϕ only if Φ �Σ ϕ

if Φ, ϕ do not contain sort generation constraints.

Proof. (Soundness) By induction over the proof tree construction, we show:
for all signatures Σ, all Σ-models M , all S-sorted set of variables X (where
S is the sort set of Σ) and all valuations ρ : X→M , all Σ-formulas Φ, ϕ over
X 1 with Φ �Σ ϕ:

if M |=ρ Φ, then M |=ρ ϕ

(Absurdity), (Tertium non datur) and (⇒-elim) are easily seen to be
sound by inspecting truth tables. Concerning (⇒-intro), note that the sub-
proof of ψ has assumptions Φ ∪ {ϕ}, hence by induction hypothesis, if M |=ρ

Φ ∪ {ϕ}, then M |=ρ ψ. From this, we get if M |=ρ Φ, then M |=ρ ϕ ⇒ ψ.
(∀-elim): M |=ρ ∀x :s . ϕ means that M |=ρ[xs �→a] ϕ for all a ∈ sM , hence

in particular M |=ρ ϕ, since ρ = ρ[xs �→ ρ(xs)].
(∀-intro): By the side condition, xs does not occur freely in Φ. Hence,

assuming that M |=ρ Φ, we get M |=ρ[xs �→a] Φ for all a ∈ sM . By the induction
hypothesis, for these then M |=ξ ϕ. Hence, M |=ρ ∀x :s . ϕ.

Soundness of (Reflexivity) and (Totality) are obvious.
Soundness of (Congruence) and (Substitution) follows from the fol-

lowing Lemma from [9].

Lemma 2.4. Substitution Lemma
Let M be a Σ-model, ρ : Y →M be a valuation, ν : X→TΣ(Y) be a substitu-
tion and ϕ a Σ-formula over X. Under the conditions that
1 It may be necessary to extend or shrink the variable set X when applying the

induction hypothesis. This is no problem, since the induction is over all such
variable sets in parallel, and since carrier sets of models are non-empty and hence
satisfaction is not affected by adding or removing extra variables.

284 IV:2 Basic Specification Calculus

• ρ# ◦ ν : X→M is well-defined (i.e. for all x ∈ Xs, s ∈ S we have M |=ρ

D(ν(xs))) and
• ϕ[ν] is defined,

we have
M |=ρ#◦ν ϕ if and only if M |=ρ ϕ[ν]

where ρ# : TΣ(Y)→M is the obvious extension of ρ to terms. ��

Soundness of (Function Strictness) and (Predicate Strictness) follow
from the semantics of function and predicate application, which ensures that
terms are defined only if all subterms are defined, and predicates hold only
for defined terms.

Soundness of (Induction): Let Σ̄ = (S̄, T̄F , P̄F , P̄). Given a Σ-model
M , an S̄-sorted set P ⊆ M |θ is (S′, F ′, θ)-closed iff it is closed under the
application of functions θ(fws)M with f ∈ F ′

ws and Ps = θ(s)M for s ∈ S̄ \ S′.

Lemma 2.5. In the notation of rule Induction, given a valuation ρ : X→M ,
consider the S̄-sorted set P(ρ) formed by taking {a | M |=ρ[xs �→a] Ψs} for
s ∈ S′ and of θ(s)M for s ∈ S̄ \ S′.

Then we have

M |=ρ ϕ1 ∧ · · · ∧ ϕk iff P(ρ) is (S′, F ′, θ)-closed.

Proof. This directly follows from the form of the ϕj : ϕj states that for any
argument tuple such that each argument of sort s ∈ S′ is in P(ρ), the ap-
plication of fj to the argument tuple is in P(ρ). Since any argument of sort
s ∈ S̄ \ S′ trivially is in P(ρ), this amounts to closure of P(ρ) under fj . ��

Now assume that a model M under a valuation ρ : X → M satis-
fies the premises of the rule. Satisfaction of the sort generation constraint
(S′, F ′, θ : Σ̄→Σ) means that the smallest (S′, F ′, θ)-closed set is M |θ. Sat-
isfaction of the second premise by Lemma 2.5 means that P(ρ) is (S′, F ′, θ)-
closed. Hence, P(ρ) is already M |θ. But this just means that ρ satisfies the
conclusion.

Soundness of (Sortgen-intro): since the predicates ps : θ(s) do neither
occur in non-local assumptions nor in the conclusion of the rule, it is possible
to assume that they are interpreted as “term generatedness by the operations
in θ(F ′)”. With this, the premise of the rule reads “if the operations in θ(F ′)
preserve term generatedness by the operations in θ(F ′), then all elements of
carriers for sorts in θ(S′) are term generated by the operations in θ(F ′)”. Since
the condition before the ‘then’ is trivially true, this means that all elements
of carriers for sorts in θ(S′) are term generated by the operations in θ(F ′).
Hence, the sort generation constraint is true.

The proof of completeness follows the lines of [9]. ��

IV:2 Basic Specification Calculus 285

One may have doubts whether the rule (Sortgen-intro) really can be
sound. After all, it seems to introduce a second-order principle based on first-
order reasoning. (Note that an induction rule for all first-order formulas is
different from an induction rule with a second-order predicate variable.) How-
ever, due to the Eigenvariable condition for the predicate symbols mentioned
in the rule, we actually have some form of universally quantified predicate vari-
ables. In particular, in order to derive a sort generation constraint, one usually
needs a (possibly different) sort generation constraint among the premises.

Theorem 2.6. If sort generation constraints are used, the calculus is not com-
plete. Moreover, there cannot be a recursively axiomatized sound and complete
calculus for many-sorted CASL basic specifications.

Proof. With sort generation constraints, the second-order Peano axioms can
be expressed, specifying the natural numbers up to isomorphism. The stated
results then follow from Gödel’s incompleteness theorem (see e.g. [64]). ��

Since completeness implies compactness (proofs are finite), incompleteness
is also a corollary of the following theorem:

Theorem 2.7. The semantic consequence relation |=Σ for many-sorted CASL

basic specifications is not compact. (Compactness means that every formula
that follows from an arbitrary set of formulas already follows from a finite
subset of that set.)

Proof. From the Peano axioms and {p(sucn(0)) | n ∈ N}, we can semantically
derive ∀x : nat.p(x). However, this does not follow from a finite subset. ��
Theorem 2.8. The above proof calculus satisfies the properties of an entail-
ment system, i.e.

1. reflexivity: {ϕ} �Σ ϕ,
2. monotonicity: if Γ �Σ ϕ and Γ ′ ⊇ Γ then Γ ′ �Σ ϕ,
3. transitivity: if Γ �Σ ϕi, for i ∈ I, and Γ ∪ {ϕi | i ∈ I} �Σ ψ, then

Γ �Σ ψ,
4. translation: if σ : Σ1→Σ2 and Γ �Σ1 ϕ, then σ(Γ) �Σ2 σ(ϕ).

Proof. Reflexivity and monotonicity directly follow from the notion of deriva-
tion tree. Transitivity follows by noting that derivation trees can be composed.
Translation follows by noting that the translation of a proof rule by a signa-
ture morphism yields an instance of a proof rule. ��

Instead of using the above calculus, it is also possible to use an encoding of
the CASL logic into second-order logic. This means that not only subsorting,
but also partiality are coded out using standard many-sorted first-order logic,
while sort generation constraints are translated to second-order induction ax-
ioms. Using this encoding, any entailment relation between sets of sentences
in the CASL logic can be translated to an equivalent entailment in second-
order logic. Hence, any calculus for second-order logic (or first-order logic
with induction) can be re-used for CASL. The details can be found in [41].

3

Subsorting Specification Calculus

The logic of subsorted basic specifications is defined via a reduction to many-
sorted specifications (see Chap. III:3). In particular, subsorted Σ-sentences are
many-sorted Σ#-sentences for some many-sorted signature Σ# constructed
out of a subsorted signature Σ. Hence, we can just use the proof calculus
for many-sorted basic specifications, while adding the following logical axioms
(taken from the semantics of subsorted specifications):

Identity: ∀xs.em〈s〉,s〈xs〉 e= xs

Transitivity: ∀xs.em〈s′〉,s′′〈em〈s〉,s′〈xs〉〉 e= em〈s〉,s′′〈xs〉 for s ≤ s′ ≤ s′′

Projection: ∀xs.pr 〈s′〉,s〈em〈s〉,s′〈xs〉〉 e= xs for s ≤ s′

Projection-injectivity: ∀{xs′ , ys′}.pr 〈s′〉,s〈xs′〉 e= pr 〈s′〉,s〈ys′〉 ⇒ xs′
e= ys′

for s ≤ s′

Membership: ∀xs′ .in(s)〈s′〉〈xs′〉 ⇔ D(pr 〈s′〉,s〈xs′ 〉) for s ≤ s′

Function-monotonicity:
∀{x1

s1
, . . . , xn

sn
}.em〈s〉,s′′〈fw,s〈em〈s1〉,s1〈x1

s1
〉, . . . , em〈sn〉,sn

〈xn
sn
〉〉〉

s= em〈s′〉,s′′〈fw′,s′〈em〈s1〉,s′
1
〈x1

s1
〉, . . . , em〈sn〉,s′

n
〈xn

sn
〉〉〉

for fw,s ∼F f ′
w′,s′ , where w′ = 〈s′1, . . . , s′n〉 and w = 〈s1, . . . , sn〉, with

w ≤ w, w′ for some w = 〈s1, . . . , sn〉, and s, s′ ≤ s′′

Predicate-monotonicity:
∀{x1

s1
, . . . , xn

sn
}. pw〈em〈s1〉,s1〈x1

s1
〉, . . . , em〈sn〉,sn

〈xn
sn
〉〉

⇔ p′w′〈em〈s1〉,s′
1
〈x1

s1
〉, . . . , em〈sn〉,s′

n
〈xn

sn
〉〉

for pw ∼P p′w′ , where w′ = 〈s′1, . . . , s′n〉 and w = 〈s1, . . . , sn〉, with w ≤
w, w′ for some w = 〈s1, . . . , sn〉
Soundness and completeness results directly carry over from the many-

sorted case.
It seems hard (if not impossible, without further assumptions on the signa-

tures) to build a subsorted calculus directly working on the CASL input syntax
(i.e. without fully qualified symbols). This has been done for OBJ3 [25]. How-
ever, the calculus of OBJ3 imposes special requirements on signatures such as
regularity, which are not present in CASL.

4

Structured Specification Calculus

For structured theorem proving, there are several possible ways to go. One
possibility is to directly work on the language of CASL structured specifica-
tions, as e.g. in [58]. However, the corresponding calculus becomes inevitably
rather complex, and soundness (let alone completeness) is hard to see.

The other possibility, which we will follow here, is to use a kernel language.
We use so-called development graphs as a simple kernel formalism for struc-
tured theorem proving and proof management. A development graph consists
of a set of nodes (corresponding to whole structured specifications or parts
thereof), and a set of arrows called definition links, indicating the dependency
of each involved structured specification on its subparts.

The link between CASL structured specifications and development graphs
is given by a verification semantics. It is similar to the static semantics of
structured specifications, but simultaneously extracts a development graph
and a set of proof obligations (the latter are called theorem links). The proof
obligations arise e.g. from instantiations of generic specifications. There is an
adequacy theorem stating that the proof obligations can be discharged if and
only if the model semantics of the structured specification under consideration
succeeds. Further proof obligations are generated by semantic annotations
such as %implies and %cons.

The proof calculus for development graphs is given by rules that allow
for decomposing global theorem links into simpler ones, until eventually local
implications are reached. The latter can be discharged using a logic-specific
calculus as introduced in Chap. 2. We also address soundness and complete-
ness of the proof calculus.

Let us now add some remarks about the choice of the kernel language.
Development graphs are not the only possible choice. Another choice would
be the simple kernel language of structured specifications given in [7]. The
drawback of this approach is that its calculus is based on the rather strong
assumption that the institution has the Craig interpolation property. By con-
trast, the calculus for development graphs is based on a different assumption,
namely the existence of weakly amalgamable cocones (cf. Def. 4.1). Note that

290 IV:4 Structured Specification Calculus

Craig interpolation (although technically incomparable in strength with the
property of existence of weakly amalgamable cocones) for practical purposes
is the stronger property (cf. the results of [17]). The deeper reason of these
differences is that the calculus for development graphs contains global rules for
graphs involving hiding that introduce additional nodes corresponding to nor-
mal forms of structured specifications (note however that the structure of the
specification is still kept). By contrast, the rules for structured specifications
developed by Borzyszkowski [7] are entirely local, which exactly is the reason
why the Craig interpolation property is needed to achieve completeness.

An important practical difference of the two approaches is the following.
In contrast to the kernel language of structured specifications, development
graphs allow for expressing the sharing among specifications due to multiple
references to named specifications. Moreover, the proof management tools for
CASL work directly on development graphs; hence, the material presented
here can serve as a formal background for the use of these tools and for the
understanding of how they work. Last but not least, development graphs also
support management of change.

Development graphs are a device for dealing with structured specifications.
They should not be confused with the (formally quite similar) diagrams aris-
ing in the extended semantics of architectural specifications (see Sect. III:5.6).
The crucial difference is in the role of hiding when a specification is used
twice, with parts of it hidden in both cases. If a specification SPEC occurs
within a structured specification, then the semantics reflected by the develop-
ment graphs requires that the overall model can be extended with the hidden
parts for each occurrence of SPEC separately. In contrast, if a unit UN : SPEC
is used within an architectural unit term, then the semantics reflected by the
architectural diagrams requires that the overall model can be uniformly ex-
tended with the hidden parts to a single model of SPEC, common for all the
occurrences of UN . This amounts to saying that a global model of the colimit
of the architectural diagram can be constructed. This is not possible for de-
velopment graphs. Although there is a colimit construction for them as well,
it is different in that the diagram is not given directly by the development
graph, but by the diagram of all paths in the development graph (cf. the rule
(Theorem-Hide-Shift) in Sect. 4.4 below).

4.1 Institution Independence

In order to achieve independence from the specific framework of basic speci-
fications, we assume that we have an entailment relation for basic specifica-
tions (either given by some proof calculus, or by some logical encoding, or in
some other way). Based on this, the proof calculus in this chapter is largely
logic-independent. A framework for basic specification formally consists of an
institution (Sig,Sen,Mod, |=) [20] together with a sound entailment system
� for the institution (this is also called a logic). Here, an entailment system

IV:4.1 Institution Independence 291

is a family of relations (�Σ ⊆ P(Sen(Σ))× Sen(Σ))Σ∈|Sig| between sets of
sentences and sentences that is required to satisfy the properties listed in
Theorem 2.8.

Additionally, we need a technical assumption about the logic, namely that
every finite diagram of signatures has a weakly amalgamable cocone. We now
explain what this means.

Definition 4.1. Given a diagram D : J→Sig 1, a family of models (Mj)j∈|J|
is called D-consistent if Mk|D(δ) = Mj for each δ : j → k ∈ J . A cocone
(Σ, (µj : D(j)→Σ)j∈|J|) over the diagram D : J→Sig is called weakly amal-
gamable if for each D-consistent family of models (Mj)j∈|J|, there is a Σ-
model M with M |µj = Mj (j ∈ |J |). If this model is unique, the cocone
is called amalgamable. If additionally also model morphisms can be uniquely
amalgamated in this way, the cocone is called morphism-amalgamable. A logic
is said to admit weak amalgamation, if each finite diagram of signatures has
a weakly amalgamable cocone.

Proposition 4.2. The CASL logic for many-sorted basic specifications admits
weak amalgamation.

Proof. According to Theorem III:2.17, it suffices to take the colimit of the
diagram – this is even morphism-amalgamable. ��

Note that this proposition does not hold for subsorted specifications, see
[63]. But we provide a way around this problem: it suffices that the logic at
hand can be represented in a logic admitting weak amalgamation.

In order to define what such a representation means, we need some aux-
iliary notions. Given an arbitrary institution, a theory is a pair T = 〈Σ, Ψ〉,
where Σ ∈ Sig and Ψ ⊆ Sen(Σ) (we set Sig(T) = Σ and Ax(T) = Ψ). Theory
morphisms σ : 〈Σ, Ψ〉→〈Σ′, Ψ ′〉 are those signature morphisms σ : Σ→Σ′ for
which Ψ ′ |=Σ′ σ(Ψ), that is, axioms are mapped to logical consequences.
By inheriting composition and identities from Sig, we obtain a category
Th of theories. It is easy to extend Sen and Mod to Th by putting
Sen(〈Σ, Ψ〉) = Sen(Σ) and letting Mod(〈Σ, Ψ〉) be the full subcategory of
Mod(Σ) induced by the class of those models M satisfying Ψ . The category
Pres of presentations (also called flat specifications) is just the full subcate-
gory of theories having finite sets of axioms.

Given institutions I and J , a simple theoroidal institution comorphism
[23, 34, 65] (also called simple map of institutions [34] or simple institution
representation) R = (Φ, α, β) : I→J consists of
1 Diagrams have been introduced in Sect. III:5.6.

292 IV:4 Structured Specification Calculus

• a functor Φ : SigI→PresJ ,2
• a natural transformation α : SenI→SenJ ◦ Φ,
• a natural transformation β : ModJ ◦ Φop→ModI

such that the following comorphism condition is satisfied for all Σ ∈ SigI ,
M ′ ∈ModJ (Φ(Σ)) and ϕ ∈ SenI(Σ):

M ′ |=J
Sig(Φ(Σ)) αΣ(ϕ) ⇔ βΣ(M ′) |=I

Σ ϕ.

A comorphism is called model-isomorphic, if each model translation βΣ is
an isomorphism.

Remark 4.3. General assumption: The given institution is embedded via
a model-isomorphic simple theoroidal institution comorphism R = (Φ, α, β)
into an institution that comes with an entailment system (i.e. forms a logic)
and furthermore admits weak amalgamation.

Note that this assumption is fulfilled for the subsorted CASL institution:
it can be embedded into the many-sorted CASL institution as indicated in the
semantics of subsorted specifications. Another possibility is to embed CASL

into enriched CASL as described in [63]. The advantage of using the many-
sorted CASL institution is its simplicity (compared with enriched CASL), the
advantage of enriched CASL is that the comorphism is simpler and moreover
we keep the subsorting structure, which may be exploited by special calculi
[31].

Remark 4.4. We will use the general assumption tacitly in the following sense.
At one place of the proof calculus, we rely on the fact that the underlying
institution comes with an entailment system, and at several places, we need
the existence of weakly amalgamable cocones – and we will presume that the
institution we are working with enjoys these properties. Even if the institution
should fail to satisfy them, we can translate the constructed development
graph along the comorphism given by the general assumption, and we can
rely on the target institution having the needed properties. The translation
of development graphs, together with the fact that it is sound and complete,
is given in Sect. 4.3 below. Note that in practice, one might wish to use
the translation in a rather flexible way, namely only in those cases where
a weakly amalgamable cocone does not exist in the original institution. This
will be possible in the framework of heterogeneous specifications [40]. Another
possibility is to limit the rules of the proof calculus to those cases where all
needed weakly amalgamable cocones already exist in the original institution.
However, this will lead to a loss of completeness for institutions that do not
admit weak amalgamation (although this loss might not be severe in practice).
2 Meseguer [34] requires Φ : ThI →ThJ , but since µ is theoroidal, both formula-

tions are equivalent using Meseguer’s α-extension (except for the fact that we use
presentations instead of theories).

IV:4.2 Development Graphs 293

4.2 Development Graphs

Development graphs are structured as follows. Leaves in a graph correspond
to basic specifications, which do not make use of other specifications. Inner
nodes correspond to structured specifications. The links that capture the con-
struction of structured specifications in the graph are called definition links.
Arising proof obligations are attached as so-called theorem links to this graph.

Definition 4.5. A development graph is an acyclic, directed graph DG =
〈N ,L〉.
N is a set of nodes3. Each node N ∈ N is labelled with a pair (ΣN , ΨN)

such that ΣN is a signature and ΨN ⊆ Sen(ΣN) is the set of local axioms of
N .
L is a set of directed links, so-called definition links, between elements of

N . Each definition link from a node O to a node N is either

• global (denoted O
σ �� N), annotated with a signature morphism σ :

ΣO → ΣN , or
• local (denoted O

σ �� N), again annotated with a signature morphism
σ : ΣO → ΣN , or

• hiding (denoted O
σ

hide
�� N), annotated with a signature morphism σ :

ΣN → ΣO going against the direction of the link, or
• free (denoted O

σ

free
�� N), annotated with a signature morphism σ : Σ →

ΣO for some signature Σ, with the requirement that ΣO = ΣN .

To simplify matters, we write O
σ �� N ∈ DG instead of O

σ �� N ∈ L
when L are the links of DG. We use N , O, P , Q, K as variables for nodes,
and L as variable for links.

Since development graphs are acyclic, we can use induction principles in
definitions and proofs concerning development graphs.

The next definition captures the existence of a path of local and global
definition links between two nodes. Notice that such a path must not contain
any hiding links.

Definition 4.6. Let DG be a development graph. The notion of global reach-
ability is defined inductively: a node N is globally reachable from a node O

via a signature morphism σ, O
σ �� �� N for short, iff

• either O = N and σ = id, or

• O
σ′

�� P ∈ DG, and P
σ′′

�� �� N , with σ = σ′′ ◦ σ′, or

• O
σ′

free
�� P ∈ DG and P

σ �� �� N (note that σ′ is just ignored here).

3 The structure of nodes is left unspecified here; we assume that they come from
some set Nodes of nodes, and new nodes are available as discussed in Sect. III:5.6.

294 IV:4 Structured Specification Calculus

A node N is locally reachable from a node O via a signature morphism σ,

O �� σ �� �� N for short, iff O
σ �� �� N or there is a node P with O

σ′
�� P ∈

DG and P
σ′′

�� �� N , such that σ = σ′′ ◦ σ′. Note that, in contrast to global
reachability, local reachability is not transitive.

Obviously global reachability implies local reachability.

Definition 4.7. Given a node N ∈ N , its associated class ModDG(N) of
models (or N -models for short) is inductively defined to consist of those ΣN -
models M for which

1. M satisfies the local axioms ΨN ,
2. for each O

σ �� N ∈ DG, M |σ is an O-model,

3. for each O
σ �� N ∈ DG, M |σ satisfies the local axioms ΨO,

4. for each O
σ

hide
�� N ∈ DG, M has a σ-expansion M ′ (i.e. M ′|σ = M)

that is an O-model, and
5. for each O

σ

free
�� N ∈ DG, M is an O-model that is σ-free in Mod(O).

The latter means that for each O-model M ′ and each model morphism
h : M |σ→M ′|σ, there exists a unique model morphism h# : M→M ′ with
h#|σ = h.

Definition 4.8. Let DG = 〈N ,L〉 be a development graph. A node N ∈ N
is flattenable iff for all nodes O ∈ N with incoming hiding or free definition
links, it holds that N is not globally reachable from O.

Definition 4.9. Let DG = 〈N ,L〉 be a development graph. For N ∈ N , the
theory ThDG(N) of N is defined by

ΨN ∪
⋃

P �� σ �� �� N

σ(ΨP)

Proposition 4.10. 1. O
σ �� �� N and M ∈Mod(N) imply M |σ∈Mod(O).

2. If O �� σ �� �� N and M ∈Mod(N), then M |σ |= ΨO.

Proof. 1. Easy induction over the definition of global reachability.
2. By 1 and Definition 4.7, 3.

Proposition 4.11. 1. Mod(N) ⊆Mod(ThDG(N)).
2. If N is flattenable, then Mod(N) = Mod(ThDG(N)).

Proof. 1. By Proposition 4.10, 2 and Definition 4.7, 1.
2. By 1, it suffices to prove the ‘⊇’ direction. Let M be a ThDG(N)-model.

Let len(p) be the length of a path p witnessing O
τ �� �� N . Let maxp be

IV:4.2 Development Graphs 295

the maximal such length in DG. We show that for any O
τ �� �� N , M |τ is

an O-model. We proceed by induction over maxp− len(p) with p witnessing
O

τ �� �� N . Since N is flattenable, we only have to show clauses 1 to 3 of
Definition 4.7:

1. Since global implies local reachability, O �� τ �� �� N , and τ(ΨO) ⊆ ThDG(N);
hence M |= τ(ΨO). By the satisfaction condition for institutions, M |τ |=
ΨO.

2. Let P
θ �� O, hence P

τ◦θ �� �� N . By the induction hypothesis, M |τ◦θ is
a P -model.

3. Let P
θ �� O, hence P �� τ◦θ �� �� N . With a similar argument as for 1, we

get M |τ◦θ |= ΨP .

This completes the induction. Since N
id �� �� N , M is an N -model. ��

Complementary to definition links, which define the theories of related
nodes, we introduce the notion of a theorem link with the help of which we
are able to postulate relations between different theories. Theorem links are the
central data structure to represent proof obligations arising in formal devel-
opments. Theorem links come, like definition links, in four different versions:

• global theorem links O
σ ����� ��� N, where σ : ΣO→ΣN ,

• local theorem links O
σ ����� N, where σ : ΣO→ΣN ,

• hiding theorem links O
σ

hide θ
����� ��� N, where for some Σ, θ : Σ → ΣO and

σ : Σ→ΣN 4, and
• free theorem links O

σ

free θ
����� ��� N, where σ : ΣO→ΣN and for some Σ, θ : Σ→

ΣO. In case that Σ is the initial signature and θ is the unique signature
morphism, the link is written as O

σ

free !
����� ��� N.

Moreover, we will also need local implications of the form N ⇒ Ψ , where Ψ
is a set of ΣN -sentences. N ⇒ {ϕ} also is written N ⇒ ϕ. The semantics of
local implications and of theorem links is given by the next definition.

Definition 4.12. Let DG be a development graph and O, N nodes in DG.

• DG implies a local implication N ⇒ Ψ , written DG |= N ⇒ Ψ , if for all
M ∈ModDG(N), M |= Ψ .

• DG implies a global theorem link O
σ ����� ��� N (denoted DG |= O

σ ����� ��� N)
iff for all M ∈ModDG(N), M |σ ∈ModDG(O).

4 Here, σ is the reduction morphism (comparable to that of global theorem links),
and θ is the hiding morphism (extending a signature with hidden parts).

296 IV:4 Structured Specification Calculus

• DG implies a local theorem link O
σ ����� N (denoted DG |= O

σ ����� N)
iff for all M ∈ ModDG(N), M |σ |= ΨO. (Note that by the satisfaction
condition, this is equivalent to DG |= N ⇒ σ(ΨO).)

• DG implies a hiding theorem link O
σ

hide θ
����� ��� N (denoted DG |= O

σ

hide θ
����� ��� N)

iff for all M ∈ModDG(N), M |σ has a θ-expansion to some O-model.
• DG implies a free theorem link O

σ

free θ
����� ��� N (denoted DG |= O

σ

free θ
����� ��� N)

iff for all M ∈ ModDG(N), M |σ is an O-model which is θ-free in
ModDG(O).

Remark 4.13. Note that theorem links may be captured by inclusion between
model classes of some (additional) nodes in the development graph. For in-
stance, consider a hiding theorem link O

σ

hide θ
����� ��� N in a development graph DG,

where θ : Σ→ΣO and σ : Σ→ΣN . One can add nodes N ′ and N ′′ to DG,
with ΣN ′

= Σ, ΣN ′′
= ΣN , and ΨN ′

= ΨN ′′
= ∅, together with definition

links O
θ

hide
�� N ′ and N ′ σ �� N ′′. For the thus obtained development graph

DG′, we then have

DG |= O
σ

hide θ
����� ��� N iff ModDG′(N) ⊆ModDG′(N ′′)

A similar construction can be performed for the other types of theorem
link. ��

Finally, we introduce the analogues of the semantic annotations in CASL.
A global theorem link O

σ ����� ��� N can be strengthened to

• a conservative extension5 (denoted as O
σ

cons
����� ��� N); it holds if, additionally

to the holding of the theorem link, every O-model has a σ-expansion to
an N -model,

• a monomorphic extension (denoted as O
σ

mono
����� ��� N); it holds if, additionally

to the holding of the theorem link, every O-model has a σ-expansion to
an N -model that is unique up to isomorphism, or

• a definitional extension (denoted as O
σ

def
����� ��� N); it holds if, additionally to

the holding of the theorem link, every O-model has a unique σ-expansion
to an N -model.

These annotations can be seen as another kind of proof obligations. If there
happens to be a global definition link O

σ �� N in the development graph, we

5 In the literature on model theory, this property is often called model expan-
sion property, while the term conservative extension refers to a (weaker) proof-
theoretic principle.

IV:4.3 Translating Development Graphs along Institution Comorphisms 297

also write O
σ

cons
�� N, O

σ

mono
�� N, or O

σ

def
�� N, respectively. In this case, the

theorem link part holds trivially, and only the conservativity, monomorphicity
or definitionality statement is relevant.

We also allow for annotating nodes with cons, mono or def . This shall ex-
press that the trivial theorem link using the unique signature morphism from
the empty signature6 could be annotated with the same word7. Thus, the
annotation cons for a node means that there is a model of the node (consis-
tency), mono means that the node has exactly one model up to isomorphism
(i.e. it is monomorphic), and def means that the node has exactly one model
(the latter will occur only rarely).

4.3 Translating Development Graphs
along Institution Comorphisms

Given a model-isomorphic simple theoroidal institution comorphism R =
(Φ, α, β) : I → J , we can extend this comorphism to a translation of devel-
opment graphs over I into development graphs over J in the following way:

Given a development graphDG over I, let R(DG) have the same nodes and
links as DG (for clarity, given a node N ∈ DG, we call the corresponding node
R(N) ∈ R(DG), and similarly for definition links). The associated signatures,
local axioms and signature morphisms differ, of course:

• if N ∈ DG, then ΣR(N) = Sig(Φ(ΣN)), and

ΨR(N) = αΣN (ΨN) ∪ Ax(Φ(ΣN))

• the signature morphisms decorating a link L are translated along Φ, and
intermediate signatures Σ are replaced with Sig(Φ(Σ)), yielding a link
R(L).

Theorem 4.14. Given a model-isomorphic simple theoroidal institution co-
morphism R = (Φ, α, β) : I→J and a development graph DG over I, for each
N ∈ DG, the isomorphism

βΣN : Mod(ΣN)→Mod(Φ(ΣN))

restricts to the isomorphism

βΣN : Mod(N)→Mod(R(N))

Proof. First, note that indeed Mod(R(N)) ⊆ Mod(Φ(ΣN)), because ΨR(N)

includes Ax(Φ(ΣN)). We now proceed by induction over DG. Hence, it suffices
to show for each M ∈Mod(Φ(Σ)):
6 We here assume that the empty signature is initial.
7 Here we tacitly assume that there is some special node having the initial signature

and the empty set of axioms.

298 IV:4 Structured Specification Calculus

1. βΣN (M) |= ΨN iff M |= ΨR(N),
2. for any ingoing definition link L into N , βΣN (M) satisfies L iff M satisfies

R(L).

Both can be shown in a straightforward way, using the satisfaction condition
of the comorphism, naturality and isomorphism property of β and the fact
that for any I-signature morphism σ, Φ(σ) is a theory morphism. ��

Theorem 4.15. Given a model-isomorphic simple theoroidal institution co-
morphism R = (Φ, α, β) : I→J and a development graph DG over I, let L be
a theorem link over DG. Then

DG |= L iff R(DG) |= R(L)

Proof. By Theorem 4.14 and Remark 4.13. ��

Note that with this translation of development graphs along comorphisms,
new local axioms coming from Ax(Φ(ΣN)) are often partly repeated. One can
optimize this by adding at each node only those axioms from Ax(Φ(ΣN)) that
are not already present via links from other nodes.

4.4 Proof Rules for Development Graphs

In this section, we introduce logic-independent proof rules for development
graphs. These rely on a logic-specific entailment relation for basic specifica-
tions as introduced in Chap. 1, as well as on logic-specific proof rules for
conservativity and freeness, which will be covered in Sect. 4.6.

The proof rules work on judgements of the form DG � L, where DG is
a development graph and L is a theorem link (of any kind) over DG. As
in the calculus for basic specifications, we follow a natural deduction style
presentation and additionally use a graph-grammar like notation. We hope
that this is still largely self-explanatory while improving readability.

The proof rules for development graphs presented below are typically ap-
plied backwards: given proof goal in form of a theorem link relative to some
development graph, find a rule whose conclusion matches the proof goal, and
recursively prove the premises of the rule. Note that within one rule, the
judgements may refer to different development graphs. Often, the premises
are formulated over development graphs that are larger than that for the con-
clusion. This means that applying rules backwards possibly adds some new
nodes and edges to the development graph.

The rules allow for decomposing global theorem links into simpler ones.
In a first step, one typically tries to get rid of hiding theorem links and to de-
compose global into local theorem links. This is done by applying the hiding
decomposition rules. Thereby, new conservativity proof goals can be gener-
ated, which need to be tackled by the conservativity rules. The simple de-
composition rules then allow for proving global theorem links when there is

IV:4.4 Proof Rules for Development Graphs 299

some parallel definition link, and for proving local theorem links and local
implications by reasoning with the entailment system of the logic.

For the sake of readability, each rule is followed by its soundness proof.

4.4.1 Hiding Decomposition Rules

In order to get rid of hiding links going into the source of a global theorem
link, one first applies (Glob-Decomposition), ending up with some local
and hiding theorem links. The rule (Hide-Theorem-Shift) allows to prove
the latter, using conservativity of definition links. (Borrowing) can be used
for shifting a proof goal along a conservative extension; hence, it also exploits
conservativity of theorem links. Conservativity is dealt with in the next sec-
tion. The central rule of the proof system is the rule (Theorem-Hide-Shift).
It is used to get rid of hiding definition links going into the target of a global
theorem link.

N ′

O′

σ′ ���
�

�
�

�
�

N

consθ′
���
�
�
�

O′
hide θ

σ ����� ��� N

if σ′ ◦ θ = θ′ ◦ σ

(Hide-Theorem-Shift)

The proof rules are written in a concise notation as above. We will spell
out in detail what this notation means for the rule (Hide-Theorem-Shift):

σ′ ◦ θ = θ′ ◦ σ

N
θ′

�� N ′ ∈ DG

DG � N
θ′

cons
����� ��� N ′

DG � O′ σ′
����� ��� N ′

DG � O′ σ

hide θ
����� ��� N

Soundness of (Hide-Theorem-shift): assume that DG |= O′ σ′
����� ��� N ′

and N
θ′

cons
����� ��� N ′ is conservative. We have to show that DG |= O′ σ

hide θ
����� ��� N. Let

M be an N -model. Since N
θ′

cons
����� ��� N ′ is conservative, M can be expanded to

an N ′-model M ′ with M ′|θ′ = M . By the assumption, M ′|σ′ is an O′-model.
Thus, M ′|σ′◦θ = M ′|θ′◦σ = M |σ has a θ-expansion to an O′-model. ��

300 IV:4 Structured Specification Calculus

GN (i)

µi (i ∈ |J |)
��

O
µ〈N〉◦σ

������ ���� K

		��
���

��
��� DiagN

��
��

��
��

�

O
σ ������ ���� N

with K isolated and (µi) a weakly amalgamable co-
cone for the diagram DiagN of nodes going into N
(see explanation below)

(Theorem-Hide-Shift)

Since this rule is quite powerful, we need some preliminary notions. Given
a node N in a development graph DG = 〈N ,L〉, the idea is that we unfold
the subgraph below N into a tree and form a diagram with this tree. More
formally, define the diagram DiagN : J→Sig associated with N together with
a map GN : |J |→N inductively as follows:

• 〈N〉 is an object in J , with DiagN (〈N〉) = ΣN . Let GN (〈N〉) be just N .

• if i = 〈 O
L1 �� . . . Ln �� N 〉 is an object in J with L1, . . . , Ln non-local

definition links in L, and L = P
σ �� O or L = P

σ �� O is a local or
global definition link in L, then

j = 〈 P
L �� O

L1 �� . . . Ln �� N 〉
is an object in J with DiagN (j) = ΣP , and L is a morphism from j to i
in J with DiagN (L) = σ. We set GN (j) = P .

• if i = 〈 O
L1 �� . . . Ln �� N 〉 is an object in J with L1, . . . , Ln non-local

definition links in L, and L = P
σ

hide
�� O is a hiding definition link in L,

then
j = 〈 P

L �� O
L1 �� . . . Ln �� N 〉

is an object in J with DiagN (j) = ΣP , and L is a morphism from i to j
in J with DiagN (L) = σ. We set GN (j) = P .

Now in order to apply (Theorem-Hide-Shift), take a weakly amalgam-
able cocone (Σ, (µi : DiagN (i)→Σ)i∈|J|) for DiagN (it exists by Remark 4.4),
and let K be a new isolated node with signature Σ and with ingoing global

definition links GN (i)
µi �� K for i ∈ |J | (if GN (i) has no ingoing free def-

inition links, a local definition link GN (i)
µi �� K would suffice). Here, an

isolated node is one with no local axioms and no ingoing definition links other
than those shown in the rule.

IV:4.4 Proof Rules for Development Graphs 301

We once more spell the rule in detail:

(Σ, (µi : DiagN (i)→Σ)i∈|J|) is a weakly amalgamable cocone for DiagN

DG′ = DG � {K with (Σ, ∅)} � {GN (i)
µi �� K | i ∈ |J |}

DG′ � O
µ〈N〉◦σ

����� ��� K

DG � O
σ ����� ��� N

Here, if we want to extend a given development graph DG, we use a sugges-

tive concise notation like DG′ = DG � {N ′ with (Σ′, Ψ); N
Σ↪→Σ′

�� N ′} which
should be largely self-explanatory (in particular, ‘N ′ with (Σ′, Ψ)’ means that
we introduce a new node N ′ with ΣN ′

= Σ′ and ΨN ′
= Ψ).

Soundness of (Theorem-Hide-Shift): assume that DG |= O
µ〈N〉◦σ

����� ��� K.
Let M be an N -model. We have to show M |σ to be an O-model in order to
establish the holding of O

σ ����� ��� N. We inductively define a family (Mi)i∈|I|
of models Mi ∈Mod(GN (i)) by putting

• M〈N〉 = M ,

• M
〈P L �� Q

L1 �� . . . Ln �� N〉
= M ′|σ, where L = P

σ �� Q or L= P
σ �� Q

and M ′ = M
〈Q L1 �� . . . Ln �� N〉

, and

• M
〈P L �� Q

L1 �� . . . Ln �� N〉
is a σ-expansion of M ′ to a P -model (existing

since M ′ is a Q-model),
where L = P

σ

hide
�� Q and M ′ = M

〈Q L1 �� . . . Ln �� N〉
.

It is easy to show that this family is consistent with DiagN . Since by the side
condition of the rule, (Σ, (µi : DiagN (i)→Σ)i∈|J|) is a weakly amalgamable
cocone, there is a ΣK-model MK with MK |µi = Mi. The latter implies that
MK is a K-model. By the assumption, MK |µ〈N〉◦σ = M〈N〉|σ = M |σ is an
O-model. ��

O

θ

��
�
�
�

�
�
� N

θ′ cons

��
�
�
�

�
�
�

O′
σ′

����� ��� N ′

O

θ

��
�
�
�

�
�
� σ

����� ��� N

θ′ cons

��
�
�
�

�
�
�

O′ N ′
if σ′ ◦ θ = θ′ ◦ σ

(Borrowing)

302 IV:4 Structured Specification Calculus

Soundness of (Borrowing): Assume that (1) DG |= O
θ ����� ��� O′, (2)

DG |= N
θ′

cons
����� ��� N ′, and that (3) DG |= O′ σ′

����� ��� N ′. Let M be an N -model.
By (2), M has an expansion to an N ′-model M ′ with M ′|θ′ = M . By (3),
M ′|σ′ is an O′-model, and hence, by (1) M ′|σ′◦θ = M ′|θ′◦σ = M |σ is an O-
model. ��

P
σ◦τ ����� O for each P �� τ �� �� N

Q
σ◦τ

hide θ
����� ��� O for each Q

θ

hide
�� P and P

τ �� �� N

Q
σ◦τ

free θ
����� ��� O for each Q

θ

free
�� P and P

τ �� �� N

N
σ ����� ��� O

(Glob-Decomposition)

Soundness of (Glob-Decomposition): assume that

1. DG |= P
σ◦τ ����� O for each P �� τ �� �� N ,

2. DG |= Q
σ◦τ

hide θ
����� ��� O for each Q

θ

hide
�� P and P

τ �� �� N , and

3. DG |= Q
σ◦τ

free θ
����� ��� O for each Q

θ

free
�� P and P

τ �� �� N .

In order to show DG |= N
σ ����� ��� O, let M be an O-model. Let len(p)

be the length of a path p witnessing P
τ �� �� N . Let maxp be the maximal

such length in DG. We show that for any P
τ �� �� N , M |σ◦τ is a P -model.

We proceed by induction over maxp− len(p) for p witnessing P
τ �� �� N . We

have to show clauses 1 to 5 of Definition 4.7:

1. By the first assumption, M |σ◦τ |= ΨP .
2. By the induction hypothesis, M |σ◦τ satisfies any global definition link

going into P .
3. By the first assumption, M |σ◦τ satisfies any local definition link going into

P .
4. By the second assumption, M |σ◦τ satisfies any hiding definition link going

into P .
5. By the third assumption, M |σ◦τ satisfies any free definition link going into

P .

This completes the induction. Since N
id �� �� N , M |σ is an N -model. ��

IV:4.4 Proof Rules for Development Graphs 303

4.4.2 Conservativity Rules

O
σ ����� ���

consθ ��
�
�
�
� N

θ′
��

O′ σ′
�� N ′

N
consθ′

��
N ′

if

ΣO

θ

��

σ �� ΣN

θ′

��
ΣO′ σ′

�� ΣN ′

is weakly amalgam-
able and N ′ is iso-
lated.

(Cons-Shift)

Soundness of (Cons-Shift): Assume that O
θ

cons
����� ��� O′ is conservative. We

have to prove that N
θ′

cons
����� ��� N ′ is conservative as well. Let M be an N -model.

Since O
θ

cons
����� ��� O′ is conservative, M |σ has a θ-expansion M ′ being an O′-

model. By weak amalgamation, there is some ΣN ′
-model M ′ with M ′|σ′ = M ′

and M ′|θ′ = M . Since N ′ is isolated, M ′ is an N ′-model. ��

O
σ ����� ���

defθ ��
�
�
�
� N

θ′
��

O′ σ′
�� N ′

N

defθ′
��

N ′

if

ΣO

θ

��

σ �� ΣN

θ′

��
ΣO′ σ′

�� ΣN ′

is amalgamable and
N ′ is isolated.

(Def-Shift)

Soundness of (Def-Shift): assume that O
θ

def
����� ��� O′ is definitional. We

have to prove that N
θ′

def
����� ��� N ′ is definitional as well. Let M be an N -model.

By the argument used for the proof of soundness of (Cons-shift), M has a θ′-
expansion to an N ′-model M ′. Now let M ′′ be another N ′-model with M ′′|θ′ =

M = M ′|θ′ . Then M ′|σ′◦θ = M ′|θ′◦σ = M ′′|θ′◦σ = M ′′|σ′◦θ. Since O
θ

def
����� ��� O′

is definitional, M ′|σ′ = M ′′|σ′ . By uniqueness of the amalgamation, M ′ = M ′′.
��

304 IV:4 Structured Specification Calculus

O
σ

cons
����� ��� N

θcons

��
�
�
�

�
�
�

N ′

O
σ

cons
����� ���

θ◦σ

cons
��

�
�

�
�

�
�

�
�

N

θ cons

��
�
�
�

�
�
�

N ′

(Cons-Composition)

Soundness of (Cons-Composition): any O-model can be σ-expanded to
an N -model, which in turn can be θ-expanded to an N ′-model. Hence, each
O-model can be θ ◦ σ-expanded to an N ′-model. ��

O
σ

mono
����� ��� N

θmono

��
�
�
�

�
�
�

N ′

O
σ

mono
����� ���

θ◦σ

mono
��

�
�

�
�

�
�

�
�

N

θ mono

��
�
�
�

�
�
�

N ′

if θ is transportable, any hiding link going directly or indirectly into N ′ has
a transportable signature morphism, and satisfaction in the institution is

closed under isomorphism

(Mono-Composition)

For the rule (Mono-composition), we need some technical notion: call
a signature morphism σ : Σ1→Σ2 transportable, if for any Σ1-model M1 and
Σ2-model M2 and any isomorphism h1 : M2|σ→M1, there is a Σ2-model M ′

2

and an isomorphism h2 : M2→M ′
2 with h2|σ = h1 (which of course includes

M ′
2|σ = M1). Usually, transportability can be characterized syntactically. For

example we have:

Proposition 4.16. In the CASL institution, a signature morphism is trans-
portable iff it is injective on sorts.

Proof. Let a sort-injective σ : Σ1→Σ2, a Σ1-model M1, a Σ2-model M2 and
an isomorphism h1 : M2|σ →M1 be given. M ′

2 is constructed by taking M1,
and extending it with the carriers of M2 for sorts in Σ2 \ Σ1. Operations
and predicates in Σ2 \ Σ1 are interpreted as in M2, possibly composed with

IV:4.4 Proof Rules for Development Graphs 305

appropriate parts of h1 whenever sorts from Σ1 are involved as source or
target sorts. This construction works if σ is injective on sorts. If not, take
sorts s, t with σ(s) = σ(t), take M2 arbitrary and take M1 as M2|σ except
that tM1 is not sM1 , but is replaced by some isomorphic copy of tM1 (and again
operations are composed with this iso if necessary). Then it is impossible to
find a Σ2-expansion of M1. ��

Soundness of (Mono-Composition): we first show that the model class
of N ′ is closed under isomorphism. Let len(p) be the length of a path p

witnessing P
τ �� �� N ′. Let maxp be the maximal such length in DG. We show

that for any P
τ �� �� N ′, the model class of P is closed under isomorphism.

We proceed by induction over maxp − len(p) for p witnessing P
τ �� �� N ′.

We have to show that the conditions of clauses 1 to 5 of Definition 4.7 are
invariant under model isomorphism:

1. Holding of sentences in a model is invariant under model isomorphism, by
the assumption that satisfaction in the institution is closed under isomor-
phism.

2. Since reduct functors preserve isomorphisms, we can apply the induction
hypothesis.

3. Here, a combination of the above two arguments applies.
4. Let O

σ

hide
�� P ∈ DG, M ′ be a P -model and M ′′ be isomorphic to M ′.

Since M ′ is a P -model, it has a σ-expansion to an O-model M . By
transportability of σ, there is a ΣO-model M ′ isomorphic to M with
M ′|σ = M ′′. By induction hypothesis, Mod(O) is closed under isomor-
phism, hence M ′ ∈Mod(O) as well, and thus M ′′ ∈Mod(P).

5. Freeness is closed under isomorphism.

This completes the induction. Since N ′ id �� �� N ′, the model class of N ′ is
closed under isomorphism.

Now we come to monomorphicity of the theorem link O
θ◦σ ����� ��� N ′. Let

M be an O-model. By the two monomorphicity assumptions, it has at least
one N ′-expansion. So it remains to prove that all N ′-expansions are isomor-
phic. Let M3 and M ′

3 be two N ′-expansions of M . By monomorphicity of

O
σ ����� ��� N, M3|θ and M3

′|θ are isomorphic. By transportability of θ, there is
some M ′′

3 isomorphic to M3 with M3
′′|θ = M3

′|θ. Since the model class of N ′

is closed under isomorphism, M ′′
3 is an N ′-model as well. By monomorphicity

of N
θ ����� ��� N ′, M ′′

3 is isomorphic to M ′
3. ��

306 IV:4 Structured Specification Calculus

O
σ

def
����� ��� N

θdef

��
�
�
�

�
�
�

N ′

O
σ

def
����� ���

θ◦σ

def ��
�

�
�

�

�
�

�
�

N

θ def

��
�
�
�

�
�
�

N ′

(Def-Composition)

Soundness of (Def-Composition): a global theorem link O
σ ����� ��� N is

definitional iff Mod(σ) : Mod(N) → Mod(O) is bijective. Bijective maps
compose. ��

O
σ

def
����� ��� N

O
σ

mono
����� ��� N

(Def-to-mono)

Soundness of (Def-to-mono): obvious. ��

O
σ

mono
����� ��� N

O
σ

cons
����� ��� N

(Mono-to-cons)

Soundness of (Mono-to-cons): obvious. ��

O
σ

free
�� N

K
σ

cons
����� ��� N

K
σ

mono
����� ��� N

(Free-is-mono)

Soundness of (Free-is-mono): by the second premise, each K-model has
a σ-expansion to an N -model. It remains to show that these σ-expansions
are unique up to isomorphism. But this follows since N -models are free (and
hence unique up to isomorphism) over their σ-reducts. (Notice that the same
signature morphism is used in both premises.) ��

IV:4.4 Proof Rules for Development Graphs 307

O
mono

σ �������� ������ N

O
mono

σ

free !
�������� ������ N

(Mono-is-free)

Recall that ! : ∅→ΣO is the signature morphism starting from the initial
signature.

Soundness of (Mono-is-free): recall that the free theorem link holds if
for any N -model M , M |σ is an O-model that is !-free in ModDG(O). Now for
an N -model M , M |σ is an O-model by the premise of the rule, and it is !-free
since in a monomorphic model class, any model is initial (and initiality is just
!-freeness). ��

4.4.3 Simple Structural Rules

The calculus finally provides a set of decomposition rules not interacting with
hiding nor freeness, and a rule allowing for reducing local implications to
inference in the calculus of the logic for basic specifications.

O
σ �� �� N

O
σ ����� ��� N

(Subsumption)

Soundness of (Subsumption): Obvious. ��

P
σ ����� Q

P
τ ����� O

if Q
θ �� �� O and τ(ΨP) = θ(σ(ΨP))

(Loc-Decomposition I)

Soundness of (Loc-Decomposition I): assume DG |= P
σ ����� Q and

Q
θ �� �� O and τ(ΨP) = θ(σ(ΨP)). In order to show DG |= P

τ ����� O, let
M be an O-model. By Prop. 4.10, M |θ is a Q-model, and by the assumption,
M |θ◦σ |= ΨP . By the satisfaction condition for institutions, M |= θ ◦σ(ΨP) =
τ(ΨP). Again by the satisfaction condition, M |τ |= ΨP . ��

308 IV:4 Structured Specification Calculus

O �� θ �� �� N

O
σ ����� N

if σ(ΨO) = θ(ΨO)

(Loc-Decomposition II)

Soundness of (Loc-Decomposition II): assume that O �� θ �� �� N and
σ(ΨO) = θ(ΨO). Let M be an N -model. By Proposition 4.10, M |θ |= ΨO. By
the satisfaction condition for institutions, M |= θ(ΨO) = σ(ΨO). Again by
the satisfaction condition, M |σ |= ΨO. ��

N ⇒ σ(ΨO)

O
σ ����� N

(Local Inference)

Soundness of (Local Inference): assume that M |= σ(ΨO) for each
N -model M . In order to show DG |= O

σ ����� N, let M be an N -model.
By assumption, M |= σ(ΨO). By the satisfaction condition for institutions,
M |σ |= ΨO. ��

ThDG(N) �ΣN ϕ for each ϕ ∈ Ψ

N ⇒ Ψ

(Basic Inference)

Soundness of (Basic Inference): assume that ThDG(N) �ΣN ϕ for each
ϕ ∈ Ψ . By soundness of �ΣN , we get ThDG(N) |=ΣN Ψ . In order to show
DG |= N ⇒ Ψ , let M be an N -model. By Proposition 4.11, M |= ThDG(N).
Since ThDG(N) |=ΣN Ψ , also M |= Ψ .

4.5 Soundness and Completeness

Proposition 4.17. The rules in Sect. 4.4 are sound.

Proof. For each rule, in Sect. 4.4, a soundness proof has been given.

Another question is the completeness of our rules. We have the following
counterexample:

Proposition 4.18. Let FOL be the usual first-order logic with a recursively
axiomatized complete entailment system. The problem to decide whether a
global theorem link holds in a development graph with hiding over FOL is not
recursively enumerable. Thus, any recursively axiomatized calculus for devel-
opment graphs with hiding is incomplete.

IV:4.5 Soundness and Completeness 309

Proof. This can be seen as follows. Let Σ be the FOL-signature with a sort nat
and operations for zero and successor, addition and multiplication. Consider
the axiom set consisting of the usual second-order Peano axioms characterizing
the natural numbers uniquely up to isomorphism, plus the defining axioms for
addition and multiplication. Without loss of generality, we can assume that
these axioms are combined into a single axiom of the form

∀P : pred(nat) . ϕ

where ϕ is a first-order formula. Let ψ be any sentence over Σ. Let θ : Σ→Σ′

add a predicate P : pred(nat) to Σ. Consider the development graph

Peano

id

��
�
�
�

�
�
� PeanoDef

θ

h��

Σ

where Σ and Peano are nodes with signature Σ and no local axioms, whereas
PeanoDef is a node with signature Σ′ and local axiom ϕ⇒ ψ.

Now we have that Peano
id ����� ��� Σ holds iff each Σ-model has a Pean-

oDef-expansion. It is easy to see that this holds iff the second-order formula
∃P : pred(nat).ϕ ⇒ ψ is valid. This is equivalent to (∀P : pred(nat).ϕ) |= ψ,
i.e. equivalent to the fact that ψ holds in the second-order axiomatization of
Peano arithmetic. By Gödels incompleteness theorem, the problem to decide
whether this holds is not recursively enumerable. ��

In spite of this negative result, there is still the question of a relative
completeness w.r.t. a given oracle deciding conservative extensions. Such a
completeness result has been proved by Borzyszkowski [7] in a similar setting.
We are going to state an analogous result here, which additionally is based
on oracles for freeness (the latter has not been covered by Borzyszkowski).

An oracle for conservative extensions is a sound logic-specific rule that
allows to infer conservativity annotations for global definition links. It is called
complete if for any global definition links that enjoys the model expansion
property, the conservativity annotation may actually be inferred.

An oracle for free theorem links is a sound logic-specific rule that allows
to infer free theorem links. It is called complete if any free theorem link that
semantically holds also can be inferred by the rule.

An elimination oracle for free definition links is a sound logic-specific rule
of the form

O
σ ����� ��� K

O
σ ����� ��� N

where O
σ ����� ��� N is arbitrary and K is constructed out of N such that K

does not contain any directly or indirectly ingoing free definition links. Here,

310 IV:4 Structured Specification Calculus

soundness just means Mod(N) ⊆Mod(K). Such a rule is called complete, if
also Mod(K) ⊆Mod(N).

Theorem 4.19 (Completeness). Assume that the underlying logic is com-
plete. Then the rule system for development graphs with hiding is complete
relative to complete oracles for conservative extensions and free theorem links
and a complete elimination oracle for free definition links.

Proof. See [44].
��

Corollary 4.20. If the underlying logic is complete, the simple structural
rules are complete for proving theorem links between flattenable nodes.

Proof. See [44]. ��

We should note that a complete oracle for conservative extensions is very
powerful: it can be used to obtain a complete proof calculus for development
graphs. Namely, in order to decide whether DG |= O

σ ����� ��� N, we just add a
node P with

O
σ

	
		

		
		

N

id��

P

and ask the oracle whether N
id �� P is conservative.

Nevertheless, our completeness theorem is still meaningful. This is because
the completeness proof uses the oracle for conservative extensions only in a
limited way. The extensions considered are those obtained from hiding the-
orem links in the development graph (pushed along some morphism into a
‘big’ signature collecting everything). This means, for example, if we use hid-
ing links only to hide symbols that have been defined using some logic-specific
definition scheme, we will need the oracle for conservative extensions only for
checking this definition scheme. This will be important in the next section.

4.6 Checking Conservativity and Freeness

CASL has annotations expressing that an extension of a specification is conser-
vative, monomorphic or definitional, meaning that every model of the ‘small’
specification can be expanded to some model, some model unique up to iso-
morphism, or some unique model, of the ‘large’ specification, respectively.
Moreover, as can be seen from the calculus studied in the previous sections,
checks for conservative extensions already arise from the presence of hiding.
Furthermore, during the development process, it may be desirable to check
the specification for consistency at an early stage – and consistency is just

IV:4.7 Translation from Structured Specifications to Development Graphs 311

conservativity over the empty specification. Finally, using consistency, also
non-consequence can be checked: an axiom does not follow from a specifica-
tion if the specification augmented by the negation of the axiom is consistent.

So far there is no hope to tackle these questions in an institution inde-
pendent way. Therefore, in this section we deal with the specific institution
of CASL only. However, unfortunately already for first-order logic, neither the
check for conservative, nor monomorphic, nor definitional extension are recur-
sively enumerable, which means that there cannot be a complete (recursively
axiomatized) calculus for them. For conservativity, this follows from Theo-
rem 4.19 and the proof of Theorem 4.18: a recursively axiomatized calculus
for conservativity would provide the needed oracle for Theorem 4.19, contra-
dicting the example from the proof of Theorem 4.18.

Although there is no general approach to verify that an extension of a
specification is conservative (or monomorphic, or definitional), several schemes
for extending specifications have been developed in the past which guarantee
these properties by construction. We only very informally list some possible
rules here:

• extensions declaring new signature elements are conservative, provided the
new symbols are not constrained in any way (by axioms, by requirements
on the subsort and overloading relations, etc.) to be related to old symbols,
and the new symbols themselves are constrained by a positive theory (i.e.
not involving negation),

• free datatypes are monomorphic extensions of the local environemnt in
which they are introduced,

• structured free Horn theories are monomorphic extensions,
• subsort definitions are definitional extensions, and
• inductive definitions over free datatypes are definitional extensions.

There is no hope to tackle freeness in an institution independent way
either. But is is possible to define CASL-specific oracles for free theorem links
and elimination of free definition links. They basically introduce a new node
that is used to mimic the quotient term algebra construction.

4.7 Translation from Structured Specifications
to Development Graphs

Roughly speaking, the translation of some CASL-specification SPEC to a de-
velopment graph works as follows:

• it maps basic specifications, like the specification of simple abstract
datatypes, into development graph nodes that are labelled with the signa-
ture and the axioms of the basic specification,

• it translates the structuring operations of CASL into definition links, and

312 IV:4 Structured Specification Calculus

• it reformulates proof obligations given in the specification either into theo-
rem links connecting corresponding nodes or into local implications in the
development graph.

Obviously, the definition of such a translation entails the requirement to
prove the adequacy of the translation of CASL-specifications into development
graphs.

We first informally explain how the transformation works, using a set of
rewrite rules shown in Figs. 4.1, 4.2 and 4.3. To translate a CASL construct
one starts with a pre-development graph consisting of a node which contains
the (not-yet translated) CASL construct. In the figures, nodes which are not
yet translated are represented as shaded boxes, translated nodes as circles.

A pre-development graph is then processed by successively rewriting the
boxes occurring in it, using the rewrite rules in Figs. 4.1, 4.2 and 4.3. These
boxes are decomposed until one eventually arrives at a graph in which there
are no boxes left, i.e. a development graph representation. During this process,
boxes may be created which have in-going or out-going links. The thick arrows
indicate how these links are inherited when such a box is rewritten.

The formal translation is defined by extending the static semantic rules for
structured specifications to a verification semantics. In the verification seman-
tics, signatures are replaced with nodes in a global development graph, where
the latter is being carried around as an additional parameter. The intention
is that the development graph captures the semantics of the specification,
while a set of theorem links over this graph captures the proof obligations
that have to be discharged in order to ensure that the model semantics suc-
ceeds. Note that in this point the verification semantics goes beyond the aims
of the extended static semantics for architectural specifications introduced in
Sect. III:5.6: the latter captures the sharing arising in architectural specifica-
tions, but not the model semantics of specifications. A verification semantics
for architectural specification will be sketched in Chap. 6.

4.7.1 Concepts for the Verification Semantics

We now modify a number of concepts from the static semantics of structured
specification (Sect. III:4.1.5). Basically, signatures are replaced with nodes
in a development graph. By abuse of language, a pair (DG,Th), with DG
a development graph and Th a set of theorem links over DG, is called a
development graph as well. It will be always clear from the context whether
a development graph comes with a set of theorem links or not.

A verification generic signature GS s over a development graph consists of
two nodes (the import and the body) and a sequence of nodes (the formal
parameters) in the development graph.

GS s ∈ VerGenSig = Node × FinSeq(Node)×Node

IV:4.7 Translation from Structured Specifications to Development Graphs 313

SP
sigma(SYs)

hide
SP hide SYs

.. rewrites to ...

SP reveal SM SP
sigma1(SM)

hide

sigma2(SM)

flow of the local environment

global definition link

global theorem link

hiding link
hide

Notation:

development graph node named SN

CASL specification to be translated

def

mono

cons

SP with SM SP
sigma(SM)

SP1 SPm SP1 SPn... thenthen ...

SP1 SP2SP1 SP2then %implies

SP1SP1 SP2
then %def SP2

SP1SP1 SP2then %mono SP2

SP1SP1
SP2then %cons SP2

SP1 SPmand ... and
...

SPn

SP1

SP

SN

Fig. 4.1. Translating CASL specifications into development graphs with hiding,
part 1: translations, reductions, unions and extensions

314 IV:4 Structured Specification Calculus

SP
free

SPfree

hide

SP1 SP2local within

SP2SP1

= SP1SP’ ... SP’given mSN[1SPspec ’’]...[
nSP’’]

...

SPn

SM
n

SM1

SP’1 SP’mand ... and
...

SN[...]...[...]

SP1

FM

SP SN

SP’’1

SP’’n

SP1 SPnSN[] ...[fit]fit SM1 SMn

SP
SPclosed

SN

SN

Fig. 4.2. Translating CASL specifications into development graphs with hiding,
part 2: free, local, closed and generic specifications

IV:4.7 Translation from Structured Specifications to Development Graphs 315

SP1 SPnVN[] ...[fit]fit SM1 SMn

...

SPn

SM
n

SM1

...

VN[...]...[...]

SP1

SP’1 SP’m VN

FM

SP

SP’’1

SP’’n

and ... and SP’

’’]’’]...[
nSP : SP1SP’ ... SP’given mview [1SPVN to SP’

Fig. 4.3. Translating CASL specifications into development graphs with hiding,
part 3: views

The requirement on a generic signature GS s = (NI , 〈N1, . . . , Nn〉, NB)
over a development graph (DG,Th) is that all the nodes involved in GS s are
contained in (DG,Th), and that

strip(GS s) = (ΣNI , 〈ΣN1 , . . . , ΣNn〉, ΣNB)

is indeed an (ordinary) generic signature in the sense of Sect. III:4.1.5.
The notion of compatibility between signatures and models can be carried

over: given an element GSm = (MI , 〈M1, . . . ,Mm〉,MB) of GenSpec (cf.
Sect. III:4.1.5) and a verification generic signature GS s = (NI , 〈N1, . . . , Nn〉,
NB) over a development graph (DG,Th), we say that GS s and GSm are
compatible, if

316 IV:4 Structured Specification Calculus

• m = n,
• ModDG(NI) = MI ,
• ModDG(Ni) =Mi (i = 1, . . . , n), and
• ModDG(NB) = MB.

A verification view signature consists of a node (the source node), a signa-
ture morphism, and a verification generic signature (the target of the view).

Vs ∈ VerViewSig = Node × SignatureMorphism ×VerGenSig

For a verification view signature Vs = (Ns, σ,GS s) in VerViewSig over a
development graph (DG,Th), we require that all the nodes involved in Vs are
contained in (DG,Th), and that

strip(Vs) = (ΣNs , σ, strip(GS s))

is an element of ViewSig as defined in Sect. III:4.1.5.
Given an element Vm = (Ms, GSm) of ViewSpec and a verification view

signature Vs = (Ns, σ,GS s) over a development graph (DG,Th), we say that
Vs and Vm are compatible, if

• ModDG(Ns) = Ms,
• GSs = (NI , 〈N1, . . . , Nn〉, NB) and GSm = (MI , 〈M1, . . . ,Mm〉,MB)

are compatible, and
• MB|σ ⊆Ms.

We now come to verification global environments. Apart from the usual
global environment components (cf. Sect. III:6.1), these need to carry around
a global development graph together with a set of theorem links over this
graph. This is necessary in order to achieve the intended sharing between
different instantiations of one and the same generic specification. The global
development graph is successively extended by the rules for specifications.
This finally leads to an update of the global development graph in the rules for
specification and view definitions. We also assume that the global development
graph always contains a node named ∅ which consists of the empty signature
and the empty set of axioms.

A verification global environment

Γs, (DG,Th) = (Gs,Vs,As, Ts), (DG,Th)

consists of a development graph (DG,Th) and finite functions from names
to the verification denotations of generic specifications, views, architectural
specifications and unit specifications (cf. Chap. III:6):

• Gs : SpecName fin→ VerGenSig
• Vs : ViewName fin→ VerViewSig
• As : ArchSpecName fin→ VerArchSig
• Ts : UnitSpecName fin→ VerUnitSig

IV:4.7 Translation from Structured Specifications to Development Graphs 317

The domains VerGenSig and VerViewSig have been defined above, while
VerArchSig and VerUnitSig will be defined in Chap. 6.

Requirements on a verification global environment (Gs,Vs,As, Ts),
(DG,Th): the domains of the various components are disjoint (Gs,Vs,As, Ts),
and each involved verification signature (i.e. verification generic signature,
verification view signature etc.) is well-formed over (DG,Th).

Both the stripping operations and the compatibility relation extend to
global environments in a pointwise way (domains of compatible environments
have to be equal).

In the rules below, we often use the notation ΣN and ΨN , which of course
only makes sense only relative to a given development graph. Which devel-
opment graph is meant can be seen from the descriptions of the formats of
the judgements: there, for each node the development graph it lives in is men-
tioned. Moreover, the development graphs occurring in a rule are all extensions
of another, such that any of them can be equally chosen to compute ΣN and
ΨN , as long as N is contained in the graph.

We say that a development graph DG′ extends a development graph DG if
DG is a subgraph of DG′ in the obvious sense. Moreover, we say that a family
of development graphs DGi, i ∈ I (for an arbitrary index set I) disjointly
extends DG if each DGi extends DG (for i ∈ I) and moreover, for all distinct
i, j ∈ I, DGi ∩ DGj = DG. If this is the case, then the union

⋃
i∈I DGi is

well-defined and extends DG.
Whenever such a disjointness requirement appears in the rules below, in

principle it could be eliminated by appropriate choices of new names. However,
spelling this out would only add uninteresting detail, which we omit here and
state the disjointness requirement explicitly.

In the verification semantics, we use judgements of form

context � phrase ��� result .

We will rely on notions and judgements (of form context � phrase � result)
of the static semantics of structured specifications, which the reader should
consult whenever necessary (Chap. III:4).

For readability, the definition and theorem links are decorated with Σ ↪→
Σ′ whenever ιΣ⊆Σ′ is meant (which of course assumes that Σ ⊆ Σ′).

4.7.2 Structured Specifications

N, Γs, (DG,Th) � SPEC��� N ′, (DG′,Th)

Γs, (DG,Th) is a verification global environment, N is a node in DG; then
(DG′,Th ′) is a development graph extending (DG,Th), N ′ a node in DG′,
and ΣN ′

is an extension of ΣN .

318 IV:4 Structured Specification Calculus

Basic Specifications

Σbasic � BASIC-SPEC� (∆, Ψ)
ΣN = (Σbasic,SSY) Σ′ = (Σbasic ∪∆,SSY ∪ |∆|)

N, Γs, (DG,Th) � BASIC-SPEC qua SPEC���

N ′, (DG � {N ′ with (Σ′, Ψ); N
Σ↪→Σ′

�� N ′},Th)

Translations

N, Γs, (DG,Th) � SPEC��� N ′, (DG′,Th ′)
ΣN ′ � RENAMING� σ : ΣN ′→Σ′′

|σ| is the identity on signature symbols in |ΣN |
N, Γs, (DG,Th) � translation SPEC RENAMING���

N ′′, (DG′ � {N ′′ with (Σ′′, ∅); N ′ σ �� N ′′},Th ′)

Reductions

N, Γs, (DG,Th) � SPEC��� N ′, (DG′,Th ′)
(ΣN , ΣN ′

) � RESTRICTION� σ : Σ1→Σ′′

DG′′ = DG′ � { N1 with (Σ1, ∅); N ′′ with (Σ′′, ∅);

N ′ Σ1↪→ΣN′

hide
�� N1; N1

σ �� N ′′}

N, Γs, (DG,Th) � reduction SPEC RESTRICTION��� N ′′, (DG′′,Th ′)

Unions

N, Γs, (DG,Th) � SPEC1 ��� N1, (DG1,Th1)
. . .

N, Γs, (DG,Th) � SPECn ��� Nn, (DGn,Thn)
Σ′ = ΣN1 ∪ . . . ∪ΣNn

DG1, . . . ,DGn disjointly extend DG

DG′ =
⋃

i=1,...,nDGi � {N ′ with (Σ′, ∅)} � {Ni
ΣNi ↪→Σ′

�� N ′|i = 1, . . . , n}
Th ′ =

⋃
i=1,...,n Thi

N, Γs, (DG,Th) � union SPEC1 . . .SPECn ��� N ′, (DG′, Σ′,Th ′)

Extensions

N, Γs, (DG,Th) � SPEC1 ��� N1, (DG1,Th1)
. . .

Nn−1, Γs, (DGn−1,Thn−1) � SPECn ��� Nn, (DGn,Thn)
N, Γs, (DG,Th) � extension SPEC1 . . . SPECn ��� Nn, (DGn,Thn)

IV:4.7 Translation from Structured Specifications to Development Graphs 319

Moreover, for each extension from SPECi−1 to SPECi that has been an-
notated to be conservative, monomorphic, or definitional, a proof obliga-

tion Ni−1
ΣNi−1 ↪→ΣNi

cons
�������� ������ Ni, Ni−1

ΣNi−1 ↪→ΣNi

mono
�������� ������ Ni or Ni−1

ΣNi−1 ↪→ΣNi

def
�������� ������ Ni,

respectively, should be added to Th i. (Note that CASL requires that sym-
bols from the local environment must not be affected by hidings; therefore,

we always have ΣNi−1 ⊆ ΣNi , and even Ni−1
ΣNi−1 ↪→ΣNi �������� ������ Ni can easily be

seen to hold.) Finally, for an extension from SPECi−1 to SPECi that has been

annotated to be implied, a proof obligation Ni
id ����� ��� Ni−1 is added (note that

for such an annotation, ΣNi−1 = ΣNi is required). In the case that the exten-
sion from SPECi−1 to SPECi is simply a basic specification, a proof obligation
Ni−1 ⇒ ΨNi suffices instead (but note that in general, SPECi may involve
hiding etc.).

Free Specifications

N, Γs, (DG,Th) � SPEC��� N ′, (DG′,Th ′)
N, Γs, (DG,Th) � free-spec SPEC���

N ′′, (DG′ � {N ′′ with (ΣN ′
, ∅); N ′ ΣN ↪→ΣN′

free
�� N ′′},Th ′)

Local Specifications

N, Γs, (DG,Th) � SPEC��� N ′, (DG′,Th ′)
N ′, Γs, (DG′,Th ′) � SPEC’��� N ′′, (DG′′,Th ′′)
Σ1 = ΣN ′′ ||ΣN′ |\|ΣN | |ΣN ′′ | \ |ΣN ′ | ⊆ |Σ1|

N, Γs, (DG,Th) � local-spec SPEC SPEC’���

N ′′′, (DG′′ � {N ′′′ with (Σ1, ∅); N ′′ Σ1↪→ΣN′′

hide
�� N ′′′},Th ′′)

Closed Specifications

∅, Γs, (DG,Th) � SPEC��� N ′, (DG′,Th ′)
Σ′′ = ΣN ∪ΣN ′

DG′′ = DG′ � {N ′′ with (Σ′′, ∅); N
ΣN ↪→Σ′′

�� N ′′; N ′ ΣN′
↪→Σ′′

�� N ′′}
N, Γs, (DG,Th) � closed-spec SPEC��� N ′′, (DG′′,Th ∪ Th ′)

320 IV:4 Structured Specification Calculus

4.7.3 Named and Generic Specifications

Specification Definitions

Γs, (DG,Th) � SPEC-DEFN��� Γ ′
s, (DG′,Th ′)

Γs, (DG,Th) is a verification global environment; then Γ ′
s, (DG′,Th ′) is a ver-

ification global environment extending Γs, (DG,Th).

Γs = (Gs,Vs,As, Ts)
SN �∈ domGs ∪ domVs ∪ domAs ∪ domTs

Γs � GENERICITY��� (NI , 〈N1, . . . , Nn〉, NP), (DGP ,ThP)
NP , Γs, (DGP ,ThP) � SPEC��� NB, (DGB,ThB)

Γs, (DG,Th) � spec-defn SN GENERICITY SPEC���

(Gs ∪ {SN �→ (NI , 〈N1, . . . , Nn〉, NB)},Vs,As, Ts), (DGB,ThB)

Genericity: Parameters and Imports

Γs, (DG,Th) � GENERICITY��� (NI , 〈N1, . . . , Nn〉, NP), (DGP ,ThP)

Γs, (DG,Th) is a verification global environment; then (DGP ,ThP) is a de-
velopment graph extending (DG,Th), NI , NP and the Ni are nodes in DGP ,
such that ΣNi is an extension of ΣNI , and ΣNP is the union of the ΣNi

(i = 1, . . . , n).

Γs � IMPORTS��� NI , (DG,Th)
NI , Γs, (DG,Th) � PARAMS��� 〈N1, . . . , Nn〉, (DGP ,ThP) n ≥ 1

ΣP = ΣN1 ∪ · · · ∪ΣNn

DG′
P = DGP � {NP with (ΣP , ∅)} � {Ni

ΣNi ↪→ΣP �� NP | i = 1, . . . , n}
Γs, (DG,Th) � genericity PARAMS IMPORTS���

(NI , 〈N1, . . . , Nn〉, NP), (DG′
P ,ThP)

Γs = (Gs,Vs,As, Ts)
Γs � IMPORTS��� ∅, (DG,Th)

∅, Γs, (DG,Th) � PARAMS��� 〈〉, (DG,Th)
Γs, (DG,Th) � genericity PARAMS IMPORTS��� (∅, 〈〉, ∅), (DG,Th)

Parameters

NI , Γs, (DG,Th) � PARAMS��� 〈N1, . . . , Nn〉, (DGP ,ThP)

Γs, (DG,Th) is a verification global environment and NI is a node in DG; then
(DGP ,ThP) is a development graph extending (DG,Th), the Ni are nodes in
DGP (i = 1, . . . , n), and ΣNi is an extension of ΣNI for 1 ≤ i ≤ n.

IV:4.7 Translation from Structured Specifications to Development Graphs 321

NI , Γs, (DG,Th) � SPEC1 ��� N1, (DG1,Th1)
. . .

NI , Γs, (DG,Th) � SPECn ��� Nn, (DGn,Thn)
DG1, . . . ,DGn disjointly extend DG

NI , Γs, (DG,Th) � params SPEC1 . . .SPECn ���

〈N1, . . . , Nn〉, (
⋃

i=1...,nDGi,
⋃

i=1...,n Thi)

Imports

Γs, (DG,Th) � IMPORTS��� N, (DG′,Th ′)

Γs, (DG,Th) is a verification global environment; then (DG′,Th ′) a develop-
ment graph extending (DG,Th) and N is a node in DG′.

If the sequence of imported specifications is empty, then the semantics of
the import construct is the empty environment ∅, and the development graph
is from the global environment not extended but just retained.

Γs, (DG,Th) � imports��� ∅, (DG,Th)

∅, Γs, (DG,Th) � union SPEC1 . . . SPECn ��� NI , (DGI ,ThI)
σ = ιEmptyExplicit(ΣNI)⊆ΣNI

Γs, (DG,Th) � imports SPEC1 . . . SPECn ���

N, (DGI � {N with (EmptyExplicit (ΣNI), ∅); NI
σ

hide
�� N},ThI)

Specification Instantiation

We repeat the rule format for structured specifications:

N, Γs, (DG,Th) � SPEC��� N ′, (DG′,Th)

Γs, (DG,Th) is a verification global environment, N is a node in DG; then
(DG′,Th ′) is a development graph extending (DG,Th), N ′ a node in DG′,
and ΣN ′

is an extension of ΣN .

Gs(SN) = (∅, 〈〉, NB))

DG′ = {N ′ with (ΣN ∪ΣNB , ∅); N
ΣN ↪→ΣN∪ΣNB�� N ′; NB

ΣNB ↪→ΣN∪ΣNB�� N ′}
N, Γs, (DG,Th) � spec-inst SN ��� N ′, (DG′,Th)

322 IV:4 Structured Specification Calculus

Gs(SN) = GS s = (NI , 〈N1, . . . , Nn〉, NB) n ≥ 1
NI , N1, Γs, (DG,Th) � FIT-ARG1 ��� σ1, N

A
1 , (DG1,Th1)

. . .
NI , Nn, Γs, (DG,Th) � FIT-ARGn ��� σn, NA

n , (DGn,Thn)
(Σ′, σf) = strip(GS s)((ΣNA

1 , σ1), . . . , (ΣNA
n , σn)) is defined8

DG1, . . . ,DGn disjointly extend DG
σ = ιΣ′⊆ΣN∪Σ′ ◦ σf

σ′
i = ιΣ′⊆ΣN∪Σ′ ◦ σi (i = 1, . . . , n)

DG′ =
⋃

i=1,...,nDGi �{N ′ with (ΣN ∪Σ′, ∅)}

�{N
ΣN ↪→ΣN∪Σ′

�� N ′; NB
σ �� N ′}

�{NA
i

σ′
i �� N ′ | i = 1, . . . , n}

N, Γs, (DG,Th) � spec-inst SN FIT-ARG1 . . . FIT-ARGn ���

N ′, (DG′,
⋃

i=1,...,n Thi)

Fitting Arguments

NI , NP , Γs, (DG,Th) � FIT-ARG��� σ, NA, (DG′,Th ′)

Γs, (DG,Th) is a verification global environment and NI and NP are nodes in
DG such that ΣNP is an extension of ΣNI ; then (DG′,Th ′) is a development
graph extending (DG,Th), NA is a node in DG′ such that ΣNA is an extension
of ΣNI , and σ is a signature morphism from ΣNP to ΣNA which is the identity
on ΣNI .

NI , Γs, (DG,Th) � SPEC��� NA, (DG′,Th ′)
� SYMB-MAP-ITEMS*� r

σ = r|ΣNP

ΣNA
σ is the identity on ΣNI

NI , NP , Γs, (DG,Th) � fit-spec SPEC SYMB-MAP-ITEMS*���

σ, NA, (DG′,Th ′ ∪ {NP
σ ����� ��� NA})

4.7.4 Views

View Definitions

Γs, (DG,Th) � VIEW-DEFN��� Γ ′
s, (DG′,Th ′)

Γs, (DG,Th) is a verification global environment; then Γ ′
s, (DG′,Th ′) is a ver-

ification global environment extending Γs, (DG,Th).
8 See Sect. III:4.1.5 for an explanation of the notation GS s(. . .).

IV:4.7 Translation from Structured Specifications to Development Graphs 323

Γs = (Gs,Vs,As, Ts)
VN �∈ domVs ∪ domGs ∪ domAs ∪ dom Ts

Γs, (DG,Th) � GENERICITY��� (NI , 〈N1, . . . , Nn〉, NP), (DGP ,ThP)
NP , Γs, (DGP ,ThP) � VIEW-TYPE��� (Ns, Nt), (DG′,Th ′)

� SYMB-MAP-ITEMS*� r σ = r|ΣNs

ΣNt

V ′
s = Vs ∪ {VN �→ (Ns, σ, (NI , 〈N1, . . . , Nn〉, Nt))}

Γs, (DG, Th)
 view-defn VN GENERICITY VIEW-TYPE SYMB-MAP-ITEMS* ���

(Gs,V ′
s,As, Ts), (DG′,Th ′ ∪ {Ns

σ ����� ��� Nt})

View Types

N, Γs, (DG,Th) � VIEW-TYPE��� (Ns, Nt), (DG′,Th ′)

Γs, (DG,Th) is a verification global environment and N is a node in DG; then
(DG′,Th ′) is a development graph extending (DG,Th), Ns and Nt are nodes
in DG′, and the signature ΣNt is an extension of ΣN .

∅, Γs, (DG,Th) � SPEC1 ��� Ns, (DG′,Th ′)
N, Γs, (DG′,Th ′) � SPEC2 ��� Nt, (DG′′,Th ′′)

N, Γs, (DG,Th) � view-type SPEC1 SPEC2 ��� (Ns, Nt), (DG′′,Th ′′)

Fitting Views

We repeat the rule format for fitting arguments:

NI , NP , Γs, (DG,Th) � FIT-ARG��� σ, NA, (DG′,Th ′)

Γs, (DG,Th) is a verification global environment and NI and NP are nodes in
DG such that ΣNP is an extension of ΣNI ; then (DG′,Th ′) is a development
graph extending (DG,Th), NA is a node in DG′ such that ΣNA is an extension
of ΣNI , and σ is a signature morphism from ΣNP to ΣNA which is the identity
on ΣNI .

Γs = (Gs,Vs,As, Ts) Vs(VN) = (Ns, σ, (∅, 〈〉, Nt)))
ΣNs ∪ΣNI = ΣNP

DG′ = DG �{NA with (ΣNI} ∪ΣNt , ∅)}

�{NI
ΣNI ↪→ΣNI∪ΣNt�� NA; Nt

ΣNt ↪→ΣNI ∪ΣNt�� NA}
�{N ′ with (ΣNP , ∅)}

�{NI
ΣNI ↪→ΣNP �� N ′; Ns

ΣNs ↪→ΣNP �� N ′}
NI , NP , Γs, (DG,Th) � fit-view VN ���

σ ∪ idΣI , NA, (DG′,
⋃

i=1,...,n Th i ∪ {NP
id ����� ��� N ′})

324 IV:4 Structured Specification Calculus

Ns
σ ���������

� �

��

Nt� �

��
N ′ NI��

�� � � �� NA

NP

id

���
�
�

Fig. 4.4. Non-generic fitting views: relation between sigantures of nodes

Note that the import NI is already included in NP .

Γs = (Gs,Vs,As, Ts) Vs(VN) = (Ns, σ,GS s))
ΣNs ∪ΣNI = ΣNP

GS s = (N ′
I , 〈N1, . . . , Nn〉, NB) n ≥ 1

N ′
I , N1, Γs, (DG,Th) � FIT-ARG1 ��� σ1, N

A
1 , (DG1,Th1)

. . .
N ′

I , Nn, Γs, (DG,Th) � FIT-ARGn ��� σn, NA
n , (DGn,Thn)

(ΣA, σ′
f) = strip(GS s)((ΣNA

1 , σ1), . . . , (ΣNA
n , σn)) is defined

σ′ = ιΣA⊆ΣNI ∪ΣA
◦ σ′

f

DG1, . . . ,DGn disjointly extend DG
DG′ = DG �

⋃
i=1,...,nDGi

� {NA with (ΣNI ∪ΣA, ∅)}

� {N
ΣNI ↪→ΣNI∪ΣA�� NA; NB

σ′
�� NA}

� {NA
i

ΣNA
i ↪→ΣNI ∪ΣA�� NA | i = 1, . . . , n}

� {N ′ with (ΣNP , ∅)}

� {NI
ΣNI ↪→ΣNP �� N ′; Ns

ΣNs ↪→ΣNP �� N ′}
NI , NP , Γs, (DG,Th) � fit-view VN FIT-ARG1 . . .FIT-ARGn ���

(σ′
f ◦ σ) ∪ idΣNI , NA, (DG′,

⋃
i=1,...,n Th i ∪ {NP

id ����� ��� N ′})

4.7.5 Adequacy of the Translation

In order to be useful, the translation of CASL specifications to development
graphs has to satisfy appropriate adequacy theorems.

Theorem 4.21. Let a static global environment Γs and a verification global
environment Γ ′

s, (DG,Th) with strip(Γ ′
s, (DG,Th)) = Γs and a node N in DG

be given. If
ΣN , Γs � SPEC� Σ′,

IV:4.7 Translation from Structured Specifications to Development Graphs 325

N ′
I� �

��
Ni� �

��

σi ����� NA
i� �

��

Ns
σ �����

� �

��

NB

σ′

		��
��

��
��

N ′ NI��
�� � � �� NA

NP

id

���
�
�

Fig. 4.5. Generic fitting views: relation between sigantures of nodes

then
N, Γ ′

s, (DG,Th) � SPEC��� N ′, (DG′,Th ′)

for some (DG′,Th ′), with ΣN ′
= Σ′ in DG′. Vice versa, if

N, Γ ′
s, (DG,Th) � SPEC��� N ′, (DG′,Th ′)

then
ΣN , Γs � SPEC� ΣN ′

,

Moreover, in either of these equivalent cases, given a model global environment
Γm compatible with Γ ′

s, (DG,Th) and furthermore given a class of ΣN -models
M, the following are equivalent:

1. there is a model class M′ with Σ,M, Γs, Γm � SPEC⇒M′.
2. DG′ |= Th ′′,

where Th ′′ ⊆ Th ′ contains those theorem links not generated by semantic
annotations9. Furthermore, if these two equivalent conditions hold, then

M′ = {M ∈ModDG′(N ′) |M |Σ ∈M}.

The proof of this theorem follows an induction over the rules for the ver-
ification semantics. The theorem states that the verification semantics, when
the development graph information is stripped off, does the same as the static
9 In the sequel, we will tacitly assume that the theorem links corresponding to

semantic annotations are removed from the set of theorem links - only then, the
model-theoretic semantics is captured. On the other hand, usually one will keep
these theorem links as proof obligations, since once they are proven, they provide
further trust in the specification.

326 IV:4 Structured Specification Calculus

semantics. Moreover, the extra development graph information (most impor-
tantly, the theorem links Th that capture the proof obligations) constructed
by the verification semantics is sufficient to capture the model semantics.

Note that the verification global environment Γ ′
s, (DG,Th) in the above

theorem usually will be obtained from the verification semantics of libraries,
see Chap. 6.

We now reformulate consequences of and refinements between CASL struc-
tured specifications in terms of development graphs.

Definition 4.22. Consider a static global environment Γs = (Gs,Vs,As, Ts),
compatible with some model global environment Γm. Let Γ triv

s , (DGtriv , ∅) be
the trivial verification global environment with strip(Γ triv

s) = Γs, that is, in
DGtriv , for each ocurrence of signature being part of a generic signature in
Dom(Gs) or of a view signature in Dom(Vs), a new node with that signature
and no local axioms is introduced, Γ triv

s = (G′
s,V ′

s, ∅, ∅) is such that G′
s maps

each SN ∈ Dom(Gs) to the verification signature obtained from the generic
static signature Gs(SN) by replacing the signatures with the corresponding
nodes, and V ′

s is obtained similarly. Obviously, Γ triv
s , (DGtriv , ∅) is compatible

with Γm as well.
Consider now CASL structured specifications SPEC, SPEC1 and SPEC2. If

∅, Γs � SPEC� Σ,

and Ψ is a set of Σ-sentences, then

Γs, Γm : SPEC |= Ψ

is defined to mean that ∅,M⊥, Γs, Γm � SPEC ⇒ M, and M |= Ψ for each
M ∈M. By Theorem 4.21, we have

∅, Γ triv
s , (DGtriv , ∅) � SPEC��� N, (DG′,Th ′)

for some N and (DG′,Th ′). We write

Γs : SPEC � Ψ

for
DG′ � N ⇒ Ψ.

Furthermore, if

∅, Γs � SPEC1 � Σ and ∅, Γs � SPEC2 � Σ,

then
Γs, Γm : SPEC1 ��SPEC2

is defined to mean that ∅,M⊥, Γs, Γm � SPEC1 ⇒ M1 and ∅,M⊥, Γs, Γm �
SPEC2 ⇒M2, for some model classes M1 and M2 such that M2 ⊆M1. By
Theorem 4.21,

IV:4.7 Translation from Structured Specifications to Development Graphs 327

∅, Γ triv
s , (DGtriv , ∅) � SPEC1 ��� N1, (DG′,Th ′), and

∅, Γ triv
s , (DG′,Th ′) � SPEC2 ��� N2, (DG′′,Th ′′)

for some (DG′,Th ′), (DG′′,Th ′′), N1 and N2 with ΣN1 = ΣN2 = Σ, and we
write

Γs : SPEC1 � SPEC2

for

DG′′ � N1
id ����� ��� N2.

Using Theorem 4.17, we now obtain

Proposition 4.23. Inference for structured specifications is sound as well,
that is, given a static global environment Γs,

Γs : SPEC � Ψ

implies

for each Γm compatible with Γs, it holds that Γs, Γm : SPEC |= Ψ ;

and
Γs : SPEC1 � SPEC2

implies

for each Γm compatible with Γs, it holds that Γs, Γm : SPEC1 ��SPEC2.

��

With Theorem 4.19, we obtain

Proposition 4.24. Assume that the underlying logic is complete. Then in-
ference for structured specifications is complete relative to complete oracles
for conservative extensions and free theorem links and a complete elimination
rule for free definition links, that is, given a static global environment Γs,

for each Γm compatible with Γs, it holds that Γs, Γm : SPEC |= Ψ

implies
Γs : SPEC � Ψ ;

and

for each Γm compatible with Γs, it holds that Γs, Γm : SPEC1 ��SPEC2

implies
Γs : SPEC1 � SPEC2.

��

328 IV:4 Structured Specification Calculus

Remark 4.25. The proof-theoretic notions of consequence and refinement for
CASL structured specifications have been introduced above with reference to
the trivial verification global environment. This is quite restrictive (since it
disallows the use of the properties of those specifications and views used which
have been defined externally) but can be generalised to the case of an arbitrary
verification global environment used to describe the specification and view
names that the specifications in question use. Props. 4.23 and 4.24 hold then
for global model environments that are compatible with verification global
environments made explicit in such a way.

Remark 4.26. In Sect. 5.3.1 of the architectural proof calculus, there appear
conditions of the form

η(R(SPEC)) �J
Σ

⋃
i=1...n

ηi(R(SPECi))

where ηi, η are signature morphisms with common target signature Σ, R is
the action of the global comorphism given by the general assumption made in
Remark 4.3 on structured specifications, and R adds the sentences resulting
from signature translations (see Sect. 5.3.1 for formal definitions of the latter
two)10.

In the context above, this can be interpreted as follows. We take the needed
runs of the verification semantics:

∅, Γ triv
s , (DGtriv , ∅) � SPEC��� O, (DG0,Th0), and

∅, Γ triv
s , (DGi−1,Thi−1) � SPECi ��� Oi, (DGi,Thi).

Well-formedness of the involved specifications is captured by

DGn � Thn.

In order to interpret the proof obligation, take the translation R(DGn) of DGn

along R. Now take

DG′ = R(DGn) � {N1 with (Σ, ∅); N2 with (Σ, ∅); R(O)
η �� N1}

∪{R(Oi)
ηi �� N2 | i = 1 . . . n}

Then
η(R(SPEC)) �J

Σ

⋃
i=1...n

ηi(R(SPECi))

just means that

DG′ � N1
id ����� ��� N2.

10 In Chap. 5, finite sets of specifications and their translations are considered.
However, these can be replaced with their CASL unions.

5

Architectural Specification Calculus

In this chapter we consider the problem of proving that a given architectural
specification has a denotation (i.e., is correct) and that the units produced
using it satisfy a given unit specification. In order to make the presentation
readable we deal with a slightly restricted language of architectural specifi-
cations (Fig. 5.1). For the same reason we prefer to use a concrete syntax
instead of the abstract one (the reduction construct represents both hide
and reveal), and to assume that signature morphisms are explicit elements of
the syntax, which frees us from introducing the notions of symbol and symbol
map.

ASP ::= units UD1 . . . UDn result UE
UD ::= A : USP
USP ::= SP |

SP → SP
UE ::= UT |

λ A : SP • UT
UT ::= A |

A [UT fit σ : Σ → Σ′] |
UT and UT |
UT with σ : Σ → Σ′ |
UT reduction σ : Σ → Σ′ |
local A = UT within UT

Fig. 5.1. Restricted language of architectural specifications.

Thus, we do not take the following features of Casl architectural specifi-
cations into account:

• imports (the given construct);
• multiparameter units;
• complex forms of unit specifications (using local or global environments);
• local definitions of generic units;
• definitions mixed with declarations.

Of the above only imports add genuine complexity to the proof calculus.

330 IV:5 Architectural Specification Calculus

5.1 Semantics

In this section we will give the static, model, and extended static semantics for
the restricted language of architectural specifications presented above; we also
introduce many concepts that we then expand in Sect. 5.3, which presents the
proof calculus. This section may serve not only as a necessary preliminary for
the subsequent sections, but also as a less formal introduction to Chap. III:5,
with which it is fully consistent. We take concepts such as signature inclusion,
as defined in Chap. III:4, for granted. We also assume that the signature
category of the underlying institution has selected pushouts ; for Casl, they
have been defined in Sect. III:4.1.3.

5.1.1 Static and Model Semantics

By a unit signature UΣ we understand either a (regular) signature Σ or a
generic unit signature Σ → Σ′, where Σ is a subsignature of Σ′. By Unit(UΣ)
we denote the class of all units over UΣ, i.e., Unit(Σ) = Mod(Σ) and
Unit(Σ → Σ′) is the set of all partial functions F : Mod(Σ) → Mod(Σ′)
which are persistent, that is, F (M)|Σ = M for all M ∈ dom(F).

In this chapter unit names will be denoted by the letters U , A, B, and
so on. A static context Cs assigns unit signatures to a finite number of unit
names. An environment E fitting Cs assigns an element of Unit(Cs(U)) to any
unit name U ∈ dom(Cs). A context C fitting Cs is any class of environments
fitting Cs. A model evaluator MEv from C to Σ is simply a function from C
to Mod(Σ). Similarly, a unit evaluator UEv from C to UΣ is a function from
C to Unit(UΣ). In the semantics, by M we will denote classes of models over
a common signature, and by U classes of units over a common unit signature.

We assume that for any specification SP the semantics defines a signature
sig[SP] and a class of models [[SP]] ⊆ Mod(sig[SP]). Thus we disregard any
(purely technical) problems arising from incorrect specifications or from local
environments. We say that SP → SP ′ is a generic unit specification if sig[SP]
is a subsignature of sig[SP ′]; such a specification defines the class of units
[[SP → SP ′]], containing all units F ∈ Unit(sig[SP] → sig[SP ′]) such that
dom(F) = [[SP]] and for all M ∈ dom(F) we have F (M) ∈ [[SP ′]]. A specifica-
tion SP is inconsistent if [[SP]] = ∅; a generic unit specification SP → SP ′ is
inconsistent if [[SP → SP ′]] = ∅.

The static (using �) and model (using ⇒) semantics may be presented by
the following rules. It is assumed that the model semantics will be run only
after a successful run of the static semantics.

IV:5.1 Semantics 331

� ASP � Cs, UΣ � ASP ⇒ UEv

The context dom(UEv) fits Cs and UEv is a unit evaluator into UΣ.

� UD1 � C1
s

...
� UDn � Cn

s

dom(Ci
s) ∩ dom(Cj

s) = ∅ for all 1 ≤ i < j ≤ n

Cs = C1
s ∪ · · · ∪ Cn

s

Cs � UE � UΣ

� units UD1 . . . UDn result UE � Cs, UΣ

� UD1 � C1
s � UD1 ⇒ C1

...
...

� UDn � Cn
s � UDn ⇒ Cn

Cs = C1
s ∪ · · · ∪ Cn

s

C = {E1 ∪ · · · ∪ En |E1 ∈ C1, . . . ,En ∈ Cn }
Cs, C � UE ⇒ UEv

� units UD1 . . . UDn result UE ⇒ UEv

� UD � Cs � UD ⇒ C

The context C fits Cs.

� A : SP � {A �→ sig[SP] }

� A : SP ⇒ {{A �→M} |M ∈ [[SP]] }

sig[SP] is a subsignature of sig[SP ′]

� A : SP → SP ′ � {A �→ sig[SP]→ sig[SP ′] }

� A : SP → SP ′ ⇒ {{A �→ F} |F ∈ [[SP → SP ′]] }

332 IV:5 Architectural Specification Calculus

Cs � UE � UΣ Cs, C � UE ⇒ UEv

The context C should fit Cs. Then UEv is a unit evaluator from C to UΣ.

Cs � UT � Σ

Cs � UT qua UE � Σ

Cs, C � UT ⇒MEv

Cs, C � UT qua UE ⇒MEv

A /∈ dom(Cs)
Cs ∪ {A �→ sig[SP] } � UT � Σ

sig[SP] is a subsignature of Σ

Cs � λA : SP • UT � sig[SP]→ Σ

Cs ∪ {A �→ sig[SP]} � UT � Σ

Cs ∪ {A �→ sig[SP]}, {E ∪ {A �→M} |E ∈ C, M ∈ [[SP]] } � UT ⇒MEv

for all E ∈ C and M ∈ [[SP]] we have MEv(E ∪ {A �→ M})|sig[SP] = M

Cs, C � λA : SP • UT ⇒ λE ∈ C · λM ∈ [[SP]] ·MEv(E ∪ {A �→M})

Cs � UT � Σ Cs, C � UT ⇒MEv

The context C should fit Cs. Then MEv is a model evaluator from C to Σ.

Cs(A) = Σ

Cs � A � Σ

Cs, C � A⇒ λE ∈ C · E (A)

Cs(A) = Σf → Σr

Cs � UT � Σa

τ : Σa → ∆ and σ′ : Σr → ∆ form the selected pushout for (σ, ιΣf⊆Σr)

Cs � A [UT fit σ : Σf → Σa] � ∆

IV:5.1 Semantics 333

Cs, C � UT ⇒MEv
for all E ∈ C, MEv(E)|σ ∈ dom(E (A))

Cs(A) = Σf → Σr

τ : Σa → ∆ and σ′ : Σr → ∆ form the selected pushout for (σ, ιΣf⊆Σr)
for all E ∈ C there exists a unique ∆-model ME such
that ME |τ = MEv(E) and ME |σ′ = E (A)(MEv(E)|σ)

Cs, C � A [UT fit σ : Σf → Σa]⇒ λE ∈ C ·ME

Cs � UT1 � Σ1

Cs � UT2 � Σ2

Cs � UT1 and UT2 � Σ1 ∪Σ2

Cs � UT1 � Σ1

Cs � UT2 � Σ2

Cs, C � UT1 ⇒MEv1

Cs, C � UT2 ⇒MEv2

Σ = Σ1 ∪Σ2

for all E ∈ C there exists a unique Σ-model ME such
that ME |Σ1 = MEv1(E) and ME |Σ2 = MEv2(E)

Cs, C � UT1 and UT2 ⇒ λE ∈ C ·ME

Cs � UT � Σ

Cs � UT with σ : Σ → Σ′ � Σ′

Cs, C � UT ⇒MEv

for all E ∈ C there exists a unique Σ′-model ME such that ME |σ =MEv(E)

Cs, C � UT with σ : Σ → Σ′ ⇒ λE ∈ C ·ME

Cs � UT � Σ′

Cs � UT reduction σ : Σ → Σ′ � Σ

Cs, C � UT ⇒MEv

Cs, C � UT reduction σ : Σ → Σ′ ⇒ λE ∈ C ·MEv(E)|σ

A /∈ dom(Cs)
Cs � UT � Σ

Cs ∪ {A �→ Σ} � UT ′ � Σ′

Cs � local A = UT within UT ′ � Σ′

334 IV:5 Architectural Specification Calculus

Cs � UT � Σ
Cs, C � UT ⇒MEv

Cs ∪ {A �→ Σ}, {E ∪ {A �→MEv(E)} |E ∈ C } � UT ′ ⇒MEv′

Cs, C � local A = UT within UT ′ ⇒ λE ∈ C ·MEv′(E ∪ {A �→MEv(E)})

5.1.2 Extended Static Semantics

As has been argued in the introduction to Sect. III:5.6, one would expect that
the four premises of the model semantics starting with “for all E ∈ C. . . ”,
found in the rules for and, with, for generic unit application and for λ-
abstraction, will be dismissed not by means of theorem-proving, but rather in
a semi-automatic manner. This is motivated by their static nature and by the
fact that the similar sharing conditions of languages such as Standard ML are
checked automatically.

Toward this end one introduces an extended static semantics1 (denoted
using ��). It can be then proven that if ASP has a denotation (we use � as
the dummy denotation) w.r.t. the extended static semantics, then it has a
denotation w.r.t. the static semantics and in the model semantics none of the
above-mentioned 4 premises need to be checked (see Sect. III:5.6). Using the
extended static semantics also makes it easier to develop a proof-calculus. The
extended static semantics presented below is essentially equivalent to that of
Sect. III:5.6. contexts instead of the However, in order to make the semantics
easily extendible to a readable proof calculus, in the sequel we will be using
contexts instead of the diagrams used there. Thanks to that, the proof-calculus
presented in Sect. 5.3 will then be a rather straightforward extension of the
extended static semantics. The link between ‘standard’ (i.e., static and model)
semantics and the extended static semantics is described in the next section.

A generic context Γgen is a finite set of declarations A : Σ → Σ′, where
Σ → Σ′ is a generic unit signature.

A context Γ is a finite set of declarations of two forms:

• A : Σ;
• σ : A → B, where A : ΣA and B : ΣB in Γ and σ : ΣA → ΣB is a

signature morphism.

Any unit name may be declared at most once in a context Γ ; the same applies
to unit names in generic contexts Γgen.

By dom(Γ) we denote the set of unit names A such that A : Σ in Γ for
some signature Σ; we define dom(Γgen) analogously. If Γ1 and Γ2 are two
contexts and for all A ∈ dom(Γ1)∩dom(Γ2) we have A : Σ in Γ1 if and only if
A : Σ in Γ2, then their sum Γ1 ∪Γ2 is a context as well.We say that a context
Γ is a subcontext of the context Γ ′ if the declarations of Γ form a subset of
the declarations of Γ ′.
1 Extended static semantics is described in Sect. III:5.6 and, e.g., in [62].

IV:5.1 Semantics 335

If Γ is a context and A, B and B′ are unit names, then Γ [B′/B] and
A[B′/B] arise from Γ and A in the obvious way by substituting B′ for B
(that is, A[B′/B] is A if A �= B and it is B′ if A = B).

A model family M = {MU}U∈dom(Γ) is consistent with Γ if:

• for all A : Σ in Γ , we have MA ∈Mod(Σ);
• for all σ : A → B in Γ , we have MA = MB|σ.

Let Γ be a subcontext of Γ ′. We say that Γ ensures amalgamability for Γ ′

if every model family consistent with Γ uniquely extends to a model family
consistent with Γ ′.

The rules for deriving extended static semantics statements follow. The
general idea is that the statement A, Γgen, Γ � UT �� Γ ′, A expresses the fol-
lowing fact: assume that we have a model family consistent with Γ – this model
family consists of units declared in the architectural specification’s units sec-
tion, of units locally defined in it, and of ‘dummy’ units used for terms etc.;
A is the set of names of declared or locally defined units. Assume also that
we have generic units as described by Γgen. Then the unit described by UT
may be built and, moreover, one may obtain it by extending the given model
family in a unique way to a model family consistent with Γ ′ and then taking
the unit labeled A. The symbol ‘�’ is used as a dummy denotation in cases
where we are only interested whether for a given construct the extended static
semantics is successful or not.

� ASP �� �

� UD1 �� Γ 1
gen, Γ 1

...
� UDn �� Γ n

gen, Γ n

dom(Γ i
gen) ∩ dom(Γ j

gen) = ∅ for all 1 ≤ i < j ≤ n

dom(Γ i) ∩ dom(Γ j) = ∅ for all 1 ≤ i < j ≤ n

Γgen = Γ 1
gen ∪ · · · ∪ Γ n

gen

Γ = Γ 1 ∪ · · · ∪ Γ n

dom(Γgen) ∩ dom(Γ) = ∅
Γgen, Γ � UE �� �

� units UD1 . . . UDn result UE �� �

� UD �� Γgen, Γ

� A : SP �� {A : sig[SP]}, ∅
sig[SP] is a subsignature of sig[SP ′]

� A : SP → SP ′ �� ∅, {A : sig[SP]→ sig[SP ′]}

336 IV:5 Architectural Specification Calculus

Γgen, Γ � UE �� �

The sets dom(Γgen) and dom(Γ) should be disjoint.

dom(Γ), Γgen, Γ � UT �� Γ ′, A

Γgen, Γ � UT qua UE �� �

A /∈ dom(Γ) ∪ dom(Γgen)
dom(Γ) ∪ {A}, Γgen, Γ ∪ {A : sig[SP]} � UT �� Γ ′, B

B : Σ in Γ ′ and sig[SP] is a subsignature of Σ

Γ ′ ensures amalgamability for Γ ′ ∪ {idΣ : A → B}
Γgen, Γ � λA : SP • UT �� �

A, Γgen, Γ � UT �� Γ ′, A

The inclusion A ⊆ dom(Γ) \ dom(Γgen) should hold. Then Γ is a subcontext
of Γ ′ and A ∈ dom(Γ ′).

A ∈ A
A, Γgen, Γ � A �� Γ, A

A : Σf → Σr in Γgen

A, Γgen, Γ � UT �� Γa, Aa

Aa : Σa in Γa

τ : Σa → ∆ and σ′ : Σr → ∆ form the selected pushout for (σ, ιΣf⊆Σr)
Af , Ar, B /∈ dom(Γa) are distinct

Γ ′ = Γa ∪ {Af : Σf , σ : Af → Aa, Ar : Σr, ιΣf⊆Σr : Af → Ar}
Γ ′′ = Γ ′ ∪ {B : ∆, τ : Aa → B, σ′ : Ar → B}

Γ ′ ensures amalgamability for Γ ′′

A, Γgen, Γ � A [UT fit σ : Σf → Σa] �� Γ ′′, B

IV:5.1 Semantics 337

A, Γgen, Γ � UT1 �� Γ1, A1

A, Γgen, Γ � UT2 �� Γ2, A2

A1 : Σ1 in Γ1

A2 : Σ2 in Γ2

Σ = Σ1 ∪Σ2

dom(Γ1) ∩ dom(Γ2) = dom(Γ)
B /∈ dom(Γ1) ∪ dom(Γ2)

Γ ′ = Γ1 ∪ Γ2 ∪ {B : Σ, ιΣ1⊆Σ : A1 → B, ιΣ2⊆Σ : A2 → B}
Γ1 ∪ Γ2 ensures amalgamability for Γ ′

A, Γgen, Γ � UT1 and UT2 �� Γ ′, B
A, Γgen, Γ � UT �� Γ ′, A

B /∈ dom(Γ ′)
Γ ′′ = Γ ′ ∪ {B : Σ′, σ : A→ B}

Γ ′ ensures amalgamability for Γ ′′

A, Γgen, Γ � UT with σ : Σ → Σ′ �� Γ ′′, B

A, Γgen, Γ � UT � Γ ′, A
B /∈ dom(Γ ′)

A, Γgen, Γ � UT reduction σ : Σ → Σ′ �� Γ ′ ∪ {B : Σ, σ : B → A}, B

A, Γgen, Γ � UT �� Γ ′, B
B : Σ in Γ ′

A /∈ dom(Γ ′) ∪ dom(Γgen)
A ∪ {A}, Γgen, Γ ′ ∪ {A : Σ, idΣ : A→ B} � UT ′ �� Γ ′′, E

D /∈ dom(Γ ′′)

A, Γgen, Γ � local A = UT within UT ′ �� Γ ′′[D/A], E[D/A]

It should be noted that, as a result of Casl lacking the amalgamation
property, checking whether a subcontext ensures amalgamability of a context
turns out to be undecidable; the same applies to the problem of checking
whether an architectural specification has a denotation w.r.t. the extended
static semantics. For these results, as well as for algorithms designed to cope
with many typical cases, see [31].

We will make use of the following, purely syntactical, lemma:

Lemma 5.1. Assume A /∈ A, B is a finite set of unit names and A, Γgen, Γ �
UT �� Γ ′, Z. Then there exists B /∈ B such that A, Γgen, Γ [B/A] � UT ��
Γ ′[B/A], Z[B/A]. ��

338 IV:5 Architectural Specification Calculus

5.2 Soundness and Completeness
of the Extended Static Semantics

In this section we state and prove a soundness and completeness theorem
for the extended static semantics, linking it to the more primitive static and
model semantics. This serves both as an introduction to the soundness and
completeness theorem for the proof calculus (see the next section) and as an
addendum to the description of the extended static semantics in Sect. III:5.6.

5.2.1 Concepts

In order to describe the relations between the extended static semantics and
the model semantics we introduce a syntactic operation | · |, which removes
everything except the signature from specifications. Thus, |ASP | is the archi-
tectural specification ASP with specifications used in declarations replaced by
pure signatures.

One might expect that an architectural specification ASP has a denotation
w.r.t. the extended static semantics iff ASP has a denotation w.r.t. the static
semantics and |ASP | has a denotation w.r.t. the model semantics. Observe
that the condition on the right side of the ‘iff’ seems to be the truly static
concept that we are after, while the extended static semantics on the left side
is merely our way of approximating that concept.

That the implication from left to right holds (i.e, soundness) is fairly ob-
vious. Unfortunately, the reverse implication is false (i.e., no completeness).
This means that in some cases the extended static semantics will fail for stat-
ically perfectly correct architectural specifications. There are two reasons for
this and, as we will see, they show that those ‘statically perfectly correct’ spec-
ifications are not actually that perfect – hence, the extended static semantics
is in fact complete w.r.t. a slightly adjusted ‘truly static concept’.

First, the model semantics is applicative, that is, repetitive application
of the same generic unit to the same argument must yield the same result.
The extended static semantics does not keep track of which unit is applied
where, and because of this there are examples of architectural specifications
ASP such that ASP has no denotation w.r.t. the extended static semantics,
although |ASP | does have a denotation w.r.t. the model semantics (see [28]).
To circumvent this problem, we introduce a modified, generative version of
the model semantics, which we will denote by ⇒g. Note that using a gener-
ative semantics is quite common, as exemplified by the generative functors
of Standard ML, and that it serves a methodological purpose, making the
design more transparent. The generative semantics may be defined either by
allowing units to be multi-valued functions, or syntactically, by treating each
declaration F : SP → SP ′ such that F is applied n > 0 times in the given
architectural specification as a list of declarations F1, . . . , Fn : SP → SP ′,
and then treating the ith application of F as an application of Fi. We will
be only interested whether an architectural specification has a denotation at

IV:5.2 Soundness and Completeness of the Extended Static Semantics 339

all w.r.t. the generative semantics and therefore it makes no difference for us
which of the above approaches is taken. Note that if no generic unit in ASP
is applied more than once then the generative and applicative semantics are
equivalent.

The reason for which even the equivalence “� ASP �� � iff ASP has a
denotation w.r.t. the static semantics and |ASP | has a denotation w.r.t. the
generative model semantics” does not hold is that in Casl the consistency of
a generic unit specification SP → SP ′ does not guarantee that |SP → SP ′| is
consistent. The simplest example is when SP = { sorts s, s′; axioms ∀x, y :
s · x = y; } and SP ′ = SP then { sorts s < s′; }. As a consequence, it may
happen that ASP has no denotation w.r.t. the extended static semantics, while
|ASP | does have a denotation w.r.t. the model semantics for a trivial reason:
ASP ’s declarations were consistent, while |ASP |’s are not.

To cope with this issue, we define a partial model semantics, denoted using
⇒⊥. The idea here is that we make all generic unit signatures into consistent
specifications, simply by supplying an additional possible value, namely ⊥.
However, before we dive into the details needed to state in full generality
the soundness and completeness of extended static semantics (which we do in
Theorem 5.4), we state the following simpler corollary of that theorem:

Corollary 5.2. Let ASP be an architectural specification and assume that no
generic unit in ASP is applied more than once and no generic unit specifica-
tion in |ASP | is inconsistent. Then ASP has a denotation w.r.t. the extended
static semantics if and only if ASP has a denotation w.r.t. the static seman-
tics and |ASP | has a denotation w.r.t. the model semantics. ��

We now introduce the machinery that is necessary in order to drop the
special assumptions about generic units in the above result. Let Mod⊥(Σ) =
Mod(Σ) ∪ {⊥}, [[SP]]⊥ = [[SP]] ∪ {⊥}, Unit⊥(Σ) = Mod⊥(Σ) and Unit⊥
(Σ → Σ′) be the set of all partial functions F : Mod⊥(Σ) → Mod⊥(Σ′)
such that ⊥ ∈ dom(F), F (⊥) = ⊥, and for all M ∈ dom(F), F (M) �= ⊥
implies F (M)|Σ = M . Finally, for any generic unit specification SP → SP ′,
by [[SP → SP]]⊥ we denote the set of all F ∈ Unit⊥(sig[SP]→ sig[SP ′]) such
that dom(F) = [[SP]]⊥ and for all M ∈ dom(F), F (M) ∈ [[SP ′]]⊥. For any
signature Σ by a ⊥-Σ-model we will mean an element of Mod⊥(Σ). Further,
for σ : Σ → Σ′ let ·|⊥σ : Mod⊥(Σ′)→Mod⊥(Σ) denote the standard reduct
·|σ which additionally takes ⊥ to ⊥.

Below we present those rules of the partial model semantics, which differ
from the standard rules:

� A : SP → SP ′ ⇒⊥ { {A �→ F} |F ∈ [[SP → SP ′]]⊥ }

340 IV:5 Architectural Specification Calculus

Cs ∪ {A �→ sig[SP]} � UT � Σ

Cs ∪ {A �→ sig[SP]}, {E ∪ {A �→M} |E ∈ C, M ∈ [[SP]] } � UT ⇒⊥ MEv

for all E ∈ C and M ∈ [[SP]] if MEv(E ∪ {A �→M}) �= ⊥ then
MEv(E ∪ {A �→ M})|sig[SP] = M

Cs, C � λA : SP • UT ⇒⊥
λE ∈ C · λM ∈ [[SP]]⊥ · if M = ⊥ then ⊥ else MEv(E ∪ {A �→M})

Cs, C � UT ⇒⊥ MEv

for all E ∈ C, MEv(E)|⊥σ ∈ dom(E (A))
Cs(A) = Σf → Σr

τ : Σa → ∆ and σ′ : Σr → ∆ form the selected pushout for (σ, ιΣf⊆Σr)
for all E ∈ C, if E (A)(MEv(E)|⊥σ) �= ⊥, then

there exists a unique ∆-model ME such
that ME |τ = MEv(E) and ME |σ′ = E (A)(MEv(E)|σ)

Cs, C � A [UT fit σ : Σf → Σa]⇒⊥
λE ∈ C · if E (A)(MEv(E)|⊥σ) = ⊥ then ⊥ else ME

Cs � UT1 � Σ1

Cs � UT2 � Σ2

Σ = Σ1 ∪Σ2

Cs, C � UT1 ⇒⊥ MEv1

Cs, C � UT2 ⇒⊥ MEv2

for all E ∈ C, if MEv1(E) �= ⊥ and MEv2(E) �= ⊥,
then there exists a unique Σ-model ME such

that ME |Σ1 = MEv1(E) and ME |Σ2 = MEv2(E)

Cs, C � UT1 and UT2 ⇒⊥
λE ∈ C · if MEv1(E) = ⊥ or MEv2(E) = ⊥ then ⊥ else ME

Cs, C � UT ⇒⊥ MEv

for all E ∈ C there exists a unique ⊥-Σ′-model ME with ME |⊥σ = MEv(E)

Cs, C � UT with σ : Σ → Σ′ ⇒⊥ λE ∈ C ·ME

Cs, C � UT ⇒⊥ MEv

Cs, C � UT reduction σ : Σ → Σ′ ⇒⊥ λE ∈ C ·MEv(E)|⊥σ

Cs � UT � Σ
Cs, C � UT ⇒⊥ MEv

Cs ∪ {A �→ Σ}, {E ∪ {A �→MEv(E)}|E ∈ C, MEv(E) �= ⊥} � UT ′ ⇒⊥MEv′

Cs, C � local A = UT within UT ′ ⇒⊥
λE ∈ C · if MEv(E) = ⊥ then ⊥ else MEv′(E ∪ {A �→MEv(E)})

IV:5.2 Soundness and Completeness of the Extended Static Semantics 341

We will combine the partial and generative versions of the model semantics,
creating a partial generative semantics, denoted by ⇒g

⊥. The following is an
important property of the partial model semantics:

Proposition 5.3. Suppose that ASP has a denotation w.r.t. the static seman-
tics. If ASP has a denotation w.r.t. the partial (generative) model semantics,
then it also has one w.r.t. the standard (generative) model semantics. If no
generic unit declaration in ASP is inconsistent, then the reverse implication
also holds. ��

We may now state our main soundness and completeness theorem for the
extended static semantics:

Theorem 5.4. For any architectural specification ASP we have � ASP �� �
if and only if ASP has a denotation w.r.t. the static semantics and |ASP | has
a denotation w.r.t. the partial generative model semantics.

Clearly, the following theorem is then a corollary:

Theorem 5.5. For any architectural specification ASP in which no generic
unit specification is applied more than once we have � ASP �� � if and only if
ASP has a denotation w.r.t. the static semantics and |ASP | has a denotation
w.r.t. the partial model semantics.

In fact, using the syntactic definition of the generative model semantics
one easily sees that Theorem 5.5 implies Theorem 5.4. Therefore we will only
prove Theorem 5.5. Please note that this proof will be institution-independent.

5.2.2 Proof

In order to prove Theorem 5.5 (and thereby Theorem 5.4 as well), we will
now need some auxiliary notions. A ⊥-unit family F = {FU}U∈dom(Γgen) is
⊥-consistent with a generic context Γgen if A : Σ → Σ′ in Γgen implies
FA ∈ [[Σ → Σ′]]⊥ (i.e., FA ∈ Unit⊥(Σ → Σ′) and additionally dom(FA) =
Mod⊥(Σ)).

If A ⊆ dom(Γ) \ dom(Γgen) then by Cs(A, Γgen, Γ) we denote the static
context which takes any unit name in dom(Γgen) to the appropriate generic
unit signature defined in Γgen and any unit name in A to the appropriate
signature defined in Γ .

Let Γgen be a generic context and UT a unit term. By P(UT) we will denote
the set of generic unit names from dom(Γgen) used in UT , and by P(UT) the
set of generic unit names from dom(Γgen) not used in UT ; these sets depend
on Γgen as well, but Γgen being fixed this should not cause confusion.

Lemma 5.6. Assume that A ⊆ dom(Γ)\dom(Γgen) and that no generic unit
is applied more than once in UT . Define Cs = Cs(A, Γgen, Γ) and suppose
that C fits Cs and that there exists a surjective function θ from C onto the
set of all model families consistent with Γ , and such that:

342 IV:5 Architectural Specification Calculus

a) for any E ∈ C, θ(E)|A = E |A;
b) if E1 and E2 coincide on A ∪ P(UT), then θ(E1) = θ(E2) (in the strong

sense, i.e., either both are undefined, or both are defined and equal).

Then A, Γgen, Γ � UT �� Γ1, Z for some Γ1 and Z if and only if Cs �
UT � Σ for some Σ and Cs, C � UT ⇒⊥ MEv for some MEv.

Moreover, if both sides of the equivalence hold, then:

1. Z : Σ in Γ1;
2. there exists a surjective partial function θ1 from C onto the set of all model

families consistent with Γ1, and such that:
a) for any E ∈ C, if θ1(E) is defined, then θ1(E)|dom(Γ) = θ(E);
b) if E1,E2 ∈ C coincide on P(UT) and if θ(E1) = θ(E2), then θ1(E1) =

θ1(E2) (in the strong sense);
c) MEv = λE ∈ C · if E ∈ dom(θ1) then θ1(E)Z else ⊥.

Proof. The proof is by induction over the structure of UT .
The idea is that θ defines the way in which any environment E ∈ C is

represented by a model family consistent with Γ . We assume that all families
consistent with Γ are used as representations, that they really are represen-
tations (condition a), and that they do not depend on generic units used in
UT (condition b), which is possible, since no generic unit may be used both
inside and outside UT at the same time.

Then the function θ1 is a kind of extension of θ. It is undefined in those
cases where the result model is ⊥. Point (2b) again states that the result may
only depend on generic units actually used in UT .

The first case is UT = A. Assume the left side of the equivalence holds.
Then Γ1 = Γ , Z = A and A ∈ A. Thus Cs � UT � Cs(A) and trivially
Cs, C � UT ⇒⊥ λE ∈ C ·E (A). As for the ‘moreover’ part, (1) is obvious.We
then take θ1 = θ. Clearly, for E ∈ C we have MEv(E) = E (A) = E (Z) =
θ(E)Z = θ1(E)Z , which proves point (2).

So, assume now that the right side holds. Then Cs(A) = Σ, which implies
A ∈ A, and so A, Γgen, Γ � UT �� Γ, A.

The second case is UT = A [UT ′ fit σ : Σf → Σa].
Assume the left side holds. Thus, by the extended static semantics rule for

unit application, we have:

I.A A : Σf → Σr in Γgen for some Σr;
I.B A, Γgen, Γ � UT ′ �� Γa, Aa for some Γa and Aa;
I.C Aa : Σa in Γa;
I.D there exists a selected pushout τ : Σa → ∆, σ′ : Σr → ∆ for (σ, ιΣf⊆Σr);
I.E Z /∈ dom(Γa) and there exist Af , Ar /∈ dom(Γa), all distinct, such that

for Γ ′ = Γa ∪ {Af : Σf , σ : Af → Aa, Ar : Σr, ιΣf⊆Σr : Af → Ar} and
Γ1 = Γ ′ ∪ {Z : ∆, τ : Aa → Z, σ′ : Ar → Z} we have that Γ ′ ensures
amalgamability for Γ1.

Using (I.B) and the induction hypothesis we infer that there exist Σ and
MEva such that:

IV:5.2 Soundness and Completeness of the Extended Static Semantics 343

II.A Cs � UT ′ � Σ;
II.B Cs, C � UT ′ ⇒⊥ MEva;
II.C Aa : Σ in Γa and so by (I.C) we have Σ = Σa;
II.D there exists a surjective partial function θa from C onto the set of all

model families consistent with Γa, and such that:
1. for any E ∈ C, if θa(E) is defined, then θa(E)|dom(Γ) = θ(E);
2. if E1,E2 ∈ C coincide on P(UT) \ {A} and if θ(E1) = θ(E2), then

θa(E1) = θa(E2) (in the strong sense);
3. MEva = λE ∈ C · if E ∈ dom(θa) then θa(E)Aa else ⊥.

Because, by (I.A), Cs(A) = Σf → Σr, Σ = Σa, (II.A) and (I.D) we may
conclude that Cs � UT � ∆.

To prove Cs, C � UT ⇒⊥ MEv for some MEv we need only take any
E ∈ C with E (A)(MEva(E)|⊥σ) �= ⊥ and show that there exists a unique
∆-model ME such that ME |τ = MEva(E) and ME |σ′ = E (A)(MEva(E)|σ).
Since MEva(E) �= ⊥, the model family N = θa(E) is defined and consistent
with Γa and NAa = MEva(E). Defining additionally NAf

= MEva(E)|σ and
NAr = E (A)(MEva(E)|σ) �= ⊥ we see that we have a model family consistent
with Γ ′. By (I.E) it uniquely extends to a family Q consistent with Γ1, which
ends the proof from left to right, since as ME we may take QZ .

As for the ‘moreover’ part, (I.E) implies (1). For any E ∈ C we then define
the θ1(E) of (2) as follows. If E (A)(MEva(E)|⊥σ) = ⊥, then we let θ1(E) be
undefined; otherwise θ1(E) is defined to be θa(E) extended by θ1(E)Af

=
θa(E)|σ , θ1(E)Ar = ME |σ′ and θ1(E)Z = ME . Clearly, if defined, θ1(E) is
consistent with Γ1. Also, θ1 is onto, for let Q be any model family consistent
with Γ1. Then Q|dom(Γa) is consistent with Γa, and so, by (II.D), there exists
E ∈ dom(θa) such that θa(E) = Q|dom(Γa). We may now define E ′ to be E
changed so that E ′(A) is a unit taking QAf

to QAr and everything else to ⊥.
We then have θ1(E ′) = Q, since by definition θ1(E ′)|dom(Γ ′) = Q|dom(Γ ′) and
Γ ′ ensures amalgamability for Γ1. Finally:

1. for E ∈ C, if θ1(E) is defined, then θ1(E)|dom(Γ) = θa(E)|dom(Γ) = θ(E)
(the second equality by virtue of point 1 of (II.D));

2. if E1,E2 ∈ C coincide on P(UT) # A and if θ(E1) = θ(E2), then by point
2 of (II.D) we have θa(E1) = θa(E2), and so θ1(E1) = θ1(E2);

3. for E ∈ C, if E (A)(MEva(E)|⊥σ) = ⊥ then θ1(E) is undefined and
MEv(E) = ⊥; otherwise θ1(E) = ME = MEv(E).

Finally, we prove the implication from right to left.
Assume that Cs � UT � Σ and Cs, C � UT ⇒⊥ MEv. From the static

and partial model semantics rule for unit application we know that:

I.A Cs(A) = Σf → Σr for some Σr;
I.B Cs � UT ′ � Σa;
I.C there is a selected pushout τ : Σa → Σ, σ′ : Σr → Σ for (σ, ιΣf⊆Σr);
I.D Cs, C � UT ′ ⇒⊥ MEva for some MEva;

344 IV:5 Architectural Specification Calculus

I.E for all E ∈ C, if E (A)(MEva(E)|⊥σ) �= ⊥, then there exists a unique Σ-
model ME such that ME |τ = MEva(E) and ME |σ′ = E (A)(MEva(E)|σ).

By (I.B) and (I.D) and the induction hypothesis we may infer that:

II.A A, Γgen, Γ � UT ′ �� Γa, Aa for some Γa and Aa;
II.B Aa : Σa in Γa;
II.C there exists a surjective partial function θa from C onto the set of all

model families consistent with Γa, and such that:
1. for any E ∈ C, if θa(E) is defined, then θa(E)|dom(Γ) = θ(E);
2. if E1,E2 ∈ C coincide on P(UT) \ {A} and if θ(E1) = θ(E2), then

θa(E1) = θa(E2) (in the strong sense);
3. MEva = λE ∈ C · if E ∈ dom(θa) then θa(E)Aa else ⊥.

Take arbitrary distinct Af , Ar, Z /∈ dom(Γa) and let Γ ′ = Γa ∪ {Af : Σf , σ :
Af → Aa, Ar : Σr, ιΣf⊆Σr : Af → Ar} and Γ1 = Γ ′ ∪ {Z : Σ, τ : Aa →
Z, σ′ : Ar → Z}. Because we have (I.A), (II.A), (II.B) and (I.C) all we
need in order to prove A, Γgen, Γ � UT �� Γ1, Z is show that Γ ′ ensures
amalgamability for Γ1.

So, take any model family Q consistent with Γ ′. Since, by (II.C), θa is onto,
there must exist Ea ∈ C such that θa(Ea) = Q|dom(Γa). Let E be Ea changed
so that E (A) is a unit taking QAf

to QAr and everything else to ⊥. Observe
that by condition b and point 2 of (II.C) MEva(E) = MEva(Ea) = QAa ;
also, E (A)(MEva(E)|⊥σ) = E (A)(QAa |σ) = E (A)(Qaf

) = QAr , so, by (I.E),
there exists a unique Σ-model ME such that ME |τ = MEva(E) = QAa

and ME |σ′ = E (A)(MEva(E)|σ) = QAr . This is equivalent to saying that
Q ∪ {Z �→ME} is the unique model family consistent with Γ1 and extending
Q.

The cases of and, with and reduction are fairly easy and we omit them.
The final case is UT = local A = UT ′ within UT ′′.
Assume the left side holds. Thus, by the extended static semantics rule for

local unit definition, we have:

I.A A, Γgen, Γ � UT ′ �� Γ ′, B for some Γ ′ and B;
I.B B : ΣB in Γ ′ for some ΣB;
I.C A /∈ dom(Γ ′) ∪ dom(Γgen);
I.D for A∗ = A ∪ {A} and Γ∗ = Γ ′ ∪ {A �→ ΣB, idΣB : A → B } we have

A∗, Γgen, Γ∗ � UT ′′ �� Γ ′′, E for some Γ ′′ and E;
I.E D /∈ dom(Γ ′′);
I.F Γ1 = Γ ′′[D/A] and Z = E[D/A].

Using (I.A) and the induction hypothesis, we infer that:

II.A Cs � UT ′ � Σ′ for some Σ′;
II.B Cs, C � UT ′ ⇒⊥ MEv′ for some MEv′;
II.C B : Σ′ in Γ ′ and so, by (I.B), ΣB = Σ′;
II.D there exists a surjective partial function θ′ from C onto the set of all

model families consistent with Γ ′, and such that:

IV:5.2 Soundness and Completeness of the Extended Static Semantics 345

1. for any E ∈ C, if θ′(E) is defined, then θ′(E)|dom(Γ) = θ(E);
2. if E1,E2 ∈ C coincide on P(UT ′) and if θ(E1) = θ(E2), then θ′(E1) =

θ′(E2) (in the strong sense);
3. MEv′ = λE ∈ C · if E ∈ dom(θ′) then θ′(E)B else ⊥.

Observe that A∗ ⊆ dom(Γ∗) \ dom(Γgen) (by (I.C)) and that no generic
unit name in UT ′′ is applied more than once. Let C∗

s = Cs(A∗, Γgen, Γ∗), C∗ be
the context consisting of environments of the form E∪{A �→MEv′(E)}, where
E ∈ C and MEv′(E) �= ⊥, and define θ∗(E∗) = θ′(E∗|dom(E∗)\{A}) ∪ {A �→
E∗(A)} for E∗ ∈ C∗.

Then θ∗ is a function from C∗ onto the set of model families consis-
tent with Γ ∗. First, clearly θ∗(E∗)|dom(Γ ′) is consistent with Γ ′, and more-
over θ∗(E∗)A = E∗(A) = MEv′(E∗|dom(E∗)\{A}) = θ′(E∗|dom(E∗)\A)B =
θ∗(E∗)B . Second, θ∗ is onto, for take any model family Q consistent with Γ∗.
There exists an environment E ∈ C with θ′(E) = Q|dom(Γ ′). Then setting
E∗ = E ∪ {A �→MEv′(E)} we have E∗ ∈ C∗ and θ∗(E∗) = Q.

Also, θ∗ satisfies conditions a and b:

a) if E∗ ∈ C∗, then θ∗(E∗)|A∗ = E∗|A∗ , since the equalities θ∗(E∗)|A =
θ′(E∗|dom(E∗)\{A})|A = E∗|A hold and since θ∗(E∗)A = E∗(A);

b) if E∗
1 and E∗

2 coincide on A∗∪P(UT ′′) then θ∗(E∗
1) = θ′(E∗

1 |dom(E∗
1)\{A})∪

{A �→ E∗
1 (A)} = θ′(E∗

2 |dom(E∗
2)\{A}) ∪ {A �→ E∗

2 (A)} = θ∗(E∗
2).

By (I.D) and the induction hypothesis we may now infer that:

III.A C∗
s � UT ′′ � Σ′′ for some Σ′′;

III.B C∗
s , C∗ � UT ′′ ⇒⊥ MEv′′ for some MEv′′;

III.C E : Σ′′ in Γ ′′;
III.D there exists a surjective partial function θ′′ from C∗ onto the set of all

model families consistent with Γ ′′, and such that:
1. for any E∗ ∈ C∗, if θ′′(E∗) is defined, then θ′′(E∗)|dom(Γ∗) = θ∗(E∗);
2. if E∗

1 ,E∗
2 ∈ C∗ coincide on P(UT ′′) and if θ∗(E∗

1) = θ∗(E∗
2), then

θ′′(E∗
1) = θ′′(E∗

2) (in the strong sense);
3. MEv′′ = λE∗ ∈ C∗ · if E∗ ∈ dom(θ′′) then θ′′(E∗)E else ⊥.

From (I.C), (II.A) and (III.A) we conclude that Cs � UT � Σ′′. From
(II.B) and (III.B) we conclude that Cs, C � UT ⇒⊥ MEv, where dom(MEv)=
C and for any E ∈ C, if MEv′(E) = ⊥, then MEv(E) = ⊥ and otherwise
MEv(E) = MEv′′(E ∪ {A �→ MEv′(E)}). This ends the proof from left to
right.

As for the ‘moreover’ part, Z = E[D/A] : Σ′′ in Γ ′′[D/A], because of
(III.C); this proves point (1). Now, for any E ∈ C let θ1(E) be undefined if
MEv′(E) = ⊥, and otherwise be the model family θ′′(E ∪ {A �→ MEv′(E)})
with the node A relabeled to D. Clearly, if θ1(E) is defined, then it is consistent
with Γ1. Also, θ1 is onto the set of all model families consistent with Γ1. To see
this, take any model family Q consistent with Γ1. Let R be Q with the node
A relabeled to D. Of course R is a model family consistent with Γ ′′. Thus,

346 IV:5 Architectural Specification Calculus

there exists, by (III.D), an environment E∗ ∈ C∗ such that θ∗(E∗) = R. Let
E = E∗|dom(E∗)\{A}. We now have θ′′(E ∪ {A �→ MEv′(E)}) = θ′′(E∗) = R.
Hence, θ1(E) equals R with the node A relabeled to D, which in turn equals
Q. Further:

1. for any E ∈ C, if θ1(E) is defined, then θ1(E)|dom(Γ) = θ(E) because of
point 1 of (III.D) and (II.D);

2. if E1,E2 ∈ C coincide on P and if θ(E1) = θ(E2), then θ1(E1) = θ1(E2)
(in the strong sense) because of point 2 of (III.D) and (II.D);

3. MEv = λE ∈ C · if E ∈ dom(θ1) then θ1(E)E else ⊥ because of point 3
of (III.D) and (II.D).

Now we prove the implication from right to left.
Assume that Cs � UT � Σ and Cs, C � UT ⇒⊥ MEv. Thus, by the static

and partial model semantics rule for local unit definition, we have:

I.A A /∈ dom(Cs);
I.B Cs � UT ′ � Σ′ for some Σ′;
I.C Cs ∪ {A �→ Σ′} � UT ′′ � Σ;
I.D Cs, C � UT ′ ⇒⊥ MEv′ for some MEv′;
I.E Cs ∪ {A �→ Σ′}, {E ∪ {A �→ MEv′(E)} |E ∈ C, MEv′(E) �= ⊥} �

UT ′′ ⇒⊥ MEv′′;
I.F dom(MEv) = C and for all E ∈ C, if MEv′(E) = ⊥ then MEv(E) = ⊥

and otherwise MEv(E) = MEv′′(E ∪ {A �→MEv′(E)}).

From (I.B) and (I.D) and the induction hypothesis we infer that:

II.A A, Γgen, Γ � UT ′ �� Γ ′, B for some Γ ′ and B – since A /∈ A (by (I.A)),
we may assume, by Lemma 5.1, that A /∈ dom(Γ ′);

II.B B : Σ′ in Γ ′;
II.C there exists a surjective partial function θ′ from C onto the set of all

model families consistent with Γ ′, and such that:
1. for any E ∈ C, if θ′(E) is defined, then θ′(E)|dom(Γ) = θ(E);
2. if E1,E2 ∈ C coincide on P(UT ′) and if θ(E1) = θ(E2), then θ′(E1) =

θ′(E2) (in the strong sense);
3. MEv′ = λE ∈ C · if E ∈ dom(θ′) then θ′(E)B else ⊥.

Let Γ∗ = Γ ′ ∪ {A : Σ′, idΣ′ : A → B} and A∗ = A ∪ {A}. Observe
that A∗ ⊆ dom(Γ∗) \ dom(Γgen), by (I.A), and that no generic unit name in
UT ′′ is applied more than once. Let C∗

s = Cs(A∗, Γgen, Γ∗) and C∗ be the
context consisting of environments of the form E∗ = E ∪ {A �→ MEv′(E)},
where E ∈ C and MEv′(E) �= ⊥, and let θ∗(E∗) = θ′(E∗|dom(E∗)\{A}) for all
E∗ ∈ C∗. Then θ∗ is a surjective function from C∗ onto the set of all model
families consistent with Γ ′, and such that:

a) for any E∗ ∈ C∗, θ∗(E∗) extends the model family {E∗(U)}U∈A∗ ;
b) if E∗

1 and E∗
2 coincide on A∗ ∪ P(UT ′′), then θ∗(E∗

1) = θ∗(E∗
2) (in the

strong sense).

IV:5.3 The Proof Calculus 347

Thus, by (I.C), (I.E) and the induction hypothesis we may infer that
A∗, Γgen, Γ∗ � UT ′′ �� Γ ′′, E for some Γ ′′ and E. From this together with
(II.A), (II.B), (I.A) we may conclude that for some D /∈ dom(Γ ′′) we have
A, Γgen, Γ � UT �� Γ ′′[D/A], E[D/A], which completes the proof. ��

Proof (Theorem 5.5). Assume ASP = units UD1 . . . UDn result UT (the
generic case is similar and we omit it) and that no generic unit in ASP is
applied more than once.

It should be clear that all we need to prove is that if Γgen and Γ have
disjoint domains, A = dom(Γ), Cs = Cs(A, Γgen, Γ) and C contains all envi-
ronments E = F ∪M , where F is a ⊥-unit family consistent with Γgen and M
is a model family consistent with Γ , then A, Γgen, Γ � UT �� Γ1, Z for some
Γ1 and Z if and only if Cs � UT � Σ for some Σ and Cs, C � UT ⇒⊥ MEv for
some MEv. We may use Lemma 5.6, sinceA ⊆ dom(Γ)\dom(Γgen), no generic
unit name in UT is applied more than once, and the function θ(F ∪M) = M
satisfies conditions a and b. This completes the proof. ��

5.3 The Proof Calculus

While specifications SP which appear in architectural specifications need not
form an institution themselves, they are assumed to be built over some insti-
tution I; in the case of Casl, this is the institution of Casl logic. Because
the institution I might not have weak amalgamation, we are forced to transfer
part of the verification process to a specification formalism built over an insti-
tution J which has this property. Possible choices of J and of the specification
formalism over J are discussed below.

We use the notation2 SP for finite sets of specifications over a common
signature Σ. If M is a Σ-model, then M |=Σ SP means that M |=Σ SP for all
SP ∈ SP . If SP is a Σ-specification, then SP ��

Σ
SP means that for any Σ-

model M , if M |=Σ SP then M |=Σ SP . The relation � is the proof-theoretic
counterpart of �� . It is sound w.r.t. the relation �� if � ⊆ �� , and it is
complete if �� ⊆�.

Our aim is to create a calculus in which, using an institution J with a
relation �J sound w.r.t. the relation ��

J
, one could derive statements of the

form � ASP :: USP so that the following theorem holds:

Theorem 5.7. Suppose that � ASP �� � and that no generic unit declaration
in ASP is inconsistent. If �J is complete w.r.t. the relation ��

J
, then

� ASP :: USP

if and only if
2 Many concepts extensively used in this section have been defined in Chap. 4.

348 IV:5 Architectural Specification Calculus

� ASP ⇒g UEv

for some UEv such that for all E ∈ dom(UEv),

UEv(E) ∈ [[USP]].

The reason for assuming that no generic unit declaration is inconsistent
should be clear: without it the problem is not recursively enumerable, since
the problem of proving consistency is not recursively enumerable.

It is possible to have a calculus where the assumption on ASP having a
denotation with respect to the extended static semantics can be dropped. It
is at the same time possible to have a calculus such that the standard (ap-
plicative) model semantics can be used in the above theorem. Unfortunately,
such calculi are quite complex – we refer the interested reader to [28] and [29].

5.3.1 Definition of the Proof Calculus

We assume that both in the specification formalism over I, as well as in that
over J , for any signature morphism σ : Σ → ∆ and Σ-specification SP , there
exists a translation of SP along σ, denoted σ(SP), i.e., a ∆-specification such
that for any ∆-model M we have M ∈ [[σ(SP)]] if and only if M |σ ∈ [[SP]].
We also assume the existence of basic specifications, that is, for any finite
set of Σ-sentences there exists a Σ-specification SP such that [[SP]] is the
class of models satisfying all the sentences from that set. For CASL structured
specifications the translations required can be obtained by combining with
and and constructs, the latter being needed if σ is not surjective enough, and
finite sets of sentences are captured by CASL basic specifications – this relies
on the fact that surjective signature morphisms, signature extensions and the
sentences involved are expressible in the CASL syntax.

The contexts introduced below differ from those used in the extended
static semantics only by additional specification components. Therefore we
will freely apply concepts defined previously for ‘bare’ contexts to those de-
fined below.

A generic context Γgen is a finite set of declarations A :Σ→Σ′ SP → SP ′,
where Σ → Σ′ is the signature of the generic unit specification SP → SP ′.

A context Γ is a finite set of declarations of two forms:

• A :Σ SP , where SP is a finite set of specifications over Σ;
• σ : A → B, where A :ΣA SPA and B :ΣB SPB in Γ and σ : ΣA → ΣB is a

signature morphism.

A given unit name A may be declared at most once in a context Γ ; again,
the same applies to unit names in generic contexts Γgen. We say that A : Σ
in Γ to express the fact that A :Σ SP in Γ for some SP . Analogously we use
the phrase A : Σ → Σ′ in Γgen. If Γ1 and Γ2 are two contexts and for all

IV:5.3 The Proof Calculus 349

A ∈ dom(Γ1) ∩ dom(Γ2) we have A : Σ in Γ1 if and only if A : Σ in Γ2, then
their sum Γ1 ∪ Γ2 is a context as well.

Any context Γ can be treated as a diagram in the signature category,
whose nodes are additionally labeled by sets of specifications (though the
signature morphisms in Γ need not be specification morphisms). We will say
that Σ, {ηU}U∈dom(Γ) is a weakly amalgamable cocone over Γ , if it is a weakly
amalgamable cocone over the above-mentioned ‘bare’ diagram without the
labeling3.

Recall from Chap. 4, Remark 4.3, that by R = (Φ, α, β) we denote a
model-isomorphic simple theoroidal comorphism from the institution I of our
interest to some institution J which admits weak amalgamation. We assume
that for any Σ-specification SP in I, there exists a Sig(Φ(Σ))-specification
R(SP) in J such that for any model M ′ |=J Ax(Φ(Σ)) we have:

M ′ |=J R(SP) ⇐⇒ β(M ′) |=I SP

In the presence of basic specifications this is equivalent to assuming that the
comorphism R may be extended to a comorphism from an institution of spec-
ifications over I to an institution of specifications over J ; hence, we call it
the comorphism condition. Please note that specifications over I may be very
different from specifications over J , e.g., the former could be flat specifications
and the latter structured specifications. For a more practical example cf. the
discussion below concerning the application of these ideas to Casl structured
specifications and Casl logic. For any finite set of Σ-specifications SP by
R(SP) we denote the set of specifications R(SP) augmented by a basic speci-
fication containing the axioms Ax(Φ(Σ)). For any context Γ in I, by R(Γ) we
denote the context in J obtained by mapping any declaration A :Σ SP in Γ
to A :Sig(Φ(Σ)) R(SP), and any declaration σ : A → B in Γ to Φ(σ) : A → B
(where Φ(σ) is treated as a morphism in the signature category of J).

The problem of developing a proof calculus for architectural specifications
is parametrized by the institution I and by a formalism of specifications over
I. In order to solve this problem as announced in Theorem 5.7 additional
parameters are needed: an institution J with weak amalgamation, a specifi-
cation formalism over J with a relation �J sound w.r.t. ��

J
, and a simple

theoroidal model-isomorphic comorphism R : I → J such that for any spec-
ification SP over I a specification R(SP) over J satisfying the comorphism
condition may be defined. Moreover, the specification formalisms must both
have translations and basic specifications must exist in them.

If we apply the proof calculus to Casl, then the institution I is simply
the institution of Casl logic, and the specification formalism over I is the
formalism of Casl structured specifications4. Of course, the other parameters
3 For a definition of weakly amalgamable cocone over a diagram see Chap. 4.
4 Note however that, as announced in the introduction to this chapter, we disregard

here the global environment and treat specifications as self-contained entities.

350 IV:5 Architectural Specification Calculus

may be chosen in many ways; we will now describe one possible choice which
makes use of the tools developed in the previous chapter.

As the comorphism R : I → J one may take either the embedding of
(subsorted) Casl in many-sorted Casl, or its embedding in so-called En-
riched Casl – for a discussion of these possibilities see Chap. 4, Remark 4.3.
Specifications over J will be pairs SP = (N,DG), where DG is a development
graph over J and N a node in that graph. Then we define sig[SP] = ΣN

and [[SP]] = ModDG(N). For any Casl specification SP over I (i.e., over the
Casl logic), the specification R(SP) over J may be obtained as follows: first,
SP is translated to a pair consisting of a development graph DG over I and a
node N in that graph, as described in Sect. 4.7; next, this development graph
is translated via the comorphism R to a development graph R(DG) over the
institution J , as described in Sect. 4.3; then, the specification R(SP) over J
is simply the pair (N, R(DG)).

Finally, the relation (N1,DG1) �J (N2,DG2) holds if and only if DG1 ∪
DG2 � N1

id ����� ��� N2 (we assume here that DG1 and DG2 are disjoint).
The disjointness assumption made above shows that the proposed transla-

tion would actually be quite ineffective in the presence of a global environment,
losing much of the sharing information that could be kept in development
graphs. Fortunately, in the proof calculus the non-signature part of specifi-
cations of the form R(SP) is used only in proof obligations, which have the
general form:

η(R(SP)) �J
⋃

i=1···n
ηi(R(SP i)

In Remark 4.26 it has been shown how such proof obligations may be dis-
charged while keeping the structure of specifications. When using these meth-
ods it is actually not necessary to define R(SP) explicitly.

We now present the rules of a proof calculus which meets the requirements
stated in Theorem 5.7.

� ASP :: USP

� UD1 :: Γ 1
gen, Γ 1

...
� UDn :: Γ n

gen, Γ n

Γ 1
gen ∪ · · · ∪ Γ n

gen, Γ 1 ∪ · · · ∪ Γ n � UE :: USP

� units UD1 . . . UDn result UE :: USP

IV:5.3 The Proof Calculus 351

� UD :: Γgen, Γ

� A : SP :: ∅, {A :sig[SP] {SP} }

� A : SP → SP ′ :: {A :sig[SP]→sig[SP ′] SP → SP ′}, ∅

Γgen, Γ � UE :: USP

The sets dom(Γgen) and dom(Γ) should be disjoint.

Γgen, Γ � UT :: Γ ′, A
for all U ∈ dom(Γ ′), we have U :ΣU SPU in Γ ′

Σ, {ηU}U∈dom(Γ ′) is a weakly amalgamable cocone over R(Γ ′)

ηA(R(SP)) �J
Σ

⋃
U∈dom(Γ ′) ηU (R(SPU))

Γgen, Γ � UT qua UE :: SP

sig[SP] = sig[SP1] = Σ

R(SP1) �J
Sig(Φ(Σ)) R({SP})

R(SP) �J
Sig(Φ(Σ)) R({SP1})

Γgen, Γ ∪ {A :Σ {SP}} � UT :: Γ ′, B
B : sig[SP2] in Γ ′

for all U ∈ dom(Γ ′), we have U :ΣU SPU in Γ ′

Σ, {ηU}U∈dom(Γ ′) is a weakly amalgamable cocone over R(Γ ′)

ηB(R(SP2)) �J
Σ

⋃
U∈dom(Γ ′) ηU (R(SPU))

Γgen, Γ � λA : SP • UT :: SP1 → SP2

Γgen, Γ � UT :: Γ ′, A

The context Γ is a subcontext of Γ ′.

352 IV:5 Architectural Specification Calculus

Γgen, Γ � A :: Γ, A

A :Σf→Σr SPf → SPr in Γgen

Γgen, Γ � UT :: Γa, Aa

for all U ∈ dom(Γa), we have U :ΣU SPU in Γa

Σ, {ηU}U∈dom(Γa) is a weakly amalgamable cocone over R(Γa)

ηAa(R(σ(SPf))) �J
Σ

⋃
U∈dom(Γa) ηU (R(SPU))

τ : Σa → ∆ and σ′ : Σr → ∆ form the selected pushout for (σ, ιΣf⊆Σr)
Af , Ar, B /∈ dom(Γa)

Γgen, Γ � A [UT fit σ : Σf → Σa] :: Γa ∪ {Af :Σf
{SPf}, σ : Af → Aa,

Ar :Σr {SPr}, ιΣf⊆Σr : Af → Ar, B :∆ ∅, τ : Aa → B, σ′ : Ar → B}, B

Γgen, Γ � UT1 :: Γ1, A1

Γgen, Γ � UT2 :: Γ2, A2

A1 : Σ1 in Γ1

A2 : Σ2 in Γ2

dom(Γ1) ∩ dom(Γ2) = dom(Γ)
B /∈ dom(Γ1) ∪ dom(Γ2)

Γgen, Γ � UT1 and UT2 :: Γ1 ∪ Γ2∪
{B :Σ1∪Σ2 ∅, ιΣ1⊆Σ1∪Σ2 : A1 → B, ιΣ2⊆Σ1∪Σ2 : A2 → B}, B

Γgen, Γ � UT :: Γ ′, A
B /∈ dom(Γ ′)

Γgen, Γ � UT with σ : Σ → Σ′ :: Γ ′ ∪ {B :Σ′ ∅, σ : A→ B}, B

Γgen, Γ � UT :: Γ ′, A
B /∈ dom(Γ ′)

Γgen, Γ � UT reduction σ : Σ → Σ′ :: Γ ′ ∪ {B :Σ ∅, σ : B → A}, B

Γgen, Γ � UT :: Γ ′, B
B : Σ in Γ ′

A /∈ dom(Γ ′)
Γgen, Γ ∪ {A :Σ ∅, idΣ : A → B} � UT ′ :: Γ ′′, E

D /∈ dom(Γ ′′)

Γgen, Γ � local A = UT within UT ′ :: Γ ′′[D/A], E[D/A]

The following lemma is analogous to Lemma 5.1:
Lemma 5.8. Assume A /∈ A, B is a finite set of unit names, Cs(A, |Γgen|, |Γ |)
� UT � Σ and Γgen, Γ � UT :: Γ ′, Z. Then there exists B /∈ B such that
Γgen, Γ [B/A] � UT :: Γ ′[B/A], Z[B/A]. ��

IV:5.3 The Proof Calculus 353

5.3.2 Soundness and Completeness

Theorem 5.7 is a corollary of the following theorem:

Theorem 5.9. Suppose that � ASP �� �, that no generic unit declaration
in ASP is inconsistent and that no generic unit in ASP is applied more than
once. If �J is complete w.r.t. the relation ��

J
, then � ASP :: USP if and only

if � ASP ⇒ UEv for some UEv such that for all E ∈ dom(UEv), UEv(E) ∈
[[USP]].

Before we provide a proof of Theorem 5.9, we would like to comment on the
above calculus. It is clear that it is really an algorithm presented in the form
of a calculus. This algorithm generates proof obligations of the form SP �J

SP , and all non-trivial decisions concerning proof-search have to be taken in
the process of discharging those obligations. A calculus for discharging proof
obligations of this form is described in the previous chapters, where they are
translated into theorem links in development graphs (see Definition 4.22). A
solution for the specific case of proof obligations generated by the architectural
specification proof calculus is provided in Remark 4.26.

What remains to be done now is to prove Theorem 5.7.
For any generic context Γgen and context Γ , by |Γgen| and |Γ | we denote

these contexts after removing all specifications and leaving the signatures only
(i.e., we obtain contexts in the sense of Sect. 5.1).

Let Γ be a context. A model family M consistent with |Γ | is consistent
with Γ if MA |=Σ SP for A :Σ SP in Γ . Similarly, let Γgen be a generic
context. A unit family F consistent with |Γgen| is consistent with Γgen if for
any U :Σ→Σ′ SP → SP ′ in Γgen we have FU ∈ [[SP → SP ′]].

The following lemma explains the meaning of the proof obligations ‘gen-
erated’ by the above calculus:

Lemma 5.10. Let Γ be a context with U :ΣU SPU for all U ∈ dom(Γ).
Also, let A ∈ dom(Γ) and SP be a ΣA-specification. Finally, assume that
the sink Σ, {τU}U∈dom(Γ) is a weakly amalgamable cocone over R(Γ). Then

the refinement ηA(R(SP))��
J

Σ

⋃
U∈dom(Γ) ηU (R(SPU)) holds iff for any model

family M consistent with Γ we have MA |=I
ΣA

SP .

Proof. Notice that β defines a bijection between model families consistent
with Γ and model families consistent with R(Γ). Moreover, this bijection
preserves and reflects the satisfaction of specifications. Thus the right side is
equivalent to saying that for any model family N consistent with R(Γ) we
have NA |=J

Sig(Φ(ΣA)) R(SP). This statement is equivalent to the left side,
since Σ, {ηU}U∈dom(Γ) is a weakly amalgamable cocone over R(Γ). ��

If E fits Cs, then define E⊥ to be the environment taking any U ∈
dom(Cs) with Cs(U) = Σ → Σ′ to the ⊥-unit λM ∈ Mod⊥(Σ) · if M ∈
dom(E (U)) then E (U)(M) else ⊥, and any U ∈ dom(Cs) with Cs(U) = Σ to
E (U).

354 IV:5 Architectural Specification Calculus

Lemma 5.11. Assume that A ⊆ dom(Γ)\dom(Γgen) and that no generic unit
is applied more than once in UT . Define Cs = Cs(A, |Γgen|, |Γ |) and suppose
that C fits Cs, that {E (U)}U∈dom(Γgen) is a unit family consistent with Γgen

for all E ∈ C, and that there exists a surjective function θ from C onto the
set of all model families consistent with Γ , and such that:

a) for any E ∈ C, θ(E)|A = E |A;
b) if E1 and E2 coincide on A ∪ P(UT), then θ(E1) = θ(E2) (in the strong

sense).

Assume also that we have a context |C| which fits Cs and such that E ∈ C
implies E⊥ ∈ |C|, that Cs � UT � Σ, and that Cs, |C| � UT ⇒⊥ MEv⊥.

If �J is complete w.r.t. the relation ��
J
, then Γgen, Γ � UT :: Γ1, Z for

some Γ1 and Z if and only if Cs, C � UT ⇒MEv for some MEv.
Moreover, if both sides of the equivalence hold, then:

1. Z : Σ in Γ1;
2. there exists a surjective total function θ1 from C onto the set of all model

families consistent with Γ1, and such that:
a) for any E ∈ C, θ1(E)|dom(Γ) = θ(E);
b) if E1,E2 ∈ C coincide on P(UT) and if θ(E1) = θ(E2), then θ1(E1) =

θ1(E2);
c) MEv = λE ∈ C · θ1(E)Z = λE ∈ C ·MEv⊥(E⊥).

��

The proof of the above lemma is long and very similar to that of Lemma 5.6
and therefore we omit it. In the proof, Lemmas 5.8 and 5.10 are used.

Proof (Theorem 5.9). Assume that ASP has a denotation w.r.t. the extended
static semantics, that no generic unit specification in it is inconsistent, and
that no such unit is applied more than once. We will prove the theorem for
the case ASP = units UD1 · · ·UDn result UT , the generic case being very
similar.

Suppose � UDi :: Γ i
gen, Γ i for 1 ≤ i ≤ n, and let Γgen = Γ 1

gen ∪ · · · ∪ Γ n
gen,

Γ = Γ 1 ∪ · · · ∪ Γ n, A = dom(Γ) and P be the set of generic unit names from
dom(Γgen) used in UT . Also, let Cs = Cs(A, |Γgen|, |Γ |) and let |C| contain
all environments of the form F ∪M , where F is a ⊥-unit family ⊥-consistent
with |Γgen| and M is a model family consistent with |Γ |. By Theorem 5.5 we
then have Cs � UT � Σ for some Σ and Cs, |C| � UT ⇒⊥ MEv⊥ for some
MEv⊥. Now let C contain all environments of the form F ∪M , where F is a
unit family consistent with Γgen and M is a model family consistent with Γ ,
and define θ(F ∪M) = M . Clearly, E ∈ C implies E⊥ ∈ |C|, θ is onto the set
of all model families consistent with Γ , θ(F ∪M) extends M and does not
depend on unit names not in A.

By Lemma 5.11 we have that Γgen, Γ � UT :: Γ ′, A for some Γ ′ and A iff
Cs, C � UT ⇒ MEv for some MEv. Moreover, if both sides hold, then there

IV:5.3 The Proof Calculus 355

exists a surjective total function θ1 from C onto the set of all model families
consistent with Γ ′, and such that MEv = λE ∈ C · θ1(E)A.

If � ASP :: SP , then the left side of the above equivalence holds, hence,
so does the right one. Then, using one direction of Lemma 5.10, we see that
indeed MEv(E) ∈ [[SP]] for all E ∈ C.

If, on the other hand, � ASP ⇒ MEv, then the right side of the above
equivalence holds, and MEv(E) ∈ [[SP]] for all E ∈ C. Then, using the other
direction of Lemma 5.10, we see that � ASP :: SP . ��

6

Specification Library Calculus

The aim of the proof calculus for libraries is to capture the well-formedness
of a library in terms of proof rules. While the static semantics of libraries
already has the format of such rules, the model semantics has not – it is based
on set-theoretic notions, and one would have to use to the rules of set theory
to reason about it. We here sketch direct calculus rules instead.

The proof calculus for libraries is based on the proof calculi for basic, struc-
tured and architectural specifications developed in the preceding chapters.

A library is correct if:

• the static semantics of the library succeeds (Chap. III:6), where
• for each structured specification encountered in the static semantics of

the library, the verification semantics (Sect. 4.7) for the structured speci-
fication succeeds, resulting in a development graph (S, Th), and moreover
S � Th according to the proof rules for development graphs (Sect. 4.4),

• for each architectural specification encountered in the static semantics of
the library, the extended static semantics (Sect. III:5.6) for the archi-
tectural specifications succeeds, the induced amalgamability conditions
can be discharged1, and the induced proof obligations (which are be-
tween structured specifications) collected by the architectural proof calcu-
lus (Sect. 5.3) can be discharged using the calculus of development graphs
(Sect. 4.4).

For tool purposes, it is interesting to compute a single development graph
and set of proof obligations from a library, such that the library is correct
if the static semantics succeeds and the proof obligations can be discharged
with the calculus for development graphs given in Sect. 4.4. This goal can
be achieved by introducing a uniform format for a verification semantics for
LIB-ITEMs, extending the one for structured specifications given in Sect. 4.7.
We sketch below how this could be done, using the material of the previous
1 This can be done via enriched CASL or the so-called cell calculus, see Sect. III:5.6.

358 IV:6 Specification Library Calculus

chapters. Based on this, the verification semantics for LIB-DEFNs is easy. The
verification semantics collects all the proof obligations that arise in a library.

The verification semantics for libraries will be based on verification global
environment:

An verification global environment
Γs, (S, Th) = (Gs,Vs,As, Ts), (S, Th) consists of a development graph

(S, Th) and finite functions from names to the verification denotations of
generic specifications, views, architectural specifications and unit specifica-
tions (cf. Chap. III:6):

• Gs : SpecName fin→ VerGenSig
• Vs : ViewName fin→ VerViewSig
• As : ArchSpecName fin→ VerArchSig
• Ts : UnitSpecName fin→ VerUnitSig

The domains VerGenSig and VerViewSig have been defined in Sect. 4.7, as
well as the context requirements on the corresponding parts of the global envi-
ronment. We now introduce the semantic domains VerArchSig and VerUnitSig.
They are basically obtained by taking their non-verification counterparts from
Chap. III:5 and replacing signatures by development graph nodes. This means
that all the introduced concepts have a meaning only relative to a develop-
ment graph, and this is the development graph from the verification global
environment. The requirements from Chap. III:5 are imposed here as well,
with the signatures being those obtained from the nodes by looking up their
associated signatures in the development graph.

(N1, . . . , Nn)
or N ∈ VerCompSig = Node+

N1, . . . , Nn→N
or N→N ∈ VerParUnitSig ⊆ VerCompSig ×Node

UΣ ∈ VerUnitSig = VerParUnitSig ∪Node
(N I , UΣ) ∈ VerImpUnitSig ⊆ Node ×VerParUnitSig

Cs ∈ VerUnitCtx = UnitName fin→ (VerImpUnitSig ∪ Node)
(Cs, UΣ) or AΣ ∈ VerArchSig = VerUnitCtx ×VerUnitSig

Γs, (S, Th) � LIB-ITEM��� Γ ′
s, (S′, Th′)

Γ ′
s, (S′, Th′) is a verification global environment extending Γs, (S, Th).

The rules for SPEC-DEFN and VIEW-DEFN have been spelled out in Sect. 4.7.
The rules from UNIT-SPEC-DEFN can be obtained by a straightforward adap-
tion of the static semantic rules for unit specifications in Sect. III:5.4. The
rules for ARCH-SPEC-DEFN are obtained from the rules of the extended static
semantics for architectural specifications (Sect. III:5.6) and the architectural
proof calculus (Sect. 5.3) in the following way. The rules follow those from

IV:6 Specification Library Calculus 359

the extended static semantics, but with verification contexts instead of dia-
grams, and with resulting specifications for unit expressions, as in the architec-
tural proof calculus. Moreover, signatures have to be replaced by development
graph nodes, as in the transition from the static semantics to the verification
semantics for structured specifications. Any assumptions involving the � re-
lation between structured specifications occurring in the rules of Sect. 5.3
are replaced by theorem links between the corresponding development graph
nodes.

� LIB-DEFN��� Γs, (S, Th)

Γs, (S, Th) is a verification global environment.
Rules very similar to those in the semantics of libraries (Chap. III:6).
Once this program is carried out, we arrive at the following

Theorem 6.1. A library is well-formed according to the static and model se-
mantics if the verification semantics succeeds and all the theorem links in the
delivered development graph can be discharged. (The only if direction does not
hold due to the various sources of incompleteness mentioned in Chap. 1.

From structured calculus:
This verification semantics can be shifted to the level of CASL libraries in

the same way as the ordinary static (and model) semantics. Just note that a
new library starts with an empty global environment. The empty verification
global environment consists of four empty maps and a development graph
consisting just of one node (called ∅) with signature ∅ and a set of axioms ∅.

Theorem 6.2. If
� LIB-DEFN� (LN, Γs),

then there is some Γ ′
s, (S,Th) with strip(Γ ′

s) = Γs and

� LIB-DEFN��� (LN, Γ ′
s, (S,Th)),

and vice versa, if

� LIB-DEFN��� (LN, Γ ′
s, (S,Th)),

then
� LIB-DEFN� (LN, strip(Γ ′

s))

Moreover, in this case, the following are equivalent

1. there is a model global environment Γm with � LIB-DEFN⇒ Γm.
2. S |= Th.

Furthermore, if these two equivalent conditions hold, then Γ ′
s is compatible

with Γm.

Part V

CASL Libraries

Markus Roggenbach

Till Mossakowski

Lutz Schröder

1

Introduction

This part of the CASL reference manual describes a library of elementary
specifications called the Basic Datatypes. This library has been developed
with two main purposes in mind: on the one hand, it provides the user with
a handy set of off-the-shelf specifications to be used as building blocks in
the same way as library functions in a programming language, thus avoiding
continuous reinvention of the wheel. On the other hand, it serves as a large
reservoir of example specifications that illustrate both the use of CASL at the
level of basic and structured specifications. The specification methodology
behind the Basic Datatypes is described in [57].

The name Basic Datatypes is actually slightly misleading in that there are
both monomorphic specifications of typical datatypes and loose specifications
that express properties e.g. of an algebraic or order theoretic nature. The first
type of specification includes simple datatypes like numbers and characters
as well as structured datatypes (typically involving type parameters) such as
lists, sets, arrays, or matrices. The second type of specification is oriented more
closely towards traditional mathematical concepts; e.g. there are specifications
of monoids and rings, as well as equivalence relations or partial orders. The
library is structured partly along precisely these lines; an overview of the
sublibraries is given in Section 1.1.

In the design of a library of basic specifications, there is a certain amount
of tension between the contradicting goals of

• keeping specifications simple and readable also for novice users, and
• making them economical, concise, and amenable for tool support.

This concerns in particular the degree of structuring, with parametrized spec-
ifications being most prominent as on the one hand increasing elegance and
reusability and on the other hand placing on the reader the burden of looking
up imported specifications and keeping track of signature translations. With
the exception of the library of numbers, the libraries exhibit a certain bias
towards more extensive use of structuring operations. Several measures have
been undertaken to enhance readability of the specifications, one of them being

364 V:1 Introduction

the facility to have the signatures for the specifications in a library explicitly
listed by the CASL tools.

The specifications make use of a set of annotations concerning semantics
and operator precedences; moreover, we use the CASL syntax for literals. The
details of these annotations and syntax extensions are explained in Chap. II:5
of the CASL Language Syntax.

The material is organized as follows. After the above-mentioned descrip-
tions of the component libraries (Section 1.1), the actual content of the li-
braries is presented in Chapters 2 through 11. Chap. 12 contains graphical rep-
resentations of the dependencies between the specifications. Moreover, there
is an index of all library and specification names at the end of the book.

Acknowledgement

We would like to thank the participants of various CoFI meetings for their
valuable feedback during the development of these libraries. In particu-
lar, we wish to thank Hubert Baumeister, Ulrich Berger, Bernd Krieg-
Brückner, Michel Bidoit, Hartmut Ehrig, Magne Haveraaen, Adis Hodzic,
Hans-Jörg Kreowski, Christoph Lüth, Stephan Merz, Christoph Schmitz,
Giuseppe Scollo, and John Tucker for refereeing the final draft of the libraries.
Furthermore, special thanks to Klaus Lüttich for implementing the automatic
translation from CASL to pretty printed LATEX, as well as optimizing the de-
pendency graphs. Of course, any ambiguities and errors that remain are solely
our responsibility.

1.1 A Short Overview of the Specified Datatypes

The libraries of basic datatypes have been successfully parsed and statically
checked with the Bremen CASL tool set (CATS), as well as with the Hetero-
geneous tool set (HETS). Both tools as well as an ASCII-format version of
libraries of basic datatypes are available on the CD-ROM coming with this
volume. The latest versions always can be obtained at

http://www.cofi.info/Tools

We recommend to use the HETS tool in order to obtain a graphical overview
over the specifications in the libraries and also to inspect their signatures.
A quick introduction to HETS can be found at the above URL and also in
Chap. 10 of the CASL User Manual [5].

The collection of basic datatypes presented here consists of the following
libraries:

• Numbers
• RelationsAndOrders
• Algebra_I
• SimpleDatatypes

V:1.2 The Library Basic/Numbers 365

• StructuredDatatypes
• Graphs
• Algebra_II
• LinearAlgebra_I
• LinearAlgebra_II
• MachineNumbers

each of which is described in detail in the following paragraphs. The graph of
dependencies among the libraries is shown in Fig. 1.1.

Numbers

RelationsAndOrders

Algebra_I SimpleDatatypes MachineNumbers

StructuredDatatypes

Algebra_II Graphs

LinearAlgebra_I

LinearAlgebra_II

Fig. 1.1. Dependency graph of the libraries of basic datatypes.

1.2 The Library Basic/Numbers

This library, cf. Chap. 2, provides monomorphic specifications of natural num-
bers, integers and rational numbers, as well as rational numbers with syntactic
constructs for decimal fractions.

366 V:1 Introduction

To a certain extent, the real numbers can also be addressed in CASL,
although a full specification is difficult due to the fact that completeness is
a higher-order axiom. In [59], a weak theory of the real numbers is specified
and compared to other approaches possible in a similar setting. But as none of
these approaches leads to a ‘basic off-the-shelf specification’, we have refrained
from including the real numbers in the library of Basic Datatypes.

In the specification Nat, the natural numbers are specified as a free type,
thus ensuring that all natural numbers can be constructed from 0 and the
successor operation suc, and that all terms formed from these two operations
are distinct. Consequently, all predicates and operations over the sort Nat of
natural numbers are defined by recursion over the two constructors.

In addition to the representation in terms of 0 and suc, the usual decimal
representation of naturals is introduced in order to provide a more convenient
syntax. To this end, the parsing annotation %number __@@__ is declared
at the beginning of the library; this means that any sequence of digits is to be
read as if the function __@@__ were placed in between. The semantics of
the function __@@__ is then determined by the axiom %(decimal_def)%.

Note that the names for the partial operations subtraction __−?__ and
division __/?__ include a question mark. This is to avoid overloading with
the total operations __ − __ on integers and __/__ on rationals, which
would lead to inconsistencies as both these specifications import the specifi-
cation of natural numbers.

The introduction of the subsort Pos, consisting of the positive integers,
gives rise to certain new operations, e.g.

__ ∗__ : Pos × Pos → Pos ,

whose semantics is completely determined by overloading.
The specification Int of integers is built on top of the specification of

naturals: integers are defined as equivalence classes of pairs of naturals written
as differences, where %(equality_Int)% determines the equivalence relation
on these pairs. The sort Nat is then declared to be a subsort of Int. Finally,
the axiom %(Nat2Int_embedding)% characterizes the embedding of naturals
into integers.

The definition of the predicates and operations on integers usually covers
the whole domain of integers; hence, concerning consistency, one has to show
that they do not contradict the axioms for naturals, to which the relevant
operations are related by overloading.

Besides the division operator __/?__, the specification Int also provides
the function pairs div/mod and quot/rem, respectively, as constructs for di-
vision:

• The functions div and mod are motivated by the residue class ring Zm,
m ∈ Z\{0}, where the residue classes are represented by elements of
{0, 1, . . . , m−1}. In this notation, the operator mod computes the residue

V:1.2 The Library Basic/Numbers 367

class n mod m in Zm of an element n ∈ Z. The division operator div is
related to mod by:

∀n ∈ Z, m ∈ Z\{0} : n = (n div m) ∗m + (n mod m)

This equation is solved by putting n div m := $n/m%, where $__% denotes
the largest integer lower bound. Thus one obtains the following results:

5 div 3 = 1 5 mod 3 = 2
−5 div 3 = −2 −5 mod 3 = 1

5 div −3 = −1 5 mod −3 = 2
−5 div −3 = 2 −5 mod −3 = 1

• Another way to deal with division is to require of the remainder operator,
now called rem, that

|n rem m| = |n| rem |m|

for all integers n, m (which doesn’t hold for the operator mod). To this end,
the representative has to be chosen depending on the sign of n: Choose
the representative from the set {0, 1, . . . , m − 1} if n ≥ 0, and from the
set {0,−1, . . . ,−(m − 1)} if n < 0. The division function quot is then
determined by requiring

∀n ∈ Z, m ∈ Z\{0} : n = (n quot m) ∗m + (n rem m).

For this division operator, we have

|n quot m| = |n| quot |m|.

Some example values:

5 quot 3 = 1 5 rem 3 = 2
−5 quot 3 = −1 −5 rem 3 = −2

5 quot −3 = −1 5 rem −3 = 2
−5 quot −3 = 1 −5 rem −3 = −2

There is no need to define a new parsing annotation for decimal repre-
sentation of integers, as the one for naturals carries over. Positive integers
are first parsed as a natural and then subjected to the implicit embedding
from naturals to integers. The same holds for negative integers, where just
the unary minus has to be applied after the embedding.

The specification Rat of rational numbers follows the same scheme as the
specification of integers discussed above. This time, the specification Int is im-
ported. The rationals are then defined as equivalence classes of pairs consisting
of an integer and a positive number written as quotients. %(equality_Rat)%
determines the equivalence relation on these pairs. The sort Int is then de-
clared to be a subsort of Rat. Finally, the axiom %(Int2Rat_embedding)%

368 V:1 Introduction

characterizes the embedding. Note that thanks to CASL subsorting, the dec-
laration of the operation

__/__ : Rat × Rat →?Rat

allows writing rationals also as pairs x/y of arbitrary integers x and y �= 0.
Again, the definition of the predicates and operations on rationals usually

covers the whole domain of rationals, i.e. concerning consistency one has to
show that they do not contradict to the axioms for naturals and integers, to
which they are related by overloading.

The specification DecimalFraction extends the rationals by syntac-
tic sugar that allows writing rationals in the form of decimal fractions like
11.02E−3 or −0.2. To this end, the library Basic/Numbers includes the
parsing annotation %floating. Here, the function __ ::: __ evaluates the
decimal point, while the function __E__ is used for the exponentiation ‘E’.
The specification DecimalFraction then provides axioms for both of these.
Note how the different parsing annotations cooperate with each other. The
numbers to the left and right of the decimal point are parsed as naturals and
then turned into a rational by evaluating the function replacing the decimal
point. The function replacing the ‘E’ is applied to the result.

The main order-theoretic and algebraic properties of the numbers spec-
ified in this library are expressed in terms of CASL views. The library
Basic/RelationsAndOrders, cf. Chap. 3, includes views that state that
the specified naturals, integers, and rationals are totally ordered. In the library
Basic/Algebra_I, cf. Chap. 4, views can be found expressing e.g. that the
naturals with __ + __ and 0 or __ ∗ __ and 1, respectively, satisfy the
axioms of a commutative monoid, that the integers are an integral domain,
and that the rationals form a field.

1.3 The Library Basic/RelationsAndOrders

This library, cf. Chap. 3, provides specifications for various types of relations.
Among the specified structures are reflexive, symmetric, and transitive rela-
tions and equivalence relations, partial and total orders, as well as Boolean
algebras. For some of these, the library offers extended versions.

Datatypes involving completeness properties, like directed complete partial
orders or complete lattices, are omitted here. Their specification would require
higher-order axioms that are not expressible in CASL. (It would, however, be
possible to specify ω-complete partial orders.)

The specifications concerning the basic structures are naked textbook-
style definitions. These are then extended by adding typical predicates and
operations from the respective mathematical theories. Such an extended ver-
sion ExtX takes the specification X as a parameter. In order to avoid ex-
cessive verbosity in cases where instantiations do not involve renaming, pre-
instantiated parameterless specifications RichX are included; in particular,

V:1.4 The Library Basic/Algebra_I 369

RichX specifies the same model class as ExtX. For instance, the specifica-
tion TotalOrder adds an axiom stating comparability of all elements to the
specification of partial orders. Its extended version ExtTotalOrder then
provides (among others) the additional operations min and max, which are
defined in terms of the __ ≤ __ predicate stemming from the specification
TotalOrder in the parameter. RichTotalOrder is identical to ExtTo-

talOrder, except that it does not have a parameter.
In the extended versions, concepts are often added independently of each

other. This is reflected by the use of the CASL union operator ’and’ instead of
the extension operator ’then’. For example, adding the operators inf and sup
to partial orders is independent of the definition of the predicate __ < __
on top of __ ≤ __.

The library concludes with a collection of views. These state that the
numbers specified in the library Basic/Numbers are totally ordered, and
that a Boolean algebra carries also the structure of a partial order.

1.4 The Library Basic/Algebra_I

In this library, cf. Chap.4, specifications of basic algebraic structures are col-
lected. These specifications, like those in Basic/RelationsAndOrders, are
usually split into two parts, one that provides the necessary signature and ax-
ioms in as simple a way as possible, and a second, parametrized part labelled
Ext. . . which contains derived operations and predicates. Typical examples
are power operations with natural or integer exponents, the inverse operation
for groups, and predicates concerning divisibility and invertibility in rings.
Moreover, the extended specifications contain theorems, intended to be deriv-
able from the axioms, in the shape of formulas annotated as implied. As in the
library RelationsAndOrders, the extended specifications are pre-instantiated
under the name Rich. . . ; these specifications may be found near the end of
the library. Any views into the extended specifications are repeated for the
pre-instantiated forms, since views cannot be defined in terms of other named
views in CASL.

The hierarchy of algebraic structures presented begins with monoids, con-
tinuing via groups and Abelian groups to rings, integral domains, and fields.
At the end of the library, a number of views are given that subsume concepts
from the numbers library under the appropriate algebraic concepts, e.g. a view
IntegralDomain_in_Int which states that the integers with their usual
addition and multiplication form an integral domain. By contrast, several
views that express theorems about the algebraic concepts introduced are given
directly after the concept they concern. E.g., there is a view PreOrder_in_

ExtCRing stating that the elements of a commutative ring are pre-ordered
by the divisibility relation, located adjacently to the (extended) specification
of commutative rings.

370 V:1 Introduction

A feature that requires a word of explanation is the fact that the specifi-
cation of fields is actually split into three parts, namely, ConstructField,
Field, and ExtField. The reason for this is that an extra sort of nonzero
elements is needed to specify the multiplicative group structure of a field;
since this sort is not regarded as a part of the basic signature of a field (this
signature should be identical to that of a ring, i.e. consist of one sort and
two unary and two binary operations), it is introduced in ConstructField,
then hidden in Field, and finally reintroduced in ExtField by instantiating
ExtCommutativeRing with ConstructField as argument.

The specifications ExtRing and ExtCommutativeRing contain, among
other things, elements of divisibility theory in rings. In ExtRing, a unit pred-
icate isUnit and an irreducibility predicate isIrred are introduced, along with
subsorts NonZero[Elem], RUnit[Elem], and Irred[Elem] representing non-
zero, unit, and irreducible elements. Recall that an element of a ring is a unit
if it has a multiplicative inverse, and that a non-unit element is irreducible
if it cannot be decomposed into two non-unit elements. The identity, multi-
plication, and additive inverse operations are given additional profiles stating
that they restrict to unit elements; identity and multiplication indeed make
the set of unit elements into a group, a fact which is expressed by the view
Group_in_ExtRing. The specification ExtCommutativeRing addition-
ally provides a nullary predicate hasNoZeroDivisors, detecting whether or
not there are divisors of zero, and binary divisibility and associatedness re-
lations; recall that two elements of a commutative ring are called associated
if they differ only by an invertible factor. The fact that two elements are
associated iff they are mutually divisible is stated as a theorem. Moreover,
there are two views PreOrder_in_ExtCRing (see above) and EqRel_

in_ExtCRing, with the latter stating that associatedness is an equivalence
relation.

1.5 The Library Basic/SimpleDatatypes

This library, cf. Chap.5, provides unstructured datatypes like Booleans and
characters.

The Booleans are specified in Boolean, are shown to be a Boolean algebra
(view BooleanAlgebra_in_Boolean) and then enriched with the usual
Boolean algebra operations (using the specification ExtBooleanAlgebra).
The characters are specified in Char. They are defined to be the subset 0
. . . 255 of the natural numbers, and then constants for different representations
(ASCII, decimal, octal, hexadecimal) are introduced.

1.6 The Library Basic/StructuredDatatypes

This library, cf. Chap. 6, provides specifications that formalize structuring con-
cepts of data as used e.g. for the design of algorithms or within programming

V:1.6 The Library Basic/StructuredDatatypes 371

languages. Its main focus is data structures like (finite) sets, lists, strings, (fi-
nite) maps, (finite) bags, arrays, and various kinds of trees. But it also covers
some elementary constructions like the encapsulation of data within a ‘maybe’-
type or arranging data as pairs. Common to all these concepts is that they
are generic. Consequently, all specifications of this library are parametrized.
Furthermore, in all specifications of this library the body of the specifications
monomorphically extends the given parameters and imports.

Arbitrary sets, maps and bags, or streams are omitted. Their monomorphic
specification would require higher order axioms not available in CASL. Non-
monomorphic first-order specifications of these types are not included, as the
answer to the question which operations to provide and which non-standard
models to accept would depend too much on the particular context.

Finite sets, finite maps and finite bags are specified in terms of observers:
given a generated sort, an operation or predicate is introduced in order to de-
fine equality on this sort. Concerning finite sets, equality on the sort Set [Elem]
is characterized using the predicate __ε__, see the specification Generate-

Set. Finite maps, i.e. elements of the sort Map[S ,T], are considered to be
identical if their evaluation under the operation eval yields the same result, cf.
the specification GenerateMap. In the specification GenerateBag, those
elements of sort Bag[Elem] are identified that show the same frequency (ob-
served by the operation freq) for all entries.

The specification PowerSet works solely with CASL subsorting and over-
loading; no defining axiom is needed. This is achieved by the subsort def-
initions for PowerSet [X] and Elem[X]. Besides determining the elements
of the respective sorts, these definitions also induce the subsort relations
PowerSet [X] < Set [Elem] and Elem[X] < Elem. This type system ensures
that the newly introduced predicates and operations are in overloading rela-
tion with the identically named predicates and operations of the specification
Set[Elem], and hence are just restrictions of those.

Finite lists are specified in terms of a free datatype. In the specification
GenerateList, lists are built up from the empty list by prefixing. The reverse
construction, i.e. describing lists as a type that consists either of the empty
list or a list followed by an element, is added in the specification List as an
implied consequence. That is, the specification List makes both approaches
and their corresponding induction principles available. The predicates and
operators, however, are all defined using the first approach. The parsing an-
notation %list at the beginning of the library allows to write lists in the more
convenient syntax ‘[x1, . . . , xn]’ besides ‘x1 :: . . . :: xn :: []’ as provided by the
constructors.

The specification Array includes the condition min ≤ max as an ax-
iom in its first parameter. This ensures a non-empty index set. Arrays are
defined as finite maps from the sort Index to the sort Elem, where the typical
array operations evaluation and assignment are introduced in terms of finite
map operations. Finally, revealing the essential signature elements yields the
desired datatype.

372 V:1 Introduction

The library concludes with several specifications concerning trees. There
are specifications covering binary trees (BinTree, BinTree2), trees with
a possibly-different branching at each node (NTree, NTree2), and k-
branching trees (KTree, KTree2). Each of these branching structures can
be equipped with data in different ways: either all nodes of a tree carry data
(as it is the case in BinTree, NTree, and KTree), or just the leaves of
a tree have a data entry (as in BinTree2, NTree, and KTree). Note the
slightly more complex type systems needed in the latter case.

In GenerateNTree and GenerateNTree2, it is necessary to spec-
ify both the datatype of trees as well as the datatype of lists modeling the
branching together in one free type construct in order to avoid unintended
models. To provide the usual operations on lists, the specification List is
imported later in NTree and NTree2, resp. Note that NTree2 does not
include empty branching, while in NTree an empty list of branches charac-
terizes a leaf node. The k-branching trees are then introduced as subsorts of
the NTrees.

The abstract properties of the specified concepts are expressed in terms of
views, in this library mostly to be found directly after the specification. For
example, finite sets carry the structure of a partial order, finite power sets are
Boolean algebras, and lists form a monoid.

1.7 The Library Basic/Graphs

This library, cf. Chap. 7, provides a specification of directed graphs, as well as
operations and predicates on graphs, like paths, transitive closure, connect-
edness, n-colorability and planarity. These capture standard notions from the
literature, see e.g. [18].

The specification Graph constructs directed graphs inductively by suc-
cessively adding nodes and edges to an empty graph, using a generated type
and an explicit characterization of equality. Due to the inductive definition,
only finite graphs are covered. However, the advantage of this approach is that
graphs are first-class objects, i.e. members of algebras (rather than algebras
themselves, as in other approaches).

The specification is parametrized over two sorts, NodeId and EdgeId .
These provide the (typically infinite) vocabularies for node and edge iden-
tifiers. These must uniquely identify nodes and edges. Since we allow only
finite graphs, in a given graph, only finitely many identifiers of the vocabular-
ies are actually used. If multiple edges with the same label are needed, EdgeId
should be chosen as isomorphic to a product (e.g. Label× Int).

The operation addNode is total – if a node that is already present in the
graph is added twice, nothing happens. By contrast, addEdge is partial: this
is because an edge always has to be added together with its source and target
node, and adding an edge twice (with possibly different source and target
nodes) is prohibited.

V:1.7 The Library Basic/Graphs 373

The specification provides predicates to check whether a node or an edge is
in the graph, as well as a predicate checking whether an edge goes between two
particular nodes. The operations source and target are partial, because they
act on the global vocabulary of edge identifiers, while a given graph usually
contains only some of these. Note that source and target are undefined for
the empty graph, and this undefinedness is inherited via the strong equations
defining source, which yields that source and target are also undefined if the
edge identifier given in the first argument is not present in the graph given by
the second argument.

The specification RichGraph provides further operations (for removing
nodes and edges) as well as a bunch of graph-theoretic predicates (loopFree ,
simple, subgraphOf , complete, cliqueOf , maxCliqueOf). Note that removing
a node from a graph also entails removing all edges having this node as source
or target node.

The specification GraphToSet provides a means to change the graph rep-
resentation by mapping the inductively generated graphs to the more common
mathematical definition: a graph consists of a set of nodes, a set of edges, and
source and target functions going from edges to nodes.

A subsort of symmetric graphs is introduced in SymmetricGraph. Since
these can be seen as a representation of undirected graphs, we also intro-
duce restrictions of the graph operations to this subsort. The specification
SymmetricClosure defines the symmetric closure of a graph.

In the specification Paths the paths in a graph as well as the transitive
closure of a graph are specified. PathGraphs are defined as graphs over lists of
edge identifiers. The transitive closure of a graph is then the minimal transitive
super-PathGraph of that graph. A path in a graph is defined to be an edge
in the transitive closure.

Further concepts are defined in a straightforward manner on top of these
basic notions. Trees are acyclic graphs with a root node such that each node
is reachable via a unique path from the root. Connectedness and acyclicity
can be elegantly expressed using (symmetric) transitive closure. A spanning
tree is a tree subgraph that has the same nodes as the graph.

Finally, some notions concerning undirected graphs (represented as sym-
metric graphs) are defined. A symmetric graph is said to have a cycle only
if the cycle is non-trivial, i.e. does not exploit the fact that for each edge
there also is an edge in the opposite direction. Symmetric trees are connected
graphs that are acyclic in the symmetric sense.

The specification GraphColorability defines n-colorable and bipartite
graphs.

Assuming a weight function on edge identifiers, the specification Short-

estPaths provides a loose specification of shortest paths in a graph. For a
source and a target node, the shortest path function is only defined if there is
at least one path from the source to the target.

Since also homomorphisms between graphs over different node and edge
vocabularies are interesting, the specification GraphHomomorphism is

374 V:1 Introduction

parametrized over two pairs of node and edge vocabulary, and for each pair,
the specification Graph is instantiated (and the resulting sort Graph is re-
named differently for the two instantiations).

Pre-homomorphisms just collect the data of graph homomorphisms, ba-
sically consisting of source and target graph and of the finite maps between
nodes and edges. The subsort Hom consists of those pre-homomorphisms that
actually satisfy the homomorphism condition.

A minor of a graph is something that can be homomorphically mapped to
the transitive closure. This concept is formalized in the specification Minor.

The library continues with the specifications of specific graphs: K5 pro-
vides the complete graph over five nodes. Note that the K5 is captured by
the constant k5 written lower case, since constants generally are written lower
case in the library of Basic Datatypes (cf. [57]). K3_3 introduces the graph
consisting of two copies of three nodes, such that two nodes are linked by
an edge iff they stem from different copies. Then, Planar defines planar
graphs using the Kuratowski characterization: K5 and K3_3 must not occur
as minors.

Finally, the specification NonUniqueEdgesGraph provides graphs with
edge labels that need not be unique (note that with ordinary graphs, each edge
may be inserted only with one pair of source and target nodes). The trick is
to turn edges labels into unique edges by coupling them with the source and
target node.

1.8 The Library Basic/Algebra_II

This library, cf. Chap. 8, contains slightly more advanced algebraic concepts,
in particular

• monoid and group actions on a space,
• ring theoretic notions such as euclidian and factorial rings,
• polynomials, and
• two views exhibiting the datatypes of lists and bags as free monoids and

free commutative monoids, respectively.

At several points, use is made of structured datatypes. E.g., factorial rings
require bags for the specification of factorizations (e.g., factorizing an integer
amounts to stating how often it is divisible by any given prime), and poly-
nomials are represented as lists of coefficients. For monoid actions, the use
of parametrization has been restricted to the involved monoid, rather than
parametrizing over the space as well, in order to keep the specifications read-
able.

Defining the degree function for polynomials requires an extension of the
integers by −∞ (since by the usual convention, deg(0) = −∞); the corre-
sponding specification IntInfinity is provided here as well. Polynomials (in
one variable) can, of course, be specified very concisely as the free algebra

V:1.9 The Library Basic/LinearAlgebra_I 375

on one generator using CASL’s free-construct; this is stated in the library
Basic/LinearAlgebra_II by means of a view.

For the same reason as for fields, the specification of factorial rings is split
into three parts (cf. 1.4); the machinery required to arrive at the somewhat
involved statement in ConstructFactorialRing that each element of a
factorial ring has an essentially unique factorization into irreducible elements,
where ‘essentially unique’ means unique up to associatedness of the factors, is
temporarily discarded in FactorialRing. Several views are provided, stating
e.g. that integers and polynomials, respectively, form euclidian rings and that
euclidian rings are factorial.

In more detail, euclidian rings are defined as admitting division with re-
mainder, where division strictly decreases a measure function delta. In the
representation of polynomials as lists of coefficients, the head of the list rep-
resents the constant coefficient (i.e. that of X0). In order to obtain a unique
representation, lists that end with a 0 are excluded; e.g., 1 is represented by
[1], and 0 is represented by []. This choice of representatives is reflected in a
special constructor __ ::: __ which behaves like the usual list constructor
except in cases where this would lead to a list with leading coefficient 0. Note
that a ::: p = a+p∗X , where a is an element of the underlying ring and p is a
polynomial. Addition and multiplication of polynomials are defined by recur-
sion over this special constructor. The view which identifies polynomial rings
as being euclidian requires casting the (normally Z∞-valued) degree function
to natural number values in order to match the measure function delta in
the specification of euclidian rings; the downcast is undefined for the zero
polynomial, which is explicitly allowed for euclidian rings.

The extended specifications for monoid and group actions, respectively,
mention a binary orbit relation connected on the underlying space, where x
is connected to y iff it is taken to y by some element of the monoid. This
relation is in general a pre-order, and an equivalence relation for group ac-
tions (the arising equivalence classes are usually called orbits), which facts are
expressed by the views PreOrder_in_ExtMonoidAction and EqRel_

in_ExtGroupAction, respectively.

1.9 The Library Basic/LinearAlgebra_I

This library, cf. Chap. 9, provides elementary concepts from linear algebra
such as vector spaces and bases. Moreover, there are ‘computational’ specifica-
tions for tuples of vectors (i.e. finite powers of vector spaces), column vectors,
and matrices, equipped with the usual operations such as scalar product, ma-
trix multiplication, and determinant. These are related to the abstract notions
of vector space etc. via suitable views.

Using predefined concepts from the algebra library, the definition of vec-
tor spaces can be kept very concise: a vector space is an action of the multi-
plicative monoid of a field on an Abelian group, subject to two distributivity

376 V:1 Introduction

axioms. The specification of a base of a vector space requires the introduc-
tion of a technical sort BaseLC for linear combinations of base elements.
This sort is, as can by now be considered established practice, introduced in
ConstructVSWithBase and hidden in VSWithBase. The advantage of
having to specify only a base, but not a sort of linear combinations, is illus-
trated on several occasions where views are provided from VSWithBase to
e.g. matrices or vectors.

More precisely, the concept of a linear combination is introduced in the
auxiliary specification VectorSpaceLC; formally, a linear combination is
a finite map from vectors to scalars including zero. An evaluation predicate
eval for linear combinations and a test for zero linear combinations are defined
recursively.

The specifications of tuples, vectors and matrices are comparatively lengthy
due to the fact that concrete functions on them need to be defined recursively,
occasionally using auxiliary functions that are later hidden. In fact, the num-
ber of auxiliary signature items in the specification of matrices is so large that
they are more conveniently hidden via a local specification, rather than by an
explicit hiding statement.

For example, n-tuples of vectors are defined as arrays, indexed from 1
to n; operations on them are defined in terms of the array access operation
__!__ (cf. Section 1.6). There is a sum operation for vector tuples; the
recursive definition of this function requires an auxiliary function auxsum
which adds all elements up to a given index. Similarly, the definition of the
scalar product 〈__||__〉 requires auxiliary functions auxmult and auxprod;
the former is component-wise multiplication of vectors, and the second plays
a role analogous to that of auxsum in the definition of a function prod that
multiplies all scalars in a vector. Recall that the scalar product is defined by

〈(x1, . . . , xn)||(y1, . . . , yn)〉 =
n∑

i=1

xiyi.

The datatype of matrices is defined via tuples of vectors, i.e. in the end via
two-dimensional arrays, with elements accessed by applying the array access
function ! twice. A transpose operation and elementary matrices are defined
via the access operation; recall that a matrix is elementary iff exactly one of
its entries is 1 and all others are 0. The determinant of a matrix is defined by
the Leibniz formula

det(aij) =
∑

ε(π)aiπ(i),

where π ranges over all permutations of the set {1, . . . , n} and ε(π) is the
sign of π. This requires a separate specification of the n-th symmetric group
that includes the sign function. A permutation is represented by the array
containing its graph; the sign function is specified as the unique nontrivial ho-
momorphism from the symmetric group into the multiplicative group {−1, 1}.
Moreover, the symmetric group is supplied with an enumeration function perm
defined on the set {1, . . . , n!}.

V:1.11 The Library Basic/MachineNumbers 377

At the end of the library, several views are provided that exhibit the sets of
vectors and matrices as vector spaces equipped with standard bases. Similarly,
there is a view stating that every field is a vector space over itself, with the
multiplication of the field as scalar multiplication; this view is located earlier
in the library, since it is needed in the specification ConstructVector.
Moreover, there is an example for the use of views as ‘higher order theorems’:
under the axiom of choice (which is assumed for the semantics of CASL, see
Chap. III:4), every vector space has a base; this is expressed by means of the
view VSWithBase_in_VectorSpace.

1.10 The Library Basic/LinearAlgebra_II

In this library, cf. Chap. 10, we present one advanced notion omitted from the
elementary linear algebra library, namely that of algebras over a field, i.e. vec-
tor spaces equipped with a compatible ring structure. Notably, the extended
specification of k-algebras contains an evaluation operation for polynomials
over k, defined recursively using the special list constructor __ ::: __ for
polynomials that avoids 0 as leading coefficient. Moreover, we have included
two views stating that a vector space with a given base is free over that base,
and that the polynomial ring in one variable over a field k is the free k-algebra
over a one-element set. Two specifications are introduced expressly for this
purpose, namely, FreeVectorSpace and FreeAlgebra. As indicated by
the name, these specifications make use of CASL’s structured free-construct;
comparing them with the ‘standard’ ones gives a good feel for the expressive
power of that construct.

1.11 The Library Basic/MachineNumbers

This library of machine numbers, cf. Chap. 11, contains specifications of those
subtypes of the naturals and the integers that are used on actual machines.

The specifications CARDINAL and INTEGER provide subtypes of nat-
urals and integers consisting of those numbers that have a binary representa-
tion within a given word length. Operations on these data types are partial
restrictions of the usual operations on naturals and integers – they are unde-
fined if the word length is exceeded.

The specification TwoComplement provides a ‘cyclic’ version of bounded
integers that corresponds to the common two complement representation of
integers used in many programming languages. Operations are total here –
the successor of the maximal positive number fitting in the word length is the
minimal negative number.

The Ext versions of the specifications add minimum and maximum oper-
ations by instantiating ExtTotalOrder.

2

Library Basic/Numbers

library Basic/Numbers version 1.0

%authors(M. Roggenbach <csmarkus@swansea.ac.uk>, T. Mossakowski,
L. Schröder)%

%date : 18 December 2003
%{ This library provides specifications of naturals, integers, and

rationals. Concerning the rationals, the specification Rat includes
the datatype proper, while the specification DecimalFraction adds the
notions needed to represent rationals as decimal fractions. }%

%display(__<=__ %LATEX __≤__)%
%display(__>=__ %LATEX __≥__)%
%prec({__−?__, __−__, __+__} < {__∗__, __/?__, __/__,

__div__, __mod__, __quot__, __rem__})%
%prec({__∗__, __/?__, __/__, __div__, __mod__, __quot__,

__rem__} < {__ˆ__})%
%prec({−__} <> {__ˆ__})%
%prec({__E__} < {__:::__})%
%left_assoc(__+__, __∗__, __@@__)%
%number __@@__
%floating __:::__, __E__

spec Nat = %mono
free type Nat ::= 0 | suc(pre:?Nat)
preds __≤__, __≥__, __<__, __>__ : Nat × Nat ;

even, odd : Nat
ops __! : Nat → Nat ;

__+__, __∗__, __ˆ__, min, max, __−!__ :
Nat × Nat → Nat ;

__−?__, __/?__, __div__, __mod__ :
Nat × Nat →? Nat

380 V:2 Library Basic/Numbers

%% Operations to represent natural numbers with digits:
ops 1 : Nat = suc(0); %(1_def_Nat)%

2 : Nat = suc(1); %(2_def_Nat)%
3 : Nat = suc(2); %(3_def_Nat)%
4 : Nat = suc(3); %(4_def_Nat)%
5 : Nat = suc(4); %(5_def_Nat)%
6 : Nat = suc(5); %(6_def_Nat)%
7 : Nat = suc(6); %(7_def_Nat)%
8 : Nat = suc(7); %(8_def_Nat)%
9 : Nat = suc(8); %(9_def_Nat)%
__@@__(m: Nat ; n: Nat): Nat = m ∗ suc(9) + n

%(decimal_def)%
%% implied operation attributes :
ops __+__ : Nat × Nat → Nat, comm, assoc, unit 0 ; %implied

__∗__ : Nat × Nat → Nat, comm, assoc, unit 1 ; %implied
min : Nat × Nat → Nat, comm, assoc; %implied
max : Nat × Nat → Nat, comm, assoc, unit 0 %implied

∀ m, n, r, s, t : Nat

%% axioms concerning predicates
• 0 ≤ n %(leq_def1_Nat)%
• ¬ suc(n) ≤ 0 %(leq_def2_Nat)%
• suc(m) ≤ suc(n) ⇔ m ≤ n %(leq_def3_Nat)%
• m ≥ n ⇔ n ≤ m %(geq_def_Nat)%
• m < n ⇔ m ≤ n ∧ ¬ m = n %(less_def_Nat)%
• m > n ⇔ n < m %(greater_def_Nat)%
• even(0) %(even_0_Nat)%
• even(suc(m)) ⇔ odd(m) %(even_suc_Nat)%
• odd(m) ⇔ ¬ even(m) %(odd_def_Nat)%

%% axioms concerning operations
• 0 ! = 1 %(factorial_0)%
• suc(n) ! = suc(n) ∗ n ! %(factorial_suc)%
• 0 + m = m %(add_0_Nat)%
• suc(n) + m = suc(n + m) %(add_suc_Nat)%
• 0 ∗ m = 0 %(mult_0_Nat)%
• suc(n) ∗ m = n ∗ m + m %(mult_suc_Nat)%
• m ˆ 0 = 1 %(power_0_Nat)%
• m ˆ suc(n) = m ∗ m ˆ n %(power_suc_Nat)%
• min(m, n) = m when m ≤ n else n %(min_def_Nat)%
• max (m, n) = n when m ≤ n else m %(max_def_Nat)%
• n −! m = 0 if m > n %(subTotal_def1_Nat)%
• n −! m = n −? m if m ≤ n %(subTotal_def2_Nat)%
• def m −? n ⇔ m ≥ n %(sub_dom_Nat)% %implied
• m −? n = r ⇔ m = r + n %(sub_def_Nat)%

V:2 Library Basic/Numbers 381

• def m /? n ⇔ ¬ n = 0 ∧ m mod n = 0
%(divide_dom_Nat)% %implied

• ¬ def m /? 0 %(divide_0_Nat)%
• (m /? n = r ⇔ m = r ∗ n) if n > 0 %(divide_Pos_Nat)%
• def m div n ⇔ ¬ n = 0 %(div_dom_Nat)% %implied
• m div n = r ⇔ ∃ s : Nat • m = n ∗ r + s ∧ s < n %(div_Nat)%
• def m mod n ⇔ ¬ n = 0 %(mod_dom_Nat)% %implied
• m mod n = s ⇔ ∃ r : Nat • m = n ∗ r + s ∧ s < n

%(mod_Nat)%

%% important laws
• (r + s) ∗ t = r ∗ t + s ∗ t %(distr1_Nat)% %implied
• t ∗ (r + s) = t ∗ r + t ∗ s %(distr2_Nat)% %implied

then %mono
sort Pos = {p: Nat • p > 0}
ops 1 : Pos = suc(0); %(1_as_Pos_def)%

__∗__ : Pos × Pos → Pos ;
__+__ : Pos × Nat → Pos ;
__+__ : Nat × Pos → Pos ;
suc : Nat → Pos

then %implies
∀ m, n, r, s : Nat
• min(m, 0) = 0 %(min_0)%
• m = (m div n) ∗ n + m mod n if ¬ n = 0 %(div_mod_Nat)%
• m ˆ (r + s) = m ˆ r ∗ m ˆ s %(power_Nat)%

end

spec Int = %mono
Nat

then %mono
generated type Int ::= __−__(Nat ; Nat)
∀ a, b, c, d : Nat
• a − b = c − d ⇔ a + d = c + b %(equality_Int)%
sort Nat < Int
∀ a: Nat
• a = a − 0 %(Nat2Int_embedding)%

then %def
preds __≤__, __≥__, __<__, __>__ : Int × Int ;

even, odd : Int
ops −__, sign : Int → Int ;

abs : Int → Nat ;
__+__, __∗__, __−__, min, max : Int × Int → Int ;
__ˆ__ : Int × Nat → Int ;
__/?__, __div__, __quot__, __rem__ :

Int × Int →? Int ;

382 V:2 Library Basic/Numbers

__mod__ : Int × Int →? Nat
%% implied operation attributes :
ops __+__ : Int × Int → Int, comm, assoc, unit 0 ; %implied

__∗__ : Int × Int → Int, comm, assoc, unit 1 ; %implied
min, max : Int × Int → Int, comm, assoc %implied

∀ m, n, r, s, t : Int ; a, b, c, d : Nat

%% axioms concerning predicates
• m ≤ n ⇔ (n − m ∈ Nat) %(leq_def_Int)%
• m ≥ n ⇔ n ≤ m %(geq_def_Int)%
• m < n ⇔ m ≤ n ∧ ¬ m = n %(less_def_Int)%
• m > n ⇔ n < m %(greater_def_Int)%
• even(m) ⇔ even(abs(m)) %(even_def_Int)%
• odd(m) ⇔ ¬ even(m) %(odd_def_Int)%
• odd(m) ⇔ odd(abs(m)) %(odd_alt_Int)%

%% axioms concerning operations
• − (a − b) = b − a %(neg_def_Int)%
• sign(m) = 0 when m = 0 else 1 when m > 0 else − 1

%(sign_def_Int)%
• abs(m) = − m when m < 0 else m %(abs_def_Int)%
• (a − b) + (c − d) = (a + c) − (b + d) %(add_def_Int)%
• (a − b) ∗ (c − d) = (a ∗ c + b ∗ d) − (b ∗ c + a ∗ d)

%(mult_def_Int)%
• m − n = m + − n %(sub_def_Int)%
• min(m, n) = m when m ≤ n else n %(min_def_Int)%
• max (m, n) = n when m ≤ n else m %(max_def_Int)%
• (− 1) ˆ a = 1 when even(a) else − 1 %(power_neg1_Int)%
• m ˆ a = sign(m) ˆ a ∗ abs(m) ˆ a if ¬ m = − 1

%(power_others_Int)%
• def m /? n ⇔ m mod n = 0 %(divide_dom2_Int)% %implied
• m /? n = r ⇔ ¬ n = 0 ∧ n ∗ r = m

%(divide_alt_Int)% %implied
• m /? n = sign(m) ∗ sign(n) ∗ (abs(m) /? abs(n))

%(divide_Int)%
• def m div n ⇔ ¬ n = 0 %(div_dom_Int)% %implied
• m div n = r ⇔ ∃ a: Nat • m = n ∗ r + a ∧ a < abs(n)

%(div_Int)%
• def m quot n ⇔ ¬ n = 0 %(quot_dom_Int)% %implied

V:2 Library Basic/Numbers 383

• (m quot n = r ⇔
∃ s : Int • m = n ∗ r + s ∧ 0 ≥ s ∧ s > − abs(n)) if m < 0

%(quot_neg_Int)%
• (m quot n = r ⇔
∃ s : Int • m = n ∗ r + s ∧ 0 ≤ s ∧ s < abs(n)) if m ≥ 0

%(quot_nonneg_Int)%
• def m rem n ⇔ ¬ n = 0 %(rem_dom_Int)% %implied
• (m rem n = s ⇔
∃ r : Int • m = n ∗ r + s ∧ 0 ≥ s ∧ s > − abs(n)) if m < 0

%(quot_rem_Int)%
• (m rem n = s ⇔
∃ r : Int • m = n ∗ r + s ∧ 0 ≤ s ∧ s < abs(n)) if m ≥ 0

%(rem_nonneg_Int)%
• def m mod n ⇔ ¬ n = 0 %(mod_dom_Int)% %implied
• m mod n = a ⇔ ∃ r : Int • m = n ∗ r + a ∧ a < abs(n)

%(mod_Int)%

%% important laws
• (r + s) ∗ t = r ∗ t + s ∗ t %(distr1_Int)% %implied
• t ∗ (r + s) = t ∗ r + t ∗ s %(distr2_Int)% %implied

then %implies
∀ m, n, r : Int ; a, b: Nat
• def a −? b ⇒ a −? b = a − b %(Int_Nat_sub_compat)%
• m = sign(m) ∗ abs(m) %(abs_decomp_Int)%
• m mod n = m mod abs(n) %(mod_abs_Int)%
• m = (m div n) ∗ n + m mod n if ¬ n = 0 %(div_mod_Int)%
• abs(m quot n) = abs(m) quot abs(n) %(quot_abs_Int)%
• abs(m rem n) = abs(m) rem abs(n) %(rem_abs_Int)%
• m = (m quot n) ∗ n + m rem n if ¬ n = 0 %(quot_rem_Int)%
• m ˆ (a + b) = m ˆ a ∗ m ˆ b %(power_Int)%

end

spec Rat = %mono
Int

then %mono
generated type Rat ::= __/__(Int ; Pos)
∀ i, j : Int ; p, q: Pos
• i / p = j / q ⇔ i ∗ q = j ∗ p %(equality_Rat)%
sort Int < Rat
∀ i : Int
• i = i / 1 %(Int2Rat_embedding)%

then %def
preds __≤__, __<__, __≥__, __>__ : Rat × Rat
ops −__, abs : Rat → Rat ;

__+__, __−__, __∗__, min, max : Rat × Rat → Rat ;

384 V:2 Library Basic/Numbers

__/__ : Rat × Rat →? Rat ;
__ˆ__ : Rat × Int → Rat

%% implied operation attributes :
ops __+__ : Rat × Rat → Rat, comm, assoc, unit 0 ; %implied

__∗__ : Rat × Rat → Rat, comm, assoc, unit 1 ; %implied
min, max : Rat × Rat → Rat, comm, assoc %implied

∀ p, q: Pos ; n: Nat ; i, j : Int ; x, y, z : Rat

%% axioms concerning predicates
• (i / p) ≤ (j / q) ⇔ (i ∗ q) ≤ (j ∗ p) %(leq_def_Rat)%
• x ≥ y ⇔ y ≤ x %(geq_def_Rat)%
• x < y ⇔ x ≤ y ∧ ¬ x = y %(less_def_Rat)%
• x > y ⇔ y < x %(greater_def_Rat)%

%% axioms concerning operations
• − (i / p) = − i / p %(minus_def_Rat)%
• abs(i / p) = abs(i) / p %(abs_def_Rat)%
• i / p + j / q = (i ∗ q + j ∗ p) / (p ∗ q) %(add_def_Rat)%
• x − y = x + − y %(sub_def_Rat)%
• (i / p) ∗ (j / q) = (i ∗ j) / (p ∗ q) %(mult_def_Rat)%
• min(x, y) = x when x ≤ y else y %(min_def_Rat)%
• max (x, y) = y when x ≤ y else x %(max_def_Rat)%
• ¬ def x / 0 %(divide_def1_Rat)%
• (x / y = z ⇔ x = z ∗ y) if ¬ y = 0 %(divide_def2_Rat)%
• x ˆ 0 = 1 %(power_0_Rat)%
• x ˆ suc(n) = x ∗ x ˆ n %(power_suc_Rat)%
• x ˆ (− p) = 1 / x ˆ p %(power_neg_Rat)%

%% important laws
• (x + y) ∗ z = x ∗ z + y ∗ z %(distr1_Rat)% %implied
• z ∗ (x + y) = z ∗ x + z ∗ y %(distr2_Rat)% %implied

then %implies
∀ i, j : Int ; p, q: Pos ; x, y: Rat
• i / p − j / q = (i ∗ q − j ∗ p) / (p ∗ q) %(sub_rule_Rat)%
• def x / y ⇔ ¬ y = 0 %(divide_dom_Rat)%
• (i / p) / (j / q) = (i ∗ q) / (p ∗ j) if ¬ j = 0

%(divide_rule_Rat)%
• x ˆ (i + j) = x ˆ i ∗ x ˆ j %(power_Rat)%

end

spec DecimalFraction = %mono
Rat

then %def
local

op tenPower : Nat → Nat

V:2 Library Basic/Numbers 385

∀ n, m: Nat

%% tenPower(n):= min { 10ˆk | k in N \{0}, 10ˆk > n }:
• tenPower(n) = 10 when n < 10 else 10 ∗ tenPower(n div 10)

%(tenPower_def)%
within

%% operations to represent a rational as a decimal fraction:
ops __:::__ : Nat × Nat → Rat ;

__E__ : Rat × Int → Rat
∀ r : Rat ; n, m: Nat ; p: Pos ; i : Int

%% represent the decimal fraction n.m as rational:
• n ::: m = n + m / tenPower(m) %(decfract_def)%
%% introduce an exponent:
• r E i = r ∗ 10 ˆ i %(exponent_DecimalFraction)%

end

3

Library Basic/RelationsAndOrders

library Basic/RelationsAndOrders version 1.0

%authors(M. Roggenbach <csmarkus@swansea.ac.uk>, T. Mossakowski,
L. Schröder)%

%date : 18 December 2003
%{ This library provides

- specifications of binary relations of different sort,
- views stating that the numbers specified in the
Library Basic/Numbers are totally ordered, and
- a specification of Boolean Algebras.

Then, the different concepts specified are enriched with additional
operations and predicates: In case of partial orders, the specification
ExtPartialOrder provides the notions of inf, sup; the specification
ExtTotalOrder adds the functions min and max to total orders;
ExtBooleanAlgebra defines a complement operation as well as a
less-or-equal relation for Boolean algebras.

Finally, the library provides non parametrized variants of these
enriched specifications. }%

%display(__˜__ %LATEX __∼__)%
%display(__<=__ %LATEX __≤__)%
%display(__>=__ %LATEX __≥__)%
%display(__cup__ %LATEX __�__)%
%display(__cap__ %LATEX __�__)%
%display(compl__ %LATEX __−1)%
%prec({__�__} < {__�__})%

from Basic/Numbers get Nat, Int, Rat

388 V:3 Library Basic/RelationsAndOrders

spec Relation =
sort Elem
pred __∼__ : Elem × Elem

end

spec ReflexiveRelation =
Relation

then
∀ x : Elem
• x ∼ x %(refl)%

end

spec IrreflexiveRelation =
Relation

then
∀ x : Elem
• ¬ x ∼ x %(irrefl)%

end

spec SymmetricRelation =
Relation

then
∀ x, y: Elem
• x ∼ y if y ∼ x %(sym)%

end

spec AsymmetricRelation =
Relation

then
∀ x, y: Elem
• ¬ x ∼ y if y ∼ x %(asym)%

end

spec AntisymmetricRelation =
Relation

then
∀ x, y: Elem
• x = y if x ∼ y ∧ y ∼ x %(antisym)%

end

spec TransitiveRelation =
Relation

V:3 Library Basic/RelationsAndOrders 389

then
∀ x, y, z : Elem
• x ∼ z if x ∼ y ∧ y ∼ z %(trans)%

end

spec SimilarityRelation =
ReflexiveRelation

and
SymmetricRelation

end

spec PartialEquivalenceRelation =
SymmetricRelation

and
TransitiveRelation

end

spec EquivalenceRelation =
ReflexiveRelation

and
PartialEquivalenceRelation

end

spec PreOrder =
{ ReflexiveRelation

and
TransitiveRelation

}
with pred __∼__ �→ __≤__

end

spec StrictOrder =
{ IrreflexiveRelation

and
TransitiveRelation

then %implies
AsymmetricRelation

}
with pred __∼__ �→ __<__

end

spec PartialOrder =
PreOrder

and
AntisymmetricRelation with pred __∼__ �→ __≤__

390 V:3 Library Basic/RelationsAndOrders

end

spec TotalOrder =
PartialOrder

then
∀ x, y: Elem
• x ≤ y ∨ y ≤ x %(dichotomy_TotalOrder)%

end

spec StrictTotalOrder =
StrictOrder

then
∀ x, y: Elem
• x < y ∨ y < x ∨ x = y %(trichotomy_StrictTotalOrder)%

end

spec RightUniqueRelation =
sorts S, T
pred __R__ : S × T
∀ s : S ; t1, t2 : T
• s R t1 ∧ s R t2 ⇒ t1 = t2

end

spec LeftTotalRelation =
sorts S, T
pred __R__ : S × T
∀ s : S
• ∃ t : T • s R t

end

spec BooleanAlgebra =
sort Elem
ops 0, 1 : Elem;

__�__ : Elem × Elem → Elem, assoc, comm, unit 1 ;
__�__ : Elem × Elem → Elem, assoc, comm, unit 0

∀ x, y, z : Elem
• x � (x � y) = x %(absorption_def1)%
• x � x � y = x %(absorption_def2)%
• x � 0 = 0 %(zeroAndCap)%
• x � 1 = 1 %(oneAndCup)%
• x � (y � z) = x � y � x � z %(distr1_BooleanAlgebra)%
• x � y � z = (x � y) � (x � z) %(distr2_BooleanAlgebra)%
• ∃ x′: Elem • x � x′ = 1 ∧ x � x′ = 0

%(inverse_BooleanAlgebra)%
then %implies

V:3 Library Basic/RelationsAndOrders 391

ops __�__, __�__ : Elem × Elem → Elem, idem
∀ x : Elem
• ∃! x′: Elem • x � x′ = 1 ∧ x � x′ = 0

%(uniqueComplement_BooleanAlgebra)%
end

spec ExtPartialOrder [PartialOrder] = %def
preds __≤__, __<__, __≥__, __>__ : Elem × Elem
∀ x, y: Elem
• x ≥ y ⇔ y ≤ x %(geq_def_ExtPartialOrder)%
• x < y ⇔ x ≤ y ∧ ¬ x = y %(less_def_ExtPartialOrder)%
• x > y ⇔ y < x %(greater_def_ExtPartialOrder)%

and
ops inf, sup : Elem × Elem →? Elem, comm %implied
∀ x, y, z : Elem
• inf (x, y) = z ⇔

z ≤ x ∧ z ≤ y ∧ (∀ t : Elem • t ≤ x ∧ t ≤ y ⇒ t ≤ z)
%(inf_def_ExtPartialOrder)%

• sup(x, y) = z ⇔
x ≤ z ∧ y ≤ z ∧ (∀ t : Elem • x ≤ t ∧ y ≤ t ⇒ z ≤ t)

%(sup_def_ExtPartialOrder)%
end

spec ExtTotalOrder [TotalOrder] = %def
ExtPartialOrder [PartialOrder]

and
ops min, max : Elem × Elem → Elem, comm, assoc %implied
∀ x, y: Elem
• min(x, y) = x when x ≤ y else y %(min_def_ExtTotalOrder)%
• max (x, y) = y when x ≤ y else x %(max_def_ExtTotalOrder)%

then %implies
∀ x, y: Elem
• min(x, y) = inf (x, y) %(min_inf_relation)%
• max (x, y) = sup(x, y) %(max_sup_relation)%

end

spec ExtBooleanAlgebra [BooleanAlgebra] = %def
preds __≤__, __<__, __≥__, __>__ : Elem × Elem
∀ x, y: Elem
• x ≤ y ⇔ x � y = x %(leq_def_ExtBooleanAlgebra)%
• x ≥ y ⇔ y ≤ x %(geq_def_ExtBooleanAlgebra)%
• x < y ⇔ x ≤ y ∧ ¬ x = y %(less_def_ExtBooleanAlgebra)%
• x > y ⇔ y < x %(greater_def_ExtBooleanAlgebr)%

and

392 V:3 Library Basic/RelationsAndOrders

{ op __−1 : Elem → Elem
∀ x, y: Elem
• x −1 = y ⇔ x � y = 1 ∧ x � y = 0

%(compl_def_ExtBooleanAlgebra)%
then %implies

∀ x, y: Elem
• (x � y) −1 = x −1 � y −1 %(de_Morgan1)%
• (x � y) −1 = x −1 � y −1 %(de_Morgan2)%
• (x −1) −1 = x %(involution_compl_ExtBooleanAlgebra)%

}
end

spec RichPartialOrder =
ExtPartialOrder [PartialOrder]

end

spec RichTotalOrder =
ExtTotalOrder [TotalOrder]

end

spec RichBooleanAlgebra =
ExtBooleanAlgebra [BooleanAlgebra]

end

view TotalOrder_in_Nat : TotalOrder to Nat =
sort Elem �→ Nat

end

view TotalOrder_in_Int : TotalOrder to Int =
sort Elem �→ Int

end

view TotalOrder_in_Rat : TotalOrder to Rat =
sort Elem �→ Rat

end

view PartialOrder_in_ExtBooleanAlgebra [BooleanAlgebra] :
PartialOrder to ExtBooleanAlgebra [BooleanAlgebra]

end

4

Library Basic/Algebra_I

library Basic/Algebra_I version 1.0

%authors : M. Roggenbach, T. Mossakowski, L. Schröder <lschrode@tzi.de>
%date : 21 May 2003
%prec({__∗__} < {__ˆ__})%
%prec({__+__, __−__} < {__/__, __∗__})%
%left_assoc(__+__, __∗__, __ˆ__)%

from Basic/RelationsAndOrders get
TotalOrder, ExtTotalOrder, RichTotalOrder,
PreOrder, EquivalenceRelation

from Basic/Numbers get Nat, Int, Rat

spec Monoid =
sort Elem
ops e : Elem;

__∗__ : Elem × Elem → Elem, assoc, unit e
end

spec CommutativeMonoid =
Monoid

then
op __∗__ : Elem × Elem → Elem, comm

end

spec Group =
Monoid

then

394 V:4 Library Basic/Algebra_I

∀ x : Elem
• ∃ x′: Elem • x′ ∗ x = e

end

spec AbelianGroup =
Group

and
CommutativeMonoid

end

spec Ring =
AbelianGroup with sort Elem, ops __∗__ �→ __+__, e �→ 0

and
Monoid with ops e, __∗__

then
∀ x, y, z : Elem
• (x + y) ∗ z = x ∗ z + y ∗ z %(distr1_Ring)%
• z ∗ (x + y) = z ∗ x + z ∗ y %(distr2_Ring)%

end

view AbelianGroup_in_Ring_add : AbelianGroup to Ring =
ops e �→ 0, __∗__ �→ __+__

end

spec CommutativeRing =
Ring with ops 0, __+__, e, __∗__

and
CommutativeMonoid with ops e, __∗__

end

spec IntegralDomain =
CommutativeRing

then
∀ x, y: Elem
• x = 0 ∨ y = 0 if x ∗ y = 0 %(noZeroDiv)%
• ¬ e = 0 %(zeroNeqOne)%

end

spec ConstructField =
CommutativeRing

then
• ¬ e = 0
sort NonZeroElem = {x : Elem • ¬ x = 0}

and
Group with sort Elem �→ NonZeroElem, ops e, __∗__

V:4 Library Basic/Algebra_I 395

end

%% an obvious view which helps to write the specification ExtField:
view AbelianGroup_in_ConstructField :

AbelianGroup to ConstructField =
sort Elem �→ NonZeroElem

end

spec Field =
ConstructField hide sort NonZeroElem

end

view IntegralDomain_in_Field : IntegralDomain to Field

end

spec ExtMonoid [Monoid] given Nat = %def
op __ˆ__ : Elem × Nat → Elem
∀ x : Elem; n: Pos
• x ˆ 0 = e %(pow_0_Monoid)%
• x ˆ suc(n) = x ∗ x ˆ n %(pow_suc_Monoid)%

then %implies
∀ x : Elem; n, m: Nat
• e ˆ n = e %(pow_unit_Monoid)%
• x ˆ (n + m) = x ˆ n ∗ x ˆ m %(pow_add_Monoid)%
• x ˆ (n ∗ m) = (x ˆ n) ˆ m %(pow_mult_Monoid)%

end

spec ExtCommutativeMonoid [CommutativeMonoid]
given Nat = %def
ExtMonoid [Monoid]

then %implies
∀ x, y: Elem; n: Nat
• x ˆ n ∗ y ˆ n = (x ∗ y) ˆ n %(pow_basemult_CMonoid)%

end

spec ExtGroup [Group] given Int = %def
ExtMonoid [Monoid]

then
ops __ˆ__ : Elem × Int → Elem;

inv : Elem → Elem;
__/__ : Elem × Elem → Elem

∀ x, y: Elem; p: Pos
• inv(x) ∗ x = e %(inv_def_Group)%
• x / y = x ∗ inv(y) %(div_def_Group)%
• x ˆ (− p) = inv(x ˆ p) %(pow_neg_Group)%

396 V:4 Library Basic/Algebra_I

then %implies
∀ x, y, z : Elem; n, m: Int
• x ∗ inv(x) = e %(rightInv_Group)%
• x = y if z ∗ x = z ∗ y %(leftCancel_Group)%
• x = y if x ∗ z = y ∗ z %(rightCancel_Group)%
• inv(inv(x)) = x %(invInv_Group)%
• inv(e) = e %(invUnit_Group)%
• inv(x ∗ y) = inv(y) ∗ inv(x) %(invMult_Group)%
• e ˆ n = e %(pow_unit_Group)%
• x ˆ (n + m) = x ˆ n ∗ x ˆ m %(pow_add_Group)%
• x ˆ (n ∗ m) = (x ˆ n) ˆ m %(pow_mult_Group)%

end

spec ExtAbelianGroup [AbelianGroup] given Int = %def
ExtGroup [AbelianGroup]

then %implies
∀ x, y: Elem; n: Int
• x ˆ n ∗ y ˆ n = (x ∗ y) ˆ n %(pow_basemult_AbGroup)%

end

spec ExtRing [Ring] given Int = %mono
ExtAbelianGroup [view AbelianGroup_in_Ring_add]
with ops inv �→ −__, __/__ �→ __−__, __ˆ__ �→ __times__

and
ExtMonoid [Monoid] with op __ˆ__

and
preds isIrred, isUnit : Elem
sorts NonZero[Elem] = {x : Elem • ¬ x = 0};

RUnit [Elem] = {x : Elem • isUnit(x)};
Irred [Elem] = {x : Elem • isIrred(x)}

∀ x, y: Elem
• isUnit(x) ⇔ ∃ y: Elem • x ∗ y = e ∧ y ∗ x = e

%(isUnit_def_Ring)%
• isIrred(x) ⇔
¬ isUnit(x) ∧ (∀ y, z : Elem • isUnit(y) ∨ isUnit(z) if x = y ∗ z)

%(isIrred_def_Ring)%
then %def

ops e : RUnit [Elem];
−__ : RUnit [Elem] → RUnit [Elem];
__∗__ : RUnit [Elem] × RUnit [Elem] → RUnit [Elem]

end

view Group_in_ExtRing [Ring] given Int :
Group to ExtRing [Ring] =
sort Elem �→ RUnit [Elem]

V:4 Library Basic/Algebra_I 397

end

spec ExtCommutativeRing [CommutativeRing]
given Int = %mono
ExtRing [Ring]

then
preds hasNoZeroDivisors : ();

__divides__ : Elem × Elem;
associated : Elem × Elem

∀ x, y: Elem
• hasNoZeroDivisors ⇔ ∀ x, y: Elem • x = 0 ∨ y = 0 if x ∗ y = 0

%(hasNoZeroDivisors_def)%
• x divides y ⇔ ∃ z : Elem • x ∗ z = y %(divides_def)%
• associated(x, y) ⇔ ∃ u: RUnit [Elem] • x = u ∗ y

%(associated_def)%
then %implies

∀ x, y: Elem
• associated(x, y) ⇔ x divides y ∧ y divides x

end

view PreOrder_in_ExtCRing [CommutativeRing] given Int :
PreOrder to ExtCommutativeRing [CommutativeRing] =
pred __≤__ �→ __divides__

end

view AbelianGroup_in_ExtCRing [CommutativeRing]
given Int :
AbelianGroup to
ExtCommutativeRing [CommutativeRing] =
sort Elem �→ RUnit [Elem]

end

view EqRel_in_ExtCRing [CommutativeRing] given Int :
EquivalenceRelation to
ExtCommutativeRing [CommutativeRing] =
pred __∼__ �→ associated

end

spec ExtIntegralDomain [IntegralDomain]
given Int = %mono
ExtCommutativeRing [CommutativeRing]

then
op __∗__ : NonZero[Elem] × NonZero[Elem] → NonZero[Elem]

then %implies
• hasNoZeroDivisors

398 V:4 Library Basic/Algebra_I

end

spec ExtField [Field] given Int = %mono
ExtRing [Ring]

then
closed {ExtAbelianGroup

[view AbelianGroup_in_ConstructField]
with sort NonZeroElem �→ NonZero[Elem],

ops inv, __/__, __ˆ__
}

then
op __/__ : Elem × Elem →? Elem
∀ x : Elem; n: NonZero[Elem]
• 0 / n = 0 %(div_def1_Field)%
• ¬ def x / 0 %(div_def2_Field)%

then %implies
∀ x, y: Elem
• def x / y ⇔ ¬ y = 0 %(div_dom_Field)%

end

spec RichMonoid =
ExtMonoid [Monoid]

end

spec RichCommutativeMonoid =
ExtCommutativeMonoid [CommutativeMonoid]

end

spec RichGroup =
ExtGroup [Group]

end

spec RichAbelianGroup =
ExtAbelianGroup [AbelianGroup]

end

spec RichRing =
ExtRing [Ring]

end

view Group_in_RichRing : Group to RichRing =
sort Elem �→ RUnit [Elem]

end

spec RichCommutativeRing =

V:4 Library Basic/Algebra_I 399

ExtCommutativeRing [CommutativeRing]
end

view PreOrder_in_RichCRing :
PreOrder to RichCommutativeRing =
pred __≤__ �→ __divides__

end

view EqRel_in_RichCRing :
EquivalenceRelation to RichCommutativeRing =
pred __∼__ �→ associated

end

view AbelianGroup_in_RichCRing :
AbelianGroup to RichCommutativeRing =
sort Elem �→ RUnit [Elem]

end

spec RichIntegralDomain =
ExtIntegralDomain [IntegralDomain]

end

spec RichField =
ExtField [Field]

end

view CommutativeMonoid_in_Nat_Add :
CommutativeMonoid to Nat =
sort Elem �→ Nat, ops e �→ 0, __∗__ �→ __+__

end

view CommutativeMonoid_in_Nat_Mult :
CommutativeMonoid to Nat =
sort Elem �→ Nat, ops e �→ 1, __∗__ �→ __∗__

end

view CommutativeMonoid_in_Int_Mult :
CommutativeMonoid to
{ Int

then
op 1 : Int

} =
sort Elem �→ Int, ops e �→ 1, __∗__ �→ __∗__

end

400 V:4 Library Basic/Algebra_I

view AbelianGroup_in_Int_Add :
AbelianGroup to
{ Int

then
op 0 : Int

} =
sort Elem �→ Int, ops __∗__ �→ __+__, e �→ 0

end

view IntegralDomain_in_Int :
IntegralDomain to
{ Int

then
op 1 : Int

} =
sort Elem �→ Int, op e �→ 1

end

view Field_in_Rat :
Field to
{ Rat

then
op 1 : Rat

} =
sort Elem �→ Rat, op e �→ 1

end

5

Library Basic/SimpleDatatypes

library Basic/SimpleDatatypes version 1.0

%authors : T. Mossakowski <till@tzi.de>, M. Roggenbach, L. Schröder
%date : 18 June 2002
%{ This library provides unstructured datatypes like Booleans

and characters.
The Booleans are shown to be a Boolean algebra and then
enriched with the usual Boolean algebra operations.
The characters are defined to be the subset 0..255
of the natural numbers, and then constants for different
representations (ASCII, decimal, octal, hexadecimal)
are introduced. }%

%prec({__Or__} < {__And__})%

from Basic/RelationsAndOrders get
BooleanAlgebra, ExtBooleanAlgebra

from Basic/Numbers get Nat

spec Boolean = %mono
free type

Boolean ::= True | False
%%capital True and False, since true and false are predefined

ops Not__ : Boolean → Boolean;
__And__, __Or__ : Boolean × Boolean → Boolean

∀ x, y: Boolean
• Not False = True %(Not_False)%
• Not True = False %(Not_True)%
• False And False = False %(And_def1)%
• False And True = False %(And_def2)%

402 V:5 Library Basic/SimpleDatatypes

• True And False = False %(And_def3)%
• True And True = True %(And_def4)%
• x Or y = Not (Not x And Not y) %(Or_def)%
end

view BooleanAlgebra_in_Boolean :
BooleanAlgebra to Boolean =
sort Elem �→ Boolean,
ops 0 �→ False, 1 �→ True, __�__ �→ __And__,

__�__ �→ __Or__
end

%{ Get derived operations for Boolean Algebras }%
spec RichBoolean = %mono

ExtBooleanAlgebra [view BooleanAlgebra_in_Boolean]
with pred __≤__, op __−1

end

spec Char = %mono
Nat

then %mono
%% characters are generated from natural numbers 0..255

type Char ::= chr(ord :Nat)?
∀ n: Nat ; c: Char
• def chr(n) ⇔ n ≤ 255 %(chr_dom)%
• chr(ord(c)) = c %(chr_ord_inverse)%
%% definition of individual characters by decimal codes:
ops ’\000’ : Char = chr(0); %(slash_000)%

’\001’ : Char = chr(1); %(slash_001)%
’\002’ : Char = chr(2); %(slash_002)%
’\003’ : Char = chr(3); %(slash_003)%
’\004’ : Char = chr(4); %(slash_004)%
. . .
’\255’ : Char = chr(255) %(slash_255)%

%% definition of the printable characters
%% This relies on the character names
ops ’ ’ : Char = ’\032’ ; %(printable_32)%

’!’ : Char = ’\033’ ; %(printable_33)%
’\”’ : Char = ’\034’ ; %(printable_34)%
’#’ : Char = ’\035’ ; %(printable_35)%
. . .
’ÿ’ : Char = ’\255’ %(printable_255)%

preds isLetter(c: Char) ⇔
(ord(’A’) ≤ ord(c) ∧ ord(c) ≤ ord(’Z’)) ∨
(ord(’a’) ≤ ord(c) ∧ ord(c) ≤ ord(’z’));

V:5 Library Basic/SimpleDatatypes 403

%(isLetter_def)%
isDigit(c: Char) ⇔ ord(’0’) ≤ ord(c) ∧ ord(c) ≤ ord(’9’);

%(isDigit_def)%
isPrintable(c: Char) ⇔
(ord(’ ’) ≤ ord(c) ∧ ord(c) ≤ ord(’˜’)) ∨
(ord(’ ’) ≤ ord(c) ∧ ord(c) ≤ ord(’ÿ’)) %(isPrintable_def)%

%% definition of characters by octal codes, i.e. ’\o ppp’,
%% where p in {0,1,...,7} :
ops ’\o000’ : Char = ’\000’ ; %(slash_o000)%

’\o001’ : Char = ’\001’ ; %(slash_o001)%
’\o002’ : Char = ’\002’ ; %(slash_o002)%
’\o003’ : Char = ’\003’ ; %(slash_o003)%
’\o004’ : Char = ’\004’ ; %(slash_o004)%
. . .
’\o377’ : Char = ’\255’ %(slash_o377)%

%% definition of characters by hexadecimal codes, i.e. ’\xhh’,
%% where h in {0,1,..., F} :
ops ’\x00’ : Char = ’\000’ ; %(slash_x00)%

’\x01’ : Char = ’\001’ ; %(slash_x01)%
’\x02’ : Char = ’\002’ ; %(slash_x02)%
’\x03’ : Char = ’\003’ ; %(slash_x03)%
’\x04’ : Char = ’\004’ ; %(slash_x04)%
. . .
’\xFF’ : Char = ’\255’ %(slash_xFF)%

%% special characters:
ops NUL: Char = ’\000’ ; %(NUL_def)%

SOH : Char = ’\001’ ; %(SOH_def)%
SYX : Char = ’\002’ ; %(SYX_def)%
ETX : Char = ’\003’ ; %(ETX_def)%
EOT : Char = ’\004’ ; %(EOT_def)%
ENQ : Char = ’\005’ ; %(ENQ_def)%
ACK : Char = ’\006’ ; %(ACK_def)%
BEL: Char = ’\007’ ; %(BEL_def)%
BS : Char = ’\008’ ; %(BS_def)%
HT : Char = ’\009’ ; %(HT_def)%
LF : Char = ’\010’ ; %(LF_def)%
VT : Char = ’\011’ ; %(VT_def)%
FF : Char = ’\012’ ; %(FF_def)%
CR: Char = ’\013’ ; %(CR_def)%
SO : Char = ’\014’ ; %(SO_def)%
SI : Char = ’\015’ ; %(SI_def)%
DLE : Char = ’\016’ ; %(DLE_def)%
DC1 : Char = ’\017’ ; %(DC1_def)%
DC2 : Char = ’\018’ ; %(DC2_def)%
DC3 : Char = ’\019’ ; %(DC3_def)%

404 V:5 Library Basic/SimpleDatatypes

DC4 : Char = ’\020’ ; %(DC4_def)%
NAK : Char = ’\021’ ; %(NAK_def)%
SYN : Char = ’\022’ ; %(SYN_def)%
ETB : Char = ’\023’ ; %(ETB_def)%
CAN : Char = ’\024’ ; %(CAN_def)%
EM : Char = ’\025’ ; %(EM_def)%
SUB : Char = ’\026’ ; %(SUB_def)%
ESC : Char = ’\027’ ; %(ESC_def)%
FS : Char = ’\028’ ; %(FS_def)%
GS : Char = ’\029’ ; %(GS_def)%
RS : Char = ’\030’ ; %(RS_def)%
US : Char = ’\031’ ; %(US_def)%
SP : Char = ’\032’ ; %(SP_def)%
DEL: Char = ’\127’ %(DEL_def)%

%% alternative names for special characters:
ops NL: Char = LF ; %(NL_def)%

NP : Char = FF %(NP_def)%
%% character constants:
ops ’\n’ : Char = NL; %(slash_n)%

’\t’ : Char = HT ; %(slash_t)%
’\v’ : Char = VT ; %(slash_v)%
’\b’ : Char = BS ; %(slash_b)%
’\r’ : Char = CR; %(slash_r)%
’\f ’ : Char = FF ; %(slash_f)%
’\a’ : Char = BEL; %(slash_a)%
’\?’ : Char = ’?’ %(slash_quest)%

end

6

Library Basic/StructuredDatatypes

library Basic/StructuredDatatypes version 1.0

%authors(M. Roggenbach <csmarkus@swansea.ac.uk>, T. Mossakowski,
L. Schröder)%

%date : 18 December 2003
%left_assoc(__+__, __−__, __++__)%
%left_assoc(__∪__, __∩__)%
%right_assoc(__::__)%
%list [__], [], __::__
%prec({__++__} < {__::__})%
%string emptyString, __: @ :__
%display(nothing %LATEX ⊥)%
%display(__eps__ %LATEX __ε__)%
%% note: \epsilon looks different from \in,
%% which is used as LaTeX display syntax
%% for the CASL membership predicate
%display(__isSubsetOf __ %LATEX __⊆__)%
%display(__intersection__ %LATEX __∩__)%
%display(__union__ %LATEX __∪__)%
%display(#__ %LATEX �__)%

from Basic/Numbers get Nat, Int

from Basic/RelationsAndOrders get
PartialOrder, BooleanAlgebra

from Basic/Algebra_I get Monoid, CommutativeMonoid

from Basic/SimpleDatatypes get Char

406 V:6 Library Basic/StructuredDatatypes

spec Maybe [sort S] = %mono
free type Maybe[S] ::= ⊥ | sort S

end

spec Pair [sort S] [sort T] = %mono
free type Pair [S,T] ::= pair(first :S ; second :T)

end

spec GenerateSet [sort Elem] = %mono
generated type Set [Elem] ::= {} | __+__(Set [Elem]; Elem)
pred __ε__ : Elem × Set [Elem]
∀ x, y: Elem; M, N : Set [Elem]
• ¬ x ε {} %(elemOf_empty_Set)%
• x ε (M + y) ⇔ x = y ∨ x ε M %(elemOf_NonEmpty_Set)%
• M = N ⇔ ∀ x : Elem • x ε M ⇔ x ε N %(equality_Set)%

end

spec Set [sort Elem] given Nat = %mono
GenerateSet [sort Elem]

then %def
preds isNonEmpty : Set [Elem];

__⊆__ : Set [Elem] × Set [Elem]
ops {__} : Elem → Set [Elem];

�__ : Set [Elem] → Nat ;
__+__ : Elem × Set [Elem] → Set [Elem];
__−__ : Set [Elem] × Elem → Set [Elem];
__∩__, __∪__, __−__, __symDiff __ :

Set [Elem] × Set [Elem] → Set [Elem]
%% implied operation attributes
ops __∪__ : Set [Elem] × Set [Elem] → Set [Elem],

assoc, comm, idem, unit {}; %implied
__∩__ : Set [Elem] × Set [Elem] → Set [Elem],

assoc, comm, idem %implied
∀ x, y: Elem; M, N, O : Set [Elem]

%% axioms concerning predicates
• isNonEmpty(M) ⇔ ¬ M = {} %(isNonEmpty_def)%
• M ⊆ N ⇔ ∀ x : Elem • x ε M ⇒ x ε N %(isSubsetOf_def)%

%% axioms concerning operations
• { x } = {} + x %(singletonSet_def)%
• � {} = 0 %(numberOf_emptySet)%
• � (M + x) = � M when x ε M else � M + 1

%(numberOf_NonEmptySet)%
• x + M = M + x %(addElem_def_Set)%

V:6 Library Basic/StructuredDatatypes 407

• {} − y = {} %(remElem_EmptySet)%
• (M + x) − y = M − y when x = y else (M − y) + x

%(remElem_NonEmptySet)%
• M ∩ {} = {} %(intersection_Emptyset)%
• M ∩ (N + x) = (M ∩ N) + x when x ε M else M ∩ N

%(intersection_NonEmptySet)%
• M ∪ {} = M %(union_EmptySet)%
• M ∪ (N + x) = M ∪ N when x ε M else (M ∪ N) + x

%(union_NonEmptySet)%
• M − {} = M %(dif_Emptyset)%
• M − (N + x) = M − N − x %(dif_Emptyset)%
• M symDiff N = (M − N) ∪ (N − M) %(symDiff_def)%

%% important laws
• (M ∪ N) ∩ O = (M ∩ O) ∪ (N ∩ O) %(distr1_Set)% %implied
• O ∩ (M ∪ N) = (O ∩ M) ∪ (O ∩ N) %(distr2_Set)% %implied

then %implies
∀ x, y: Elem; M, N : Set [Elem]
• � (M ∪ N) = (� M + � N) −? � (M ∩ N) %(set_counting)%
• � M ≤ � (M ∪ N) %(union_counting)%
• M ⊆ (M ∪ N) %(union_isSubsetOf)%
• (M ∩ N) ⊆ M %(intersection_isSubsetOf)%

end

view PartialOrder_in_Set [sort Elem] given Nat :
PartialOrder to Set [sort Elem] =
sort Elem �→ Set [Elem], pred __≤__ �→ __⊆__

end

spec PowerSet [Set [sort Elem]
then

op X : Set [Elem]]
given Nat = %mono
sorts PowerSet [X] = {Y : Set [Elem] • Y ⊆ X };

Elem[X] = {x : Elem • x ε X }
preds __ε__ : Elem[X] × PowerSet [X];

__⊆__ : PowerSet [X] × PowerSet [X];
isNonEmpty : PowerSet [X]

ops {}, X : PowerSet [X];
�__ : PowerSet [X] → Nat ;
__+__ : Elem[X] × PowerSet [X] → PowerSet [X];
__−__ : PowerSet [X] × Elem[X] → PowerSet [X];
__∩__, __∪__, __−__, __symDiff __ :

PowerSet [X] × PowerSet [X] → PowerSet [X]

408 V:6 Library Basic/StructuredDatatypes

%% implied operation attributes
ops __∪__ : PowerSet [X] × PowerSet [X] → PowerSet [X],

assoc, comm, idem, unit {};
%implied

__∩__ : PowerSet [X] × PowerSet [X] → PowerSet [X],
assoc, comm, idem

%implied
%% important laws

∀ M, N, O : PowerSet [X]
• (M ∪ N) ∩ O = (M ∩ O) ∪ (N ∩ O)

%(distr1_PowerSet)% %implied
• O ∩ (M ∪ N) = (O ∩ M) ∪ (O ∩ N)

%(distr2_PowerSet)% %implied
end

view BooleanAlgebra_in_PowerSet [Set [sort Elem]
then

op X : Set [Elem]]
given Nat :
BooleanAlgebra to
PowerSet [Set [sort Elem]

then
op X : Set [Elem]] =

sort Elem �→ PowerSet [X],
ops 0 �→ {}, 1 �→ X, __�__ �→ __∩__, __�__ �→ __∪__

end

spec GenerateList [sort Elem] = %mono
free type List [Elem] ::= [] | __::__(first :?Elem; rest :?List [Elem])

end

spec List [sort Elem] given Nat = %mono
GenerateList [sort Elem]

then %def
preds isEmpty : List [Elem];

__ε__ : Elem × List [Elem]
ops __+__ : List [Elem] × Elem → List [Elem];

first, last : List [Elem] →? Elem;
front, rest : List [Elem] →? List [Elem];
�__ : List [Elem] → Nat ;
__++__ : List [Elem] × List [Elem] → List [Elem];
reverse : List [Elem] → List [Elem];
__!__ : List [Elem] × Nat →? Elem;
take, drop : Nat × List [Elem] →? List [Elem];
freq : List [Elem] × Elem → Nat

V:6 Library Basic/StructuredDatatypes 409

∀ x, y: Elem; n: Nat ; p: Pos ; L, K : List [Elem]

%% axioms concerning predicates
• isEmpty(L) ⇔ L = [] %(isEmpty_def)%
• ¬ x ε [] %(List_elemOf_nil)%
• x ε (x :: L) %(List_elemOf_NeList1)%
• (x ε (y :: L) ⇔ x ε L) if ¬ x = y %(List_elemOf_NeList2)%

%% axioms concerning operations
• L + x = L ++ [x] %(append_def)%
• def first(L) ⇔ ¬ isEmpty(L) %(first_dom)% %implied
• ¬ def first([]) %(first_partial_nil)% %implied
• def last(L) ⇔ ¬ isEmpty(L) %(last_dom)% %implied
• ¬ def last([]) %(last_nil)%
• last(x :: L) = x when isEmpty(L) else last(L) %(last_NeList)%
• def front(L) ⇔ ¬ isEmpty(L) %(front_dom)% %implied
• ¬ def front([]) %(front_nil)%
• front(L + x) = L %(front_NeList)%
• def rest(L) ⇔ ¬ isEmpty(L) %(rest_dom)% %implied
• ¬ def rest([]) %(rest_nil)% %implied
• � [] = 0 %(numberOf_nil_List)%
• � (x :: L) = suc(� L) %(numberOf_NeList_List)%
• [] ++ K = K %(concat_nil_List)%
• x :: L ++ K = x :: (L ++ K) %(concat_NeList_List)%
• reverse([]) = [] %(reverse_nil)%
• reverse(x :: L) = reverse(L) ++ [x] %(reverse_NeList)%
• def L ! n ⇔ � L ≥ n %(index_dom)% %implied
• ¬ def [] ! n %(index_nil)%
• (x :: L) ! 0 = x %(index_0)%
• (x :: L) ! suc(p) = L ! p %(index_suc)%
• def take(n, L) ⇔ � L ≥ n %(take_dom)% %implied
• take(n, L) = K ⇔ ∃ S : List [Elem] • K ++ S = L ∧ � K = n

%(take_def)%
• def drop(n, L) ⇔ � L ≥ n %(drop_dom)% %implied
• drop(n, L) = K ⇔ ∃ S : List [Elem] • S ++ K = L ∧ � S = n

%(drop_def)%
• freq([], x) = 0 %(freq_nil)%
• freq(x :: L, y) = suc(freq(L, y)) when x = y else freq(L, y)

%(freq_NeList)%
then %implies

free type List [Elem] ::= [] | __+__(front :?List [Elem]; last :?Elem)
∀ L: List [Elem]
• first(L) :: rest(L) = L if ¬ isEmpty(L) %(first_rest)%
• front(L) + last(L) = L if ¬ isEmpty(L) %(front_last)%

end

410 V:6 Library Basic/StructuredDatatypes

view Monoid_in_List [sort Elem] given Nat :
Monoid to List [sort Elem] =
sort Elem �→ List [Elem], ops e �→ [], __∗__ �→ __++__

end

spec String = %mono
List [Char fit sort Elem �→ Char]
with sort List [Char] �→ String,

ops [] �→ emptyString, __::__ �→ __: @ :__
end

spec GenerateMap [sort S] [sort T] = %mono
generated type Map[S,T] ::= empty | __[__/__](Map[S,T]; T ; S)
op lookup : S × Map[S,T] →? T
∀ M, N : Map[S,T]; s, s1, s2 : S ; t1, t2 : T
• ¬ def lookup(s, empty) %(lookup_empty_Map)%
• lookup(s, M [t1 / s1]) = t1 when s = s1 else lookup(s, M)

%(lookup_nonEmpty_Map)%
• M = N ⇔ ∀ s : S • lookup(s, M) = lookup(s, N)

%(equality_Map)%
end

spec Map [sort S] [sort T] given Nat = %mono
GenerateMap [sort S] [sort T]

and
Set [sort S]

and
Set [sort T]

then %def
free type Entry[S,T] ::= [__/__](target :T ; source:S)
preds isEmpty : Map[S,T];

__ε__ : Entry[S,T] × Map[S,T];
__::__− >__ : Map[S,T] × Set [S] × Set [T]

ops __+__, __−__ : Map[S,T] × Entry[S,T] → Map[S,T];
__−__ : Map[S,T] × S → Map[S,T];
__−__ : Map[S,T] × T → Map[S,T];
dom : Map[S,T] → Set [S];
range : Map[S,T] → Set [T];
__∪__ : Map[S,T] × Map[S,T] →? Map[S,T]

∀ M, N, O : Map[S,T]; s, s1, s2 : S ; t, t1, t2 : T ; e: Entry[S,T];
X : Set [S]; Y : Set [T]

%% axioms concerning predicates
• isEmpty(M) ⇔ M = empty %(isEmpty_def_Map)%

V:6 Library Basic/StructuredDatatypes 411

• [t / s] ε M ⇔ lookup(s, M) = t %(elemOf_def_Map)%
• M :: X − > Y ⇔ dom(M) = X ∧ range(M) ⊆ Y

%(arrow_def_Map)%

%% axioms concerning operations
• M + [t / s] = M [t / s] %(overwrite2_def_Map)%
• empty − [t / s] = empty %(minus_empty_Map)%
• M [t / s] − [t1 / s1] =

M − s when [t / s] = [t1 / s1] else (M − [t1 / s1]) + [t / s]
%(minus_nonEmpty_Map)%

• empty − s = empty %(minusSource_empty_Map)%
• (M + e) − s =

M − s when ∃ t : T • e = [t / s] else (M − s) + e
%(minusSource_nonEmpty_Map)%

• empty − t = empty %(minusTarget_empty_Map)%
• (M + e) − t =

M − source(e) − t when target(e) = t else (M − t) + e
%(minusTarget_nonEmpty_Map)%

• s ε dom(M) ⇔ def lookup(s, M) %(dom_def_Map)%
• t ε range(M) ⇔ ∃ s : S • lookup(s, M) = t %(range_def_Map)%
• M ∪ N = O ⇔ ∀ e: Entry[S,T] • e ε O ⇔ e ε M ∨ e ε N

%(union_def_Map)%

%% important laws
• def lookup(s, M) ⇔ ∃ t : T • [t / s] ε M

%(lookup_dom)% %implied
• (M [t1 / s]) [t2 / s] = M [t2 / s]

%(overwrite_Map)% %implied
• (M [t1 / s1]) [t2 / s2] = (M [t2 / s2]) [t1 / s1] if ¬ s1 = s2

%(comm_Map)% %implied
end

spec Finite [sort Elem] =
{ Nat

then
op f : Nat →? Elem
• ∀ x : Elem • ∃ n: Nat • f (n) = x %(f_surjective)%
• ∃ n: Nat • ∀ m: Nat • def f (m) ⇒ m < n %(f_bounded)%

}
reveal Elem

end

spec TotalMap [Finite [sort S]] [sort T] = %mono
{ Map [sort S] [sort T]
then

412 V:6 Library Basic/StructuredDatatypes

sort TotalMap[S,T] = {M : Map[S,T]
• ∀ x : S • def lookup(x, M)}

ops __[__/__] :
TotalMap[S,T] × T × S → TotalMap[S,T];

lookup : S × TotalMap[S,T] → T ;
__+__ :

TotalMap[S,T] × Entry[S,T] → TotalMap[S,T];
range : TotalMap[S,T] → Set [T];
__∪__ :

TotalMap[S,T] × TotalMap[S,T] →? TotalMap[S,T]
pred __ε__ : Entry[S,T] × TotalMap[S,T]

}
hide Map[S,T]

end

spec GenerateBag [sort Elem] given Nat = %mono
generated type Bag[Elem] ::= {} | __+__(Bag[Elem]; Elem)
op freq : Bag[Elem] × Elem → Nat
∀ x, y: Elem; M, N : Bag[Elem]
• freq({}, y) = 0 %(freq_empty_Bag)%
• freq(M + x, y) = suc(freq(M, y)) when x = y else freq(M, y)

%(freq_nonEmpty_Bag)%
• M = N ⇔ ∀ x : Elem • freq(M, x) = freq(N, x) %(equality_Bag)%

end

spec Bag [sort Elem] given Nat = %mono
GenerateBag [sort Elem]

then %def
preds isEmpty : Bag[Elem];

__ε__ : Elem × Bag[Elem];
__⊆__ : Bag[Elem] × Bag[Elem]

ops __+__ : Elem × Bag[Elem] → Bag[Elem];
__−__ : Bag[Elem] × Elem → Bag[Elem];
__−__, __∪__, __∩__ :

Bag[Elem] × Bag[Elem] → Bag[Elem];
{__}(x : Elem): Bag[Elem] = {} + x %(singleton_def_Bag)%

%% implied operation attributes
ops __∪__ : Bag[Elem] × Bag[Elem] → Bag[Elem],

assoc, comm, unit {}; %implied
__∩__ : Bag[Elem] × Bag[Elem] → Bag[Elem],

assoc, comm, idem %implied
∀ n, m: Nat ; x, y: Elem; M, N, O : Bag[Elem]

%% axioms concerning predicates
• isEmpty(M) ⇔ M = {} %(isEmpty_def_Bag)%

V:6 Library Basic/StructuredDatatypes 413

• x ε M ⇔ freq(M, x) > 0 %(elemOf_def_Bag)%
• M ⊆ N ⇔ ∀ x : Elem • freq(M, x) ≤ freq(N, x)

%(isSubsetOf_def_Bag)%

%% axioms concerning operations
• x + M = M + x %(addElem_def_Bag)%
• M − x = N ⇔
∀ y: Elem
• (freq(N, y) = freq(M, x) −! 1 if x = y) ∧

(freq(N, y) = freq(M, y) if ¬ x = y) %(removeElem_def_Bag)%
• M − N = O ⇔
∀ x : Elem • freq(O, x) = freq(M, x) −! freq(N, x)

%(difference_def_Bag)%
• M ∪ N = O ⇔ ∀ x : Elem • freq(O, x) = freq(M, x) + freq(N, x)

%(union_def_Bag)%
• M ∩ N = O ⇔
∀ x : Elem • freq(O, x) = min(freq(M, x), freq(N, x))

%(intersection_def_Bag)%
end

view CommutativeMonoid_in_Bag [sort Elem] given Nat :
CommutativeMonoid to Bag [sort Elem] =
sort Elem �→ Bag[Elem], ops e �→ {}, __∗__ �→ __∪__

end

view PartialOrder_in_Bag [sort Elem] given Nat :
PartialOrder to Bag [sort Elem] =
sort Elem �→ Bag[Elem], pred __≤__ �→ __⊆__

end

spec Array [ops min, max : Int
• min ≤ max %(Cond_nonEmptyIndex)%]
[sort Elem]

given Int = %mono
sort Index = {i : Int • min ≤ i ∧ i ≤ max}

then %mono
{ Map [sort Index] [sort Elem]

with sort Map[Index,Elem] �→ Array[Elem], op empty �→ init
then

ops __!__:=__ :
Array[Elem] × Index × Elem → Array[Elem];

__!__ : Array[Elem] × Index →? Elem
∀ A: Array[Elem]; i : Index ; e: Elem
• A ! i := e = A [e / i] %(assignment_def)%
• A ! i = lookup(i, A) %(lookup_def)%

414 V:6 Library Basic/StructuredDatatypes

}
reveal sort Array[Elem], ops init, __!__, __!__:=__

then %implies
∀ A: Array[Elem]; i, j : Index ; e, f : Elem
• ¬ def init ! i %(lookup_domain1_Array)%
• def (A ! i := e) ! i %(lookup_domain2_Array)%
• (A ! i := e) ! j = e if i = j %(lookup_assignment1_Array)%
• (A ! i := e) ! j = A ! j if ¬ i = j

%(lookup_assignment2_Array)%
end

spec GenerateBinTree [sort Elem] = %mono
free type

BinTree[Elem] ::= nil
| binTree(entry:?Elem; left :?BinTree[Elem];

right :?BinTree[Elem])
end

spec BinTree [sort Elem] given Nat, Set [sort Elem] = %mono
GenerateBinTree [sort Elem]

and
Set [sort Elem]

then %def
preds isEmpty, isLeaf : BinTree[Elem];

isCompoundTree : BinTree[Elem];
__ε__ : Elem × BinTree[Elem]

ops height : BinTree[Elem] → Nat ;
leaves : BinTree[Elem] → Set [Elem]

∀ x, y: Elem; T, T1, T2 : BinTree[Elem]

%% axioms concerning predicates
• isEmpty(T) ⇔ T = nil %(isEmpty_def_BinTree)%
• ¬ isLeaf (nil) %(isLeaf_nil_BinTree)%
• isLeaf (binTree(x, T1, T2)) ⇔ T1 = nil ∧ T2 = nil

%(isLeaf_binTree)%
• ¬ isCompoundTree(nil) %(isCompoundTree_nil_BinTree)%
• isCompoundTree(binTree(x, T1, T2)) ⇔
¬ isLeaf (binTree(x, T1, T2))

%(isCompoundTree_binTree)%
• ¬ x ε nil %(eps_nil_BinTree)%
• x ε binTree(y, T1, T2) ⇔ x = y ∨ x ε T1 ∨ x ε T1

%(eps_binTree)%

%% axioms concerning operations
• height(nil) = 0 %(height_nil_BinTree)%

V:6 Library Basic/StructuredDatatypes 415

• height(binTree(x, T1, T2)) = max (height(T1), height(T2)) + 1
%(height_BinTree)%

• leaves(nil) = {} %(leaves_nil_BinTree)%
• leaves(binTree(x, T1, T2)) =

{ x } when isLeaf (binTree(x, T1, T2))
else leaves(T1) ∪ leaves(T2)

%(leaves_BinTree)%
end

spec GenerateBinTree2 [sort Elem] = %mono
free types NonEmptyBinTree2 [Elem] ::=

leaf (entry:?Elem)
| binTree(left :?NonEmptyBinTree2 [Elem];

right :?NonEmptyBinTree2 [Elem]) ;
BinTree2 [Elem] ::= nil | sort NonEmptyBinTree2 [Elem]

end

spec BinTree2 [sort Elem]
given Nat, Set [sort Elem] = %mono
GenerateBinTree2 [sort Elem]

and
Set [sort Elem]

then %def
preds isEmpty, isLeaf : BinTree2 [Elem];

isCompoundTree : BinTree2 [Elem];
__ε__ : Elem × BinTree2 [Elem]

ops height : BinTree2 [Elem] → Nat ;
leaves : BinTree2 [Elem] → Set [Elem]

∀ x, y: Elem; T : BinTree2 [Elem]; N1, N2 : NonEmptyBinTree2 [Elem]

%% axioms concerning predicates
• isEmpty(T) ⇔ T = nil %(isEmpty_def_BinTree2)%
• isLeaf (leaf (x)) %(isLeaf_leaf_BinTree2)%
• ¬ isLeaf (binTree(N1, N2)) %(isLeaf_binTree_BinTree2)%
• ¬ isLeaf (nil) %(isLeaf_nil_BinTree2)%
• ¬ isCompoundTree(leaf (x))

%(isCompoundTree_leaf_BinTree2)%
• isCompoundTree(binTree(N1, N2))

%(isCompoundTree_binTree_BinTree2)%
• ¬ isCompoundTree(nil) %(isCompoundTree_nil_BinTree2)%
• x ε leaf (y) ⇔ x = y %(eps_leaf_BinTree2)%
• x ε binTree(N1, N2) ⇔ x ε N1 ∨ x ε N2

%(eps_binTree_BinTree2)%
• ¬ x ε nil %(eps_nil_BinTree2)%

416 V:6 Library Basic/StructuredDatatypes

%% axioms concerning operations
• height(leaf (x)) = 1 %(height_leaf_binTree2)%
• height(binTree(N1, N2)) = max (height(N1), height(N2)) + 1

%(height_binTree_BinTree2)%
• height(nil) = 0 %(height_nil_BinTree2)%
• leaves(leaf (x)) = { x } %(leaves_leaf_BinTree2)%
• leaves(binTree(N1, N2)) = leaves(N1) ∪ leaves(N2)

%(leaves_binTree_BinTree2)%
• leaves(nil) = {} %(leaves_nil_BinTree2)%

end

spec GenerateNTree [sort Elem] = %mono
free types

List [NTree[Elem]] ::= []
| __::__(first :?NTree[Elem];

rest :?List [NTree[Elem]]) ;
NTree[Elem] ::= nil

| nTree(entry:?Elem;
branches :?List [NTree[Elem]])

end

spec NTree [sort Elem] given Nat, Set [sort Elem] = %mono
GenerateNTree [sort Elem]

and
Set [sort Elem]

and
List [sort NTree[Elem]]

then %def
preds isEmpty, isLeaf : NTree[Elem];

isCompoundTree : NTree[Elem];
__ε__ : Elem × NTree[Elem];
__is__branching : NTree[Elem] × Nat

ops height : NTree[Elem] → Nat ;
maxHeight : List [NTree[Elem]] → Nat ;
leaves : NTree[Elem] → Set [Elem];
allLeaves : List [NTree[Elem]] → Set [Elem]

∀ x, y: Elem; T : NTree[Elem]; L: List [NTree[Elem]]; n: Nat

%% axioms concerning predicates
• isEmpty(T) ⇔ T = nil %(isEmpty_def_NTree)%
• ¬ isLeaf (nil) %(isLeaf_nil_NTree)%
• isLeaf (nTree(x, L)) ⇔ ∀ T : NTree[Elem] • T ε L ⇒ T = nil

%(isLeaf_nTree)%
• ¬ isCompoundTree(nil) %(isCompoundTree_nil_NTree)%
• isCompoundTree(nTree(x, L)) ⇔ ¬ isLeaf (nTree(x, L))

V:6 Library Basic/StructuredDatatypes 417

%(isCompoundTree_nTree)%
• ¬ x ε nil %(eps_nil_NTree)%
• x ε nTree(y, L) ⇔ x = y ∨ (∃ T : NTree[Elem] • T ε L ∧ x ε T)

%(eps_nTree)%
• nil is n branching %(isKbranching_nil_NTree)%
• nTree(x, L) is n branching ⇔

L = [] ∨
(� L = n ∧ (∀ T : NTree[Elem] • T ε L ⇒ T is n branching))

%(isKbranching_nTree_NTree)%

%% axioms concerning operations
• height(nil) = 0 %(height_nil_NTree)%
• height(nTree(x, L)) = maxHeight(L) + 1 %(height_nTree)%
• maxHeight([]) = 0 %(maxHeight_nil)%
• maxHeight(T :: L) = max (maxHeight(L), height(T))

%(maxHeight_nonEmptyList)%
• leaves(nil) = {} %(leaves_nil_NTree)%
• leaves(nTree(x, L)) =

{ x } when isLeaf (nTree(x, L)) else allLeaves(L) %(leaves_nTree)%
• allLeaves([]) = {} %(allLeaves_nil)%
• allLeaves(T :: L) = allLeaves(L) ∪ leaves(T)

%(allLeaves_nonEmptyList)%
end

spec GenerateNTree2 [sort Elem] = %mono
free types

NonEmptyList [NonEmptyNTree2 [Elem]] ::=
__::__(first :NonEmptyNTree2 [Elem];

rest :List [NonEmptyNTree2 [Elem]]) ;
List [NonEmptyNTree2 [Elem]] ::=

[]
| sort NonEmptyList [NonEmptyNTree2 [Elem]] ;

NonEmptyNTree2 [Elem] ::=
leaf (entry:?Elem)

| nTree(branches :?NonEmptyList [NonEmptyNTree2 [Elem]]) ;
NTree2 [Elem] ::= nil | sort NonEmptyNTree2 [Elem]

end

spec NTree2 [sort Elem] given Nat, Set [sort Elem] = %mono
GenerateNTree2 [sort Elem]

and
Set [sort Elem]

and
List [sort NonEmptyNTree2 [Elem]]

then %def

418 V:6 Library Basic/StructuredDatatypes

preds isEmpty, isLeaf : NTree2 [Elem];
isCompoundTree : NTree2 [Elem];
__ε__ : Elem × NTree2 [Elem];
__is__branching : NTree2 [Elem] × Nat

ops branches :
NTree2 [Elem] → NonEmptyList [NonEmptyNTree2 [Elem]];
h : List [NonEmptyNTree2 [Elem]] × Nat → Nat ;
%% helps defining height
height : NTree2 [Elem] → Nat ;
l : List [NonEmptyNTree2 [Elem]] → Set [Elem];
%% helps defining leaves
leaves : NTree2 [Elem] → Set [Elem]

∀ x, y: Elem; n: Nat ; T : NTree2 [Elem];
NT : NonEmptyNTree2 [Elem];
L: NonEmptyList [NonEmptyNTree2 [Elem]];
K : List [NonEmptyNTree2 [Elem]]

%% axioms concerning predicates
• isEmpty(T) ⇔ T = nil %(isEmpty_def_NTree2)%
• isLeaf (leaf (x)) %(isLeaf_leaf_NTree2)%
• ¬ isLeaf (nTree(L)) %(isLeaf_nTree_NTree2)%
• ¬ isLeaf (nil) %(isLeaf_nil_NTree2)%
• ¬ isCompoundTree(leaf (x)) %(isCompoundTree_leaf_NTree2)%
• isCompoundTree(nTree(L))

%(isCompoundTree_nTree_NTree2)%
• ¬ isCompoundTree(nil) %(isCompoundTree_nil_NTree2)%
• x ε leaf (y) ⇔ x = y %(eps_leaf_NTree2)%
• x ε nTree(L) ⇔ ∃ T : NonEmptyNTree2 [Elem] • T ε L ∧ x ε T

%(eps_nTree_NTree2)%
• ¬ x ε nil %(eps_nil_NTree2)%
• leaf (x) is n branching %(isKbranching_leaf_NTree2)%
• nTree(L) is n branching ⇔

� L = n ∧
(∀ T : NonEmptyNTree2 [Elem] • T ε L ⇒ T is n branching)

%(isKbranching_nTree_NTree2)%
• nil is n branching %(isKbranching_nil_NTree2)%

%% axioms concerning operations
• ¬ def branches(nil) %(branches_nil_nTree2)%
• h([], n) = n %(h_nil_nTree2)%
• h(NT :: K, n) = max (height(NT), h(K, n)) %(n_cons_nTree2)%
• height(leaf (x)) = 1 %(height_leaf_nTree2)%
• height(nTree(L)) = h(L, 0) + 1 %(height_nTree_nTree2)%
• height(nil) = 0 %(height_nil_nTree2)%
• l([]) = {} %(l_nil_nTree2)%

V:6 Library Basic/StructuredDatatypes 419

• l(NT :: K) = leaves(NT) ∪ l(K) %(l_cons_nTree2)%
• leaves(leaf (x)) = { x } %(leaves_leaf_nTree2)%
• leaves(nTree(L)) = l(L) %(leaves_nTree_nTree2)%
• leaves(nil) = {} %(leaves_nil_nTree2)%

end

spec KTree [sort Elem] [op k : Nat]
given Nat, Set [sort Elem] = %mono
NTree [sort Elem]

then %mono
sort KTree[Elem] = {T : NTree[Elem] • T is k branching}

end

spec KTree2 [sort Elem] [op k : Nat]
given Nat, Set [sort Elem] = %mono
NTree2 [sort Elem]

then %mono
sort KTree2 [Elem] = {T : NTree2 [Elem] • T is k branching}

end

7

Library Basic/Graphs

library Basic/Graphs version 1.0

%authors : T. Mossakowski <till@tzi.de>, M. Roggenbach, L. Schröder
%date : 18 December 2003
%% with contributions from Klaus Lüttich
%{ We construct directed graphs inductively by successively adding

nodes and edges.
Ids of nodes must be unique.
Ids of edges between two given nodes must be unique as well.
If you need multiple edges with the same label, take a sort
isomorphic to a product (e.g. Label x Int) as EdgeId. }%

%display(__::__−− >__isIn__ %LATEX __::__−→__ε__)%
%display(__isIn__ %LATEX __ε__)%

from Basic/StructuredDatatypes get Set, Map, List

from Basic/Numbers get Nat

spec Graph [sort NodeId] [sort EdgeId] =
generated type

Graph ::= emptyGraph
| addNode(NodeId ; Graph)
| addEdge(NodeId ; NodeId ; EdgeId ; Graph)?

ops source, target : EdgeId × Graph →? NodeId
preds __ε__ : NodeId × Graph;

__ε__ : EdgeId × Graph;
__::__−→__ε__ : EdgeId × NodeId × NodeId × Graph

∀ n, n1, s, t, s1, t1, s2, t2 : NodeId ; e, e1, e2 : EdgeId ; g, g′: Graph
• def addEdge(s, t, e, g) ⇔ ¬ e ε g %(dom_addEdge)%
• ¬ n ε emptyGraph %(isIn_emptyGraph)%

422 V:7 Library Basic/Graphs

• n ε addNode(n1, g) ⇔ n = n1 ∨ n ε g %(isIn_addNode)%
• n ε addEdge(s, t, e, g) ⇔ n = s ∨ n = t ∨ n ε g

%(isIn_addEdge)%
• ¬ e ε emptyGraph %(isIn_emptyGraph)%
• e ε addNode(n, g) ⇔ e ε g %(isIn_addNode)%
• e1 ε addEdge(s2, t2, e2, g) ⇔ e1 = e2 ∨ e1 ε g %(isIn_addEdge)%
• ¬ def source(e, emptyGraph) %(source_empty)%
• source(e, addNode(n, g)) = source(e, g) %(source_addNode)%
• source(e1, addEdge(s, t, e2, g)) =

s when e1 = e2 else source(e1, g) %(source_addEdge)%
• ¬ def target(e, emptyGraph) %(target_empty)%
• target(e, addNode(n, g)) = target(e, g) %(target_addNode)%
• target(e1, addEdge(s, t, e2, g)) =

t when e1 = e2 else target(e1, g) %(target_addEdge)%
• e :: s −→ t ε g ⇔

e ε g ∧ source(e, g) = s ∧ target(e, g) = t %(isIn_def)%
• g = g′ ⇔

(∀ n: NodeId • n ε g ⇔ n ε g′) ∧
(∀ e: EdgeId • e ε g ⇔ e ε g′) ∧
(∀ e: EdgeId • source(e, g) = source(e, g′)) ∧
(∀ e: EdgeId • target(e, g) = target(e, g′)) %(extensionality)%

end

%% Some basic operations and predicates on graphs
spec RichGraph [sort NodeId] [sort EdgeId] =

Graph [sort NodeId] [sort EdgeId]
then %def

ops removeNode : NodeId × Graph → Graph;
removeEdge : EdgeId × Graph → Graph

∀ n, n1, n2 : NodeId ; e, e1, e2 : EdgeId ; g, g′: Graph
• removeNode(n, emptyGraph) = emptyGraph

%(removeNode_emtpyGraph)%
• removeNode(n, addNode(n1, g)) =

removeNode(n, g)
when n = n1 else addNode(n1, removeNode(n, g))

%(removeNode_addNode)%
• removeNode(n, addEdge(n1, n2, e, g)) =

removeNode(n, g)
when n = n1 ∨ n = n2
else addEdge(n1, n2, e, removeNode(n, g))

%(removeNode_addEdge)%
• removeEdge(e, emptyGraph) = emptyGraph

%(removeEdge_emtpyGraph)%
• removeEdge(e, addNode(n1, g)) = addNode(n1, removeEdge(e, g))

%(removeEdge_addNode)%

V:7 Library Basic/Graphs 423

• removeEdge(e, addEdge(n1, n2, e1, g)) =
removeEdge(e, g)
when e = e1 else addEdge(n1, n2, e1, removeEdge(e, g))

%(removeEdge_addEdge)%
pred symmetric(g: Graph) ⇔

∀ n1, n2 : NodeId ; e: EdgeId
• e :: n1 −→ n2 ε g ⇒

(∃ e′: EdgeId • e′ :: n2 −→ n1 ε g) %(symmetric_def)%
pred transitive(g: Graph) ⇔

∀ n1, n2, n3 : NodeId ; e1, e2 : EdgeId
• e1 :: n1 −→ n2 ε g ∧

e2 :: n2 −→ n3 ε g ⇒
(∃ e3 : EdgeId • e2 :: n1 −→ n3 ε g) %(transitive_def)%

pred loopFree(g: Graph) ⇔
¬ ∃ n: NodeId ; e: EdgeId • e :: n −→ n ε g %(loopFree_def)%

pred simple(g: Graph) ⇔
∀ e1, e2 : EdgeId ; s, t : NodeId
• e1 :: s −→ t ε g ∧ e2 :: s −→ t ε g ⇒

e1 = e2 %(simple_def)%
pred __subgraphOf __(g1, g2 : Graph) ⇔

(∀ n: NodeId • n ε g1 ⇒ n ε g2) ∧
(∀ n1, n2 : NodeId ; e: EdgeId
• e :: n1 −→ n2 ε g1 ⇒

e :: n1 −→ n2 ε g2) %(subgraphOf_def)%
pred complete(g: Graph) ⇔

∀ n1, n2 : NodeId
• n1 ε g ∧ n2 ε g ⇒ (∃ e: EdgeId • e :: n1 −→ n2 ε g)

%(complete_def)%
pred __cliqueOf __(g1, g2 : Graph) ⇔

g1 subgraphOf g2 ∧ complete(g1) %(cliqueOf_def)%
pred __maxCliqueOf __(g1, g2 : Graph) ⇔

g1 cliqueOf g2 ∧
(∀ g3 : Graph
• g1 subgraphOf g3 ∧ g3 cliqueOf g2 ⇒ g1 = g3)

%(max_cliqueOf_def)%
end

%% Mapping our representation to a set-based one
spec GraphToSet [sort NodeId] [sort EdgeId] =

Graph [sort NodeId] [sort EdgeId]
and
%% The following also imports Set[EdgeId] and Set[NodeId]

Map [sort EdgeId] [sort NodeId]
then %def

ops nodeSet : Graph → Set [NodeId];

424 V:7 Library Basic/Graphs

sourceMap, targetMap : Graph → Map[EdgeId,NodeId]
∀ g: Graph; n: NodeId ; e: EdgeId
• n ε nodeSet(g) ⇔ n ε g %(nodeSet_def)%
• [n / e] ε sourceMap(g) ⇔ source(e, g) = n %(sourceMap_def)%
• [n / e] ε targetMap(g) ⇔ target(e, g) = n %(targetMap_def)%

then %def
ops edgeSet : Graph → Set [EdgeId];

successors, predecessors : NodeId × Graph → Set [NodeId];
inEdges, outEdges : NodeId × Graph → Set [EdgeId];
inDegree, outDegree : NodeId × Graph → Nat

∀ n, n1, n2 : NodeId ; e: EdgeId ; g: Graph
• e ε edgeSet(g) ⇔ e ε g %(edgeSet_def)%
• n2 ε successors(n1, g) ⇔
∃ e: EdgeId • e :: n1 −→ n2 ε g %(successors_def)%

• n1 ε predecessors(n2, g) ⇔
∃ e: EdgeId • e :: n1 −→ n2 ε g %(predecessors_def)%

• e ε inEdges(n1, g) ⇔
∃ n2 : NodeId • e :: n2 −→ n1 ε g %(inEdges_def)%

• e ε outEdges(n1, g) ⇔
∃ n2 : NodeId • e :: n1 −→ n2 ε g %(outEdges_def)%

• inDegree(n, g) = � inEdges(n, g) %(inDegree_def)%
• outDegree(n, g) = � outEdges(n, g) %(outDegree_def)%

end

%% The subsort of symmetric (= undirected) graphs
spec SymmetricGraph [sort NodeId] [sort EdgeId] =

Graph [sort NodeId] [sort EdgeId]
then

sort SymmetricGraph = {g: Graph
• ∀ s, t : NodeId ; e: EdgeId
• e :: s −→ t ε g ⇔

e :: t −→ s ε g}
%(SymmetricGraph_def)%

type SymmetricGraph ::= emptyGraph
| addNode(node:?NodeId ;

graph:?SymmetricGraph)
| addEdgeSym(source, target :?NodeId ;

edge:?EdgeId ;
graph:?SymmetricGraph)

preds __ε__ : NodeId × SymmetricGraph;
__::__−→__ε__ : EdgeId × NodeId × NodeId ×
SymmetricGraph

V:7 Library Basic/Graphs 425

∀ s, t : NodeId ; e: EdgeId ; g: SymmetricGraph
• addEdgeSym(s, t, e, g) =

addEdge(s, t, e, addEdge(t, s, e, g)) as SymmetricGraph
%(addEdge_def)%

%% the other operations and predicates are determined
%% by the overloading relations

end

spec SymmetricClosure [sort NodeId] [sort EdgeId] =
RichGraph [sort NodeId] [sort EdgeId]

then
op sc : Graph → Graph
∀ n, n1, n2 : NodeId ; e: EdgeId ; g: Graph
• n ε sc(g) ⇔ n ε g %(sc_def_1)%
• e :: n1 −→ n2 ε sc(g) ⇔

e :: n1 −→ n2 ε g ∨ e :: n2 −→ n1 ε g
%(sc_def_2)%

then %implies
∀ g: Graph
• symmetric(sc(g)) %(symmetric_sc)%

end

%% Various things defined in terms of paths and transitive closure
spec Paths [sort NodeId] [sort EdgeId] =

RichGraph [sort NodeId] [sort EdgeId]
and

List [sort EdgeId]
and

SymmetricClosure [sort NodeId] [sort List [EdgeId]]
with sort Graph �→ PathGraph

then
ops source, target : List [EdgeId] × Graph →? NodeId ;

tc, stc : Graph → PathGraph
preds __pathOf __ : List [EdgeId] × Graph;

__pathSubgraphOf __ : Graph × PathGraph;
pathTransitive : PathGraph

∀ n, n1, n2 : NodeId ; e: EdgeId ; p: List [EdgeId]; g: Graph;
g′: PathGraph
• source(p, g) = source(first(p), g)
• target(p, g) = target(last(p), g)
• g pathSubgraphOf g′ ⇔

(∀ n: NodeId • n ε g ⇔ n ε g′) ∧
(∀ n1, n2 : NodeId ; e: EdgeId
• e :: n1 −→ n2 ε g ⇔ [e] :: n1 −→ n2 ε g′)

%(pathSubgraphOf_def)%

426 V:7 Library Basic/Graphs

• pathTransitive(g′) ⇔
∀ n1, n2, n3 : NodeId ; e1, e2 : List [EdgeId]
• e1 :: n1 −→ n2 ε g′ ∧

e2 :: n2 −→ n3 ε g′ ⇒
(e1 ++ e2) :: n1 −→ n3 ε g′ %(pathTransitive_def)%

• pathTransitive(tc(g)) %(tc_def1)%
• g pathSubgraphOf tc(g) %(tc_def2)%
• g pathSubgraphOf g′ ∧ pathTransitive(g′) ⇒ tc(g) subgraphOf g′

%(tc_def3)%
• p pathOf g ⇔ p ε tc(g) %(pathOf_def)%
• stc(g) = sc(tc(g)) %(stc_def)%
%% Connectedness and acyclity can be elegantly expressed
%% using (symmetric) transitive closure
pred connected(g: Graph) ⇔ complete(stc(g)) %(connected_def)%
pred stronglyConnected(g: Graph) ⇔ complete(tc(g))

%(stronglyconnected_def)%
pred acyclic(g: Graph) ⇔ loopFree(tc(g)) %(acyclic_def)%
pred hasCycle(g: Graph) ⇔ ¬ acyclic(g) %(hasCycle_def)%
%% A tree is an acyclic graph with a root node, such that each
%% other node is reachable via a unique path from the root
pred tree(g: Graph) ⇔

acyclic(g) ∧
(∃ root : NodeId
• root ε g ∧

(∀ n: NodeId
• n ε g ∧ ¬ n = root ⇒

(∃! p: List [EdgeId]
• p pathOf g ∧ source(p, g) = root ∧ target(p, g) = n)))

%(tree_def1)%
%% A spanning tree is a tree subgraph that has the same nodes
pred __spanningTreeOf __(t, g: Graph) ⇔

tree(t) ∧ t subgraphOf g ∧ (∀ n: NodeId • n ε g ⇒ n ε t)
%(spanning_tree_def)%

%% a symmetric graph is hasCycle iff there is a path that is a cycle
%% and that does not contain a two-loop
pred symmetricHasCycle(g: Graph) ⇔

symmetric(g) ∧
(∃ p: List [EdgeId]; e: EdgeId
• p pathOf g ∧

freq(p, e) = 2 ∧
¬ ∃ e1, e2 : EdgeId ; n1, n2 : NodeId
• e1 ε p ∧

e2 ε p ∧
e1 :: n1 −→ n2 ε g ∧
e2 :: n2 −→ n1 ε g) %(symmetricHasCycle_def)%

V:7 Library Basic/Graphs 427

pred symmetricAcyclic(g: Graph) ⇔
symmetric(g) ∧ ¬ symmetricHasCycle(g)

%(symmetricAcyclic_def)%
pred symmetricTree(g: Graph) ⇔

symmetricAcyclic(g) ∧ connected(g) %(symmetricTree_def)%
then %implies
%% finite trees are finite acyclic connected graphs with no
%% occurrences of –> * <–

pred tree(g: Graph) ⇔
acyclic(g) ∧
connected(g) ∧
¬ ∃ e1, e2 : EdgeId ; n1, n2, n3 : NodeId
• e1 :: n1 −→ n2 ε g ∧

e2 :: n3 −→ n2 ε g
%(tree_def2)%

end

spec GraphColorability [sort NodeId] [sort EdgeId]
given Nat =
GraphToSet [sort NodeId] [sort EdgeId]

and
Map [sort NodeId] [sort Nat]

then
pred __is__colorable(g: Graph; n: Nat) ⇔

∃ f : Map[NodeId,Nat]
• dom(f) = nodeSet(g) ∧

(∀ m: Nat • m ε range(f) ⇒ m < n) ∧
(∀ e: EdgeId ; s, t : NodeId
• e :: s −→ t ε g ⇒ ¬ lookup(s, f) = lookup(t, f))

%(colorable_def)%
pred bipartite(g: Graph) ⇔ g is 2 colorable %(bipartite_def)%

end

%% Shortest paths in graphs having weights for their edges
%% Note that the weight function is given globally
%% If edge Ids should be e.g. integers, then EdgeId should
%% consists of pairs (id,weight) of integers and naturals
spec ShortestPaths [sort NodeId]

[sort EdgeId
op weight : EdgeId → Nat]

given Nat =
Paths [sort NodeId] [sort EdgeId]

then
ops distance : List [EdgeId] → Nat ;

shortestPath : NodeId × NodeId × Graph →? List [EdgeId]

428 V:7 Library Basic/Graphs

∀ s, t : NodeId ; e: EdgeId ; p: List [EdgeId]; g: Graph
• distance([]) = 0 %(distance_nil)%
• distance(e :: p) = weight(e) + distance(p) %(distance_cons)%
• def shortestPath(s, t, g) ⇔
∃ p: List [EdgeId]
• p pathOf g ∧ source(p, g) = s ∧ target(p, g) = t

%(shortestPath_dom)%
• def shortestPath(s, t, g) ∧

p pathOf g ∧
source(p, g) = s ∧
target(p, g) = t ⇒
distance(shortestPath(s, t, g)) ≤ distance(p) %(shortestPath_def)%

end

spec GraphHomomorphism [sort N1] [sort E1] [sort N2] [sort E2] =
Graph [sort N1] [sort E1] with Graph �→ Graph1

and
Graph [sort N2] [sort E2] with Graph �→ Graph2

and
Map [sort N1] [sort N2]

and
Map [sort E1] [sort E2]

then
free type

PreHom ::= preHom(source:Graph1 ; target :Graph2 ;
nodeMap:Map[N1,N2]; edgeMap:Map[E1,E2])

sort Hom = {h: PreHom
• ∀ n, n′: N1 ; e: E1
• e :: n −→ n′ ε source(h) ⇒

lookup(e, edgeMap(h)) :: lookup(n, nodeMap(h))
−→ lookup(n′, nodeMap(h)) ε target(h)}

%(Hom_def)%
end

%% A minor of a graph is something that can be homomorphically
%% mapped to the transitive closure
spec Minor [sort N1] [sort E1] [sort N2] [sort E2] =

Paths [sort N2] [sort E2] with Graph �→ Graph2
and

GraphHomomorphism [sort N1] [sort E1] [sort N2]
[sort List [E2]]

with Graph2 �→ PathGraph
then

V:7 Library Basic/Graphs 429

pred __minorOf __(g1 : Graph1 ; g2 : Graph2) ⇔
∃ h: Hom • source(h) = g1 ∧ target(h) = stc(g2)

%(minorOf_def)%
end

%% The complete graph over five nodes
spec K5 =

free types
Five ::= 1 | 2 | 3 | 4 | 5 ;
FivePair ::= pair(Five; Five)

then
RichGraph [sort Five] [sort FivePair]

then
op k5 : Graph
∀ n, n1, n2 : Five
• simple(k5) %(k5_simple)%
• n ε k5 %(k5_def_1)%
• pair(n1, n2) :: n1 −→ n2 ε k5 %(k5_def_2)%

end

%% The graph consisting of two copies of three nodes,
%% such that two nodes are linked by an edge iff they stem
%% from different copies
spec K3_3 =

free type Three ::= 1 | 2 | 3
free type Three2 ::= left(Three) | right(Three)
free type ThreePair ::= pair(Three; Three)

then
RichGraph [sort Three2] [sort ThreePair]

then
op k3_3 : Graph
∀ n, n1, n2 : Three
• simple(k3_3)
• left(n) ε k3_3 %(k3_3_def_1)%
• right(n) ε k3_3 %(k3_3_def_2)%
• pair(n1, n2) :: left(n1) −→ right(n2) ε k3_3

%(k3_3_def_3)%
end

%% planar graphs defined using the Kuratowski characterization:
%% K5 and K3_3 must not occur as minors
spec Planar [sort NodeId] [sort EdgeId] =

K5 with Graph �→ Graph5
and

K3_3 with Graph �→ Graph3_3

430 V:7 Library Basic/Graphs

and
Minor [sort Five] [sort FivePair] [sort NodeId] [sort EdgeId]
with Graph1 �→ Graph5, Graph2 �→ Graph

and
Minor [sort Three2] [sort ThreePair] [sort NodeId] [sort EdgeId]
with Graph1 �→ Graph3_3, Graph2 �→ Graph

then
pred planar(g: Graph) ⇔ ¬ k5 minorOf g ∧ ¬ k3_3 minorOf g

%(planar_def)%
end

%% Graphs with edge labels that need not be unique
%% The trick is to make them unique by adding the source and target node
spec NonUniqueEdgesGraph [sort NodeId] [sort EdgeLabel] =

free type EdgeId ::= EI (NodeId ; EdgeLabel ; NodeId)
then

RichGraph [sort NodeId] [sort EdgeId]
then

ops addEdge :
NodeId × NodeId × EdgeLabel × Graph → Graph;

removeEdgeLabel : EdgeLabel × Graph → Graph
preds __ε__ : EdgeLabel × Graph;

__::__−→__ε__ :
EdgeLabel × NodeId × NodeId × Graph

∀ n, n1, n2 : NodeId ; el, el′: EdgeLabel ; g: Graph
• addEdge(n1, n2, el, g) = addEdge(n1, n2, EI (n1, el, n2), g)

%(addEdgeNU_def)%
• el′ ε removeEdgeLabel(el, g) ⇔ el′ ε g ∧ ¬ el = el′

%(removeEdgeLabel_def1)%
• n ε removeEdgeLabel(el, g) ⇔ n ε g %(removeEdgeLabel_def2)%
• el ε g ⇔ ∃ n1, n2 : NodeId • EI (n1, el, n2) ε g %(isInNU1_def)%
• el :: n1 −→ n2 ε g ⇔ EI (n1, el, n2) ε g %(isInNU2_def)%

end

8

Library Basic/Algebra_II

library Basic/Algebra_II version 1.0

%authors : L. Schröder <lschrode@tzi.de>, M. Roggenbach, T. Mossakowski
%date : 21 May 2003
%prec({__∗__} < {__ˆ__})%
%prec({__+__, __−__} < {__/__, __∗__})%
%left_assoc(__+__, __∗__, __ˆ__)%

from Basic/RelationsAndOrders get
PreOrder, TotalOrder, EquivalenceRelation

from Basic/Algebra_I get
Monoid, CommutativeMonoid, Group, CommutativeRing,
IntegralDomain, RichIntegralDomain, Field, ExtMonoid,
ExtGroup, ExtCommutativeRing

from Basic/Numbers get Nat, Int

from Basic/StructuredDatatypes get List, Bag

spec EuclidianRing =
IntegralDomain

and
Nat reveal pred __<__

then
op delta : Elem →? Nat
∀ a, b: Elem
• def delta(a) if ¬ a = 0 %(delta_dom_ER)%

432 V:8 Library Basic/Algebra_II

• (∃ q, r : Elem • a = q ∗ b + r ∧ (r = 0 ∨ delta(r) < delta(b)))
if ¬ b = 0 %(div_ER)%

end

spec ConstructFactorialRing =
RichIntegralDomain

with sorts RUnit [Elem], Irred [Elem], pred associated
then %mono

Bag [sort Irred [Elem]]
with sort Bag[Irred [Elem]] �→ Factors [Elem]

then %def
pred equivalent : Factors [Elem] × Factors [Elem]
op prod : Factors [Elem] → Elem
∀ i, j : Irred [Elem]; S, T : Factors [Elem]
• prod({}) = e %(prod_empty_CFR)%
• prod(S + i) = prod(S) ∗ i %(prod_plus_CFR)%
• equivalent(S, T) ⇔

(S = {} ∧ T = {}) ∨
(∃ s, t : Irred [Elem]
• s ε S ∧ t ε T ∧ associated(s, t) ∧ equivalent(S − s, T − t))

%(equivalent_def_CFR)%
then

∀ x : Elem; S, T : Factors [Elem]
• ∃ V : Factors [Elem] • x = prod(V) %(existsFact_CFR)%
• associated(prod(S), prod(T)) ⇒ equivalent(S, T)

%(uniqueFact_CFR)%
end

spec FactorialRing =
ConstructFactorialRing

reveal sort Elem,
ops __+__ : Elem × Elem → Elem,

__∗__ : Elem × Elem → Elem, 0 : Elem, e : Elem
end

spec IntInfinity =
Int

then
{ free type IntInfty ::= sort Int | infty | negInfty

ops __+__, __∗__ : IntInfty × IntInfty →? IntInfty,
comm;

__−__ : IntInfty × IntInfty →? IntInfty;
−__ : IntInfty → IntInfty

preds __<__, __≤__ : IntInfty × IntInfty
then

V:8 Library Basic/Algebra_II 433

∀ n: Int ; m, k : IntInfty
• − infty = negInfty %(neg_def1_II)%
• − negInfty = infty %(neg_def2_II)%
• negInfty ≤ m %(leq_def1_II)%
• m ≤ infty %(leq_def2_II)%
• m ≤ negInfty ⇒ m = negInfty %(leq_def3_II)%
• infty ≤ m ⇒ infty = m %(leq_def4_II)%
• m < k ⇔ m ≤ k ∧ ¬ m = k %(less_def_II)%
• infty + n = infty %(add_def1_II)%
• infty + infty = infty %(add_def2_II)%
• ¬ def infty + negInfty %(add_def3_II)%
• negInfty + k = − (infty + − k) %(add_def4_II)%
• 0 < m ⇒ infty ∗ m = infty %(mult_def1_II)%
• ¬ def infty ∗ 0 %(mult_def2_II)%
• − m ∗ k = − (m ∗ k) %(mult_def3_II)%
• m − k = m + − k %(sub_def_II)%

}
hide negInfty

end

view TotalOrder_in_IntInfinity :
TotalOrder to IntInfinity =
sort Elem �→ IntInfty

end

spec ConstructPolynomial [CommutativeRing]
given { Int

then
op 0 : Int

} = %mono
IntInfinity

then
local List [sort Elem] within

{ %% [a_0,...,a_n] is a_n * xˆn + ... + a_0
sort Poly[Elem] = {l : List [Elem] • ¬ last(l) = 0}

then
sort Elem < Poly[Elem]
ops X : Poly[Elem];

degree : Poly[Elem] → IntInfty;
__:::__ : Elem × Poly[Elem] → Poly[Elem];
__+__, __∗__ :

Poly[Elem] × Poly[Elem] → Poly[Elem]
∀ a, b: Elem; p, q: Poly[Elem]
• X = [0, e] %(X_def_Poly)%
• a = [] when a = 0 else [a] %(emb_def_Poly)%

434 V:8 Library Basic/Algebra_II

• a ::: p = a when p = 0 else a :: p %(cons_def_Poly)%
• degree(p) = − infty when p = 0 else pre(� p)

%(degree_def_Poly)%
• p + 0 = p %(add_zero1_Poly)%
• 0 + p = 0 %(add_zero2_Poly)%
• (a ::: p) + (b ::: q) = (a + b) ::: (p + q)

%(add_cons_Poly)%
• p ∗ 0 = 0 %(mult_zero1_Poly)%
• 0 ∗ p = 0 %(mult_zero2_Poly)%
• (a ::: p) ∗ (b ::: q) =

((a ∗ b) ::: (b ∗ p + a ∗ q)) + (0 ::: (0 ::: (p ∗ q)))
%(mult_cons_Poly)%

}
end

view CRing_in_CPolynomial [CommutativeRing] given Int :
CommutativeRing to
ConstructPolynomial [CommutativeRing] =
sort Elem �→ Poly[Elem]

end

spec Polynomial [CommutativeRing] given Int =
ExtCommutativeRing [view CRing_in_CPolynomial

[CommutativeRing]]
then %implies

∀ p, q: Poly[Elem]
• degree(p) ≤ degree(q) ⇒ degree(p + q) ≤ degree(q)

%(degree_add_Poly)%
• degree(p ∗ q) ≤ (degree(p) + degree(q)) %(degree_mult1_Poly)%
• hasNoZeroDivisors ⇒ degree(p ∗ q) = degree(p) + degree(q)

%(degree_mult2_Poly)%
end

view EuclidianRing_in_Polynomial [Field] given Int :
EuclidianRing to
{ Polynomial [Field]
then

op natDegree : Poly[Elem] →? Nat
∀ p: Poly[Elem]
• natDegree(p) = degree(p) as Nat %(natDegree_def)%

} =
sort Elem �→ Poly[Elem], op delta �→ natDegree

end

spec MonoidAction [Monoid] =

V:8 Library Basic/Algebra_II 435

sort Space
op __∗__ : Elem × Space → Space
∀ x : Space; a, b: Elem
• e ∗ x = x %(unit_MAction)%
• a ∗ b ∗ x = a ∗ (b ∗ x) %(assoc_MAction)%

end

spec GroupAction [Group] =
MonoidAction [Group]

end

spec ExtEuclidianRing [EuclidianRing] given Int = %mono
RichIntegralDomain

end

spec ExtFactorialRing [FactorialRing] given Int =
RichIntegralDomain

and
ConstructFactorialRing

end

spec ExtMonoidAction [MonoidAction [Monoid]]
given Nat = %def
ExtMonoid [Monoid]

then
pred connected : Space × Space
∀ x, y: Space
• connected(x, y) ⇔ ∃ a: Elem • a ∗ x = y

%(connected_def_EMAction)%
end

view PreOrder_in_ExtMonoidAction [MonoidAction [Monoid]]
given Nat :
PreOrder to ExtMonoidAction [MonoidAction [Monoid]] =
sort Elem �→ Space, pred __≤__ �→ connected

end

spec ExtGroupAction [GroupAction [Group]]
given Int = %def
ExtMonoidAction [GroupAction [Group]]

and
ExtGroup [Group]

then %implies
∀ a, b: Elem; x, y: Space
• x = y if a ∗ x = a ∗ y %(inj_EGAction)%

436 V:8 Library Basic/Algebra_II

• ∃ z : Space • a ∗ z = x %(surj_EGAction)%
end

view EqRel_in_ExtGroupAction [GroupAction [Group]]
given Int :
EquivalenceRelation to
ExtGroupAction [GroupAction [Group]] =
sort Elem �→ Space, pred __∼__ �→ connected

end

spec RichMonoidAction [Monoid] =
ExtMonoidAction [MonoidAction [Monoid]]

end

view PreOrder_in_RichMonoidAction [Monoid] :
PreOrder to RichMonoidAction [Monoid] =
sort Elem �→ Space, pred __≤__ �→ connected

end

spec RichGroupAction [Group] =
ExtGroupAction [GroupAction [Group]]

end

view EqRel_in_RichGroupAction [Group] :
EquivalenceRelation to RichGroupAction [Group] =
sort Elem �→ Space, pred __∼__ �→ connected

end

spec RichEuclidianRing =
ExtEuclidianRing [EuclidianRing]

end

spec RichFactorialRing =
ExtFactorialRing [FactorialRing]

end

view FactorialRing_in_ExtEuclRing [EuclidianRing]
given Int :
FactorialRing to ExtEuclidianRing [EuclidianRing]

end

view FactorialRing_in_RichEuclidianRing :
FactorialRing to RichEuclidianRing

end

V:8 Library Basic/Algebra_II 437

view EuclidianRing_in_Int :
EuclidianRing to
{ Int

then
op 1 : Int

} =
sort Elem �→ Int, ops delta �→ abs, e �→ 1

end

view FreeMonoid_in_List [sort Elem] given Nat :
{ sort Generators
then

free { Monoid

then
op inject : Generators → Elem

}
} to
{ List [sort Elem]
then

op singleton(x : Elem): List [Elem] = [x]
} =
sorts Elem �→ List [Elem], Generators �→ Elem,
ops e �→ [], __∗__ �→ __++__, inject �→ singleton

end

view FreeCommutativeMonoid_in_Bag [sort Elem]
given Nat :
{ sort Generators
then

free { CommutativeMonoid

then
op inject : Generators → Elem

}
} to
Bag [sort Elem] =
sorts Elem �→ Bag[Elem], Generators �→ Elem,
ops e �→ {}, __∗__ �→ __∪__, inject �→ {__}

end

9

Library Basic/LinearAlgebra_I

library Basic/LinearAlgebra_I version 1.0

%authors : L. Schröder <lschrode@tzi.de>, M. Roggenbach, T. Mossakowski
%date : 9 January 2004
%prec({__∗__} < {__ˆ__})%
%prec({__+__, __−__} < {__/__, __∗__})%
%left_assoc(__+__, __∗__, __ˆ__)%

from Basic/Algebra_I get
AbelianGroup, ExtAbelianGroup, Monoid, Group, Field,
ExtField, RichField

from Basic/Algebra_II get
MonoidAction, RichMonoidAction, GroupAction,
ExtGroupAction, EuclidianRing_in_Int

from Basic/Numbers get Nat, Int

from Basic/Algebra_II get Polynomial

from Basic/StructuredDatatypes get Array, Map

spec VectorSpace [Field] =
MonoidAction [Monoid

with ops e, __∗__ : Elem × Elem → Elem]
with sort Space, op __∗__ : Elem × Space → Space

then
closed {AbelianGroup

with sort Elem �→ Space, ops e �→ 0, __∗__ �→ __+__

440 V:9 Library Basic/LinearAlgebra_I

}
then

∀ x, y: Space; a, b: Elem
• (a + b) ∗ x = a ∗ x + b ∗ x %(distr1_VS)%
• a ∗ (x + y) = a ∗ x + a ∗ y %(distr2_VS)%

end

view AbelianGroup_in_VectorSpace [Field] :
AbelianGroup to VectorSpace [Field] =
sort Elem �→ Space, ops e �→ 0, __∗__ �→ __+__

end

view GroupAction_in_VectorSpace [Field] :
GroupAction [Group] to
{ VectorSpace [RichField

reveal sorts Elem, NonZero[Elem],
ops e, 0, __+__, __∗__]

then
op __∗__ : NonZero[Elem] × Space → Space

} =
sort Elem �→ NonZero[Elem]

end

view VectorSpace_in_Field [Field] :
VectorSpace [Field] to Field =
sort Space �→ Elem,
op __∗__ : Elem × Space → Space �→

__∗__ : Elem × Elem → Elem
end

spec VectorSpaceLC [VectorSpace [Field]] = %mono
Map [sort Space] [sort Elem]
with sort Map[Space,Elem] �→ LC [Space,Elem]
hide sorts Set [Space], Set [Elem], NonEmptySet [Space],

NonEmptySet [Elem]
then

op eval : LC [Space,Elem] → Space
pred isZero : LC [Space,Elem]
∀ x : Space; r : Elem; l : LC [Space,Elem]
• eval(empty) = 0 %(eval_empty_EVS)%
• lookup(x, l) = r ⇒ eval(l) = r ∗ x + eval(l − [r / x])

%(eval_add_EVS)%
• isZero(l) ⇔ ∀ y: Space • lookup(y, l) = 0 if def lookup(y, l)

%(isZero_def_EVS)%
end

V:9 Library Basic/LinearAlgebra_I 441

spec ConstructVSWithBase [Field] [sort Base]
given Int = %mono
VectorSpaceLC [VectorSpace [Field]]

then
sort Base < Space

then
Map [sort Base] [sort Elem]
with sort Map[Base,Elem] �→ LC [Base,Elem]
hide sorts Set [Base], Set [Elem], NonEmptySet [Base],

NonEmptySet [Elem]
then

sort LC [Base,Elem] < LC [Space,Elem]
∀ l : LC [Base,Elem]
• ∀ y: Space • ∃ k : LC [Base,Elem] • y = eval(k)

%(generating_CVSB)%
• eval(l) = 0 ⇒ isZero(l) %(independent_CVSB)%

end

spec VSWithBase [Field] [sort Base] =
ConstructVSWithBase [Field] [sort Base]
reveal sorts Space, Elem, Base,

ops __+__ : Space × Space → Space, 0 : Space,
__∗__ : Elem × Space → Space,
__∗__ : Elem × Elem → Elem,
__+__ : Elem × Elem → Elem, 0 : Elem, e : Elem

end

spec ExtVectorSpace [VectorSpace [Field]]
given Int = %mono
RichField

and
ExtAbelianGroup [view AbelianGroup_in_VectorSpace

[Field]]
with ops inv �→ −__, __ˆ__ �→ __times__,

__/__ �→ __−__
and

RichMonoidAction [Monoid]
and

ExtGroupAction [view GroupAction_in_VectorSpace

[Field]]
and

VectorSpaceLC [VectorSpace [Field]]
end

442 V:9 Library Basic/LinearAlgebra_I

spec ExtVSWithBase [VSWithBase [Field] [sort Base]]
given Int = %mono
ExtVectorSpace [VSWithBase [Field] [sort Base]]

and
ConstructVSWithBase [Field] [sort Base]
with sort LC [Base,Elem]

then %implies
∀ l, k : LC [Base,Elem]
• eval(l) = eval(k) ⇒ l = k %(uniqueRepres_EVSB)%

then %def
op coefficients : Space → LC [Base,Elem]
∀ x : Space
• eval(coefficients(x)) = x %(coefficients_def_EVSB)%

then %implies
∀ l : LC [Base,Elem]
• coefficients(eval(l)) = l %(recoverCoeff_EVSB)%

end

spec VectorTuple [VectorSpace [Field]] [op n : Pos]
given Int = %mono
{ Array [ops 1, n : Int fit ops min : Int �→ 1, max : Int �→ n]

[sort Space]
hide sorts Set [Space], Set [Index], NonEmptySet [Space],

NonEmptySet [Index]
with sorts Index �→ Index [n], Array[Space]

then %def
sort Index [n] < Nat

then
sort Tuple[Space,n] = {x : Array[Space]

• ∀ i : Index [n] • def x ! i}
ops __!__ : Tuple[Space,n] × Index [n] → Space;

0 : Tuple[Space,n];
__∗__ : Elem × Tuple[Space,n] → Tuple[Space,n];
__+__ :

Tuple[Space,n] × Tuple[Space,n] → Tuple[Space,n];
auxsum : Tuple[Space,n] × Index [n] → Space;
sum : Tuple[Space,n] → Space

∀ r : Elem; x, y: Tuple[Space,n]; i : Index [n]
• 0 ! i = 0 %(O_def_Tuple)%
• (r ∗ x) ! i = r ∗ (x ! i) %(mult_def_Tuple)%
• (x + y) ! i = (x ! i) + (y ! i) %(add_def_Tuple)%
• auxsum(x, 1 as Index [n]) = x ! 1 as Index [n]

%(auxsum_1_Tuple)%
• auxsum(x, suc(i) as Index [n]) =

auxsum(x, i) + (x ! suc(i) as Index [n])

V:9 Library Basic/LinearAlgebra_I 443

%(auxsum_suc_Tuple)%
• sum(x) = auxsum(x, n as Index [n]) %(sum_def_Tuple)%

}
hide op auxsum

end

spec ConstructVector [Field] [op n : Pos]
given Int = %mono
VectorTuple [view VectorSpace_in_Field [Field]]

[op n : Pos]
with sorts Tuple[Elem,n] �→ Vector [Elem,n], Index [n],

ops 0, __∗__, __+__, sum
with op __!__ : Vector [Elem,n] × Index [n] → Elem

then
ops <__||__> : Vector [Elem,n] × Vector [Elem,n] → Elem;

prod : Vector [Elem,n] → Elem;
unitVector : Index [n] → Vector [Elem,n];
auxmult : Vector [Elem,n] × Vector [Elem,n] → Vector [Elem,n];
auxprod : Vector [Elem,n] × Index [n] → Elem

pred orthogonal : Vector [Elem,n] × Vector [Elem,n]
∀ x, y: Vector [Elem,n]; i, j : Index [n]
• auxmult(x, y) ! i = (x ! i) ∗ (y ! i) %(auxmult_def_CVector)%
• < x || y > = sum(auxmult(x, y)) %(scp_def_CVector)%
• auxprod(x, 1 as Index [n]) = x ! 1 as Index [n]

%(auxprod_1_CVector)%
• auxprod(x, suc(i) as Index [n]) =

auxprod(x, i) ∗ (x ! suc(i) as Index [n])
%(auxprod_suc_CVector)%

• prod(x) = auxprod(x, n as Index [n]) %(prod_def_CVector)%
• orthogonal(x, y) ⇔ < x || y > = 0 %(orthogonal_def_CVector)%
• unitVector(i) ! j = e when i = j else 0 %(unitVector_def)%
sort UnitVector [Elem,n] = {x : Vector [Elem,n]

• ∃ i : Index [n] • x = unitVector(i)}
hide ops auxmult, auxprod

then %implies
∀ x, y: Vector [Elem,n]
• < x || y > = < y || x > %(scpComm_CVector)%
• < x || x > = 0 ⇒ x = 0 %(scpPos_CVector)%

end

spec Vector [Field] [op n : Pos] given Int =
ConstructVector [Field] [op n : Pos]
reveal sorts Vector [Elem,n], UnitVector [Elem,n],

ops __+__ :
Vector [Elem,n] × Vector [Elem,n] → Vector [Elem,n],

444 V:9 Library Basic/LinearAlgebra_I

__∗__ : Elem × Vector [Elem,n] → Vector [Elem,n],
0 : Vector [Elem,n]

end

view VectorSpace_in_Vector [Field] [op n : Pos] given Nat :
VectorSpace [Field] to Vector [Field] [op n : Pos] =
sort Space �→ Vector [Elem,n]

end

spec SymmetricGroup [op n : Pos] given Int = %mono
sort Index [n] = {i : Pos • i ≤ n}

then
Array [ops 1, n : Int fit ops min : Int �→ 1, max : Int �→ n]

[sort Index [n]]
with sorts Array[Index [n]], Index �→ Index [n]

then
sort Perm[n] = {p: Array[Index [n]]

• ∀ i : Index [n] • ∃ j : Index [n] • p ! j = i}
ops id : Perm[n];

__comp__ : Perm[n] × Perm[n] → Perm[n];
sign : Perm[n] → Int ;
nFac: Nat = n ! %(nFac_def_SymGroup)%

∀ p, q: Perm[n]; i : Index [n]
• id ! i = i %(id_def_SymGroup)%
• (p comp q) ! i = p ! (q ! i) %(comp_def_SymGroup)%
• sign(p comp q) = sign(p) ∗ sign(q)

%(signHomomorphic_SymGroup)%
• abs(sign(p)) = 1 %(signRange_SymGroup)%
• ∃ r : Perm[n] • sign(r) = − 1 %(signSurj_SymGroup)%

then %cons
sort PermIndex [n] = {i : Pos • i ≤ nFac}
op perm : PermIndex [n] → Perm[n]
∀ p: Perm[n]
• ∃ i : PermIndex [n] • perm(i) = p %(permSurj_SymGroup)%

end

view Group_in_SymmetricGroup [op n : Pos] given Nat :
Group to SymmetricGroup [op n : Pos] =
sort Elem �→ Perm[n], ops __∗__ �→ __comp__, e �→ id

end

V:9 Library Basic/LinearAlgebra_I 445

spec Matrix [Field] [op n : Pos] given Int = %mono
VectorTuple [view VectorSpace_in_Vector

[Field] [op n : Pos]]
[op n : Pos]

with sorts Index [n], Tuple[Vector [Elem,n],n] �→ Matrix [Elem,n]
and

ConstructVector [Field] [op n : Pos]
and

ExtField [Field]
then

ops transpose : Matrix [Elem,n] → Matrix [Elem,n];
1 : Matrix [Elem,n];
elementary : Index [n] × Index [n] → Matrix [Elem,n];
__∗__ : Matrix [Elem,n] × Vector [Elem,n] → Vector [Elem,n];
__∗__ : Matrix [Elem,n] × Matrix [Elem,n] → Matrix [Elem,n];
det : Matrix [Elem,n] → Elem

∀ a, b: Matrix [Elem,n]; x : Vector [Elem,n]; i, j, k : Index [n]
• (transpose(a) ! i) ! j = (a ! j) ! i %(transpose_def_Matrix)%
• (1 ! i) ! j = e when i = j else 0 %(1_def_Matrix)%
• elementary(i, j) ! k = unitVector(j) when i = k else 0

%(elementary_def_Matrix)%
• (a ∗ x) ! i = < transpose(a) ! i || x > %(scalmult_def_Matrix)%
• (a ∗ b) ! i = a ∗ (b ! i) %(mult_def_Matrix)%
sort ElementaryMatrix [Elem,n] = {x : Matrix [Elem,n]

• ∃ i, j : Index [n]
• x = elementary(i, j)}

then
local

SymmetricGroup [op n : Pos]
with sorts Perm[n], PermIndex [n], ops sign, perm, nFac

then
closed ConstructVector [Field]

[op nFac : Pos]
with sorts Vector [Elem,nFac],

Index [nFac] �→ PermIndex [n]
then

ops summands : Matrix [Elem,n] → Vector [Elem,nFac];
factors :

Matrix [Elem,n] × PermIndex [n] → Vector [Elem,n]
within
∀ a: Matrix [Elem,n]; i : Index [n]; j : PermIndex [n]
• factors(a, j) ! i = (a ! i) ! (perm(j) ! i) %(factors_def_Matrix)%
• summands(a) ! j = prod(factors(a, j)) times sign(perm(j))

%(summands_def_Matrix)%
• det(a) = sum(summands(a)) %(Leibnitz)%

446 V:9 Library Basic/LinearAlgebra_I

then %implies
∀ a, b: Matrix [Elem,n]
• det(0) = 0 %(det0)%
• ¬ det(a) = 0 ⇔ ∀ x : Vector [Elem,n] • x = 0 if a ∗ x = 0

%(detVanishes)%
• det(1) = e %(det1)%
• det(a ∗ b) = det(a) ∗ det(b) %(detMult)%

end

spec RichVectorSpace =
ExtVectorSpace [VectorSpace [Field]]

end

spec RichVSWithBase [Field] [sort Base] =
ExtVSWithBase [VSWithBase [Field] [sort Base]]

end

view VectorSpace_in_VectorTuple [VectorSpace [Field]]
[op n : Pos]

given Int :
VectorSpace [Field] to
VectorTuple [VectorSpace [Field]] [op n : Pos] =
sort Space �→ Tuple[Space,n]

end

view VSWithBase_in_Field [Field

then
op a : Elem
• ¬ a = 0] :

VSWithBase [Field] [sort Base] to
{ Field

then
sort Singleton[a] = {x : Elem • x = a}

} =
sorts Space �→ Elem, Base �→ Singleton[a],
op __∗__ : Elem × Space → Space �→

__∗__ : Elem × Elem → Elem
end

view VSWithBase_in_Vector [Field] [op n : Pos] given Nat :
VSWithBase [Field] [sort Base] to
Vector [Field] [op n : Pos] =
sorts Space �→ Vector [Elem,n], Base �→ UnitVector [Elem,n]

end

V:9 Library Basic/LinearAlgebra_I 447

view VSWithBase_in_Matrix [Field] [op n : Pos] given Nat :
VSWithBase [Field] [sort Base] to Matrix [Field] [op n : Pos] =
sorts Space �→ Matrix [Elem,n], Base �→ ElementaryMatrix [Elem,n]

end

%% The following view expresses that every vector space has a base.
%% This holds because the CASL semantics assumes the axiom of choice.
view VSWithBase_in_VectorSpace [Field] given Int :

{VSWithBase [Field] [sort Base] hide sort Base} to
VectorSpace [Field]

end

10

Library Basic/LinearAlgebra_II

library Basic/LinearAlgebra_II version 1.0

%authors : L. Schröder <lschrode@tzi.de>, M. Roggenbach, T. Mossakowski
%date : 9 January 2004
%prec({__∗__} < {__ˆ__})%
%prec({__+__, __−__} < {__/__, __∗__})%
%left_assoc(__+__, __∗__, __ˆ__)%

from Basic/Numbers get Nat, Int

from Basic/Algebra_I get Field, RichField, Ring, ExtRing

from Basic/Algebra_II get Polynomial

from Basic/LinearAlgebra_I get
VectorSpace, VSWithBase, ExtVectorSpace, Matrix

spec FreeVectorSpace [Field] [sort Base] = %mono
free { VectorSpace [Field]

then
op inject : Base → Space

}
end

spec Algebra [Field] =
VectorSpace [Field]

and
closed {Ring

with sort Elem �→ Space, ops __+__, __∗__, 0, e}

450 V:10 Library Basic/LinearAlgebra_II

then
sort Elem < Space
∀ r : Elem; x, y: Space
• r ∗ x ∗ y = r ∗ (x ∗ y) %(leftLinear_Algebra)%
• x ∗ (r ∗ y) = r ∗ (x ∗ y) %(rightLinear_Algebra)%

end

spec FreeAlgebra [Field] =
free { Algebra [Field]

then
op X : Space

}
end

spec ExtFreeVectorSpace [FreeVectorSpace [Field]
[sort Base]]

given Int =
ExtVectorSpace [FreeVectorSpace [Field] [sort Base]]

end

spec ExtAlgebra [Algebra [Field]] given Int = %mono
RichField

and
ExtVectorSpace [VectorSpace [Field]]

and
ExtRing [Algebra [Field] fit sort Elem �→ Space]

and
Polynomial [Field]

then
op eval : Poly[Elem] × Space → Space
∀ a: Elem; p: Poly[Elem]; x : Space
• eval(0, x) = 0 %(eval_0_EAlgebra)%
• eval(a ::: p, x) = a + eval(p, x) ∗ x %(eval_cons_EAlgebra)%

end

spec ExtFreeAlgebra [Field] given Int =
ExtAlgebra [FreeAlgebra [Field]]

end

view Algebra_in_Matrix [Field] [op n : Pos] given Nat :
Algebra [Field] to Matrix [Field] [op n : Pos] =
sort Space �→ Matrix [Elem,n], op e �→ 1

end

spec RichAlgebra [Field] =

V:10 Library Basic/LinearAlgebra_II 451

ExtAlgebra [Algebra [Field]]
end

spec RichFreeVectorSpace [Field] [sort Base] =
ExtFreeVectorSpace [FreeVectorSpace [Field] [sort Base]]

end

spec RichFreeAlgebra [Field] =
ExtFreeAlgebra [Field]

end

%% The following view expresses that a vector space is free over
%% any of its bases
view FreeVectorSpace_in_VSWithBase [Field] given Int :

FreeVectorSpace [Field] [sort Base] to
{ VSWithBase [Field] [sort Base]
then

op inject : Base → Space
∀ x : Base
• inject(x) = x %(inject_def_VSB)%

}
end

view FreeAlgebra_in_Polynomial [Field] given Int :
FreeAlgebra [Field] to Polynomial [Field] =
sort Space �→ Poly[Elem]

end

11

Library Basic/MachineNumbers

library Basic/MachineNumbers version 1.0

%authors : T. Mossakowski <till@tzi.de>, M. Roggenbach, L. Schröder
%date : 25 June 2003
%{ This library contains specifications of those subtypes

of the naturals and the integers that are used on actual
machines.
The specifications CARDINAL and INTEGER provide subtypes
of Nat and Int consisting of those numbers that have
a binary representation within a given word length.
Operations on these data types are partial restrictions
of the usual operations on Nat and Int - they are undefined
if the word length is exceeded.
The specification TwoComplement provides a “cyclic”
version of bounded integers that corresponds to the
common two complement representation of integers
used in many programming languages.
Operations are total here - the successor of the
maximal positive number fitting in the word length is
the minimal negative number.
The Ext versions of the specifications add min and max
operations (inherited from TotalOrder). }%

from Basic/RelationsAndOrders get
TotalOrder, ExtTotalOrder

from Basic/Numbers get Nat, Int

spec CARDINAL [op WordLength : Nat] given Nat = %mono
Nat

454 V:11 Library Basic/MachineNumbers

then %mono
%% Define CARDINAL to be isomorphic to the subset
%% 0.. 2ˆWordLength-1 of Nat
%% using a partial constructor natToCard

type CARDINAL ::= natToCard(cardToNat :Nat)?
∀ x : Nat ; c: CARDINAL
• def natToCard(x) ⇔ x ≤ (2 ˆ WordLength −? 1)

%(natToCard_dom)%
• natToCard(cardToNat(c)) = c %(natToCard_def)%

then %def
%% The predicates and operations are just inherited from Nat,
%% but operations may become partial, since natToCard is partial

pred __≤__ : CARDINAL × CARDINAL
∀ x, y: CARDINAL
• x ≤ y ⇔ cardToNat(x) ≤ cardToNat(y) %(leq_CARDINAL)%

then %def
ops maxCardinal : Nat ;

0, 1, maxCardinal : CARDINAL;
__+__, __−__, __∗__, __div__, __mod__ :

CARDINAL × CARDINAL →? CARDINAL
• maxCardinal = 2 ˆ WordLength −? 1 %(maxCardinal_Nat)%
• maxCardinal = natToCard(maxCardinal)

%(maxCardinal_CARDINAL)%
∀ x, y: CARDINAL
• natToCard(0) = 0 %(def_0_CARDINAL)%
• natToCard(1) = 1 %(def_1_CARDINAL)%
• x + y = natToCard(cardToNat(x) + cardToNat(y))

%(add_CARDINAL)%
• x − y = natToCard(cardToNat(x) −? cardToNat(y))

%(sub_CARDINAL)%
• x ∗ y = natToCard(cardToNat(x) ∗ cardToNat(y))

%(mult_CARDINAL)%
• x div y = natToCard(cardToNat(x) div cardToNat(y))

%(div_CARDINAL)%
• x mod y = natToCard(cardToNat(x) mod cardToNat(y))

%(mod_CARDINAL)%
then %implies

ops __+__ : CARDINAL × CARDINAL →? CARDINAL,
assoc, comm, unit 0 ;

__∗__ : CARDINAL × CARDINAL →? CARDINAL,
assoc, comm, unit 1

∀ x, y: CARDINAL
• def x + y ⇔ (cardToNat(x) + cardToNat(y)) ≤ maxCardinal

%(add_CARDINAL_dom)%
• def x − y ⇔ y ≤ x %(sub_CARDINAL_dom)%

V:11 Library Basic/MachineNumbers 455

• def x ∗ y ⇔ (cardToNat(x) ∗ cardToNat(y)) ≤ maxCardinal
%(mult_CARDINAL_dom)%

• def x div y ⇔ ¬ y = 0 %(div_CARDINAL_dom)%
• def x mod y ⇔ ¬ y = 0 %(mod_CARDINAL_dom)%

end

spec INTEGER [op WordLength : Nat] given Nat = %mono
Int

then %mono
%% Define INTEGER to be isomorphic to the subset
%% -2ˆ(WordLength-1)..2ˆ(WordLength-1)-1 of Int
%% using a partial constructor intToInteger

type INTEGER ::= intToInteger(integerToInt :Int)?
∀ x : Int ; i : INTEGER
• def intToInteger(x) ⇔
− (2 ˆ (WordLength −? 1)) ≤ x
∧ x ≤ (2 ˆ (WordLength −? 1) − 1)

%(intToInteger_dom)%
• intToInteger(integerToInt(i)) = i %(intToInteger_def)%

then %def
%% The predicates and operations are just inherited from Int,
%% but operations may become partial, since intToInteger is partial

pred __≤__ : INTEGER × INTEGER
∀ x, y: INTEGER
• x ≤ y ⇔ integerToInt(x) ≤ integerToInt(y) %(leq_INTEGER)%

then %def
ops maxInteger, minInteger : Int ;

0, 1, maxInteger, minInteger : INTEGER;
−__, abs : INTEGER →? INTEGER;
__+__, __−__, __∗__, __/__, __div__, __mod__,
__quot__, __rem__ :

INTEGER × INTEGER →? INTEGER
• maxInteger = 2 ˆ (WordLength −? 1) − 1 %(maxInteger_Int)%
• minInteger = − (2 ˆ (WordLength −? 1)) %(minInteger_Int)%
• maxInteger = intToInteger(maxInteger)

%(maxInteger_INTEGER)%
• minInteger = intToInteger(minInteger)

%(minInteger_INTEGER)%
∀ x, y: INTEGER
• intToInteger(0) = 0 %(def_0_INTEGER)%
• intToInteger(1) = 1 %(def_1_INTEGER)%
• − x = intToInteger(− integerToInt(x)) %(minus_INTEGER)%
• abs(x) = intToInteger(abs(integerToInt(x))) %(abs_INTEGER)%
• x + y = intToInteger(integerToInt(x) + integerToInt(y))

%(add_INTEGER)%

456 V:11 Library Basic/MachineNumbers

• x − y = intToInteger(integerToInt(x) − integerToInt(y))
%(sub_INTEGER)%

• x ∗ y = intToInteger(integerToInt(x) ∗ integerToInt(y))
%(mult_INTEGER)%

• x / y = intToInteger(integerToInt(x) /? integerToInt(y))
%(divide_INTEGER)%

• x div y = intToInteger(integerToInt(x) div integerToInt(y))
%(div_INTEGER)%

• x mod y = intToInteger(integerToInt(x) mod integerToInt(y))
%(mod_INTEGER)%

• x quot y = intToInteger(integerToInt(x) quot integerToInt(y))
%(quot_INTEGER)%

• x rem y = intToInteger(integerToInt(x) rem integerToInt(y))
%(rem_INTEGER)%

then %implies
ops __+__ : INTEGER × INTEGER →? INTEGER,

assoc, comm, unit 0 ;
__∗__ : INTEGER × INTEGER →? INTEGER,

assoc, comm, unit 1
∀ x, y: INTEGER
• def − x ⇔ (minInteger + 1) ≤ integerToInt(x)

%(minus_INTEGER_dom)%
• def abs(x) ⇔ (minInteger + 1) ≤ integerToInt(x)

%(abs_INTEGER_dom)%
• def x + y ⇔

minInteger ≤ (integerToInt(x) + integerToInt(y)) ∧
(integerToInt(x) + integerToInt(y)) ≤ maxInteger

%(add_INTEGER_dom)%
• def x − y ⇔

minInteger ≤ (integerToInt(x) − integerToInt(y)) ∧
(integerToInt(x) − integerToInt(y)) ≤ maxInteger

%(sub_INTEGER_dom)%
• def x ∗ y ⇔

minInteger ≤ (integerToInt(x) ∗ integerToInt(y)) ∧
(integerToInt(x) ∗ integerToInt(y)) ≤ maxInteger

%(mult_INTEGER_dom)%
• def x / y ⇔ def intToInteger(integerToInt(x) /? integerToInt(y))

%(divide_INTEGER_dom)%
• def x div y ⇔ ¬ y = 0 %(div_INTEGER_dom)%
• def x mod y ⇔ ¬ y = 0 %(mod_INTEGER_dom)%
• def x quot y ⇔ ¬ y = 0 %(quot_INTEGER_dom)%
• def x rem y ⇔ ¬ y = 0 %(rem_INTEGER_dom)%

end

spec TwoComplement [op WordLength : Nat]

V:11 Library Basic/MachineNumbers 457

given Nat = %mono
Int

then %mono
%% Define TwoComplement to be isomorphic to the subset
%% -2ˆ(WordLength-1)..2ˆ(WordLength-1)-1 of Int
%% using a total constructor intToTC
%% The constructor can be total because integers are
%% taken modulo 2ˆWordLength

generated type TwoComplement ::= intToTC (Int)
ops maxInteger, minInteger : Int ;

TCtoInt : TwoComplement → Int
• maxInteger = 2 ˆ (WordLength −? 1) − 1 %(maxInteger_Int)%
• minInteger = − (2 ˆ (WordLength −? 1)) %(minInteger_Int)%
∀ x, y: Int ; i : TwoComplement
• intToTC (x) = intToTC (x + 2 ˆ WordLength) %(cycle_max)%
• intToTC (x) = intToTC (y) ⇒ x − y mod 2 ˆ WordLength = 0

%(cycle_min)%
• TCtoInt(intToTC (x)) = x if minInteger ≤ x ∧ x ≤ maxInteger

then %def
%% The predicates and operations are just inherited from Int.
%% Operations remain total, since intToTC is total

pred __≤__ : TwoComplement × TwoComplement
∀ x, y: TwoComplement
• x ≤ y ⇔ TCtoInt(x) ≤ TCtoInt(y) %(leq_TwoComplement)%

then %def
ops 0, 1, maxInteger, minInteger : TwoComplement ;

−__, abs : TwoComplement → TwoComplement ;
__+__, __−__, __∗__, __/__, __div__, __mod__,
__quot__, __rem__ :

TwoComplement × TwoComplement → TwoComplement
• maxInteger = intToTC (maxInteger)

%(maxInteger_TwoComplement)%
• minInteger = intToTC (minInteger)

%(minInteger_TwoComplement)%
∀ x, y: TwoComplement
• intToTC (0) = 0 %(def_0_TwoComplement)%
• intToTC (1) = 1 %(def_1_TwoComplement)%
• − x = intToTC (− TCtoInt(x)) %(minus_TwoComplement)%
• abs(x) = intToTC (abs(TCtoInt(x))) %(abs_TwoComplement)%
• x + y = intToTC (TCtoInt(x) + TCtoInt(y))

%(add_TwoComplement)%
• x − y = intToTC (TCtoInt(x) − TCtoInt(y))

%(sub_TwoComplement)%
• x ∗ y = intToTC (TCtoInt(x) ∗ TCtoInt(y))

%(mult_TwoComplement)%

458 V:11 Library Basic/MachineNumbers

• x / y = intToTC (TCtoInt(x) /? TCtoInt(y))
%(divide_TwoComplement)%

• x div y = intToTC (TCtoInt(x) div TCtoInt(y))
%(div_TwoComplement)%

• x mod y = intToTC (TCtoInt(x) mod TCtoInt(y))
%(mod_TwoComplement)%

• x quot y = intToTC (TCtoInt(x) quot TCtoInt(y))
%(quot_TwoComplement)%

• x rem y = intToTC (TCtoInt(x) rem TCtoInt(y))
%(rem_TwoComplement)%

end

view TotalOrder_in_CARDINAL [op WordLength : Nat]
given Nat :
TotalOrder to CARDINAL [op WordLength : Nat] =
sort Elem �→ CARDINAL

end

view TotalOrder_in_INTEGER [op WordLength : Nat]
given Nat :
TotalOrder to INTEGER [op WordLength : Nat] =
sort Elem �→ INTEGER

end

view TotalOrder_in_TwoComplement [op WordLength : Nat]
given Nat :
TotalOrder to TwoComplement [op WordLength : Nat] =
sort Elem �→ TwoComplement

end

spec ExtCARDINAL [op WordLength : Nat] given Nat =
ExtTotalOrder [view TotalOrder_in_CARDINAL

[op WordLength : Nat]]
end

spec ExtINTEGER [op WordLength : Nat] given Nat =
ExtTotalOrder [view TotalOrder_in_INTEGER

[op WordLength : Nat]]
end

spec ExtTwoComplement [op WordLength : Nat] given Nat =
ExtTotalOrder [view TotalOrder_in_TwoComplement

[op WordLength : Nat]]
end

12

Dependency Graphs of the Libraries

This chapter contains the dependency graphs for the Basic Libraries. Elliptic
nodes in the graphs usually denote named specifications from the library (some
of them, labeled with N1, N2, etc., also denote anonymous specifications, e.g.
occurring as targets of views). Square nodes denote specifications that are
imported from other libraries. Normal solid edges denote references to other
specifications, whereas dotted edges denote references occurring in a formal
parameter or import. Thick solid edges denote views.

DecimalFraction

Rat

Int

Nat

Fig. 12.1. Dependency graph for Basic/Numbers

460 V:12 Dependency Graphs of the Libraries

RichBooleanAlgebra

RichTotalOrder

RichPartialOrder

ExtBooleanAlgebra

ExtTotalOrder

ExtPartialOrder

BooleanAlgebra

LeftTotalRelation RightUniqueRelation

StrictTotalOrder

TotalOrder

Nat IntRat

PartialOrder

StrictOrder

PreOrder EquivalenceRelation

PartialEquivalenceRelation

SimilarityRelationTransitiveRelation

AntisymmetricRelation

IrreflexiveRelation ReflexiveRelation

AsymmetricRelation

SymmetricRelation

Relation

Fig. 12.2. Dependency graph for Basic/RelationsAndOrders

V:12 Dependency Graphs of the Libraries 461

RichMonoid

AbelianGroup

ExtGroup

ExtAbelianGroup

Ring

ConstructField

ExtCommutativeRing

ExtField

ExtRing

RichCommutativeRing

RichAbelianGroup

N6

RichGroup

RichCommutativeMonoid

CommutativeRing

RichRingField

ExtIntegralDomain

IntegralDomain

RichIntegralDomain

N7

PreOrder EquivalenceRelationRichField

ExtCommutativeMonoid

ExtMonoid

N8

Group

CommutativeMonoid

NatN5

Monoid

Int

Fig. 12.3. Dependency graph for Basic/Algebra_I

462 V:12 Dependency Graphs of the Libraries

Char

RichBoolean

Boolean

BooleanAlgebra

ExtBooleanAlgebra

Nat

Fig. 12.4. Dependency graph for Basic/SimpleDatatypes

List

NTreeNTree2

String

Map

ArrayTotalMap

PairMaybeNat

GenerateBag

BinTree

BinTree2

KTreeKTree2

PowerSet

Bag

Finite

Set

GenerateSet

CommutativeMonoid

GenerateBinTree2

GenerateNTree2 GenerateNTree

GenerateBinTree

GenerateList

GenerateMap

BooleanAlgebra

Monoid

Char

PartialOrder

Int

Fig. 12.5. Dependency graph for Basic/StructuredDatatypes

V:12 Dependency Graphs of the Libraries 463

GraphToSet

NatGraphHomomorphism

GraphColorability

List

ShortestPaths

Paths

SymmetricClosure

NonUniqueEdgesGraph

RichGraph

Minor

K3_3

K5

SymmetricGraph

Planar

Graph Map

Fig. 12.6. Dependency graph for Basic/Graphs

464 V:12 Dependency Graphs of the Libraries

CommutativeMonoid

AbelianGroupGenerateList

Polynomial

Ring

Group

Monoid

ConstructPolynomial

ExtCommutativeRing

N10

MonoidAction

ExtMonoidAction

RichMonoidAction

Bag

ExtMonoid

GroupAction

ExtGroup

ExtGroupAction

RichGroupAction

RichIntegralDomain

ExtFactorialRingExtEuclidianRing

ConstructFactorialRing

RichFactorialRingRichEuclidianRing

IntInfinity

FactorialRingEuclidianRing

N6N7

IntegralDomain

TotalOrder

CommutativeRing List

Nat

Int

PreOrder

EquivalenceRelation

N9

N8

Fig. 12.7. Dependency graph for Basic/Algebra_II

V:12 Dependency Graphs of the Libraries 465

RichMonoidAction

ExtAbelianGroup

ExtVectorSpace

ExtGroupAction

ExtGroup

ExtMonoid

ExtRing

RichField

ExtField

Matrix

CommutativeMonoid

CommutativeRing

ConstructVector

ConstructField

MonoidAction

AbelianGroup

VectorSpace

Monoid

ConstructVSWithBaseRichVectorSpace

ExtVSWithBase

Ring

Vector

VectorSpaceLC

FieldVectorTuple

Map

VectorSpace_in_Field

SymmetricGroup

Set

VSWithBase

Int

Group

RichVSWithBase

N5

N4

GroupAction

Array

N6

Fig. 12.8. Dependency graph for Basic/LinearAlgebra_I

466 V:12 Dependency Graphs of the Libraries

RichFreeAlgebra

RichFreeVectorSpace

RichAlgebraExtFreeAlgebra

ExtAlgebra

ExtFreeVectorSpace FreeAlgebra

Polynomial

Algebra

Matrix

FreeVectorSpace

N2

Ring

ExtRing

VectorSpace

ExtVectorSpace

RichField

Int

Field

Fig. 12.9. Dependency graph for Basic/LinearAlgebra_II

INTEGER

ExtTotalOrder

ExtINTEGER ExtTwoComplementExtCARDINAL

CARDINAL TwoComplement

TotalOrderNat Int

Fig. 12.10. Dependency graph for Basic/MachineNumbers

Appendices

Annotated Bibliography

Ancona:2000:ECL.
Davide Ancona, Maura Cerioli, and Elena Zucca. Extending Casl by late
binding. In D. Bert, C. Choppy, and P. D. Mosses, editors, Recent Trends in
Algebraic Development Techniques, 14th International Workshop, WADT’99,
Château de Bonas, France, 1999, Selected Papers, LNCS Vol. 1827, pages 53–
72. Springer, 2000.

Proposes an extension of Casl with methods, which are special func-
tions s.t. overloading resolution for them is delayed to evaluation time
and is not required to be conservative.

Aspinall:2002:FSC.
David Aspinall and Donald Sannella. From specifications to code in Casl. In
H. Kirchner and C. Ringeissen, editors, Algebraic Methods and Software Tech-
nology, 9th International Conference, AMAST 2002, Saint-Gilles-les-Bains,
Reunion Island, France, Proceedings, LNCS Vol. 2422, pages 1–14. Springer,
2002.

Discusses the relationship between Casl and programming languages.
Astesiano:1998:UHM.

Egidio Astesiano and Gianna Reggio. UML as heterogeneous multiview nota-
tion: Strategies for a formal foundation. In L. Andrade, A. Moreira, A. Desh-
pande, and S. Kent, editors, Proceedings of the OOPSLA’98 Workshop on For-
malizing UML. Why? How? ACM Press, 1998.

The paper presents some initial ideas about the formalization of the
UML.

Astesiano:1999:ASC.
Egidio Astesiano, Manfred Broy, and Gianna Reggio. Algebraic specification of
concurrent systems. In E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner,
editors, Algebraic Foundations of Systems Specification, IFIP State-of-the-Art
Reports, chapter 13. Springer, 1999.

Presents a survey of the algebraic methods for the specification of
concurrent systems, using a common simple example, and classifying
them in four kinds.

470 Annotated Bibliography

Astesiano:2000:PDC.
Egidio Astesiano, Maura Cerioli, and Gianna Reggio. Plugging data constructs
into paradigm-specific languages: Towards an application to UML. In T. Rus,
editor, Algebraic Methodology and Software Technology, 8th International Con-
ference, AMAST 2000, Iowa City, Iowa, USA, Proceedings, LNCS Vol. 1816,
pages 273–292. Springer, 2000.

Presents an approach for the composition of languages, in particular
a data description language and a paradigm-specific language, exem-
plified by sketching how to combine UML and a data language.

Astesiano:2001:LTL.
Egidio Astesiano and Gianna Reggio. Labelled Transition Logic: An outline.
Acta Informatica, 37(11–12), 2001.

Outlines a logical (algebraic) method for the specification of reac-
tive/distributed systems both at the requirement and at the design
level, providing references for detailed presentations of single aspects
and applications.

Astesiano:2002:CASL.
Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brückner, Pe-
ter D. Mosses, Donald Sannella, and Andrzej Tarlecki. Casl: The Common
Algebraic Specification Language. Theoretical Computer Science, 286(2):153–
196, 2002.

Gives an overview of the Casl design, indicating major issues, and
explaining main concepts and constructs. Compares Casl to some
other major algebraic specification languages.

Autexier:2000:TEF.
Serge Autexier, Dieter Hutter, Heiko Mantel, and Axel Schairer. Towards an
evolutionary formal software-development using Casl. In D. Bert, C. Choppy,
and P. D. Mosses, editors, Recent Trends in Algebraic Development Techniques,
14th International Workshop, WADT’99, Château de Bonas, France, 1999, Se-
lected Papers, LNCS Vol. 1827, pages 73–88. Springer, 2000.

Defines a translation of a subset of CASL into the notion of develop-
ment graphs, in order to maintain evolving Casl specifications.

Autexier:2002:DGM.
Serge Autexier, Dieter Hutter, Till Mossakowski, and Axel Schairer. The de-
velopment graph manager Maya (system description). In H. Kirchner and
C. Ringeissen, editors, Algebraic Methods and Software Technology, 9th Inter-
national Conference, AMAST 2002, Saint-Gilles-les-Bains, Reunion Island,
France, Proceedings, LNCS Vol. 2422, pages 495–502. Springer, 2002.

Explains the Maya system, which maintains structured specifications
and their proofs with the help of development graphs.

Autexier:2002:IHD.
Serge Autexier and Till Mossakowski. Integrating Hol-Casl into the devel-
opment graph manager Maya. In A. Armando, editor, Frontiers of Combining
Systems, 4th International Workshop, FroCoS 2002, Santa Margherita Ligure,
Italy, Proceedings, LNCS Vol. 2309, pages 2–17. Springer, 2002.

Maya provides management of proofs for structured specifications;
Hol-Casl is a prover for Casl basic specifications. Here, these two
are combined

Annotated Bibliography 471

Baumeister:2000:ASC.
Hubert Baumeister and Didier Bert. Algebraic specification in Casl. In
M. Frappier and H. Habrias, editors, Software Specification Methods: An
Overview Using a Case Study, FACIT (Formal Approaches to Computing and
Information Technology), pages 209–224. Springer, 2000.

Explains the basic features of Casl specifications using the warehouse
case study.

Baumeister:2000:RAD.
Hubert Baumeister. Relating abstract datatypes and Z-schemata. In D. Bert,
C. Choppy, and P. D. Mosses, editors, Recent Trends in Algebraic Develop-
ment Techniques, 14th International Workshop, WADT’99, Château de Bonas,
France, 1999, Selected Papers, LNCS Vol. 1827, pages 366–382. Springer, 2000.

Defines an institution for the logic underlying Z. Shows a translation
of Z-schemata to abstract datatypes over that institution.

Baumeister:2000:SBE.
Hubert Baumeister and Alexandre V. Zamulin. State-based extension of Casl.
In W. Grieskamp, T. Santen, and B. Stoddart, editors, Integrated Formal Meth-
ods, Second International Conference, IFM 2000, Dagstuhl Castle, Germany,
Proceedings, LNCS Vol. 1945, pages 3–24. Springer, 2000.

Presents an extension of Casl for writing model-oriented specifica-
tions. The extension is based on the state-as-algebra approach.

Baumeister:2004:CASL-Semantics.
Hubert Baumeister, Maura Cerioli, Anne Haxthausen, Till Mossakowski, Pe-
ter D. Mosses, Donald Sannella, and Andrzej Tarlecki. Casl semantics. In
Casl Reference Manual, LNCS Vol. 2960 (IFIP Series), part III. Springer,
2004. Edited by D. Sannella and A. Tarlecki.

Presents the complete semantics of Casl in natural semantics style.
Bert:2000:ASO.

Didier Bert and S. Lo Presti. Algebraic specification of operator-based mul-
timedia scenarios. In D. Bert, C. Choppy, and P. D. Mosses, editors, Recent
Trends in Algebraic Development Techniques, 14th International Workshop,
WADT’99, Château de Bonas, France, 1999, Selected Papers, LNCS Vol. 1827,
pages 383–400. Springer, 2000.

Presents a set of algebraic operators in CASL to create complex sce-
narios. Provides a semantics in a temporal model and shows how to
derive some properties of the scenarios.

Bidoit:1998:ASC.
Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural specifica-
tions in Casl. In A. M. Haeberer, editor, Algebraic Methodology and Software
Technology, 7th International Conference, AMAST’98, Amazonia, Brazil, Jan-
uary 1999, Proceedings, LNCS Vol. 1548, pages 341–357. Springer, 1998. An
extended and improved version is [Bidoit:2002:ASC].

Motivates and presents Casl architectural specifications.
Bidoit:2002:ASC.

Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural specifica-
tions in Casl. Formal Aspects of Computing, 13:252–273, 2002.

Gives an informal motivation for and presentation of Casl architec-
tural specifications, with hints on their semantics and use in the de-
velopment process.

472 Annotated Bibliography

Bidoit:2002:GDL.
Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Global development
via local observational construction steps. In K. Diks and W. Rytter, edi-
tors, Mathematical Foundations of Computer Science 2002, 27th International
Symposium, MFCS 2002, Warsaw, Poland, Proceedings, LNCS Vol. 2420, pages
1–24. Springer, 2002.

Studies development steps that apply local constructions in a global
context, and gives the semantics of a version of Casl architectural
specifications, including their observational interpretation.

Bidoit:2004:CASL-UM.
Michel Bidoit and Peter D. Mosses. Casl User Manual. LNCS Vol. 2900 (IFIP
Series). Springer, 2004. With chapters by Till Mossakowski, Donald Sannella,
and Andrzej Tarlecki.

Illustrates and discusses how to write Casl specifications, with ad-
ditional chapters on foundations, tools, and libraries, a realistic case
study, and a quick-reference overview of Casl.

Bidoit:2004:CFS.
Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Toward component-
oriented formal software development: An algebraic approach. In M. Wirs-
ing, A. Knapp, and S. Balsamo, editors, Radical Innovations of Software and
Systems Engineering in the Future, Proc. 9th Monterey Software Engineering
Workshop, Venice, Italy, Sep. 2002, LNCS Vol. 2941. Springer, 2004.

Provides a light-weight introduction to [Bidoit:2002:GDL], with an
illustrative example.

Borzyszkowski:2000:GIC.
Tomasz Borzyszkowski. Generalized interpolation in Casl. Information Pro-
cessing Letters, 76:19–24, 2000.

Gives a proof of the Craig Interpolation Property for the partial many-
sorted first-order logic, underlying Casl. This property is crucial for
results presented in [Borzyszkowski:2002:LSS].

Borzyszkowski:2000:HOL.
Tomasz Borzyszkowski. Higher-order logic and theorem proving for struc-
tured specifications. In D. Bert, C. Choppy, and P. D. Mosses, editors, Recent
Trends in Algebraic Development Techniques, 14th International Workshop,
WADT’99, Château de Bonas, France, 1999, Selected Papers, LNCS Vol. 1827,
pages 401–418. Springer, 2000.

Formulates conditions under which we can reuse the HOL logic to
reason about structured specifications built over institutions mapped
into HOL. It works also for the structured part of Casl.

Borzyszkowski:2002:LSS.
Tomasz Borzyszkowski. Logical systems for structured specifications. Theoret-
ical Computer Science, 286:197–245, 2002.

Presents completeness results for proof systems for structured spec-
ifications. Also introduces a methodology for reusing complete proof
systems for systems that are not complete.

Annotated Bibliography 473

Brand:2000:DPT.
Mark G. J. van den Brand and Jeroen Scheerder. Development of parsing tools
for Casl using generic language technology. In D. Bert, C. Choppy, and P. D.
Mosses, editors, Recent Trends in Algebraic Development Techniques, 14th In-
ternational Workshop, WADT’99, Château de Bonas, France, 1999, Selected
Papers, LNCS Vol. 1827, pages 89–105. Springer, 2000.

Describes the architecture of a Casl parser based on the SGLR parsing
technology developed for Asf+Sdf, and discusses the mapping to
abstract syntax trees represented as ATerms.

Brand:2000:EAT.
Mark G. J. van den Brand, Hayco A. de Jong, Paul Klint, and Pieter A. Olivier.
Efficient annotated terms. Software: Practice and Experience, 30(3):259–291,
2000.

Describes an efficient and generic representation of tree-like data struc-
tures, and reports on several case studies, including the abstract syntax
of Casl.

COMPASS:1997.
Maura Cerioli, Martin Gogolla, Hélène Kirchner, Bernd Krieg-Brückner,
Zhenyu Qian, and Markus Wolf, editors. Algebraic System Specification and
Development: Survey and Annotated Bibliography. BISS Monographs. Shaker,
2nd edition, 1998.

Provides an overview of the state of the art in algebraic specifica-
tion at the end of the 90’s, with a comprehensive bibliography. Dis-
cusses semantics, structuring constructs, specific algebraic paradigms,
methodology issues, and existing tools.

Cerioli:1997:PSP.
Maura Cerioli, Anne Haxthausen, Bernd Krieg-Brückner, and Till
Mossakowski. Permissive subsorted partial logic in Casl. In M. John-
son, editor, Algebraic Methodology and Software Technology, 6th International
Conference, AMAST’97, Sydney, Australia, Proceedings, LNCS Vol. 1349,
pages 91–107. Springer, 1997.

Presents the permissive subsorted partial logic used in the Casl se-
mantics.

Cerioli:1999:TEP.
Maura Cerioli, Till Mossakowski, and Horst Reichel. From total equational
to partial first-order logic. In E. Astesiano, H.-J. Kreowski, and B. Krieg-
Brückner, editors, Algebraic Foundations of Systems Specification, IFIP State-
of-the-Art Reports, chapter 3. Springer, 1999.

Presents partial first-order logic, both model theory and logical de-
duction. Compares partial specifications to error algebras and order-
sortedness.

Choppy:1999:UCS.
Christine Choppy and Gianna Reggio. Using Casl to specify the requirements
and the design: A problem specific approach – complete version. Technical
Report DISI-TR-99-33, Univ. of Genova, 1999. This is an extended version of
[Choppy:2000:UCS], including complete case studies.

Shows how formal specification skeletons may be associated with the
structuring concepts provided by M. Jackson’s Problem Frames, used
to provide a first gross structure and characterization of the system
under study.

474 Annotated Bibliography

Choppy:2000:UCS.
Christine Choppy and Gianna Reggio. Using Casl to specify the requirements
and the design: A problem specific approach. In D. Bert, C. Choppy, and P. D.
Mosses, editors, Recent Trends in Algebraic Development Techniques, 14th In-
ternational Workshop, WADT’99, Château de Bonas, France, 1999, Selected
Papers, LNCS Vol. 1827, pages 104–123. Springer, 2000. An extended version
is provided in [Choppy:1999:UCS].

Shows how formal specification skeletons may be associated with the
structuring concepts provided by M. Jackson’s Problem Frames, used
to provide a first gross structure and characterization of the system
under study.

Choppy:2003:TFG.
Christine Choppy and Gianna Reggio. Towards a formally grounded software
development method. Technical Report DISI-TR-03-35, Univ. of Genova, Au-
gust 2003.

Presents guidelines for writing (and meanwhile understanding)
descriptions/specifications, both in property-oriented and model-
oriented styles. Provides visual descriptions, and formal specifications
in Casl-Ltl.

Choppy:2003:IUC.
Christine Choppy and Gianna Reggio. Improving use case based requirements
using formally grounded specifications (complete version). Technical Report
DISI-TR-03-45, Univ. of Genova, October 2003. A short version is to appear
in Proc. FASE 2004.

Presents a technique for improving use case based requirements, using
the formally grounded development of the requirements specification
(in Casl and Casl-Ltl).

CoFI:2004:CASL-RM.
CoFI (The Common Framework Initiative). Casl Reference Manual. LNCS
Vol. 2960 (IFIP Series). Springer, 2004.

Gives full details of the design of Casl: an informal language sum-
mary, concrete and abstract syntax, well-formedness and model-class
semantics, and proof rules. Includes the libraries of basic datatypes.

CoFI:2004:CASL-Summary.
CoFI Language Design Group. Casl summary. In Casl Reference Manual,
LNCS Vol. 2960 (IFIP Series), part I. Springer, 2004. Edited by B. Krieg-
Brückner and P. D. Mosses.

Gives an informal summary of the Casl constructs for basic, struc-
tured, architectural, and library specifications. Defines sublanguages
and lists proposed extensions of Casl.

CoFI:2004:CASL-Syntax.
CoFI Language Design Group. Casl syntax. In Casl Reference Manual, LNCS
Vol. 2960 (IFIP Series), part II. Springer, 2004. Edited by B. Krieg-Brückner
and P. D.Mosses.

Defines the lexical, concrete, and abstract syntax of Casl.

Annotated Bibliography 475

Coscia:1999:JJT.
Eva Coscia and Gianna Reggio. JTN: A Java-targeted graphic formal no-
tation for reactive and concurrent systems. In J.-P. Finance, editor, Funda-
mental Approaches to Software Engineering, Second International Conference,
FASE’99, Amsterdam, The Netherlands, Proceedings, LNCS Vol. 1577, pages
77–97. Springer, 1999.

JTN is a formal graphic notation for Java-targeted design specifica-
tions (i.e., of systems that will be implemented using Java).

Costa:1997:SAD.
Gerardo Costa and Gianna Reggio. Specification of abstract dynamic
datatypes: A temporal logic approach. Theoretical Computer Science,
173(2):513–554, 1997.

Proposes a logic which combines many-sorted first-order logic with
branching-time combinators for the specification of dynamic-data
types.

Haveraaen:1999:FSE.
Magne Haveraaen, Helmer André Friis, and Tor Arne Johansen. Formal soft-
ware engineering for computational modeling. Nordic Journal of Computing,
6(3):241–270, 1999.

Descripes the development of a software family for seismic simulations.
Algebraic methods are used for domain and software architecture en-
gineering. Quantitative estimates of the benefits are made.

Haveraaen:2000:2TS.
Magne Haveraaen. A 2-tiered software process model for utilizing Casl. Tech-
nical Report 208, Dept. of Informatics, Univ. of Bergen, October 2000.

Describes a software process model where Casl is used for domain
engineering.

Haveraaen:2000:CSA.
Magne Haveraaen. Case study on algebraic software methodologies for scientific
computing. Scientific Programming, 8(4):261–273, 2000.

Presents the notion of algebraic software methodologies and their use
for domain engineering and software architecture design.

Hoffman:2000:SAS.
Piotr Hoffman. Semantics of architectural specifications. Master’s thesis, War-
saw Univ., 2000. In Polish.

Defines and discusses static and model semantics of architectural spec-
ifications, as well as a semantics for programs and a verification seman-
tics, which makes use of so-called sharing maps.

Hoffman:2001:VAS.
Piotr Hoffman. Verifying architectural specifications. In M. Cerioli and G. Reg-
gio, editors, Recent Trends in Algebraic Development Techniques, 15th Inter-
national Workshop, WADT 2001, Joint with the CoFI WG Meeting, Genova,
Italy, 2001, Selected Papers, LNCS Vol. 2267, pages 152–175. Springer, 2001.

Develops techniques for verifying architectural specifications w.r.t. a
non-generative semantics for institutions with logical amalgamation,
obtaining full verification for first-order logic.

476 Annotated Bibliography

Hoffman:2003:VGC.
Piotr Hoffman. Verifying generative Casl architectural specifications. In
M. Wirsing, D. Pattinson, and R. Hennicker, editors, Recent Trends in Al-
gebraic Development Techniques, 16th International Workshop, WADT 2002,
Frauenchiemsee, Germany, 2002, Revised Selected Papers, LNCS Vol. 2755,
pages 233–252. Springer, 2003.

Presents an institution-independent proof-calculus for architectural
specifications, complete w.r.t. a generative semantics, and applies it
to the full Casl institution.

Hoffmann:2003:AHO.
Kathrin Hoffmann and Till Mossakowski. Algebraic higher order nets: Graphs
and Petri nets as tokens. In M. Wirsing, D. Pattinson, and R. Hennicker, ed-
itors, Recent Trends in Algebraic Development Techniques, 16th International
Workshop, WADT 2002, Frauenchiemsee, Germany, 2002, Revised Selected
Papers, LNCS Vol. 2755, pages 253–267. Springer, 2003.

Case study in HasCasl. Graphs and Petri nets become first-class
citizens and can be used as tokens in Petri nets.

Hussmann:1999:ADT.
Heinrich Hussmann, Maura Cerioli, Gianna Reggio, and Françoise Tort. Ab-
stract data types and UML models. Technical Report DISI-TR-99-15, Univ.
of Genova, 1999.

Examines the relationship between object-oriented models (using
UML) and the classical algebraic approach to data abstraction (us-
ing Casl).

Hussmann:2000:UC.
Heinrich Hussmann, Maura Cerioli, and Hubert Baumeister. From UML to
Casl (static part). Technical Report DISI-TR-00-06, Univ. of Genova, 2000.

Introduces step by step a semantic translation of UML class diagrams
into Casl specifications in a way that the result may be integrated
with the semantics of other kinds of diagrams.

IFIP:1999:AFS.
Egidio Astesiano, Hans-Jörg Kreowski, and Bernd Krieg-Brückner, editors. Al-
gebraic Foundations of Systems Specification. IFIP State-of-the-Art Reports.
Springer, 1999.

Presents state-of-the art surveys of the major research topics in the
area of algebraic specifications, written by leading experts in the field.

Klin:2000:ISS.
Bartek Klin. An implementation of static semantics for architectural specifi-
cations in Casl. Master’s thesis, Warsaw Univ., 2000. In Polish.

Describes algorithmic aspects of static analysis of Casl, including the
cell calculus for architectural specifications.

Klin:2001:CAC.
Bartek Klin, Piotr Hoffman, Andrzej Tarlecki, Lutz Schröder, and Till
Mossakowski. Checking amalgamability conditions for Casl architectural spec-
ifications. In J. Sgall, A. Pultr, and P. Kolman, editors, Mathematical Founda-
tions of Computer Science 2001, 26th International Symposium, MFCS 2001,
Marianske Lazne, Czech Republic, Proceedings, LNCS Vol. 2136, pages 451–
463. Springer, 2001.

Provides static analysis for Casl architectural specifications with cell
calculus.

Annotated Bibliography 477

Ledoux:2000:FSM.
Franck Ledoux, Jean-Marc Mota, Agnès Arnould, Catherine Dubois, Pascale
Le Gall, and Yves Bertrand. Formal specification for a mathematics-based ap-
plication domain: Geometric modeling. Technical Report 51, LaMI, Université
d’Evry-Val d’Essonne, Evry, 2000.

Gives a first comparison of using Casl and the B method on the
chamfering operation in topology-based modeling.

Ledoux:2000:HLO.
Franck Ledoux, Agnès Arnould, Pascale Le Gall, and Yves Bertrand. A high-
level operation in 3D modeling: A Casl case study. Technical Report 52, Lami,
Université d’Evry-Val d’Essonne, Evry, 2000.

Provides a Casl case study in geometric modeling and presents the
different useful Casl features for geometric modeling.

Ledoux:2001:GMC.
Franck Ledoux, Agnès Arnould, Pascale Le Gall, and Yves Bertrand. Geometric
modeling with Casl. In M. Cerioli and G. Reggio, editors, Recent Trends in
Algebraic Development Techniques, 15th International Workshop, WADT 2001,
Joint with the CoFI WG Meeting, Genova, Italy, 2001, Selected Papers, LNCS
Vol. 2267, pages 176–200. Springer, 2001.

Gives a specification methodology dedicated to topology-based mod-
eling. This methodology is commented and illustrated with several
examples.

Ledoux:2001:SFC.
Franck Ledoux, Jean-Marc Mota, Agnès Arnould, Catherine Dubois, Pascale
Le Gall, and Yves Bertrand. Spécifications formelles du chanfreinage. In Ap-
proches Formelles dans l’Assistance au Développement de Logiciels (AFADL),
Nancy, France. ADER/LORIA, June 2001.

Gives a complete case study of using Casl and the B method in
topology-based modeling. Includes foundations of dedicated method-
ology.

Ledoux:2002:SPF.
Franck Ledoux, Jean-Marc Mota, Agnès Arnould, Catherine Dubois, Pascale
Le Gall, and Yves Bertrand. Spécifications formelles du chanfreinage. Tech-
nique et Science Informatiques, 21(8):1–26, 2002.

An extended version of [Ledoux:2001:SFC]. Gives a complete case
study of using CASL and the B method in topology-based modeling.
Includes foundations of dedicated methodology.

Machado:2002:UTC.
Patricia D. L. Machado and Donald Sannella. Unit testing for Casl architec-
tural specifications. In K. Diks and W. Rytter, editors, Mathematical Founda-
tions of Computer Science 2002, 27th International Symposium, MFCS 2002,
Warsaw, Poland, Proceedings, LNCS Vol. 2420, pages 506–518. Springer, 2002.

Studies the problem of testing modular systems against Casl archi-
tectural specifications, focussing on unit testing.

478 Annotated Bibliography

Mossakowski:1998:COS.
Till Mossakowski. Colimits of order-sorted specifications. In F. Parisi-Presicce,
editor, Recent Trends in Algebraic Development Techniques, 12th International
Workshop, WADT’97, Tarquinia, Italy, 1997, Selected Papers, LNCS Vol. 1376,
pages 316–332. Springer, 1998.

Proves cocompleteness of the Casl signature category and explains
the relation to order-sorted algebra.

Mossakowski:1998:SSA.
Till Mossakowski, Kolyang, and Bernd Krieg-Brückner. Static semantic anal-
ysis and theorem proving for Casl. In F. Parisi-Presicce, editor, Recent
Trends in Algebraic Development Techniques, 12th International Workshop,
WADT’97, Tarquinia, Italy, 1997, Selected Papers, LNCS Vol. 1376, pages
333–348. Springer, 1998.

Describes the Casl tool set, including the overload resolution algo-
rithm and encodings to higher-order logic.

Mossakowski:1999:TOC.
Till Mossakowski. Translating OBJ3 to Casl: The institution level. In J. L. Fi-
adeiro, editor, Recent Trends in Algebraic Development Techniques, 13th Inter-
national Workshop, WADT’98, Lisbon, Portugal, 1998, Selected Papers, LNCS
Vol. 1589, pages 198–215. Springer, 1999.

Presents different translations of OBJ3 to Casl, using different treat-
ments of OBJ3’s total retracts.

Mossakowski:2000:CST.
Till Mossakowski. Casl: From semantics to tools. In S. Graf and
M. Schwartzbach, editors, Tools and Algorithms for the Construction and Anal-
ysis of Systems, 6th International Conference, TACAS 2000, Berlin, Germany,
Proceedings, LNCS Vol. 1785, pages 93–108. Springer, 2000.

Gives a description of the Casl tool set and the Hol-Casl theorem
prover.

Mossakowski:2000:SAI.
Till Mossakowski. Specification in an arbitrary institution with symbols. In
D. Bert, C. Choppy, and P. D. Mosses, editors, Recent Trends in Algebraic
Development Techniques, 14th International Workshop, WADT’99, Château
de Bonas, France, 1999, Selected Papers, LNCS Vol. 1827, pages 252–270.
Springer, 2000.

Adds symbols to institutions, needed for Casl symbol maps.
Mossakowski:2000:SPH.

Till Mossakowski, Anne Haxthausen, and Bernd Krieg-Brückner. Subsorted
partial higher-order logic as an extension of Casl. In D. Bert, C. Choppy, and
P. D. Mosses, editors, Recent Trends in Algebraic Development Techniques,
14th International Workshop, WADT’99, Château de Bonas, France, 1999, Se-
lected Papers, LNCS Vol. 1827, pages 126–145. Springer, 2000.

This was the first proposal for a higher-order extension of Casl, su-
perseded by HasCasl [Schroeder:2002:HIS].

Annotated Bibliography 479

Mossakowski:2001:EDG.
Till Mossakowski, Serge Autexier, and Dieter Hutter. Extending development
graphs with hiding. In H. Hussmann, editor, Fundamental Approaches to Soft-
ware Engineering, 4th International Conference, FASE 2001, Genova, Italy,
Proceedings, LNCS Vol. 2029, pages 269–283. Springer, 2001.

Presents the kernel formalism for structured theorem proving that is
used in the Casl proof calculus.

Mossakowski:2001:IIS.
Till Mossakowski and Bartek Klin. Institution-independent static analysis for
Casl. In M. Cerioli and G. Reggio, editors, Recent Trends in Algebraic De-
velopment Techniques, 15th International Workshop, WADT 2001, Joint with
the CoFI WG Meeting, Genova, Italy, 2001, Selected Papers, LNCS Vol. 2267,
pages 221–237. Springer, 2001.

Makes the Casl tool set as much institution independent as possible.
Mossakowski:2002:RCO.

Till Mossakowski. Relating Casl with other specification languages: The in-
stitution level. Theoretical Computer Science, 286:367–475, 2002.

Provides translations from other specification languages to Casl, as
well as translations among sublanguages, including those needed for
the Casl tool set.

Mossakowski:2003:ACS.
Till Mossakowski, Horst Reichel, Markus Roggenbach, and Lutz Schröder.
Algebraic-coalgebraic specification in CoCasl. In M. Wirsing, D. Pattinson,
and R. Hennicker, editors, Recent Trends in Algebraic Development Techniques,
16th International Workshop, WADT 2002, Frauenchiemsee, Germany, 2002,
Revised Selected Papers, LNCS Vol. 2755, pages 376–392. Springer, 2003. Ex-
tended version submitted for publication.

Proposes a coalgebraic extension of Casl, including cogenerated, sim-
ple and structured cofree and modal logic.

Mossakowski:2003:CWM.
Till Mossakowski, Markus Roggenbach, and Lutz Schröder. CoCasl at work
– modelling process algebra. In H. P. Gumm, editor, Coalgebraic Methods in
Computer Science, CMCS’03, Warsaw, Poland, Proceedings, ENTCS Vol. 82.1.
Elsevier, 2003.

Presents a case study in CoCasl, specifying CCS and CSP coalge-
braically.

Mossakowski:2003:FHS.
Till Mossakowski. Foundations of heterogeneous specification. In M. Wirsing,
D. Pattinson, and R. Hennicker, editors, Recent Trends in Algebraic Develop-
ment Techniques, 16th International Workshop, WADT 2002, Frauenchiem-
see, Germany, 2002, Revised Selected Papers, LNCS Vol. 2755, pages 359–375.
Springer, 2003.

Provides a semantics for heterogeneous specifications involving both
different institutions and institution translations of different kinds.

480 Annotated Bibliography

Mossakowski:2003:CCA.
Till Mossakowski, Anne Haxthausen, Donald Sannella, and Andrzej Tarlecki.
Casl, the Common Algebraic Specification Language: Semantics and proof
theory. Computing and Informatics, 22:285–321, 2003.

Gives an overview of a simplified version of the Casl syntax, seman-
tics and proof calculus, for basic, structured and architectural specifi-
cations.

Mossakowski:2004:CASL-Logic.
Till Mossakowski, Piotr Hoffman, Serge Autexier, and Dieter Hutter. Casl

logic. In Casl Reference Manual, LNCS Vol. 2960 (IFIP Series), part IV.
Springer, 2004. Edited by T. Mossakowski.

Presents proof calculi that support reasoning about Casl specifica-
tions; proves soundness and discusses completeness.

Mosses:1996:CoFI.
Peter D. Mosses. CoFI: The Common Framework Initiative for algebraic spec-
ification. Bulletin of the EATCS, 59:127–132, June 1996. An updated version
is [Mosses:2001:CoFI].

Presents CoFI, describing the aims and goals.
Mosses:1997:CAS.

Peter D. Mosses. Casl for Asf+Sdf users. In M. P. A. Sellink, editor,
ASF+SDF’97, Proc. 2nd Intl. Workshop on the Theory and Practice of Al-
gebraic Specifications, volume ASFSDF-97 of Electronic Workshops in Com-
puting. British Computer Society, 1997.

Gives an overview of Casl, comparing it to Asf+Sdf.
Mosses:1997:CoFI.

Peter D. Mosses. CoFI: The Common Framework Initiative for algebraic speci-
fication and development. In M. Bidoit and M. Dauchet, editors, TAPSOFT’97:
Theory and Practice of Software Development, 7th International Joint Confer-
ence CAAP/FASE, Lille, France, Proceedings, LNCS Vol. 1214, pages 115–137.
Springer, 1997.

Describes a tentative design for Casl, motivating some of the design
choices.

Mosses:1999:CGT.
Peter D. Mosses. Casl: A guided tour of its design. In J. L. Fiadeiro, editor,
Recent Trends in Algebraic Development Techniques, 13th International Work-
shop, WADT’98, Lisbon, Portugal, 1998, Selected Papers, LNCS Vol. 1589,
pages 216–240. Springer, 1999.

Indicates the major issues in the Casl design, explains and illustrates
the main concepts and constructs. Based on a 1

2
-day tutorial.

Mosses:2000:CAS.
Peter D. Mosses. Casl and Action Semantics. In P. D. Mosses and H. Moura,
editors, AS 2000, Third International Workshop on Action Semantics, Recife,
Brazil, Proceedings, BRICS NS-00-6, pages 62–78. Dept. of Computer Science,
Univ. of Aarhus, 2000.

Gives an overview of Casl, and considers pros and cons of using it
as meta-notation in action semantic descriptions of programming lan-
guages.

Annotated Bibliography 481

Mosses:2000:CCU.
Peter D. Mosses. Casl for CafeOBJ users. In K. Futatsugi, A. T. Naka-
gawa, and T. Tamai, editors, CAFE: An Industrial-Strength Algebraic Formal
Method, chapter 6, pages 121–144. Elsevier, 2000.

Gives an overview of Casl, comparing it to CafeOBJ.
Mosses:2001:CoFI.

Peter D. Mosses. CoFI: The common framework initiative for algebraic speci-
fication and development. In G. Păun, G. Rozenberg, and A. Salomaa, editors,
Current Trends in Theoretical Computer Science: Entering the 21st Century,
pages 153–163. World Scientific, 2001.

Describes the aims, goals, and initial achievements of CoFI, extending
and updating [Mosses:1996:CoFI].

Reggio:1999:CLC.
Gianna Reggio, Egidio Astesiano, and Christine Choppy. Casl-Ltl: A Casl

extension for dynamic reactive systems – summary. Technical Report DISI-TR-
99-34, Univ. of Genova, 1999. Revised August 2003, see [Reggio:2003:CLC].

Describes the Casl-Ltl extension language proposed for dynamic sys-
tems specification, with dynamic sorts and temporal formulas.

Reggio:1999:CFD.
Gianna Reggio, Egidio Astesiano, Christine Choppy, and Heinrich Hussmann.
A Casl formal definition of UML active classes and associated state machines.
Technical Report DISI-TR-99-16, Univ. of Genova, 1999. A short version is
published in [Reggio:2000:AUA].

Presents the labelled transition system associated with an active class
using Casl.

Reggio:1999:MPU.
Gianna Reggio, Egidio Astesiano, Christine Choppy, and Heinrich Hussmann.
Making precise UML active classes modeled by state charts. Technical Report
DISI-TR-99-14, Univ. of Genova, 1999.

Presents the labelled transition system associated with an active class
using Casl.

Reggio:2000:ASU.
Gianna Reggio, Maura Cerioli, and Egidio Astesiano. An algebraic semantics
of UML supporting its multiview approach. In D. Heylen, A. Nijholt, and
G. Scollo, editors, Algebraic Methods in Language Processing, AMiLP 2000,
TWLT Vol. 16. Univ. of Twente, 2000.

Using Casl as a metalanguage, proposes a semantics for class dia-
grams, state machines and overall systems described using the UML.

Reggio:2000:AUA.
Gianna Reggio, Egidio Astesiano, Christine Choppy, and Heinrich Hussmann.
Analysing UML active classes and associated state machines – A lightweight
approach. In T. Maibaum, editor, Fundamental Approaches to Software Engi-
neering, Third International Conference, FASE 2000, Berlin, Germany, Pro-
ceedings, LNCS Vol. 1783, pages 127–146. Springer, 2000. An extended version
is provided in [Reggio:1999:CFD].

Presents the labelled transition system associated with an active class
using Casl.

482 Annotated Bibliography

Reggio:2000:CCC.
Gianna Reggio and Lorenzo Repetto. Casl-Chart: A combination of stat-
echarts and of the algebraic specification language Casl. In T. Rus, editor,
Algebraic Methodology and Software Technology, 8th International Conference,
AMAST 2000, Iowa City, Iowa, USA, Proceedings, LNCS Vol. 1816, pages
243–257. Springer, 2000.

Presents a combination of statecharts and Casl.
Reggio:2000:CCS.

Gianna Reggio and Lorenzo Repetto. Casl-Chart: Syntax and semantics.
Technical Report DISI-TR-00-1, Univ. of Genova, 2000.

Presents the complete syntax and semantics of a combination of stat-
echarts and Casl.

Reggio:2001:RSU.
Gianna Reggio, Maura Cerioli, and Egidio Astesiano. Towards a rigorous se-
mantics of UML supporting its multiview approach. In H. Hussmann, editor,
Fundamental Approaches to Software Engineering, 4th International Confer-
ence, FASE 2001, Genova, Italy, Proceedings, LNCS Vol. 2029, pages 171–186.
Springer, 2001.

Using Casl as a metalanguage, proposes a semantics for class dia-
grams, state machines and overall systems described using the UML.

Reggio:2003:CLC.
Gianna Reggio, Egidio Astesiano, and Christine Choppy. Casl-Ltl: A Casl

extension for dynamic reactive systems – version 1.0 – summary. Technical Re-
port DISI-TR-03-36, Univ. of Genova, 2003. A revision of [Reggio:1999:CLC].

Describes the Casl-Ltl extension language proposed for dynamic sys-
tems specification, with dynamic sorts and temporal formulae.

Roggenbach:2000:SRN.
Markus Roggenbach, Lutz Schröder, and Till Mossakowski. Specifying real
numbers in Casl. In D. Bert, C. Choppy, and P. D. Mosses, editors, Recent
Trends in Algebraic Development Techniques, 14th International Workshop,
WADT’99, Château de Bonas, France, 1999, Selected Papers, LNCS Vol. 1827,
pages 146–161. Springer, 2000.

Presents a weak first-order theory of real numbers in Casl.
Roggenbach:2001:TTS.

Markus Roggenbach and Lutz Schröder. Towards trustworthy specifications
I: Consistency checks. In M. Cerioli and G. Reggio, editors, Recent Trends
in Algebraic Development Techniques, 15th International Workshop, WADT
2001, Joint with the CoFI WG Meeting, Genova, Italy, 2001, Selected Papers,
LNCS Vol. 2267, pages 305–327. Springer, 2001.

Introduces a calculus for proving consistency of Casl specifications;
the syntax-driven approach exploits in particular the Casl structuring
operations

Annotated Bibliography 483

Roggenbach:2003:CCN.
Markus Roggenbach. CSP-Casl – A new integration of process algebra and
algebraic specification. In F. Spoto, G. Scollo, and A. Nijholt, editors, Algebraic
Methods in Language Processing, AMiLP 2003, TWLT Vol. 21, pages 229–243.
Univ. of Twente, 2003.

Describes the integration of the process algebra CSP and the algebraic
specification language Casl into one language, with denotational se-
mantics in the process part and loose semantics for the datatypes.

Roggenbach:2004:CASL-Libraries.
Markus Roggenbach, Till Mossakowski, and Lutz Schröder. Casl libraries. In
Casl Reference Manual, LNCS Vol. 2960 (IFIP Series), part V. Springer, 2004.

Provides libraries of basic datatypes in Casl, including order-theoretic
and basic algebraic concepts, simple and structured datatypes, and
graphs.

Salauen:2002:SAC.
Gwen Salaün, Michel Allemand, and Christian Attiogbé. Specification of an
access control system with a formalism combining CCS and Casl. In Proc. of
the 7th International Workshop on Formal Methods for Parallel Programming:
Theory and Applications, FMPPTA’02, USA, 2002. IEEE Press.

Advocates a formalism which combines the CCS process algebra with
the Casl algebraic specification language, presents formal foundations
of this combination, and illustrates it with a real size case study: an
access control system to a set of buildings.

Sannella:2000:ASP.
Donald Sannella. Algebraic specification and program development by stepwise
refinement. In A. Bossi, editor, Logic-Based Program Synthesis and Transfor-
mation, 9th International Workshop, LOPSTR’99, Venice, Italy, 1999 Selected
Papers, LNCS Vol. 1817, pages 1–9. Springer, 2000.

Provides an overview of formal algebraic notions of refinement step.
Sannella:2000:CoFI.

Donald Sannella. The common framework initiative for algebraic specification
and development of software. In D. Bjørner, M. Broy, and A. V. Zamulin, ed-
itors, Perspectives of System Informatics, Third International Andrei Ershov
Memorial Conference, PSI’99, Akademgorodok, Novosibirsk, Russia, Proceed-
ings, LNCS Vol. 1755, pages 1–9. Springer, 2000.

Gives an overview of CoFI, with emphasis on the features of Casl.
Sannella:2001:CoFI-RP.

Donald Sannella. The common framework initiative for algebraic specification
and development of software: Recent progress. In M. Cerioli and G. Reggio, ed-
itors, Recent Trends in Algebraic Development Techniques, 15th International
Workshop, WADT 2001, Joint with the CoFI WG Meeting, Genova, Italy,
2001, Selected Papers, LNCS Vol. 2267, pages 328–343. Springer, 2001.

Reports on progress with CoFI during 1998-2001.

484 Annotated Bibliography

Schroeder:2001:ACE.
Lutz Schröder, Till Mossakowski, and Andrzej Tarlecki. Amalgamation in Casl

via enriched signatures. In F. Orejas, P. G. Spirakis, and J. van Leeuwen, edi-
tors, Automata, Languages and Programming, 28th International Colloquium,
ICALP 2001, Crete, Greece, Proceedings, LNCS Vol. 2076, pages 993–1004.
Springer, 2001. Extended version to appear in Theoretical Computer Science.

Presents definition of and results about enriched Casl, which restores
the lacking amalgamation property.

Schroeder:2001:SAS.
Lutz Schröder, Till Mossakowski, Andrzej Tarlecki, Piotr Hoffman, and Bartek
Klin. Semantics of architectural specifications in Casl. In H. Hussmann,
editor, Fundamental Approaches to Software Engineering, 4th International
Conference, FASE 2001, Genova, Italy, Proceedings, LNCS Vol. 2029, pages
253–268. Springer, 2001. Extended version to appear in Theoretical Computer
Science.

Solves the problems of Casl architectural specifications with subsorts
by introducing enriched Casl and a diagram static semantics.

Schroeder:2002:HIS.
Lutz Schröder and Till Mossakowski. HasCasl: Towards integrated specifica-
tion and development of Haskell programs. In H. Kirchner and C. Ringeissen,
editors, Algebraic Methods and Software Technology, 9th International Confer-
ence, AMAST 2002, Saint-Gilles-les-Bains, Reunion Island, France, Proceed-
ings, LNCS Vol. 2422, pages 99–116. Springer, 2002.

The central paper explaining HasCasl, a higher-order extension of
Casl including type constructors, polymorphism and recursion.

Schroeder:2003:CCP.
Lutz Schröder. Classifying categories for partial equational logic. In R. Blute
and P. Selinger, editors, Category Theory and Computer Science, CTCS’02,
ENTCS Vol. 69. Elsevier, 2003.

Establishes correspondence results between partial equational theories,
of which Casl signatures are a special case, and categories with certain
finite limits, in preparation for the semantics of HasCasl.

Schroeder:2003:HMP.
Lutz Schröder. Henkin models of the partial λ-calculus. In M. Baaz and
J. M. Makowsky, editors, Computer Science Logic, 17th International Work-
shop, CSL 2003, 12th Annual Conference of the EACSL, and 8th Kurt Gödel
Colloquium, KGC 2003, Vienna, Austria, Proceedings, LNCS Vol. 2803, pages
498–512. Springer, 2003.

Shows that categorical models of the partial lambda-calculus and in-
tensional Henkin models, as used in the semantics of HasCasl, are
equivalent

Annotated Bibliography 485

Schroeder:2003:MID.
Lutz Schröder and Till Mossakowski. Monad-independent dynamic logic in
HasCasl. In M. Wirsing, D. Pattinson, and R. Hennicker, editors, Recent
Trends in Algebraic Development Techniques, 16th International Workshop,
WADT 2002, Frauenchiemsee, Germany, 2002, Revised Selected Papers, LNCS
Vol. 2755, pages 425–441. Springer, 2003. Extended version to appear in Jour-
nal of Logic and Computation.

Monad-independent dynamic logic in the framework of HasCasl; ad-
mits reasoning about termination and total correctness.

Schroeder:2003:MIH.
Lutz Schröder and Till Mossakowski. Monad-independent Hoare logic in Has-

Casl. In M. Pezzè, editor, Fundamental Approaches to Software Engineer-
ing, 6th International Conference, FASE 2003, Warsaw, Poland, Proceedings,
LNCS Vol. 2621, pages 261–277. Springer, 2003.

Hoare logic for arbitrary monads (e.g., exceptions, non-determinism,
references, input/output) in the framework of HasCasl.

Schroeder:2004:ASC.
Lutz Schröder, Till Mossakowski, Andrzej Tarlecki, Bartek Klin, and Piotr
Hoffman. Amalgamation in the semantics of Casl. Theoretical Computer
Science. To appear; extends [Schroeder:2001:SAS, Schroeder:2001:ACE].

Solves the problems of Casl architectural specifications with subsorts
by introducing enriched Casl and a diagram static semantics.

Schroeder:2004:MID.
Lutz Schröder and Till Mossakowski. Monad-independent dynamic logic
in HasCasl. Journal of Logic and Computation. To appear; extends
[Schroeder:2003:MID].

Monad-independent dynamic logic in the framework of HasCasl; ad-
mits reasoning about termination, partial and total correctness.

Tarlecki:2003:AST.
Andrzej Tarlecki. Abstract specification theory: An overview. In M. Pizka and
M. Broy, editors, Models, Algebras and Logic of Engineering Software, NATO
Science Series: Computer & Systems Sciences Vol. 191, pages 43–79. IOS Press,
2003.

Provides an overall view of abstract specification and software devel-
opment theory, including a version of Casl architectural specifications
with an example, semantics and verification rules.

References

1. E. Astesiano, M. Bidoit, H. Kirchner, B. Krieg-Brückner, P. D. Mosses, D. San-
nella, and A. Tarlecki. Casl: The Common Algebraic Specification Language.
Theoretical Comput. Sci., 286(2):153–196, 2002.

2. E. Astesiano, M. Broy, and G. Reggio. Algebraic specification of concurrent
systems. In Algebraic Foundations of Systems Specification, IFIP State-of-the-
Art Reports, chap. 13. Springer, 1999.

3. E. Astesiano and M. Cerioli. Free objects and equational deduction for partial
conditional specifications. Theoretical Comput. Sci., 152:91–138, 1995.

4. H. Baumeister and A. V. Zamulin. State-based extension of Casl. In IFM
2000, LNCS 1945, pages 3–24. Springer, 2000.

5. M. Bidoit and P. D. Mosses. Casl User Manual. LNCS 2900 (IFIP Series).
Springer, 2004. With chapters by T. Mossakowski, D. Sannella, and A. Tarlecki.

6. M. Bidoit, D. Sannella, and A. Tarlecki. Architectural specifications in Casl.
Formal Aspects of Comput., 13:252–273, 2002.

7. T. Borzyszkowski. Logical systems for structured specifications. Theoretical
Comput. Sci., 286:197–245, 2002.

8. M. G. J. van den Brand, J. Scheerder, J. J. Vinju, and E. Visser. Disambiguation
filters for scannerless generalized LR parsers. In CC 2002, LNCS 2304, pages
143–158. Springer, 2002.

9. P. Burmeister. Partial algebras — survey of a unifying approach towards a
two-valued model theory for partial algebras. Algebra Universalis, 15:306–358,
1982.

10. P. Burmeister. A Model Theoretic Oriented Approach to Partial Algebras.
Akademie-Verlag, Berlin, 1986.

11. P. Burmeister, M. Llabrés, and F. Rosselló. Pushout complements for partly
total algebras. Math. Struct. in Comput. Sci., 12(2):177–201, 2002.

12. M. Cerioli. Relationships between Logical Formalisms. PhD thesis, TD-4/93,
Università di Pisa-Genova-Udine, 1993.

13. M. Cerioli, A. Haxthausen, B. Krieg-Brückner, and T. Mossakowski. Permissive
subsorted partial logic in Casl. In AMAST’97, LNCS 1349, pages 91–107.
Springer, 1997.

14. M. Cerioli, T. Mossakowski, and H. Reichel. From total equational to partial
first-order logic. In Algebraic Foundations of Systems Specification, IFIP State-
of-the-Art Reports, chapter 3. Springer, 1999.

488 References

15. I. Claßen, M. Große-Rhode, and U. Wolter. Categorical concepts for parame-
terized partial specification. Math. Struct. in Comput. Sci., 5:153–188, 1995.

16. CoFI. The Common Framework Initiative for algebraic specification and
development, electronic archives. Notes and Documents accessible from
http://www.cofi.info.

17. R. Diaconescu. An institution-independent proof of Craig Interpolation Prop-
erty. Studia Logica, 76(3), 2004.

18. S. Even. Graph Algorithms. Computer Science Press, 1979.
19. R. van Glabbeek. The meaning of negative premises in transition system spec-

ifications II. In ICALP’96, LNCS 1099, pages 502–513. Springer, 1996.
20. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for spec-

ification and programming. J. ACM, 39(1):95–146, 1992.
21. J. A. Goguen and J. Meseguer. Completeness of many-sorted equational logic.

ACM SIGPLAN Notices, 17(1):9–17, 1982.
22. J. A. Goguen and J. Meseguer. Eqlog: Equality, types, and generic modules

for logic programming. In D. DeGroot and G. Lindstrom, editors, Logic Pro-
gramming. Functions, Relations and Equations, pages 295–363. Prentice-Hall,
Englewood Cliffs, New Jersey, 1986.

23. J. A. Goguen and G. Rosu. Institution morphisms. Formal Aspects of Comput.,
13:274–307, 2002.

24. J. A. Goguen, J. W. Thatcher, and E. G. Wagner. An initial algebra approach
to the specification, correctness and implementation of abstract data types. In
R. Yeh, editor, Current Trends in Programming Methodology, volume 4, pages
80–144. Prentice Hall, 1978.

25. J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. In-
troducing OBJ. In J. A. Goguen and G. Malcolm, editors, Software Engineering
with OBJ: Algebraic Specification in Action, chapter 1. Kluwer, 2000.

26. R. Harper and B. Pierce. Design issues in advanced module systems. In
B. Pierce, editor, Advanced Topics in Types and Programming Languages. MIT
Press. To appear.

27. H. Herrlich and G. Strecker. Category Theory. Allyn and Bacon, 1973.
28. P. Hoffman. Verifying architectural specifications. In WADT 2001, LNCS 2267,

pages 152–175. Springer, 2001.
29. P. Hoffman. Verifying generative Casl architectural specifications. In WADT

2002, LNCS 2755, pages 233–252. Springer, 2003.
30. G. Kahn. Natural semantics. In K. Fuchi and M. Nivat, editors, Programming

of Future Generation Computers, pages 237–258. North Holland, 1988.
31. B. Klin, P. Hoffman, A. Tarlecki, L. Schröder, and T. Mossakowski. Checking

amalgamability conditions for Casl architectural specifications. In MFCS 2001,
LNCS 2136, pages 451–463. Springer, 2001.

32. J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.
33. V. Manca, A. Salibra, and G. Scollo. Equational type logic. Theoretical Comput.

Sci., 77:131–159, 1990.
34. J. Meseguer. General logics. In Logic Colloquium 87, pages 275–329. North

Holland, 1989.
35. J. Meseguer. Conditional rewriting as a unified model of concurrency. Theoret-

ical Comput. Sci., 96(1):73–156, 1992.
36. J. Meseguer. Membership algebra as a logical framework for equational specifi-

cation. In WADT’97, LNCS 1376, pages 18–61. Springer, 1998.

http://www.cofi.info

References 489

37. T. Mossakowski. Equivalences among various logical frameworks of partial al-
gebras. In CSL’95, LNCS 1092, pages 403–433. Springer, 1996.

38. T. Mossakowski. Colimits of order-sorted specifications. In WADT’97,
LNCS 1376, pages 316–332. Springer, 1998.

39. T. Mossakowski. Specification in an arbitrary institution with symbols. In
WADT’99, LNCS 1827, pages 252–270. Springer, 2000.

40. T. Mossakowski. Comorphism-based Grothendieck logics. In MFCS 2002,
LNCS 2420, pages 593–604. Springer, 2002.

41. T. Mossakowski. Relating Casl with other specification languages: The insti-
tution level. Theoretical Comput. Sci., 286:367–475, 2002.

42. T. Mossakowski. Foundations of heterogeneous specification. In WADT 2002,
LNCS 2755, pages 359–375. Springer, 2003.

43. T. Mossakowski. Refinement for Casl – language summary, semantics and proof
calculus. Available at http://www.informatik.uni-bremen.de/cofi/papers/
ref.pdf, 2004.

44. T. Mossakowski, S. Autexier, and D. Hutter. Extending development graphs
with hiding. In FASE 2001, LNCS 2029, pages 269–283. Springer, 2001.

45. T. Mossakowski, A. Haxthausen, D. Sannella, and A. Tarlecki. Casl, the Com-
mon Algebraic Specification Language: Semantics and proof theory. Comput.
and Informatics, 22:285–321, 2003.

46. T. Mossakowski, H. Reichel, M. Roggenbach, and L. Schröder. Algebraic-
coalgebraic specification in CoCasl. In WADT 2002, LNCS 2755, pages 376–
392. Springer, 2003.

47. T. Mossakowski, D. Sannella, and A. Tarlecki. A simple refinement language
for Casl. Submitted to WADT 2004, 2004.

48. P. D. Mosses. Unified algebras and institutions. In LICS’89, pages 304–312.
IEEE, 1989.

49. P. D. Mosses. CoFI: The Common Framework Initiative for algebraic specifica-
tion and development. In TAPSOFT’97, LNCS 1214, pages 115–137. Springer,
1997.

50. P. D. Mosses. Formatting CASL specifications using LATEX. In [16], 2004.
51. P. Padawitz. Computing in Horn Clause Theories. Springer, 1988.
52. B. Pierce. Basic Category Theory for Computer Scientists. MIT Press, 1991.
53. T. Przymusinski. On the declarative semantics of deductive databases and logic

programs. In J. Minker, editor, Foundations of Deductive Databases and Logic
Programming, pages 193–216. Morgan Kaufmann, 1988.

54. G. Reggio, E. Astesiano, and C. Choppy. Casl-Ltl: A Casl extension for
dynamic reactive systems – version 1.0 – summary. Tech. Rep. DISI-TR-03-36,
Univ. of Genova, 2003.

55. H. Reichel. Initial Computability, Algebraic Specifications and Partial Algebras.
Oxford Science Publications, 1987.

56. M. Roggenbach. CSP-Casl – A new integration of process algebra and algebraic
specification. In AMiLP 2003, TWLT Vol. 21, pages 229–243. Univ. of Twente,
2003.

57. M. Roggenbach and T. Mossakowski. Methodological guidelines for Casl. Un-
published manuscript, 2004.

58. M. Roggenbach and L. Schröder. Towards trustworthy specifications I: Consis-
tency checks. In WADT 2001, LNCS 2267, pages 305–327. Springer, 2001.

59. M. Roggenbach, L. Schröder, and T. Mossakowski. Specifying real numbers in
Casl. In WADT’99, LNCS 1827, pages 146–161. Springer, 2000.

http://www.informatik.uni-bremen.de/cofi/papers/ref.pdf
http://www.informatik.uni-bremen.de/cofi/papers/ref.pdf

490 References

60. L. Schröder and T. Mossakowski. HasCasl: Towards integrated specification
and development of Haskell programs. In AMAST 2002, LNCS 2422, pages
99–116. Springer, 2002.

61. L. Schröder, T. Mossakowski, and C. Maeder. HASCASL – Integrated func-
tional specification and programming. Language summary. Available at
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/
CoFI/HasCASL, 2003.

62. L. Schröder, T. Mossakowski, A. Tarlecki, P. Hoffman, and B. Klin. Semantics of
architectural specifications in Casl. In FASE 2001, LNCS 2029, pages 253–268.
Springer, 2001.

63. L. Schröder, T. Mossakowski, A. Tarlecki, B. Klin, and P. Hoffman. Amalga-
mation in the semantics of Casl. Theoretical Comput. Sci. To appear.

64. J. R. Shoenfield. Mathematical Logic. Addison-Wesley, Reading, Massachusetts,
1967.

65. A. Tarlecki. Moving between logical systems. In WADT’95, LNCS 1130, pages
478–502. Springer, 1996.

66. J. W. Thatcher, E. G. Wagner, and J. B. Wright. Specification of abstract data
types using conditional axioms. Technical Report RC 6214, IBM Yorktown
Heights, 1981.

67. E. Wagner. On the category of CASL signatures. Presentation at WADT’99,
Bonas, 1999.

http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/HasCASL
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/HasCASL

Index of Library and Specification Names

AbelianGroup 394
AbelianGroup_in_

ConstructField 395
AbelianGroup_in_ExtCRing 397
AbelianGroup_in_Int_Add 399
AbelianGroup_in_RichCRing

399
AbelianGroup_in_Ring_add 394
AbelianGroup_in_VectorSpace

440
Algebra 449
Algebra_I 369
Algebra_II 374
Algebra_in_Matrix 450
AntisymmetricRelation 388
Array 371, 413
AsymmetricRelation 388

Bag 412
Basic/Algebra_I 368, 393
Basic/Algebra_II 431
Basic/Graphs 421
Basic/LinearAlgebra_I 439
Basic/LinearAlgebra_II 449
Basic/MachineNumbers 453
Basic/Numbers 369, 379
Basic/RelationsAndOrders 368,

387
Basic/SimpleDatatypes 401
Basic/StructuredDatatypes 405
BinTree 371, 414
BinTree2 371, 415
Boolean 401

BooleanAlgebra 390
BooleanAlgebra_in_Boolean

402
BooleanAlgebra_in_PowerSet

408

CARDINAL 453
Char 402
CommutativeMonoid 393
CommutativeMonoid_in_Bag 413
CommutativeMonoid_in_Int_

Mult 399
CommutativeMonoid_in_Nat_

Add 399
CommutativeMonoid_in_Nat_

Mult 399
CommutativeRing 394
ConstructFactorialRing 375, 432
ConstructField 369, 370, 394
ConstructPolynomial 433
ConstructVector 377, 443
ConstructVSWithBase 376, 441
CRing_in_CPolynomial 434

DecimalFraction 368, 384

EqRel_in_ExtCRing 370, 397
EqRel_in_ExtGroupAction 375,

436
EqRel_in_RichCRing 399
EqRel_in_RichGroupAction 436
EquivalenceRelation 389
EuclidianRing 431
EuclidianRing_in_Int 437

492 Index of Library and Specification Names

EuclidianRing_in_Polynomial

434
ExtAbelianGroup 396
ExtAlgebra 450
ExtBooleanAlgebra 391
ExtCARDINAL 458
ExtCommutativeMonoid 395
ExtCommutativeRing 370, 397
ExtEuclidianRing 435
ExtFactorialRing 435
ExtField 369, 370, 398
ExtFreeAlgebra 450
ExtFreeVectorSpace 450
ExtGroup 395
ExtGroupAction 435
ExtINTEGER 458
ExtIntegralDomain 397
ExtMonoid 395
ExtMonoidAction 435
ExtPartialOrder 391
ExtRing 370, 396
ExtTotalOrder 369, 391
ExtTwoComplement 458
ExtVectorSpace 441
ExtVSWithBase 441

FactorialRing 375, 432
FactorialRing_in_ExtEuclRing

436
FactorialRing_in_

RichEuclidianRing 436
Field 369, 370, 395
Field_in_Rat 400
Finite 411
FreeAlgebra 377, 450
FreeAlgebra_in_Polynomial

451
FreeCommutativeMonoid_in_Bag

437
FreeMonoid_in_List 437
FreeVectorSpace 377, 449
FreeVectorSpace_in_

VSWithBase 451

GenerateBag 371, 412
GenerateBinTree 414
GenerateBinTree2 415
GenerateList 371, 408
GenerateMap 371, 410

GenerateNTree 416
GenerateNTree2 417
GenerateSet 371, 406
Graph 372, 373, 421
GraphColorability 373, 427
GraphHomomorphism 373, 428
Graphs 372
GraphToSet 373, 423
Group 393
Group_in_ExtRing 370, 396
Group_in_RichRing 398
Group_in_SymmetricGroup 444
GroupAction 435
GroupAction_in_VectorSpace

440

Int 366, 381
INTEGER 455
IntegralDomain 394
IntegralDomain_in_Field 395
IntegralDomain_in_Int 369, 400
IntInfinity 374, 432
IrreflexiveRelation 388

K3_3 374, 429
K5 374, 429
KTree 372, 419
KTree2 372, 419

LeftTotalRelation 390
LinearAlgebra_I 375
LinearAlgebra_II 377
List 371, 408

MachineNumbers 377
Map 410
Matrix 445
Maybe 406
Minor 374, 428
Monoid 393
Monoid_in_List 410
MonoidAction 434

Nat 366, 379
NonUniqueEdgesGraph 374, 430
NTree 371, 416
NTree2 371, 417
Numbers 365

Pair 406

Index of Library and Specification Names 493

PartialEquivalenceRelation 389
PartialOrder 389
PartialOrder_in_Bag 413
PartialOrder_in_

ExtBooleanAlgebra 392
PartialOrder_in_Set 407
Paths 373, 425
Planar 374, 429
Polynomial 434
PowerSet 371, 407
PreOrder 389
PreOrder_in_ExtCRing 369, 370,

397
PreOrder_in_ExtMonoidAction

375, 435
PreOrder_in_RichCRing 399
PreOrder_in_RichMonoidAction

436

Rat 367, 383
ReflexiveRelation 388
Relation 388
RelationsAndOrders 368
RichAbelianGroup 398
RichAlgebra 450
RichBoolean 402
RichBooleanAlgebra 392
RichCommutativeMonoid 398
RichCommutativeRing 398
RichEuclidianRing 436
RichFactorialRing 436
RichField 399
RichFreeAlgebra 451
RichFreeVectorSpace 451
RichGraph 373, 422
RichGroup 398
RichGroupAction 436
RichIntegralDomain 399
RichMonoid 398
RichMonoidAction 436
RichPartialOrder 392
RichRing 398
RichTotalOrder 369, 392
RichVectorSpace 446

RichVSWithBase 446
RightUniqueRelation 390
Ring 394

Set 406
ShortestPaths 373, 427
SimilarityRelation 389
SimpleDatatypes 370
StrictOrder 389
StrictTotalOrder 390
String 410
StructuredDatatypes 370
SymmetricClosure 373, 425
SymmetricGraph 373, 424
SymmetricGroup 444
SymmetricRelation 388

TotalMap 411
TotalOrder 368, 390
TotalOrder_in_CARDINAL 458
TotalOrder_in_Int 392
TotalOrder_in_INTEGER 458
TotalOrder_in_IntInfinity 433
TotalOrder_in_Nat 392
TotalOrder_in_Rat 392
TotalOrder_in_TwoComplement

458
TransitiveRelation 388
TwoComplement 456

Vector 443
VectorSpace 439
VectorSpace_in_Field 440
VectorSpace_in_Vector 444
VectorSpace_in_VectorTuple

446
VectorSpaceLC 376, 440
VectorTuple 442
VSWithBase 376, 441
VSWithBase_in_Field 446
VSWithBase_in_Matrix 447
VSWithBase_in_Vector 446
VSWithBase_in_VectorSpace

377, 447

Abstract Syntax Sorts and Constructors

%cons I:39
%def I:39
%implies I:39
%mono I:39

ALTERNATIVE I:15, 30, II:77, 78, 82, 83,
89, 90, III:150, 177

AMALGAMATION I:55, II:80, III:244, 259
amalgamation I:55, II:80, III:244, 259
ANNOTATION II:105
ANNOTATION-GROUP II:105
ANNOTATION-LINE II:105
APPLICATION I:23, II:77, III:166
application I:23, II:77, III:166
ARCH-SPEC I:50, II:79, 84, 92, III:232,

251
ARCH-SPEC-DEFN I:50, II:79, 84, 92,

III:232, 251
arch-spec-defn I:50, II:79, 84,

III:232, 251
ARCH-SPEC-NAME I:51, II:80, 84, 93,

III:232
ARCH-UNIT-SPEC I:53, II:80, III:239
arch-unit-spec I:53, II:80, III:239
ARG-DECL I:13, II:76, 81, 89, III:144
arg-decl I:13, II:76, 81, III:144
assoc-op-attr I:12, II:76, 81, III:143
ATOM I:21, 31, II:77, 78, III:162, 184
AXIOM I:18, II:77, III:159
AXIOM-ITEMS I:18, II:77, III:159
axiom-items I:18, II:77, III:159

BASIC-ARCH-SPEC I:51, II:79, 92,
III:233, 252

basic-arch-spec I:51, II:79, 84,
III:233, 252

BASIC-ITEMS I:9, II:76, 81, 88, III:139
BASIC-SPEC I:9, II:76, 81, 88, III:138,

IV:318
basic-spec I:9, II:76, 81, III:138
BINARY-OP-ATTR I:12, II:76, III:143
BRACED-ID I:25, II:78, III:168
braced-id I:25, II:78, III:168
BRACKET-ID I:25, II:78, III:168
bracket-id I:25, II:78, III:168

CAST I:32, II:78, III:187
cast I:32, II:78, III:187
CHAR II:100
CLOSED-SPEC I:40, II:79, III:210
closed-spec I:40, II:79, III:210,

IV:319
CLOSED-UNIT-SPEC I:53, II:80, III:240
closed-unit-spec I:53, II:80
comm-op-attr I:12, III:143
COMMENT II:104
COMMENT-GROUP II:104
COMMENT-LINE II:104
COMMENT-OUT II:104
COMP-MIX-TOKEN I:47, II:79, 84, III:223
comp-mix-token I:47, II:79, 84, III:223
COMP-SORT-ID I:47, II:79, 84, III:223
comp-sort-id I:47, II:79, 84, III:223
COMPONENT II:89
COMPONENTS I:16, II:77, 82, III:151
CONDITIONAL I:24, II:78, III:168
conditional I:24, II:78, III:168

496 Abstract Syntax Sorts and Constructors

CONJUNCTION I:20, II:77, III:161
conjunction I:20, II:77, III:161

DATATYPE-DECL I:15, II:77, 82, 89,
III:149

datatype-decl I:15, II:77, 82, III:149
DATATYPE-ITEMS I:14, II:77, III:147
datatype-items I:14, II:77, III:147
DEFINEDNESS I:22, II:77, III:164
definedness I:22, II:77, III:164
DIGIT II:99
DIGITS II:100
DIRECT-LINK I:59, II:80, III:271
direct-link I:59, II:80, 85, III:271
DISJUNCTION I:20, II:77, III:161
disjunction I:20, II:77, III:161
DOT-WORDS II:99
DOWNLOAD-ITEMS I:58, II:80, III:270
download-items I:58, II:80, III:270

empty-braces I:25, II:78, III:168
empty-brackets I:25, III:168
EMPTY-BRS I:25, II:78, III:168
EQUIVALENCE I:20, II:77, III:162
equivalence I:20, II:77, III:162
existential I:19, III:160
EXISTL-EQUATION I:22, II:77, III:165
existl-equation I:22, II:77, III:165
EXTENSION I:39, II:79, III:208
extension I:39, II:79, III:208, IV:318

false-atom I:21, III:163
FIT-ARG I:42, 44, II:79, 83, 91, III:214,

218, IV:322, 323
FIT-ARG-UNIT I:56, II:80, 84, 93,

III:245, 260
fit-arg-unit I:56, II:80, 84, III:245,

260
FIT-SPEC I:42, II:79, III:214
fit-spec I:42, II:79, 83, III:214,

IV:322
FIT-VIEW I:44, 45, II:79, III:218
fit-view I:44, 45, II:79, III:218,

IV:323, 324
FLOATING II:101
FORMULA I:19, II:77, 82, 83, 89, 91, 95,

96, III:159
FRACTION II:101
FREE-DATATYPE I:16, II:77, III:152

free-datatype I:16, II:77, III:152
FREE-SPEC I:39, II:79, III:209
free-spec I:39, II:79, III:209, IV:319

GENERICITY I:40, II:79, 83, III:211,
IV:320

genericity I:40, II:79, 83, III:211,
IV:320

GROUP-ARCH-SPEC II:92
GROUP-SPEC II:91
GROUP-UNIT-TERM II:93

HEX-CHAR II:101
HIDDEN I:37, II:78, III:206
hidden I:37, II:78, III:206
hide II:83

ID I:25, II:78, 82, 90, III:168
id I:25, II:78, 82, III:168
idem-op-attr I:12, III:143
IMPLICATION I:20, II:77, III:161
implication I:20, II:77, III:161
implicit I:45, II:79, 83, III:221
IMPORTED I:40, II:79, 83, III:211
imported I:40, II:79, 83, III:211
IMPORTS IV:321
imports IV:321
INDIRECT-LINK I:59, II:80, III:271
indirect-link I:59, II:80, III:271
ISO-DECL I:29, II:78, III:176
iso-decl I:29, II:78, III:176
ITEM-NAME I:58, II:80, 85, 93, III:270
ITEM-NAME-MAP I:58, II:80, III:270
item-name-map I:58, II:80, III:270
ITEM-NAME-OR-MAP I:58, II:80, 85, 93,

III:270

LABEL II:105
LETTER II:99
LIB-DEFN I:58, II:80, 85, 93, III:268,

IV:359
lib-defn I:58, II:80, 85, III:268
LIB-ID I:59, II:80, 85, III:271
LIB-ITEM I:58, II:80, 85, 93, III:268,

270, IV:358
LIB-NAME I:59, II:80, 85, 93, III:271
LIB-VERSION I:59, II:80, 85, III:271
lib-version I:59, II:80, 85, III:271
LITERAL II:90
LOCAL-SPEC I:40, II:79, III:210

Abstract Syntax Sorts and Constructors 497

local-spec I:40, II:79, III:210, IV:319
LOCAL-UNIT I:56, II:80, III:244, 259
local-unit I:56, II:80, III:244, 259
LOCAL-VAR-AXIOMS I:18, II:77, III:158
local-var-axioms I:18, II:77, III:158

MEMBERSHIP I:31, II:78, III:186
membership I:31, II:78, III:186
MIX-TOKEN I:25, 47, II:78, 79, 82, 84,

90, 92, III:168, 223
MIXFIX II:90, 91

NEGATION I:21, II:77, III:162
negation I:21, II:77, III:162
NUMBER II:100

OP-ATTR I:12, II:76, 81, 89, III:143
OP-DECL I:11, II:76, III:142
op-decl I:11, II:76, 81, III:142
OP-DEFN I:13, II:76, III:144
op-defn I:13, II:76, III:144
OP-HEAD I:13, II:76, 81, 89, III:144
OP-ITEM I:11, II:76, 81, 88, III:141
OP-ITEMS I:11, II:76, III:141
op-items I:11, II:76, III:141
OP-NAME I:11, II:78, 82, 90, III:142
OP-SYMB I:23, II:78, 82, III:166
OP-TYPE I:11, II:76, 81, 89, III:142
ops-kind I:45, III:221
OPT-SIGN II:101

PARAMS I:40, II:79, 83, III:211, IV:320
params I:40, II:79, 83, III:211, IV:321
PARTIAL-CONSTRUCT I:15, II:77, III:150
partial-construct I:15, II:77, III:150
PARTIAL-OP-HEAD I:13, II:76, III:144
partial-op-head I:13, II:76, III:144
PARTIAL-OP-TYPE I:11, II:76, III:142
partial-op-type I:11, II:76, III:142
PARTIAL-SELECT I:16, II:77, III:151
partial-select I:16, II:77, III:151
PATH II:101
PATH-CHAR II:101
PATH-WORD II:101
PLACE II:90
PRED-DECL I:13, II:76, III:146
pred-decl I:13, II:76, 81, III:146
PRED-DEFN I:14, II:77, III:147
pred-defn I:14, II:77, III:147

PRED-HEAD I:14, II:77, 81, 89, III:147
pred-head I:14, II:77, 81, III:147
PRED-ITEM I:13, II:76, 81, 89, III:145
PRED-ITEMS I:13, II:76, III:145
pred-items I:13, II:76, III:145
PRED-NAME I:13, II:78, 82, 90, III:145
PRED-SYMB I:21, II:77, 82, III:164
PRED-TYPE I:14, II:76, 81, 89, III:147
pred-type I:14, II:76, 81, III:147
PREDICATION I:21, II:77, III:164
predication I:21, II:77, III:164
preds-kind I:45, III:221

QUAL-ID I:45, II:79, III:221
qual-id I:45, II:79, III:221
QUAL-OP-NAME I:23, II:78, 90, III:166
qual-op-name I:23, II:78, III:166
QUAL-PRED-NAME I:21, II:77, 90, III:164
qual-pred-name I:21, II:77, III:164
QUAL-VAR I:23, II:77, III:166
qual-var I:23, II:77, III:166
QUAL-VAR-NAME II:90
QUANTIFICATION I:19, II:77, III:160
quantification I:19, II:77, 82, III:160
QUANTIFIER I:19, II:77, 82, 89, III:160
QUOTED-CHAR II:100

REDUCTION I:37, II:78, III:206
reduction I:37, II:78, III:206, IV:318
RENAMING I:37, II:78, 83, 91, III:205
renaming I:37, II:78, 83, III:205
RESTRICTION I:37, II:78, 83, 91, III:206
RESULT-UNIT I:51, II:80, 84, III:233,

252
result-unit I:51, II:80, 84, III:233,

252
REVEALED I:37, II:79, III:206
revealed I:37, II:79, III:206

SIG-ITEMS I:10, II:76, 81, 88, III:140
SIGN II:99
SIGNS II:99
SIMPLE-ID I:25, II:78, 82, 90, III:168
SOME-GENERICS II:91
SOME-IMPORTED II:91
SOME-PARAMS II:91
SOME-SYMB-KIND II:92
SORT I:11, II:78, 82, 90, III:141
SORT-DECL I:11, II:76, III:141
sort-decl I:11, II:76, 81, III:141

498 Abstract Syntax Sorts and Constructors

SORT-GEN I:17, II:77, III:157
sort-gen I:17, II:77, III:157
SORT-ID I:25, 47, II:78, 79, 82, 84, 90,

92, III:168, 223
SORT-ITEM I:10, 29, II:76, 78, 81, 83,

88, 90, III:140, 175
SORT-ITEMS I:10, II:76, III:140
sort-items I:10, II:76, 81, III:140
SORT-LIST I:11, II:76, 81, III:142
sort-list I:11, II:76, 81, III:142
SORTED-TERM I:24, II:78, III:167
sorted-term I:24, II:78, III:167
sorts-kind I:45, III:221
SPEC I:36, 42, II:78, 83, 91, III:204,

214, IV:317, 321
SPEC-DEFN I:40, II:79, 83, 91, III:211,

IV:320
spec-defn I:40, II:79, 83, III:211,

IV:320
SPEC-INST I:42, II:79, III:214
spec-inst I:42, II:79, III:214, IV:321,

322
SPEC-NAME I:41, II:79, 84, 92, III:211
STRING II:100
STRONG-EQUATION I:22, II:77, III:165
strong-equation I:22, II:77, III:165
SUBSORT-DECL I:29, II:78, III:176
subsort-decl I:29, II:78, III:176
SUBSORT-DEFN I:29, II:78, III:176
subsort-defn I:29, II:78, III:176
SUBSORTS I:30, II:78, III:177
subsorts I:30, II:78, III:177
SYMB I:45, II:79, 84, 92, III:221
SYMB-ITEMS I:45, II:79, 83, 92, III:221
symb-items I:45, II:79, 83, III:221
SYMB-KIND I:45, II:79, 83, III:221
SYMB-MAP I:46, II:79, 84, 92, III:222
symb-map I:46, II:79, 84, III:222
SYMB-MAP-ITEMS I:46, II:79, 83, 92,

III:222
symb-map-items I:46, II:79, 83, III:222
SYMB-OR-MAP I:46, II:79, 84, 92, III:222

TERM I:23, 32, II:77, 78, 82, 83, 89, 95,
96, III:165, 187

TERMS I:23, II:77, 82, 89, 95, III:166
terms I:23, II:77, 82, III:166
TEXT II:104
TEXT-LINE II:104

TEXT-LINES II:104
TOKEN I:25, II:78, 82, 90, III:168
TOTAL-CONSTRUCT I:15, II:77, III:150
total-construct I:15, II:77, 82,

III:150
TOTAL-OP-HEAD I:13, II:76, III:144
total-op-head I:13, II:76, 81, III:144
TOTAL-OP-TYPE I:11, II:76, III:142
total-op-type I:11, II:76, 81, III:142
TOTAL-SELECT I:16, II:77, III:151
total-select I:16, II:77, 82, III:151
TRANSLATION I:37, II:78, III:205
translation I:37, II:78, III:205,

IV:318
true-atom I:21, II:77, III:163
TRUTH I:21, II:77, III:163
TYPE I:45, II:79, 84, 92, III:221

UNION I:38, II:79, III:207
union I:38, II:79, III:207, IV:318
unique-existential I:19, III:160
UNIT-APPL I:56, II:80, III:245, 260
unit-appl I:56, II:80, III:245, 260
UNIT-BINDING I:54, II:80, 84, 93,

III:240, 255
unit-binding I:54, II:80, 84, III:240,

255
UNIT-DECL I:52, II:79, 84, 92, III:235,

253
unit-decl I:52, II:79, 84, III:235, 253
UNIT-DECL-DEFN I:51, II:79, 84, 92,

III:233, 252
UNIT-DEFN I:52, II:80, 84, 92, III:236,

254
unit-defn I:52, II:80, 84, III:236, 254
UNIT-EXPRESSION I:54, II:80, 84, 93,

III:240, 255
unit-expression I:54, II:80, 84,

III:240, 255
UNIT-IMPORTED I:52, II:80, 84, III:235,

253
unit-imported I:52, II:80, 84, III:235,

253
UNIT-NAME I:52, II:80, 84, 93, III:235,

253
UNIT-OP-ATTR I:12, II:76, III:143
unit-op-attr I:12, II:76, III:143
UNIT-REDUCTION I:55, II:80, III:243,

258

Abstract Syntax Sorts and Constructors 499

unit-reduction I:55, II:80, III:243,
258

UNIT-SPEC I:52, II:80, 84, 92, III:237
UNIT-SPEC-DEFN I:52, II:80, 84, 92,

III:237
unit-spec-defn I:52, II:80, 84, III:237
UNIT-TERM I:54, II:80, 84, 93, III:242,

257
UNIT-TRANSLATION I:55, II:80, III:242,

257
unit-translation I:55, II:80, 84,

III:242, 257
UNIT-TYPE I:53, II:80, 84, III:238
unit-type I:53, II:80, 84, III:238
universal I:19, II:77, 82, III:160
URL II:101

VAR I:18, II:78, 82, 90, III:158
VAR-DECL I:18, II:77, 82, 89, III:158

var-decl I:18, II:77, 82, III:158
VAR-ITEMS I:17, II:77, III:158
var-items I:17, II:77, III:158
VERSION-NUMBER I:59, II:80, 85, 93,

III:271
version-number I:59, II:80, 85, III:271
VIEW-DEFN I:43, II:79, 83, 91, III:217,

IV:322
view-defn I:43, II:79, 83, III:217,

IV:323
VIEW-NAME I:44, II:79, 84, 92, III:217
VIEW-TYPE I:43, II:79, 83, 91, III:217,

IV:323
view-type I:43, II:79, 83, III:217,

IV:323

WORD II:99
WORD-CHAR II:99
WORDS II:99

Symbol Index

(∆, Ψ)

many-sorted enrichment III:135
subsorted enrichment III:175

(ΣI , 〈Σ1, . . . , Σn〉, ΣB) generic signature
III:202

(ΣI , Σ1, . . . , Σn→Σ) signature of
generic unit with import III:228

(ΣI , Σ→Σ) signature of generic unit
with import III:228

(ΣI , UΣ) signature of generic unit with
import III:228

(Σs, σ,GS s) static denotation of a view
III:203

(σS, σTF, σPF, σP) many-sorted signature
morphism III:126

(a1, . . . , an) n-tuple III:116
{a1 �→ b1, . . . , an �→ bn} function

III:116
(Cs, UΣ) architectural signature

III:228
(E ,U) architectural model III:230
(Gm,Vm,Am, Tm) model global

environment III:266
(Gs,Vs,As, Ts) static global environ-

ment III:266
(Gs,Vs,As, Ts), (DG,Th) verification

global environment IV:316
(k, Ident) identifier as a symbol III:191
(MI , 〈M1, . . . ,Mn′〉,MB) model se-

mantics for a generic specification
III:203

(Ms,GSm) model semantics of a view
III:203

(N1,DG1) �J (N2,DG2) refinement
between nodes in a development
graph IV:350

(p, Σ1, . . . , Σn→Σ) based signature of
generic unit with import III:249

(p, Σ→Σ) based signature of generic
unit with import III:249

(p, UΣ) based signature of generic unit
with import III:249

(Ps,Bs, D) extended static unit context
III:249

(Ps,Bs, D) + (P
′
s,B

′
s, D

′) addition of
extended static unit contexts
III:249

(S′, F ′) sort-generation constraint I:8,
III:134

(S′, F ′, σ) sort-generation constraint
III:134

(S,TF ,PF , P)

many-sorted signature I:6, III:124
many-sorted signature extension

III:125
many-sorted signature fragment

III:125
(S,TF ,PF , P) ∪ (S′,TF ′,PF ′, P ′)

union of many-sorted signature
fragments III:125

(S,TF ,PF , P,≤)
subsorted signature I:27, III:169
subsorted signature extension

III:170
subsorted signature fragment III:170

502 Symbol Index

(S,TF ,PF , P,≤)∪(S′,TF ′,PF ′, P ′,≤′)
union of subsorted signature frag-
ments III:170

(SM , F M , P M) many-sorted model
III:128

(w, s) function profile I:6, III:124
{x1

s1 , . . . , xn
sn
} sorted variable set

III:131
¬ϕ negation formula III:133
||Σ || symbols in a signature III:192
||σ|| symbol map induced by a signature

morphism III:195
|Σ|

signature symbols in a many-sorted
signature III:126

signature symbols in a signature I:5
signature symbols in a subsorted

signature III:171
|Σ| signature symbols in a subsorted

signature III:191
|σ|

function on signature symbols arising
from a many-sorted signature
morphism III:128

function on signature symbols
arising from a subsorted signature
morphism III:171, 191

|A| cardinality of a set A III:116
|ASP | architectural specification

without axioms IV:338
|C| class of objects in a category III:117
|w| length of a sequence III:116
≤ subsort embedding I:27, III:169
〈a1, . . . , an〉 sequence III:116
〈M1, . . . , Mn〉 compatible models

III:229
〈s1, . . . , sn〉M product of carrier sets

III:129
= token for a language with equality

I:62
∃!X.ϕ unique-existential quantification

III:133
∃X.ϕ existential quantification III:133
∀xs.ϕ universal quantification III:132
[[t]]ρ value of a term in a many-

sorted model with respect to an
assignment III:136

� dummy denotation in extended static
semantics IV:335

Σ entailment relation 291
|= satisfaction relation of an institution

5, 123
∅

empty semantic object III:117
empty signature III:193

Γ context IV:334, 348
Γ [B′/B] substitution of unit names in

context IV:335
Γgen generic context IV:334, 348
Γs, Γm : SPEC |= Ψ semantic con-

sequence of a specification
326

Γs, Γm : SPEC1 �� SPEC2 refinement
between specifications IV:326

Γs : SPEC
 Ψ provability from a
specification 326

Γs : SPEC1 � SPEC2 refinement proof
IV:327

∆

many-sorted signature extension
III:125

subsorted signature extension
III:170

∆ ∪ ∆′

union of many-sorted signature
extensions III:125

union of subsorted signature
extensions III:170

Γm model global environment III:266
Γs static global environment III:266
η(R(SPEC)) �J

Σ

⋃
i=1...n ηi(R(SPECi))

refinement between translated
specifications IV:328

ιΣ⊆Σ∪Σ′ injection III:193
ν \ Z removing variables from

substitution IV:280
ν : X−→TΣ(Y) substitution IV:279
ρ assignment III:135
ρ : X → M assignment III:135
ρ[xs �→ a] augmented assignment

III:135
Σ

many-sorted signature I:6, III:124
signature in an institution I:5
subsorted signature I:27, III:169

Symbol Index 503

σ

many-sorted signature morphism
I:7, III:126

signature morphism in an institution
I:6

subsorted signature morphism I:28,
III:171

σ′(S′, F ′, σ)

translation of a constraint along a
many-sorted signature morphism
III:134

translation of a constraint along a
subsorted signature morphism
III:174

Σ1, . . . , Σn→Σ generic unit signature
III:228

Σ ↪→ Σ′

many-sorted signature inclusion
III:127

subsorted signature inclusion III:171
Σ→Σ generic unit signature III:228
σ(∆) extension of σ along ∆ III:199
σ(ϕ)

translation of a formula along a
many-sorted signature morphism
III:134

translation of a formula along a
subsorted signature morphism
III:174

Σ# many-sorted signature associated
with a subsorted signature I:28,
III:172

σ# many-sorted signature morphism
associated with a subsorted
signature morphism I:28, III:172

ΣA(∆) extension of ΣA along ∆
III:199

ΣN signature of a node IV:293
σP predicate symbol map III:126
σPF partial function symbol map

III:126
σS sort map III:126
σTF total function symbol map III:126
Σ ∪ ∆

union of a many-sorted signature and
a many-sorted signature extension
III:125

union of a subsorted signature and
a subsorted signature extension
III:170

Σ ∪ Σ′

union of many-sorted signatures
III:125

union of subsorted signatures
III:170, 193

Σ|SSYs signature co-generated in a
signature by a set of signature
symbols 198

Σ|SSYs signature generated in a
signature by a set of signature
symbols 197

ϕ formula III:131
ϕ → t | t′ conditional term III:131
ϕ ⇔ ϕ′ equivalence formula III:133
ϕ ⇒ ϕ′ implication formula III:132
ϕ[ν] application of substitution to

formula IV:280
ϕ ∧ ϕ′ conjunction formula III:133
ϕ ∨ ϕ′ disjunction formula III:133
Φ
 ϕ entailment 281
Φ |=Σ ϕ semantic consequence 283
Ψ set of sentences III:135
ψ sentence III:134
ΨN local axioms of a node IV:293

A alternative construct I:15
A1×· · ·×An Cartesian product III:116
A

fin→ B set of finite maps from A to B.
III:116

A ⇀ B set of partial functions from A
to B III:116

A → B set of total functions from A to
B III:116

AΣ architectural signature III:228
A : Σ unit name A has signature Σ

IV:348
A[B′/B] substitution of one unit name

for another IV:335
AM architectural model III:230
AM architectural specification III:230
aquaC injection into a union of syntactic

categories III:117
ArchMod(Cs, UΣ) domain of ar-

chitectural models over a static

504 Symbol Index

unit context and a unit signature
III:230

ArchSig domain of architectural
signatures III:228

ArchSpec domain of architectural
specifications III:230

ArchSpec(AΣ) domain of archi-
tectural specifications over an
architectural signature III:230

ArchSpecName domain of architectural
specification names III:228

ASN architectural specification name
I:51, III:228

ASP architectural specification I:51
Assignment domain of assignments

III:135
Atom atomic logic axioms I:62
A � B disjoint union III:117
A ∪ B union III:116
Ax(T) axioms of a theory IV:291

BasedParUnitSig domain of based
signatures of generic units with
import III:249

BI basic item I:9
Bs static based unit context III:249

C
constructor component I:15
token for a language with sort

generation constraints I:62
unit context III:231

C ∅ empty unit context III:231
C∅

s empty extended static unit context
III:249

C ∅
s empty static context III:229

C [UN /U] extension of unit context by
unit declaration III:231

C [UN /UEv] extension of unit context
by unit definition III:231

Carrier domain of carriers III:128
Carriers domain of sort-indexed

families of carriers III:128
CAT quasicategory of categories

III:117
complete(f, S) completion of a function

to a larger domain III:117

CompMod(Σ1, . . . , Σn) domain of
compatible models over Σ1, . . . , Σn

III:229
Cond positive conditional logic axioms

without predicates I:62
Constraint domain of sort-generation

constraints III:134
context
 phrase ⇒ result model

semantics judgement 119
context
 phrase ��� result verification

semantics judgement 317
context
 phrase �� result extended

static semantics judgement 251
context
 phrase � result static

semantics judgement 119
Cs extended static unit context III:249
Cs static unit context III:228
ctx (Ps, Bs, D) static unit context in

an extended static unit context
III:249

D signature diagram III:248
DD datatype declaration I:14
DG = 〈N ,L〉 development graph

IV:293
dgm(Ps, Bs, D) diagram of an extended

static unit context III:249
DG
 L derivation relation for

development graphs 298
Diag domain of signature diagrams

III:248
dom(Γ) domain of a context IV:334
Dom(Cs) domain of an extended static

unit context III:249
Dom(f) domain of a function III:116
D(t) definedness formula III:133

E unit environment III:230
e edge in a diagram III:248
Edges(D) set of edges of Shape(D)

III:248
EmptyExplicit(Σbasic,SSY) forget

signature symbols component
III:201

Enrichment domain of many-sorted
enrichments III:135

Eq atomic logic axioms without
predicates I:62

Symbol Index 505

Extension domain of many-sorted
signature extensions III:125

Ext(h) extension of symbol map along
a generic specification III:224

ExtID(h) extension of identifier map
along a generic specification
III:224

Ext(r) extension of a symbol map
III:196

F
formula I:19
generic unit III:229

f function name I:7, III:124
F ⊕ M ′ amalgamation of a generic unit

and a compatible model III:229
f ◦ g composition of morphisms III:117
FA fitting argument I:42
false falsity III:132
FAU fitting argument unit I:56
FI file identifier I:60
FinSeq(A) set of finite sequences of

elements from A III:116
FinSet(A) set of finite subsets of A

III:116
F M function symbol-indexed family of

functions III:128
FM fitting morphism I:43
fM function symbol interpretation I:7,

III:128
F M

ws (f) function symbol interpretation
III:128

FOAlg first-order logic axioms without
predicates I:62

FOL first-order logic axioms I:62
Formula domain of formulas III:131
fp
ws qualified partial function symbol

III:191
FQTerm domain of fully-qualified terms

III:131
f t
ws qualified total function symbol

III:191
FunName universe of function symbols

III:124, 142, 172
FunProfile domain of function profiles

III:124
FunSet domain of function symbol sets

III:124

FV (ϕ) free variables of a formula
III:133

FV (t) free variables of a term III:133
fws qualified function symbol III:126
fws〈t1, . . . , tn〉 term formed by function

application III:131
fws ∼F fws′ overloading relation on

qualified operation symbols I:27,
III:171

f(x) function application III:116
fx xth item in an indexed family

III:116

GCond generalized positive conditional
logic axioms without predicates
I:62

GD global directory III:268
GenSig domain of generic signatures

III:202
GenSpec domain of semantic objects

underlying generic specification
III:203

GHorn generalized positive conditional
logic axioms I:62

GlobalDir domain of global directories
III:268

graph(f) graph of a function III:116
GSm model semantics for a generic

specification III:203
GSm((MA

1 , σ1), . . . , (MA
n , σn)) appli-

cation of model semantics for a
generic specification to fitting
arguments III:203

GS s generic signature III:202
GS s((Σ

A
1 , σ1), . . . , (Σ

A
n , σn)) applica-

tion of generic signature to fitting
arguments III:202

h
many-sorted homomorphism I:7,

III:129
signature symbol map III:195

Homomorphism domain of many-
sorted homomorphisms III:129

Horn positive conditional logic axioms
I:62

506 Symbol Index

h|Σ
reduct of a homomorphism with

respect to a many-sorted signature
inclusion 130

reduct of a homomorphism with
respect to a signature inclusion
194

h|σ
reduct of a homomorphism with

respect to a many-sorted signature
morphism 130

reduct of a subsorted homomorphism
with respect to a signature
morphism 174

I identifier I:46
idA identity morphism on A III:117
IDAsSym(Ident) identifier as a symbol

III:192
ImpUnitSig domain of signatures of

generic units with import III:228
IN item name I:59, III:266
ItemName domain of item names

III:266

k kind of symbol III:191
ker(f) kernel of a function III:116

L set of links in a development graph
IV:293

LI
library identifier III:267
library item I:58

LibId domain of library identifiers
III:267

LibName domain of library names
III:267

LN library name I:58, III:267

M
many-sorted model I:7, III:128
subsorted model III:173
unit III:229

M
class of many-sorted models III:128
class of models in an institution

I:38, III:202
M1 ⊕ . . . ⊕ Mn amalgamation of

compatible models III:229

M ∼=M ′ isomorphism III:131
M⊥ class of models over the empty

signature III:193
M compatible models III:229
matches matching relation between

signature symbols and symbol
III:192

MEv model evaluator III:230
Mod

model functor in many-sorted
institution III:130

model functor of an institution
III:123

Mod(Σ)
category of Σ-models of an institution

I:5, III:123
category of many-sorted Σ-models

I:7, III:129
Mod(σ)

translation of models in an institution
I:6, III:123

Mod⊥(Σ) partial model functor
IV:339

Mod(D) class of all Nodes(D)-indexed
model families consistent with D
III:249

ModDG(N) model class of a node in a
development graph IV:294

Model domain of many-sorted models
III:128

ModelClass domain of classes of
many-sorted models III:128

ModEval domain of model evaluators
III:230

ModEval(Σ) domain of model
evaluators over a signature
III:230

M |= (S′, F ′, σ) satisfaction of a
sort-generation constraint 137

M |=ρ ϕ
satisfaction of a formula by a

many-sorted model under an
assignment 136

satisfaction of a formula by a sub-
sorted model under an assignment
175

M |= ψ
satisfaction of a sentence by a

many-sorted model 137

Symbol Index 507

satisfaction of a sentence by a
subsorted model 175

M |Σ
reduct of a model with respect to a

many-sorted signature inclusion
130

reduct of a model with respect to a
signature inclusion 194

M |σ
reduct of a model with respect to

many-sorted signature morphism
130

reduct of a subsorted model with
respect to a signature morphism
174

N version number I:59
N set of nodes in development graph

IV:293
N ⇒ Ψ local implication IV:295
name(SSY) name of a signature symbol

III:192
Nodes(D) set of objects of Shape(D)

III:248

O
σ ����� N local theorem link IV:295

O
σ �� N local definition link IV:293

O
σ ����� ��� N global theorem link IV:295

O
σ �� �� N global reachability IV:293

O
σ �� N global definition link
IV:293

O
σ

cons
�� N conservative extension

(definition link) IV:297

O
σ

cons
����� ��� N conservative extension

(theorem link) IV:296

O
σ

def
�� N definitional extension

(definition link) IV:297

O
σ

def
����� ��� N definitional extension

(theorem link) IV:296

O
σ

free
�� N free definition link IV:293

O
σ

free θ
����� ��� N free theorem link IV:295

O
σ

hide
�� N hiding definition link

IV:293
O

σ

hide θ
����� ��� N hiding theorem link

IV:295
O

σ

mono
�� N monomorphic extension

(definition link) IV:297

O
σ

mono
����� ��� N monomorphic extension

(theorem link) IV:296

O �� σ �� �� N local reachability IV:294
OI operation item I:11
OS operation symbol I:23

P
set of predicate symbols III:124
token for a language with partiality

I:62
p

node in a diagram III:248
path III:267
predicate name I:7, III:124

P(UT) set of generic unit names not
used IV:341

PartialFun domain of function symbol
interpretations III:128

PartialFuns domain of function
symbol-indexed families of
functions III:128

ParUnitSig domain of generic unit
signatures III:228

Path domain of paths III:267
PF set of partial function symbols

III:124
PFMap domain of partial function

symbol maps III:126
PFws set of partial function symbols

with profile ws I:6, III:124
PI predicate item I:13
P M predicate symbol-indexed family of

predicates III:128
pM predicate symbol interpretation

I:7, III:128
PMap domain of predicate symbol maps

III:126
P M

w (p) predicate symbol interpretation
III:128

Pred domain of predicate symbol
interpretations III:128

508 Symbol Index

PredName universe of predicate symbols
III:124, 146, 172

PredProfile domain of predicate profiles
III:124

Preds domain of predicate symbol-
indexed families of predicates
III:128

PredSet domain of predicate sets
III:124

Pres category of presentations IV:291
Ps based static context for generic units

III:249
PS predicate symbol I:21
P(UT) set of generic unit names used

IV:341
Pw set of predicate symbols with profile

w I:6, III:124
pw qualified predicate symbol III:126,

191
pw〈t1, . . . , tn〉 formula formed by

predicate application III:132
pw ∼P pw′ overloading relation on

qualified predicate symbols I:27,
III:171

q node in a diagram III:248
QualFunName domain of qualified

function symbols III:126
QualPredName domain of qualified

predicate symbols III:126
QualVarName domain of qualified

variable names III:131

R
renaming I:55
restriction I:55

r symbol map III:195
R = (Φ, α, β) institution comorphism

IV:291
R(SP) specification augmented by

translation axioms IV:349
R(DG) translation of a development

graph along a comorphism IV:297
r|Σ induced signature morphism 198
r|ΣΣ′ induced signature morphism 199

S set of sorts I:6, III:124
s sort name III:124, 191

Sen
sentence functor in many-sorted

institution III:135
sentence functor of an institution

III:123
Sen(Σ)

set of Σ-sentences of an institution
I:5, III:123

set of many-sorted Σ-sentences I:8,
III:132

Sen(σ)
translation of sentences in an

institution I:6, III:123
Sentence domain of sentences III:134
Set category of sets III:117
Set(A) set of all subsets of A III:116
Shape(D) shape category of a signature

diagram III:248
SI

signature item I:17
sort item I:10

Sig
category of many-sorted signatures

III:128
category of signatures of an

institution III:123, I:5
SigFragment domain of many-sorted

signature fragments III:125
Signature domain of many-sorted

signatures III:124
SignatureMorphism domain of many-

sorted signature morphisms
III:126

SigSym domain of signature symbols
III:126

SigSymMap domain of signature symbol
maps III:195

Sig(T) signature of a theory IV:291
SL symbol list I:37
SM sort-indexed family of carriers

III:128
SM symbol mapping I:37
sM carrier set (sort interpretation) I:7,

III:128
SMap domain of sort maps III:126
SM (s) carrier set (sort interpretation)

III:128
SN specification name I:41
Sort universe of sorts III:124, 141

Symbol Index 509

SortRelation domain of subsort
embeddings III:169

SortSet domain of sort sets III:124
SP specification I:37
StBasedUnitCtx domain of static based

unit contexts III:249
ExtStUnitCtx domain of extended static

unit contexts III:249
StParUnitCtx domain of based static

contexts for generic units III:249
strip(GSs) stripping down a verification

generic signature to a generic
signature IV:315

strip(Vs) stripping down a verification
view signature to a view signature
IV:316

StUnitCtx domain of static unit
contexts III:228

Sub token for a language with subsorting
I:62

SubMod model functor in subsorted
institution III:174, 191

SubMod(Σ) category of subsorted
Σ-models III:174

SubSen sentence functor in subsorted
institution III:174, 191

SubSen(Σ) set of subsorted Σ-
sentences III:174

SubSig domain of subsorted signatures
III:169

SubSig category of subsorted
signatures III:171, 191

SubsortedExtension domain of subsorted
signature extensions III:170

SubsortedSigFragment domain of
subsorted signature fragments
III:170

SY symbol I:40, III:191
Sym domain of symbols III:191
SymAsSigSym(SY) symbol as a

signature symbol III:192
SymKind domain of symbol kinds

III:191
SymMap domain of symbol maps

III:195

T term I:23
t fully-qualified term III:131
t

e
= t′ existential equation III:132

t
s
= t′ strong equation III:133

t[ν] application of substitution to term
IV:280

TF set of total function symbols
III:124

TFMap domain of total function symbol
maps III:126

TFws set of total function symbols with
profile ws I:6, III:124

Th category of theories IV:291
ThDG(N) theory of a node in a

development graph IV:294
true truth III:133
TY operation type I:11

U unit III:229
U unit specification III:230
u URL III:267
U ⊕ MEv import extension of a unit

specification by a model evaluator
III:230

UΣ unit signature III:228
UD unit declaration or definition I:51
UE unit expression I:51
UEv unit evaluator III:230
Um model universal environment

III:267
UN unit name I:52, III:228
Unit domain of units III:229
unit singleton set III:116
Unit(Σ) domain of units over a

signature III:229
Unit(Σ1, . . . , Σn→Σ) domain of

generic units over a generic unit
signature III:229

Unit⊥(Σ → Σ′) set of partial unit
functions IV:339

UnitCtx domain of unit contexts
III:231

UnitEnv domain of unit environments
III:230

UnitEnv(Cs) domain of unit environ-
ments over an extended static
context III:250

UnitEnv(Cs) domain of unit environ-
ments over a static unit context
III:230

UnitEval domain of unit evaluators
III:230

510 Symbol Index

UnitEval(UΣ) domain of unit eval-
uators over a unit signature
III:230

UnitName domain of unit names
III:228

UnitSig domain of unit signatures
III:228

UnitSpec domain of unit specifications
III:230

UnitSpecName domain of unit
specification names III:228

UnitSpec(UΣ) domain of unit spec-
ifications over a unit signature
III:230

UnivEnvm domain of model universal
environments III:267

UnivEnvs domain of static universal
environments III:267

Url domain of URLs III:267
Us static universal environment III:267
USN unit specification name III:228
USP unit specification I:52

v
variable I:23
version III:267

Var universe of variable names III:131
Variables domain of sorted variable sets

III:131
VD variable declaration I:17

VerArchSig verification architectural
signatures IV:358

VerGenSig verification generic signature
IV:312

Version domain of versions III:267
VerUnitSig verification unit signatures

IV:358
VerViewSig verification view signature

IV:316
ViewSig domain of static semantic

objects underlying views III:203
ViewSpec domain of model semantic

objects underlying views III:203
Vm model semantics of a view III:203
VN view name I:43
Vs static denotation of a view III:203

W map from constructors to sets of
partial selectors III:148

w predicate profile I:6, III:124
wM product of carrier sets I:7
ws function profile III:124

X sorted variable set I:7, III:131
x variable III:131
X + {xs} extending a sorted variable

set with overriding III:131
X +X ′ combining sorted variable sets

with overriding III:131
xs qualified variable name III:131

Concept Index

⊥-Σ-model IV:339
⊥-unit family consistent with Γgen

IV:341
ω-complete partial order V:368
ω-cpo V:368
n-colorable graph V:373

abbreviated
annotation II:103
comment II:103
grammar II:81

Abelian group V:369
abstract syntax

relationship to concrete syntax II:73
abstract syntax II:73, 75
accidental inconsistency III:181
action

group V:374
monoid V:374

addition
admissible III:249
compatible III:250

admissible addition III:249
admit weak amalgamation IV:291
algebra

free V:377
linear V:375, 377
many-sorted partial I:7
over a field V:377

algebra V:369, 374
alternative

sequence II:87
subsort I:30

alternative I:15, 30, III:150, 177
amalgamability, ensures III:250,

IV:335
amalgamate I:50
amalgamation

of compatible models III:229
unit I:55, III:244

amalgamation I:55, III:259
ambiguity

architectural specification II:94
formula II:94
structured specification II:94
term II:94

ambiguity I:24, II:93
analysis

lexical II:88, 97
mixfix grouping II:88, 93, 95

annotation
abbreviated II:103
associativity II:107
authors II:111
bracket II:103
conflicting II:105
conservative extension I:39, II:110
date II:111
definitional extension I:39, II:111
display I:25, II:106
extension II:110
global II:105
grouping II:103
HTML II:106
implicit associativity II:108
implied axiom II:110

512 Concept Index

implied extension I:39, II:111
label II:106
LATEX II:106
list II:109
literal syntax II:108
local associativity II:108
mixfix display II:106
monomorphic extension I:39, II:111
non-nested II:103
number II:108
parsing II:106
precedence II:107
preceding II:104
RTF II:106
semantic II:110, III:208
single-line II:105
string II:109
trailing II:104

annotation II:103, 105
application

operation I:23, III:166
predicate I:8, 21, III:163
unit I:56, III:245, 260

applicative semantics III:262, IV:338
architectural

basic specification I:51, III:233, 252
concept I:49
model III:230
signature III:228
specification definition I:51, III:232,

251
specification model I:50
specification name I:51
specification reference I:51
specification I:49, 50, III:227, 232
unit specification I:53, III:239

argument
fitting list I:42
fitting morphism I:42
fitting specification I:42
fitting view I:45
fitting I:56, III:245
sort I:6, III:124
specification I:34
unit III:245

arguments
compatible fitting morphisms I:42
compatible I:50

array V:370

ASCII II:97
assertion, definedness I:8
assignment III:135
associated element V:370, 375
associativity

annotation II:107
attribute I:12, II:108
implicit annotation II:108
local annotation II:108

associativity III:143
assumed property I:49
atomic

formula I:8, 21, 31, III:184
logic I:67

atomic formula III:162
attribute

associativity I:12, II:108
commutativity I:12
idempotency I:12
operation I:12, III:143
unit I:12

authors annotation II:111
auxiliary symbol I:36
axiom

implied annotation II:110
list I:18
of choice V:377

axiom I:5, 18, 31, III:159, 184

bag V:370, 374
base V:375, 377
basic

algebraic structure V:369
architectural specification I:51,

III:233, 252
datatypes V:363
item I:9
many-sorted specification I:9,

III:138
specification concept I:5
specification framework I:5
specification semantics I:6
specification I:5, III:123
subsorted specification I:27, III:175

binary tree V:371
bipartite graph V:373
body, specification I:34, 41
braces, grouping I:36
bracket

Concept Index 513

annotation II:103
comment II:103

branching structure V:372

calculus, proof IV:275
carrier

non-empty III:128
set I:7, III:128

CASL

extension I:68
institution with qualified symbols

III:190
institution with symbols III:191
sublanguage I:61
sublanguages I:62

CASL-LTL extension I:68
cast, term I:32, III:187
category theory III:117
CATS V:364
character

quoted token II:100
representation V:370
set II:97

character V:370
closed

specification I:34, 36, 40, III:210
subsignature III:197
unit specification I:53, III:239

coalgebraic extension I:68
COCASL extension I:68
cocone, weakly amalgamable IV:291,

349
cogenerated signature III:198
comment

abbreviated II:103
bracket II:103
formatting II:104
grouping II:103
HTML II:105
LATEX II:105
multi-line II:104
non-nested II:103
RTF II:105
single-line II:104

comment II:103
commenting-out II:104
commutative monoid V:374
commutativity

attribute I:12

commutativity III:143
comorphism

condition IV:292, 349
institution IV:291

compactness IV:285
compatibility

of global environments III:232
unit term I:55
with extended static context III:250

compatible
addition to unit context III:231
additions III:250
arguments I:50
extension of unit context III:231
extensions III:250
fitting argument morphisms I:42
fitting morphism III:214
global environments III:266
models III:229
signature morphisms III:195
static and model global environments

III:204
unit context III:231
unit III:229
universal environments III:268

complete
lattice V:368
partial order V:368

complete IV:283
completeness

for the extended static semantics
IV:338

of calculus for basic specifications
IV:284

of extended static analysis III:262
of rules for development graphs

IV:308
completeness IV:277, 310, 353
completion function III:117
component

constructor I:16
sort I:16
syntactic II:75

composition
model I:49
morphism III:117
unit I:54, III:227

compound
identifier translation I:47

514 Concept Index

identifier I:47, II:96, III:223
concept

architectural I:49
basic specification I:5
library I:57
structuring I:33
subsorting I:27

concrete syntax
relationship to abstract syntax II:73

concrete syntax II:73, 87
conditional

generalized positive logic I:66
positive logic I:65
term I:24, III:167

conflicting annotation II:105
congruence IV:280
conjunction I:20
connected graph V:373
connectedness V:375
connective, logical I:19, III:160
consequence I:6
conservative

extension annotation I:39, II:110
extension III:209, IV:296

conservativity IV:310
consistency IV:297, 310
consistent with Γ

model family IV:353
unit family IV:353

consistent I:6, III:249
constant

qualified I:24
constant I:6, III:124, 165
constraint

sort-generation I:8, 9
translation III:134

constraint I:6
Construct. . . V:369
construction, pushout I:35
constructor

component I:16
partial I:15
syntactic II:75
total I:15

context
generic IV:334, 348
static IV:330
unit III:231

context-free

grammar meta-notation II:87
grammar II:75, 87
parsing II:88

context IV:330, 334, 348
cpo V:368
Craig interpolation property IV:289
CSP-CASL extension I:69
current signature I:34, III:204

data structure V:370
datatype

declaration I:15, 30, III:149
free declaration I:16, 30, 39, III:152,

178
generated declaration I:17
structured V:370

datatype I:14, 30, III:147
datatypes, basic V:363
date annotation II:111
decimal

fraction II:108, V:368
notation II:108, V:366

declaration
datatype I:15, 30, III:149
free datatype I:16, 30, 39, III:152,

178
generated datatype I:17
global variable I:17, III:158
isomorphism I:29, III:176
local variable I:18, III:158
operation I:11, III:142
partial selector I:16
predicate I:13, III:146
repeated I:10
signature I:10, 29, III:140
sort I:10, 11, III:141
subsort I:29, III:176
total selector I:16
unit I:51, 52, III:235, 253
variable scope I:18
variable I:18

decomposition, task I:49
deduction, natural IV:277
definedness

assertion I:8
formula I:22, III:164

definedness I:22
definition

Concept Index 515

architectural specification I:51,
III:232, 251

generic specification I:41
library I:58
link IV:293
named specification I:41
operation I:13, III:144
partial operation I:13
predicate I:14, III:147
specification I:40, III:211, 266
subsort I:29, III:176
total operation I:13
unit specification I:52, III:237
unit I:51, 52, III:236, 254
view I:43, III:216

definitional extension
annotation I:39, II:111

definitional extension III:209, IV:296
degree function V:374
dependencies between units III:248
dependencies, diagram III:249
derivation

rule IV:280
derivation IV:281
derived grammar II:95
determinant V:375
development graph IV:275, 289, 293
diagram

extension III:248
of dependencies III:249
signature III:248

direct link I:59
directed graph V:372
directory, global I:57, III:267, 268
disambiguated I:46
disambiguation II:93
disjoint union I:30, III:117
disjointly extends III:248
disjunction I:20
display

annotation I:25, II:106
format II:97, 98
mixfix annotation II:106

distributed library I:58
divisibility V:370
division with remainder V:375
domain, semantic III:118
downloading I:58, 59, III:267

Eigenvariable condition IV:282
elided rule III:120
elimination oracle for free definition

links IV:309
embedding

explicit I:32
implicit I:32
operation I:28
subsort I:27, 48, III:169
symbol III:172

embedding I:27
empty

signature III:193
specification I:9

encoding of the CASL logic IV:285
enrich I:36
enriched CASL IV:292
enrichment

subsorted III:175
enrichment III:135
ensures amalgamability III:250,

IV:335
entailment system IV:285, 290
entity, syntactic kind II:75
enumeration type I:17
environment

global, compatible static and model
III:204

global I:34, 51, 57, 58, III:204, 266
local I:6, 34, 58, III:138, 204
model global III:266
static global III:266
static universal III:267
unit III:230
universal model III:267

environment IV:330
environments

compatible global III:266
compatible universal III:268

equality feature I:65
equation

existential I:8, 22, III:164
strong I:8, 22, III:164

equation I:22
equivalence

formula I:31
relation V:368
term I:31

equivalence I:20, III:162

516 Concept Index

euclidian ring V:374
evaluator

model IV:330
unit III:230, IV:330

existential
equation I:8, 22, III:164
quantification I:19, III:160

expansion of formula, term I:21, 31,
III:162

explicit
embedding I:32
qualification I:46

exponentiation II:108
expression, unit I:54, III:240, 255
expressiveness, levels I:65
Ext. . . V:369
extended

signature III:200
specification V:368
static semantics III:247
static unit context III:249

extends
disjointly III:248
model III:130

extension
CASL I:68
annotation II:110
CASL-LTL I:68
coalgebraic I:68
COCASL I:68
conservative annotation I:39, II:110
conservative III:209
CSP-CASL I:69
definitional annotation I:39, II:111
definitional III:209
free I:30, 34
HASCASL I:68
HETCASL I:69
higher-order I:68
implicational III:209
implied annotation I:39, II:111
import III:230
monomorphic annotation I:39,

II:111
monomorphic III:209
of a diagram III:248
of extended static unit context

III:249
reactive I:68

refinement language I:69
SB-CASL I:69
signature morphism III:199
signature III:125, 194
specification I:34, 36, III:208
structured level I:69
symbol map III:196
symbol mapping I:35

extension I:36, 39
extensions

compatible III:250
free I:36

factorial ring V:374
false I:21
falsity III:163
feature

equality I:65
partiality I:64
predicate I:64
sort generation constraint I:65
subsorting I:64

features, orthogonal language I:64
field V:369
final

signature morphism III:193
signature union III:194
sink III:194
union III:194

finite map III:116
first-order

logic I:65
many-sorted structure I:7

fitting
argument list I:42
argument morphism I:42
argument specification I:42
argument view I:45
argument I:56, III:245
compatible argument morphisms

I:42
morphism I:35
view I:44, III:218

flat specification IV:291
flattenable IV:294
flattening I:36
floating-point number II:108
formal argument III:245
format, display II:97, 98

Concept Index 517

formatting a comment II:104
formula

atomic I:8, 21, 31, III:184
definedness I:22, III:164
equivalence I:31
expansion I:21, 31, III:162
membership I:31, III:186
satisfaction III:136
translation III:134
well-sorted I:21, 31, III:162

formula III:159
fraction, decimal II:108
fragment

signature III:125
union III:125

framework, basic specification I:5
free

algebra V:374, 377
datatype declaration I:16, 30, 39,

III:152, 178
extension I:30, 34
extensions I:36
monoid V:374
specification I:36, 39, III:209
variable III:133

full subsignature III:196
fully-qualified

symbol III:195
term I:8, III:131

function
completion III:117
generic unit I:52
graph III:116
partial, symbol I:6, III:124
partial I:7, III:116, 128
persistent III:229
profile I:6, III:124
qualified symbol III:126
total, symbol I:6, III:124
total III:116, 128
unit type I:50
unit I:49, III:227

generalized positive conditional logic
I:66

generated
datatype declaration I:17
signature III:197
sort III:137

generated I:9
generating signature morphism III:193
generation, sort I:17, III:157, 183
generative

model semantics IV:338
semantics III:262

generic
context IV:334, 348
signature III:202
specification definition I:41
specification import I:35
specification instantiation I:34,

III:214
specification I:40, III:202, 212
unit function I:52
unit signature IV:330
unit specification IV:330
unit III:229
view instantiation I:45

generic I:34
Gentzen-style IV:277, 282
global

annotation II:105
compatible environments III:266
directory I:57, III:267, 268
environment, verification IV:316,

358
environment I:34, 51, 57, 58, III:204,

266
model environment III:266
static environment III:266
variable declaration I:17, III:158

globally reachable IV:293
grammar

abbreviated II:81
context-free II:75, 87
derived II:95
normal II:76

graph
homomorphism V:373
of a function III:116
properties V:373

graph V:372
group

action V:374
symmetric V:376

group V:369
grouping

annotation II:103

518 Concept Index

braces I:36
comment II:103
mixfix analysis II:88, 93, 95

guaranteed property I:49

HASCASL extension I:68
HETCASL extension I:69
HETS V:364
hiding

reduction I:37
signature I:34
unit parts I:55

hiding I:35, 40, III:206
higher-order extension I:68
homomorphism

many-sorted I:7, III:129
homomorphism I:5
HTML

annotation II:106
comment II:105

idempotency
attribute I:12

idempotency III:143
identifier

compound translation I:47
compound I:47, II:96, III:223
mixfix I:25, II:96
qualified I:46
unqualified I:23

identifier I:23, 25, III:165, 168
identity

map I:47
translation I:37

implication
reverse I:20

implication I:20, III:161
implicational extension III:209
implicit

associativity annotation II:108
embedding I:32

implied
axiom annotation II:110
extension annotation I:39, II:111

import
extension III:230
generic specification I:35
specification I:41
unit III:235, 254

view I:43
imported unit I:52
inclusion

signature III:127, 194
subsort III:169

incomplete IV:308
incompleteness

of rules for development graphs
IV:308

incompleteness IV:277, 285
inconsistency, accidental III:181
inconsistent

generic unit specification IV:330
specification IV:330

inconsistent I:6
independence, institution III:190
indirect link I:60
induction rule IV:280
infer I:5
inference, preserve I:6
infix precedence I:24
initial model I:34, 40
input syntax II:97
instantiation

generic specification I:34, III:214
generic view I:45
pushout III:200
specification I:42
subsort preservation I:48

instantiation I:42, 47
institution

CASL, with qualified symbols III:190
CASL, with symbols III:191
comorphism IV:291
independence versus proof calculus

IV:290
independence III:190, IV:276, 290
independent semantics III:120

institution I:5, III:123
integer V:366
integral domain V:369
intended consequences IV:276
interface I:49
Internet I:57
irreducible element V:370, 375
ISO Latin-1 II:97
isomorphism

declaration I:29, III:176

Concept Index 519

isomorphism III:131
item, basic I:9

kernel
language of structured specifications

IV:289
language IV:289

kernel III:116
key word, sign II:97, 98
kind of syntactic entity II:75

label annotation II:106
LALR(1) II:88
language

for naming sublanguages I:61
kernel IV:289
orthogonal features I:64
refinement extension I:69
regular II:97

largest subsignature I:35
LATEX

annotation II:106
comment II:105

layout II:97
Leibniz formula V:376
levels of expressiveness I:65
lexical

analysis II:88, 97
symbol II:88, 97

lexicographical order I:59
library

concept I:57
definition I:58
distributed I:58
local I:58
name I:59, III:267
primary location I:59
specification I:57
version I:59

library III:266
linear

algebra V:375, 377
combination V:375
visibility I:6, 10, 51, 57, 58, III:139

link
definition IV:293
direct I:59
indirect I:60
theorem IV:295

list
annotation II:109
fitting argument I:42
of symbols I:46
symbol map I:46
symbol III:221

list V:370
literal syntax annotation II:108
LL(1) II:88
local

associativity annotation II:108
assumption IV:280
axiom IV:293
environment I:6, 34, 58, III:138, 204
implication IV:295
library I:58
specification I:36, 40, III:210
unit I:56, III:244, 259
variable declaration I:18, III:158

locally reachable IV:294
location, primary library I:59
logic

atomic I:67
first-order I:65
generalized positive conditional I:66
positive conditional I:65

logic IV:276, 290
logical connective I:19, III:160

machine number V:377
many-sorted

basic specification I:9, III:138
first-order structure I:7
homomorphism I:7, III:129
model I:7, III:128
partial algebra I:7
reduct I:7, III:130
sentence I:8, III:132
signature morphism I:7, III:126
signature I:6, III:124
term I:7, III:131

map
finite III:116
identity I:47
signature symbol III:195
symbol, induced by a signature

morphism III:195
symbol III:195, 222

map V:370

520 Concept Index

mapping
symbol extension I:35
symbol I:35, 46

matching
of symbol maps III:195
of symbols III:192

mathematical sign II:98
matrix

multiplication V:375
matrix V:375
‘maybe’-type V:371
membership

formula I:31, III:186
predicate I:28
symbol III:172

membership I:31
meta-notation, context-free grammar

II:87
minor of a graph V:374
mixfix

display annotation II:106
grouping analysis II:88, 93, 95
identifier I:25, II:96
notation I:25
token I:25

model
architectural specification I:50
architectural III:230
class semantics III:189
compatible III:229
composition I:49
evaluator IV:330
extends III:130
family consistent with Γ IV:335, 353
global environment III:266
initial I:34, 40
many-sorted I:7, III:128
reduct III:130
semantics, generative IV:338
semantics III:119, 138
subsorted I:28, III:173
universal environment III:267

model I:5, 7, 28
monoid

action V:374, 375
commutative V:374
free V:374

monoid V:369

monomorphic
extension annotation I:39, II:111
extension III:209, IV:296

morphism
composition III:117
final signature III:193
fitting argument I:42
fitting I:35
many-sorted signature I:7, III:126
signature I:6, 35, III:196
specification I:35, III:202
subsorted signature I:28

morphism I:5
morphisms

compatible fitting argument I:42
multi-line comment II:104
multiplication, matrix V:375

name
architectural specification I:51
library I:59, III:267
of signature symbol III:192
qualified operation I:24
qualified predicate I:22
specification I:41
unqualified predicate I:22
view I:44

named
specification definition I:41
specification I:34, 40, III:212, 266
view I:35, 43

natural deduction IV:277
negation I:21, III:162
negative premise III:120
‘no confusion’ III:155
‘no junk’ III:155
non-empty carrier III:128
non-generic unit III:229
non-linear visibility I:6, 14, III:147
non-nested

annotation II:103
comment II:103

nonterminal symbol II:87
normal grammar II:76
notation

decimal II:108
mixfix I:25

number
annotation II:108

Concept Index 521

floating-point II:108
symbol II:100
version III:267

number V:365

OBJ3 IV:287
objects of a category III:117
obligation, proof IV:275
observer V:371
omission, parentheses II:106
operation

application I:23, III:166
attribute I:12, III:143
declaration I:11, III:142
definition I:13, III:144
embedding I:28
partial, definition I:13
partial, type I:12
profile I:12, III:142
projection I:28
qualified name I:24
total, definition I:13
total, type I:11
type I:11

operation I:7, 11, III:124
optional symbol II:87
oracle

for conservative extension IV:309
for free theorem links IV:309

orbit V:375
order

lexicographical I:59
order-sorted approach I:27
order V:368
origin, symbol I:54
orthogonal language features I:64
overloaded symbol I:7, 46, III:126
overloading relation I:27, III:170

pair V:371
parameter

specification I:34, 41
view I:43

parentheses, omission II:106
parse tree II:88
parsing

annotation II:106
context-free II:88

partial

constructor I:15
function symbol I:6, III:124
function I:7, III:116, 128
many-sorted algebra I:7
model semantics IV:339
operation definition I:13
operation type I:12
order V:368
selector declaration I:16

partiality feature I:64
path

in a graph V:373
path II:101, III:267
permutation V:376
persistent

function III:229
persistent I:50, IV:330
place-holder I:25
planar graph V:374
polynomial V:374, 377
positive

conditional logic I:65
generalized conditional logic I:66
integer V:366

postfix precedence I:24
pre-development graph IV:312
precedence

annotation II:107
architectural specification II:94
conditional II:95
formula II:94
function application II:94
infix I:24, II:95
mixfix I:24
postfix I:24, II:94
prefix I:24, II:95
rule I:36
structured specification II:94
term II:94

preceding annotation II:104
predicate

application I:8, 21, III:163
declaration I:13, III:146
definition I:14, III:147
feature I:64
membership I:28
profile I:6, 14, III:124
qualified name I:22
qualified symbol III:126

522 Concept Index

symbol I:6, III:124
type I:14, III:147
unqualified name I:22

predicate I:7, 13, III:128
prefix precedence I:24
presentation I:6, IV:291
preservation

subsort by instantiation I:48
preserve

inference I:6
satisfaction I:6

primary library location I:59
principle, ‘same name, same thing’

I:36, 38
product, scalar V:375
production rule II:75, 87
profile

function I:6, III:124
operation I:12, III:142
predicate I:6, 14, III:124

projection
operation I:28
subsort I:32
symbol III:172

proof
calculus IV:275, 289, 347
obligation IV:275, 276, 293, 295
rule IV:280
rules for development graphs IV:298
system I:5

property
assumed I:49
guaranteed I:49

pushout
construction I:35
for instantiation III:200
selected IV:330

qualification, explicit I:46
qualified

constant I:24
function symbol III:126
identifier I:46
operation name I:24
predicate name I:22
predicate symbol III:126
symbol I:7
symbols, CASL institution with

III:190

variable I:23, III:166
quantification

existential I:19, III:160
unique-existential I:19, III:160
universal I:19, III:160

quantification I:19
quoted

character token II:100
string symbol II:100

rational number V:367
reactive extension I:68
real number V:366
reduct

many-sorted I:7, III:130
model III:130
subsorted model III:174

reduct I:6, 35, III:130
reduction

hiding I:37
revealing I:37
specification I:36
unit I:55, III:243, 258

reduction I:37, III:206
reference

architectural specification I:51
specification I:34, III:266

reference I:57
refinement language extension I:69
reflexive relation V:368
regular language II:97
regularity condition I:27
relation

overloading I:27, III:170
satisfaction III:123

relation V:368
remainder V:375
renaming unit parts I:55
repeated declaration I:10
repetition

symbol II:87
syntactic II:75

requirement specification I:49
reserved word, sign II:98
restriction, unit I:55
result sort I:6, III:124
reuse, specification I:57
revealing

reduction I:37

Concept Index 523

revealing III:206
reverse implication I:20
rich specification V:368
ring

euclidian V:374
factorial V:374

ring V:369
RTF

annotation II:106
comment II:105

rule
derivation IV:280
elided III:120
precedence I:36
production II:75, 87
proof IV:280
semantic III:119

‘same name, same thing’
principle I:36, 38

satisfaction
of a formula III:136
of a sentence III:137
of a sort-generation constraint

III:137
preserve I:6
relation III:123
subsorted III:175
two-valued I:8
unit type I:53

satisfaction I:5, 8, III:135
SB-CASL extension I:69
scalar product V:375
scope, variable declaration I:18
second-order logic IV:285
selected pushout IV:330
selector

partial declaration I:16
total declaration I:16

self-contained specification I:36, 58
semantic

annotation II:110, III:208, IV:296
domain III:118
rules III:119
sharing III:242

semantically follows IV:283
semantics

applicative III:262, IV:338
basic specification I:6

extended static III:247
generative III:262
institution-independent III:120
model class III:189
model III:119, 138
partial model IV:339
static I:54, III:118, 138
structured specification I:34

semantics I:6, III:115
sentence

many-sorted I:8, III:132
satisfaction III:137
subsorted, translation III:174
subsorted I:28, III:174

sentence I:5, 7, 28
sequence

alternative II:87
symbol II:87

sequence III:116
set

carrier I:7, III:128
character II:97
symbol I:35

set III:116, V:370
shared symbol I:43
sharing

between symbols I:54
semantic III:242

shortest path V:373
sign

key II:97, 98
mathematical II:98
reserved II:98
token II:99
unreserved II:98

sign V:376
signature

architectural III:228
cogenerated III:198
current I:34, III:204
declaration I:10, 29, III:140
diagram III:248
empty III:193
extended III:200
extension III:125, 194
final morphism III:193
fragment union III:125
fragment, subsorted III:170
fragment III:125

524 Concept Index

generated III:197
generic III:202
hiding I:34
inclusion, subsorted III:171
inclusion III:127, 194
many-sorted morphism I:7
many-sorted, morphism III:126
many-sorted I:6, III:124
morphism induced by a symbol map

III:199
morphism, extension III:199
morphism, generating III:193
morphism, subsorted III:171
morphism, transportable IV:304
morphism I:6, 35, III:196
morphisms leaving names unchanged

III:195
morphisms, compatible III:195
morphisms, union III:196
subsorted fragment union III:170
subsorted morphism I:28
subsorted I:27, III:169
symbol map III:195
symbol III:191
symbols III:126
translation I:34
union, final III:194
union III:193
unit III:228

signature I:5, 6, 27
simple datatype V:370
single-line

annotation II:105
comment II:104

sink
final III:194

sink III:194, 250
site I:57, III:267
smallest subsignature I:35
sort

argument I:6
component I:16
declaration I:10, 11, III:141
generation constraint feature I:65
generation I:17, III:137, 157, 183
result I:6, III:124

sort-generation constraint
satisfaction III:137

sort-generation constraint I:8, 9,
III:134

sort I:6, 10, 29
sorted term I:24, III:167
sorts

argument III:124
sorts III:124
sound IV:283
soundness

for the extended static semantics
IV:338

of extended static semantics III:262
of rules for development graphs

IV:308
soundness IV:277, 353
space II:97
spanning tree V:373
specialize I:36
specification

architectural definition I:51, III:232,
251

architectural model I:50
architectural name I:51
architectural reference I:51
architectural unit I:53, III:239
architectural I:49, 50, III:227, 232
argument I:34
basic architectural I:51, III:233, 252
basic concept I:5
basic framework I:5
basic many-sorted I:9
basic semantics I:6
basic subsorted I:27
basic I:5, III:123
body I:34, 41
closed unit I:53, III:239
closed I:34, 36, 40, III:210
definition I:40, III:211, 266
empty I:9
extension I:34, 36, III:208
fitting argument I:42
free I:36, 39, III:209
generic definition I:41
generic import I:35
generic instantiation I:34, III:214
generic I:40, III:202
import I:41
in comment II:105
inconsistent IV:330

Concept Index 525

instantiation I:42
library I:57
local I:36, 40, III:210
many-sorted basic III:138
methodology V:363
morphism I:35, III:202
name I:41
named definition I:41
named I:34, 40, III:266
parameter I:34, 41
reduction I:36
reference I:34, III:266
requirement I:49
reuse I:57
self-contained I:36, 58
structured semantics I:34
structured I:33, 36, III:204
structuring I:33
subsorted basic III:175
subsorted III:169
subsorting I:27
translation I:36, 37
union I:34, 36, 38, III:207
unit definition I:52, III:237
unit I:52, III:230, 237, 255

start, no symbol II:87
static

analysis tool III:247
context IV:330
extended semantics III:247
global environment III:266
semantics of architectural specifica-

tions IV:330, 334
semantics I:54, III:118, 138
unit context III:228
universal environment III:267

string
annotation II:109
quoted symbol II:100

string V:370
strong equation I:8, 22, III:164
structure, many-sorted first-order I:7
structured

datatype V:370
specification semantics I:34
specification I:33, 36, III:204

structuring
concept I:33
specification I:33

subcontext IV:334
subdiagram III:248
sublanguage

naming language I:61
of CASL I:61, 62

subsignature
closed III:197
full III:196
largest I:35
smallest I:35
subsorted III:170

subsignature III:126, 194
subsort

alternative I:30
declaration I:29, III:176
definition I:29, III:176
embedding I:27, 48, III:169
inclusion III:169
preservation by instantiation I:48
projection I:32

subsort I:27
subsorted

basic specification I:27, III:175
enrichment III:175
model reduct III:174
model I:28, III:173
satisfaction III:175
sentence I:28, III:174
signature extension III:170
signature fragment III:170
signature inclusion III:171
signature morphism I:28, III:171
signature I:27, III:169
specification III:169
subsignature III:170
translation of sentence III:174
union of signature fragments III:170

subsorting
concept I:27
feature I:64
specification I:27

substitution
lemma IV:283

substitution IV:279
symbol

auxiliary I:36
embedding III:172
fully-qualified III:195
lexical II:88, 97

526 Concept Index

list I:46, III:221
map induced by a signature morphism

III:195
map list I:46
map, extension III:196
map, matching III:195
map III:195, 222
mapping extension I:35
mapping I:35, 46
matching III:192
membership III:172
name III:192
no start II:87
nonterminal II:87
number II:100
optional II:87
origin I:54
overloaded I:7, 46, III:126
partial function I:6, III:124
predicate I:6, III:124
projection III:172
qualified function III:126
qualified predicate III:126
qualified I:7
quoted string II:100
repetition II:87
sequence II:87
set I:35
shared I:43
signature III:126, 191
terminal II:87
total function I:6, III:124

symbol I:5, III:191
symbols

CASL institution with III:191
sharing between I:54

symmetric
graph V:373
group V:376
relation V:368

syntactic
component II:75
constructor II:75
entity kind II:75
repetition II:75

syntax
abstract II:73, 75
concrete II:73, 87
input II:97

literal annotation II:108
system, proof I:5

task decomposition I:49
term

cast I:32, III:187
conditional I:24, III:167
equivalence I:31
expansion I:21, 31, III:162
fully-qualified I:8, III:131
many-sorted I:7, III:131
sorted I:24, III:167
unit compatibility I:55
unit I:54, III:242, 257
well-sorted I:31, III:162

term I:23, 32, III:165, 187
terminal symbol II:87
theorem link IV:295
theory

category III:117
morphism IV:291

theory IV:291
token

mixfix I:25
quoted character II:100
sign II:99
word II:99

token I:25, II:99
total

constructor I:15
function symbol I:6, III:124
function III:116, 128
operation definition I:13
operation type I:11
order V:368
selector declaration I:16

trailing annotation II:104
transitive

closure V:373
relation V:368

translating development graphs along
institution comorphisms IV:297

translation
compound identifier I:47
from structured specification to

development graph IV:311
identity I:37
of SP along σ IV:348
of a constraint III:134

Concept Index 527

of formula III:134
signature I:34
specification I:36, 37
subsorted sentence III:174
unit I:55, III:242, 257

translation I:6, 35, 37, III:205
transportable signature morphism

IV:304
tree

parse II:88
tree V:370, 373
true I:21
truth I:21, III:163
tuple III:116
two complement V:377
two-valued satisfaction I:8
type

enumeration I:17
operation I:11
partial operation I:12
predicate I:14, III:147
total operation I:11
unit function I:50
unit satisfaction I:53
unit I:53, III:238

undefined value I:8
undirected graph V:373
union

disjoint I:30, III:117
final III:194
of signature fragments III:125
of subsorted signature fragments

III:170
signature morphisms III:196
signature, final III:194
signature III:193
specification I:34, 36, 38, III:207
subsorted signature fragments

III:170
unique factorization V:375
unique-existential quantification I:19,

III:160
unit

amalgamation I:55, III:244
application I:56, III:245, 260
architectural specification I:53
argument III:245
attribute I:12

closed specification I:53
compatible III:229
composition I:54, III:227
context III:231
declaration I:51, 52, III:235, 253
definition I:51, 52, III:236, 254
dependencies III:248
element V:370
environment III:230
evaluator III:230, IV:330
expression I:54, III:240, 255
family consistent with Γ IV:353
function type I:50
function I:49, III:227
generic function I:52
generic III:229
hiding parts I:55
import I:52, III:235, 254
local I:56, III:244, 259
non-generic III:229
reduction I:55, III:243, 258
renaming parts I:55
restriction I:55
signature III:228, IV:330
specification definition I:52, III:237
specification, architectural III:239
specification, closed III:239
specification, generic IV:330
specification, inconsistent generic

IV:330
specification I:52, III:230, 237, 255
term compatibility I:55
term I:54, III:242, 257
translation I:55, III:242, 257
type satisfaction I:53
type I:53, III:238

unit III:143
universal

compatible environments III:268
model environment III:267
quantification I:19, III:160
static environment III:267

unqualified
identifier I:23
predicate name I:22

unreserved
sign II:98
word II:98

URL I:59, II:101, III:267

528 Concept Index

valid object III:118
value

of a term III:135, 136
undefined I:8

variable
capture problem IV:280
declaration scope I:18
declaration I:18
free III:133
global declaration I:17, III:158
local declaration I:18, III:158
qualified I:23, III:166

variable I:17
vector

space V:375, 377
vector V:375
verification

global environment IV:316, 358
semantics IV:276, 289, 312

version
library I:59
number I:59, III:267

view
definition I:43, III:216, 217

fitting argument I:45
fitting I:44, III:218
generic instantiation I:45
import I:43
name I:44
named I:35, 43
parameter I:43

view I:43, III:203
visibility

linear I:6, 10, 51, 57, 58, III:139
non-linear I:6, 14, III:147

weakly amalgamable cocone IV:289,
291, 349

well-formedness I:9
well-sorted formula, term I:21, 31,

III:162
word

key II:97, 98
reserved II:98
token II:99
unreserved II:98

zero divisor V:370

	Part I CASL Summary
	Introduction
	Basic Specifications
	Basic Concepts
	Signatures
	Models
	Sentences
	Satisfaction

	Basic Items
	Signature Declarations
	Sorts
	Operations
	Predicates
	Datatypes
	Sort Generation

	Variables
	Global Variable Declarations
	Local Variable Declarations

	Axioms
	Quantifications
	Logical Connectives
	Atomic Formulas
	Terms

	Identifiers

	Subsorting Specifications
	Subsorting Concepts
	Signatures
	Models
	Sentences

	Signature Declarations
	Sorts
	Datatypes

	Axioms
	Atomic Formulas
	Terms

	Structuring Specifications
	Structuring Concepts
	Structured Specifications
	Named and Generic Specifications
	Signature and Specification Morphisms

	Structured Specifications
	Translations
	Reductions
	Unions
	Extensions
	Free Specifications
	Local Specifications
	Closed Specifications

	Named and Generic Specifications
	Specification Definitions
	Specification Instantiation

	Views
	View Definitions
	Fitting Views

	Symbol Lists and Mappings
	Symbol Lists
	Symbol Mappings

	Compound Identifiers

	Architectural Specifications
	Architectural Concepts
	Unit Functions
	Persistency and Compatibility

	Architectural Specification Definitions
	Unit Declarations and Definitions
	Unit Declarations
	Unit Definitions

	Unit Specifications
	Unit Types
	Architectural Unit Specifications
	Closed Unit Specifications

	Unit Expressions
	Unit Terms

	Specification Libraries
	Library Concepts
	Local Libraries
	Distributed Libraries
	Library Names

	Sublanguages and Extensions
	Sublanguages
	A Language for Naming Sublanguages
	A List of Orthogonal Features
	A List of Levels of Expressiveness

	Extensions
	Higher-Order and Coalgebraic Extensions
	Reactive Extensions
	Extensions at the Structured Level

	Part II CASL Syntax
	Introduction
	Abstract Syntax
	Normal Grammar
	Basic Specifications
	Subsorting Specifications
	Structured Specifications
	Architectural Specifications
	Specification Libraries

	Abbreviated Grammar
	Basic Specifications
	Subsorting Specifications
	Structured Specifications
	Architectural Specifications
	Specification Libraries

	Concrete Syntax
	Context-Free Grammar
	Basic Specifications
	Subsorting Specifications
	Structured Specifications
	Architectural Specifications
	Specification Libraries

	Disambiguation
	Precedence
	Mixfix Grouping Analysis
	Mixfix Identifiers

	Lexical Symbols
	Key Words and Signs
	Key Words
	Key Signs
	Display Format

	Tokens
	Words
	Signs
	Quoted Characters

	Literal Strings and Numbers
	URLs and Paths

	Comments and Annotations
	Comments
	Annotations
	Label Annotations
	Display Annotations
	Parsing Annotations
	Literal Annotations
	Semantic Annotations
	Miscellaneous Annotations

	Part III CASL Semantics
	Introduction
	Notation
	Static Semantics and Model Semantics
	Semantic Rules
	Institution Independence

	Basic Specification Semantics
	Basic Concepts
	Signatures
	Models
	Sentences
	Satisfaction

	Basic Items
	Signature Declarations
	Sorts
	Operations
	Predicates
	Datatypes
	Sort Generation

	Variables
	Global Variable Declarations
	Local Variable Declarations

	Axioms
	Quantifications
	Logical Connectives
	Atomic Formulas
	Terms

	Identifiers

	Subsorting Specification Semantics
	Subsorting Concepts
	Signatures
	Models
	Sentences

	Signature Declarations
	Sorts
	Datatypes

	Axioms
	Atomic Formulas
	Terms

	Structured Specification Semantics
	Structuring Concepts
	Institution Independence and the CASL Institution
	Derived Notions
	Signature Morphisms
	Extended Signatures
	Institution Independent Structuring Concepts

	Structured Specifications
	Translations
	Reductions
	Unions
	Extensions
	Free Specifications
	Local Specifications
	Closed Specifications

	Named and Generic Specifications
	Specification Definitions
	Specification Instantiation

	Views
	View Definitions
	Fitting Views

	Symbol Lists and Mappings
	Symbol Lists
	Symbol Mappings

	Compound Identifiers

	Architectural Specification Semantics
	Architectural Concepts
	Architectural Specification Definitions
	Unit Declarations and Definitions
	Unit Declarations
	Unit Definitions

	Unit Specifications
	Unit Types
	Architectural Unit Specifications
	Closed Unit Specifications

	Unit Expressions
	Unit Terms

	Extended Static Semantics
	Architectural Concepts
	Architectural Specification Definitions
	Unit Declarations and Definitions
	Unit Specifications
	Unit Expressions
	Discussion

	Specification Library Semantics
	Library Concepts
	Local Libraries
	Distributed Libraries
	Library Names

	Part IV CASL Logic
	Introduction
	Institution Independence
	Style of the Proof Calculi
	Soundness and Completeness

	Basic Specification Calculus
	Subsorting Specification Calculus
	Structured Specification Calculus
	Institution Independence
	Development Graphs
	Translating Development Graphsalong Institution Comorphisms
	Proof Rules for Development Graphs
	Hiding Decomposition Rules
	Conservativity Rules
	Simple Structural Rules

	Soundness and Completeness
	Checking Conservativity and Freeness
	Translation from Structured Specificationsto Development Graphs
	Concepts for the Verification Semantics
	Structured Specifications
	Named and Generic Specifications
	Views
	Adequacy of the Translation

	Architectural Specification Calculus
	Semantics
	Static and Model Semantics
	Extended Static Semantics

	Soundness and Completeness of the Extended Static Semantics
	Concepts
	Proof

	The Proof Calculus
	Definition of the Proof Calculus
	Soundness and Completeness

	Specification Library Calculus

	Part V CASL Libraries
	Introduction
	A Short Overview of the Specified Datatypes
	The Library Basic/Numbers
	The Library Basic/RelationsAndOrders
	The Library Basic/Algebra_I
	The Library Basic/SimpleDatatypes
	The Library Basic/StructuredDatatypes
	The Library Basic/Graphs
	The Library Basic/Algebra_II
	The Library Basic/LinearAlgebra_I
	The Library Basic/LinearAlgebra_II
	The Library Basic/MachineNumbers

	Library Basic/Numbers
	Library Basic/RelationsAndOrders
	Library Basic/Algebra_I
	Library Basic/SimpleDatatypes
	Library Basic/StructuredDatatypes
	Library Basic/Graphs
	Library Basic/Algebra_II
	Library Basic/LinearAlgebra_I
	Library Basic/LinearAlgebra_II
	Library Basic/MachineNumbers
	Dependency Graphs of the Libraries

	Appendices
	Annotated Bibliography
	References
	Index of Library and Specification Names
	Abstract Syntax Sorts and Constructors
	Symbol Index
	Concept Index

