
Lecture Notes in Computer Science 2900
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Michel Bidoit Peter D. Mosses

CASL
User Manual

Introduction to Using the
Common Algebraic Specification Language

With chapters by

Till Mossakowski, Donald Sannella,
and Andrzej Tarlecki

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Authors

Michel Bidoit
Laboratoire Spécification et Vérification, CNRS UMR 8643
École Normale Supérieure de Cachan
61, Avenue du Président Wilson, 94235 Cachan Cedex, France
E-mail: bidoit@lsv.ens-cachan.fr

Peter D. Mosses
University of Aarhus, BRICS and Department of Computer Science
Aabogade 34, 8200 Aarhus N, Denmark
E-mail: pdmosses@brics.dk

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): D.2.1, D.3.1, D.2, D.3, F.3

ISSN 0302-9743
ISBN 3-540-20766-X Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media

springeronline.com

c© 2004 IFIP International Federation for Information Processing, Hofstrasse 3, A-2361 Laxenburg, Austria
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 10931011 06/3142 5 4 3 2 1 0

Preface

CASL, the Common Algebraic Specification Language, has been designed by
CoFI, the Common Framework Initiative for algebraic specification and de-
velopment. CASL is an expressive language for specifying requirements and
design for conventional software. It is algebraic in the sense that models of
CASL specifications are algebras; the axioms can be arbitrary first-order for-
mulas.

This User Manual illustrates and discusses how to write CASL

specifications.

CASL is a major new algebraic specification language. It has been care-
fully designed by a large group of experts as a general-purpose language for
practical use in software development – in particular, for specifying both re-
quirements and design. CASL includes carefully-selected features from many
previous specification languages, as well as some novel features that allow al-
gebraic specifications to be written much more concisely and perspicuously
than hitherto. It may ultimately replace most of the previous languages, and
provide a common basis for future research and development.

CASL has already attracted widespread interest within the algebraic speci-
fication community, and is generally regarded as a de facto standard. Various
sublanguages of CASL are available – primarily for use in connection with
existing tools that were developed in connection with previous languages. Ex-
tensions of CASL provide languages oriented toward development of particular
kinds of software (reactive, concurrent, etc.).

Major libraries of validated CASL specifications are freely available on the
Internet, and the specifications can be reused simply by referring to their
names. Tools are provided to support practical use of CASL: checking the
correctness of specifications, proving facts about them, and managing the
formal software development process.

VI Preface

The companion CASL Reference Manual [20] provides full details of the
CASL design, including its formal semantics.

After briefly reviewing the background of CoFI and CASL, and the un-
derlying concepts of algebraic specification languages, this book introduces
the potential user to the features of CASL mainly by means of illustrative
examples. It presents and discusses the typical ways in which the language
concepts and constructs are expected to be used in the course of building
system specifications. Thus, the presentation focuses on what the constructs
and concepts of CASL are for, and how they should (and should not) be used.
These points are made as clear as possible by referring to simple examples, and
by discussing both the general ideas and some details of CASL specifications.

Further chapters introduce the reader to the CASL Reference Manual, to
some of the currently available CASL support tools, and to a couple of the CASL

libraries of basic datatypes. A substantial case study of the practical use of
CASL in an industrially-relevant context completes the material. Appendices
provide a quick reference of CASL constructs, a list of the main points to bear
in mind when using CASL, and the original informal requirements for the case
study.

Structure

Part I: Background

Chapter 1 describes the origins of CASL: how CoFI was formed in response
to the proliferation of algebraic specification languages in the preceding two
decades, and the aims and scope that were formulated for this international
initiative.

For the benefit of readers not already familiar with other algebraic specifi-
cation languages, Chap. 2 reviews the main concepts of algebraic specification,
explaining standard terminology regarding specification language constructs
and models (i.e., algebras).

Part II: Writing CASL Specifications

Chapter 3 shows how some familiar datatypes involving total functions are
specified in CASL, essentially as in many other algebraic specification lan-
guages. Loose, generated, and free specifications are discussed in turn, with
illustrative examples and advice on the use of different specification styles.

Partial functions arise naturally. Chapter 4 explains how CASL supports
specification of partial functions, drawing attention to where special care is
needed compared to specifications involving only total functions.

Subsorts and supersorts are often useful in CASL specifications. Chapter 5
illustrates how they can be declared and defined, and that they can sometimes
be used to avoid the need for partial functions.

Preface VII

The examples given so far make use of named and structured specifica-
tions in a simple and natural way. Chapter 6 takes a much closer look at the
constructs CASL provides for structuring specifications, explaining how large
and complex specifications are easily built out of simpler ones by means of a
small number of specification-building operations.

Chapter 7 shows how making a specification generic (when appropriate)
improves its reusability, allowing it to be instantiated with different argu-
ments; compound identifiers avoid the need for explicit renaming when com-
bining the results of different instantiations. It also introduces the constructs
for expressing so-called views between specifications.

While specification-building operations are useful to structure the text of
large specifications, architectural specifications are meant for imposing struc-
ture on implementations. Chapter 8 discusses and illustrates the role of archi-
tectural specifications, and shows how to express them in CASL.

Chapter 9 explains and illustrates how libraries of named specifications
can be formed, and made available over the Internet, to encourage widespread
reuse and evolution of specifications. Version control is of crucial importance
here.

Part III: Carrying On

Chapter 10 gives a detailed overview of the foundations of CASL, which are
established in the accompanying CASL Reference Manual.

Tool support is vital for efficient use of formal specifications in connection
with practical software design and development. Chapter 11 presents the main
tools that have been implemented so far; several of them allow use of CASL

specifications in connection with tools that were originally developed for other
specification languages, showing how CASL provides tool interoperability.

Chapter 12 introduces a few of the many specifications that are available
in the CASL libraries of basic datatypes.

Finally, Chap. 13 gives a realistic case-study of the use of CASL in practice,
in connection with the design of software for a Steam-Boiler Control System.
This particular example is one of the standard bench-marks for comparing
specification frameworks [1].

Appendices and Indexes

This volume is completed by three appendices: App. A provides a compact
overview of all CASL constructs, for quick reference; App. B lists all the main
points to bear in mind when using CASL; and App. C reproduces the informal
requirements specification for the case study.

The names of all the specifications given in this book are listed at the back,
together with an index of concepts and a list of references to the literature.
(A comprehensive annotated bibliography of publications involving CASL is
provided in the Reference Manual.)

VIII Preface

An accompanying CD-ROM contains the source files for all the illustrative
specifications, and a copy of the libraries of specifications of basic datatypes.

Organization

All the main points are highlighted like this.

The material in this book is organized in a tutorial fashion. Each main
point is usually accompanied by an illustrative example of a complete CASL

specification; the names of these specifications are listed (both in order of
presentation and alphabetically) at the end of the book. Moreover, the points
themselves are repeated (in order of presentation) in App. B.

Readers who are familiar with previous algebraic specification languages,
and especially those who have been following or participating in the design
and development of CASL, may prefer to skip lightly through Chaps. 1 and 2.
Chapter 3, however, is mandatory, since it is there that many CASL features
needed to understand the subsequent chapters are introduced.

In contrast, Chaps. 4 and 5 can be skipped at first reading if the reader is
not so much interested in partial functions, resp. subsorting (with the proviso
though that there are some references to the examples given in these chapters
from later chapters).

Chapters 6 and 7 present mainstream material, and until one feels com-
fortable with all the main points and examples, it is advisable to wait with
proceeding to Chaps. 8 and 9.

Chapter 10 is primarily for those who will want to follow up on this book
with a more detailed study of CASL, based on the Reference Manual. Part
of Chap. 11 assumes familiarity with concepts introduced in Chap. 7. In
Chap. 12, Sect. 12.1 assumes Chaps. 4 and 5, whereas Sect. 12.2 assumes
also Chaps. 6 and 7. Finally, most of Chap. 13 can be studied after Chap. 7,
but Sect. 13.10 requires Chap. 8.

Acknowledgement. Chapter 10 was written by Donald Sannella and Andrzej Tar-
lecki. Chapter 11 was written by Till Mossakowski, with contributions from Mark
van den Brand and Markus Roggenbach. Till Mossakowski also provided Chap. 12,
based on libraries of CASL specifications developed at the Bremen Institute for Se-
cure Systems in joint work with Markus Roggenbach and Lutz Schröder; and he
checked the well-formedness of all the specifications in this book, using CATS, the
CASL Tool Set.

Public drafts of this book were released in July and October 2003. The many
insightful comments from CoFI participants and other readers were very helpful to
the authors during the preparation of the final version. Detailed comments on all
or part of the public drafts were received from Jørgen Iversen, Christian Maeder,

Preface IX

Guillem Marpons, Narciso Mart́ı-Oliet, Till Mossakowski, Don Sannella, Giuseppe
Scollo, Andrzej Tarlecki, Frédéric Voisin, and Alexandre Zamulin. Responsibility for
any mistakes in the final version belongs, of course, to the authors.

Michel Bidoit gratefully acknowledges support from LSV,1 CNRS, and École
normale supérieure de Cachan. Peter Mosses gratefully acknowledges support from
BRICS2 and the Department of Computer Science, University of Aarhus. Much of
the material on which this book is based was developed in connection with activities
of CoFI-WG (ESPRIT Working Group 29432) and IFIP WG 1.3 (Foundations of
System Specification).

Finally, special thanks to Springer, and in particular to Alfred Hofmann as
Executive Editor, for their willingness to publish this book, and for helpful advice
concerning its preparation.

Michel Bidoit and Peter D. Mosses

October, 2003

1 Laboratoire Spécification et Vérification (www.lsv.ens-cachan.fr).
2 Basic Research in Computer Science (www.brics.dk), funded by the Danish Na-

tional Research Foundation.

Contents

Part I Background

1 Introduction . 3
1.1 CoFI . 3
1.2 CASL . 7

2 Underlying Concepts . 11
2.1 Basic Specifications . 11
2.2 Structured Specifications . 15
2.3 Architectural Specifications . 19
2.4 Libraries of Specifications . 20

Part II CASL Specifications

3 Getting Started . 23
3.1 Loose Specifications . 24
3.2 Generated Specifications . 33
3.3 Free Specifications . 36

4 Partial Functions . 47
4.1 Declaring Partial Functions . 47
4.2 Specifying Domains of Definition . 50
4.3 Partial Selectors and Constructors . 54
4.4 Existential Equality . 55

5 Subsorting . 57
5.1 Subsort Declarations and Definitions . 57
5.2 Subsorts and Overloading . 61
5.3 Subsorts and Partiality . 62

XII Contents

6 Structuring Specifications . 67
6.1 Union and Extension . 67
6.2 Renaming . 69
6.3 Hiding . 71
6.4 Local Specifications . 73
6.5 Named Specifications . 75

7 Generic Specifications . 77
7.1 Parameters and Instantiation . 78
7.2 Compound Symbols . 85
7.3 Generic Specifications with Imports . 88
7.4 Views . 90

8 Specifying the Architecture of Implementations 93
8.1 Architectural Specifications . 95
8.2 Generic Components . 100
8.3 Writing Meaningful Architectural Specifications 106

9 Libraries . 111
9.1 Local Libraries . 112
9.2 Distributed Libraries . 116
9.3 Version Control . 120

Part III Carrying On

10 Foundations . 125

11 Tools . 131
11.1 The Heterogeneous Tool Set (HETS) . 132
11.2 HOL-CASL . 138
11.3 ASF+SDF Parser and Syntax-Directed Editor 139
11.4 Other Tools . 140

12 Basic Libraries . 143
12.1 Library Basic/Numbers . 144
12.2 Library Basic/StructuredDatatypes 147

13 Case Study: The Steam-Boiler Control System 155
13.1 Introduction . 156
13.2 Getting Started . 157
13.3 Carrying On . 161
13.4 Specifying the Mode of Operation . 163
13.5 Specifying the Detection of Equipment Failures 167
13.6 Predicting the Behavior of the Steam-Boiler 176
13.7 Specifying the Messages to Send . 182

Contents XIII

13.8 The Steam-Boiler Control System Specification 183
13.9 Validation of the CASL Requirements Specification 184
13.10 Designing the Architecture . 186

Appendices

A CASL Quick Reference . 193
A.1 Basic Specifications . 194
A.2 Structured Specifications . 199
A.3 Architectural Specifications . 200
A.4 Libraries . 201

B Points to Bear in Mind . 203
B.1 Introduction . 203
B.2 Underlying Concepts . 203
B.3 Getting Started . 204
B.4 Partial Functions . 205
B.5 Subsorting . 206
B.6 Structuring Specifications . 206
B.7 Generic Specifications . 207
B.8 Specifying the Architecture of Implementations 207
B.9 Libraries . 208
B.10 Foundations . 209
B.11 Tools . 209
B.12 Basic Libraries . 210

C The Steam-Boiler Control Specification Problem 211
C.1 Introduction . 211
C.2 Physical Environment . 212
C.3 The Overall Operation of the Program . 214
C.4 Operation Modes of the Program . 214
C.5 Messages Sent by the Program . 216
C.6 Messages Received by the Program . 217
C.7 Detection of Equipment Failures . 219

References . 221

List of Named Specifications . 225

Index of Library and Specification Names . 231

Concept Index . 235

1

Introduction

This chapter first explains the background and aims of CoFI, the Common
Framework Initiative for algebraic specification and development of software.
It then gives an overview of the main features of CASL, the Common Algebraic
Specification Language.

1.1 CoFI

In 1995, an open collaborative effort was initiated: to design a common frame-
work for algebraic specification and development of software. It is referred to
as The Common Framework Initiative, CoFI.1

There was an urgent need for a common framework.

The rationale behind this initiative was that the lack of such a common
framework was a major hindrance for the dissemination and application of al-
gebraic specification techniques. In particular, there was a proliferation of lan-
guages – some differing in only quite minor ways from each other. The major
languages included Act One/Act Two [19], ASF [6], ASL [36], Clear [15],
Extended ML [26], Larch [25], Obj3 [24], Pluss [9], and Spectrum [14].
This abundance of languages was an obstacle for the adoption of algebraic
methods for use in industrial contexts, making it difficult to exploit stan-
dard examples, case studies and training material. A common framework,
with widespread support at least throughout the research community, was
urgently needed.
1 CoFI is pronounced like ‘coffee’.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 3–9, 2004.
c© IFIP International Federation for Information Processing 2004

4 1 Introduction

The aim of CoFI was to base the common framework as much as possible
on a critical selection of features that had already been explored in previous
research and applications (see the IFIP State-of-the-Art Report on Algebraic
Foundations of Systems Specification [3] for the background). The collective
experience and expertise of the CoFI participants provided a unique oppor-
tunity to achieve this aim within a reasonably short time-span.

The various groups working on algebraic specification frameworks had al-
ready had ample opportunity to develop their own particular variations on
the theme of algebraic specification [16], yet no clear ‘winner’ had emerged
(although there were several strong contenders).

CoFI aims at establishing a wide consensus.

The aim of CoFI was to design a framework incorporating just those fea-
tures for which there would be a wide consensus regarding their appropri-
ateness. This framework should be able to subsume many of the existing
frameworks, and be seen as an attractive common basis for future research
and development – with high potential for strong collaboration between the
various groups.

The initial overall aims of CoFI were formulated as follows:

• A common framework for algebraic specification and software development
is to be designed, developed, and disseminated.

• The production of the common framework is to be a collaborative effort,
involving a large number of experts (30–50) from many different groups
(20–30) working on algebraic specification.

• In the short term, the common framework is to become accepted as an ap-
propriate basis for a significant proportion of the research and development
in algebraic specification.

• Specifications in the common framework are to have a uniform, user-
friendly syntax and straightforward semantics.

• The common framework is to be able to replace many existing algebraic
specification frameworks.

• The common framework is to be supported by a concise reference manual,
user’s guide, libraries of specifications, tools, and educational materials.

• In the longer term, the common framework is to be made attractive for
use in industrial contexts.

• The common framework is to be available free of charge, both to academic
institutions and to industrial companies. It is to be protected against ap-
propriation.

1.1 CoFI 5

The focus of CoFI is on algebraic techniques.

The functionality of the common framework is to allow and be useful for:

• algebraic specification of the functional requirements of software systems,
for some significant class of software systems;

• formal development of design specifications from requirements specifica-
tions, using some particular methods;

• documenting the relation between informal statements of requirements and
formal specifications;

• verification of correctness of development steps from (formal) requirements
to design specifications;

• documenting the relation between design specifications and implementa-
tions in software;

• exploration of the (logical) consequences of specifications: e.g., rewriting,
theorem-proving, prototyping;

• reuse of parts of specifications;
• adjustment of specifications and developments to changes in requirements;
• providing a library of useful specification modules; and
• providing a workbench of tools supporting the above.

CoFI has already achieved its main aims.

The first major achievement of CoFI was the completion of the design of
CASL, the Common Algebraic Specification Language. The CASL design effort
started in September 1995. An initial design was proposed in May 1997 (with
a language summary, abstract syntax, and formal semantics, but no concrete
syntax) and tentatively approved by IFIP WG1.3. The report of the IFIP
referees on the initial CASL design proposal suggested reconsideration of sev-
eral points in the language design, and requested some improvements to the
documents describing the design. Apart from a few details, the design was
finalized in April 1998, and CASL version 1.0 was released in October 1998.
IFIP WG 1.3 was asked to review the final design of CASL version 1.0.1 in
May 2000, and subsequently approved that design in April 2001. The cur-
rent version (1.0.2) was adopted in October 2003; it incorporates adjustments
to some minor details of the concrete syntax and the semantics. No further
revisions of the CASL design are anticipated.

The CASL Reference Manual [20], published as a companion volume to
the present book, includes a detailed yet concise (60 pages) summary of the
CASL design; the rest of it is concerned mainly with the formal syntax and
semantics of CASL, and with the libraries of basic datatype specifications. An
introduction to the Reference Manual is given in Chap. 10 of this book.

6 1 Introduction

In parallel with the design of CASL, CoFI has developed tool support for
the use of CASL (see Chap. 11), and substantial libraries of CASL specifications
(see Chap. 12).

Despite the previous lack of a CASL User Manual, there is already much
evidence that CASL is now accepted as an appropriate basis for research and
development in algebraic specification. Reference [33] gives an overview of
what was achieved in the period 1998–2001, and the annotated bibliography in
the CASL Reference Manual lists a significant number of further publications
that involve CASL. At the time of writing, it remains to be seen whether
significant industrial take-up will follow.

CoFI is an open, voluntary initiative.

CoFI was started by Compass (ESPRIT Basic Research WG 3264/6112,
1989-96), in cooperation with IFIP WG 1.3 (Foundations of System Specifica-
tion, founded 1992), on the basis of proposals made during their meetings in
1994 (Santa Margherita Ligure, Italy) and 1995 (Oslo, Norway); participation
in CoFI was, however, never confined to members of those working groups.
The active participants have included some 30 leading researchers in algebraic
specification, with representatives from almost all the European groups work-
ing in this area. (Ideally, representatives from non-European groups would
have been involved too, but logistic difficulties prevented this.)

Originally, CoFI had separate task groups concerning language design,
semantics, tools, methodology, and reactive systems. There was a substantial
amount of interaction between the task groups, which was facilitated by many
of the CoFI participants being involved in more than one task group. The
overall coordination of these task groups was managed by Peter Mosses from
the start of CoFI in September 1995 until August 1998, and subsequently
by Don Sannella. In 2003, the CoFI task groups were replaced by a looser
coordination mechanism, with a steering committee chaired by Don Sannella.

CoFI has received funding as an ESPRIT Working Group, and is
sponsored by IFIP WG 1.3.

The European Commission provided funding for the European component
of CoFI as ESPRIT Working Group 29432 from 1998 to 2001 [33]. The part-
ners were the coordinating sites of the various CoFI task groups (University
of Aarhus, University of Bremen, École normale supérieure de Cachan, Uni-
versity of Genova, INRIA Lorraine, Warsaw University) with the University
of Edinburgh as overall coordinator. The goals of the working group were to
coordinate the completion of and disseminate the Common Framework, to

1.2 CASL 7

demonstrate its practical applicability in industrial contexts, and to establish
the infrastructure needed for future European collaborative research in alge-
braic techniques. Apart from this period of funding, and support for meetings
from the Compass Working Group until its termination in 1996, CoFI has
relied entirely on unfunded efforts by its participants. Participation in the fre-
quent working meetings was often supported by generous subsidies from the
local organizers.

IFIP WG 1.3 sponsors CoFI by reviewing proposals for changes to the
design of CASL, and proposals for extensions of CASL. Moreover, a considerable
number of members of IFIP WG 1.3 have been (and, at the time of writing,
still are) active participants of CoFI.

New participants are welcome!

CoFI is an open collaboration, and new participants are always welcome.
Current information about CoFI activities is available at the main CoFI web
site: http://www.cofi.info. The low-volume mailing list cofi@cofi.info
is reserved for CoFI announcements, and discussions about CoFI activities
generally take place on the mailing list cofi-discuss@cofi.info; see the
CoFI web site for how to subscribe, and for access to the archives.

1.2 CASL

CASL has been designed as a general-purpose algebraic specification
language, subsuming many existing languages.

The primary specification language developed by CoFI is called CASL: the
Common Algebraic Specification Language. Its main features are:

• The design of CASL is based on a critical selection of the concepts and
constructs found in existing algebraic specification frameworks.

• CASL is an expressive specification language with simple semantics and
good pragmatics.

• CASL is appropriate for specifying requirements and design of conventional
software packages.

• CASL is at the heart of a coherent family of languages that are obtained
as sublanguages or extensions of CASL.

CASL subsumes many previous languages for the formal specification of
functional requirements and modular software design. Tools for CASL are inter-
operable, i.e., capable of being used in combination rather than in isolation.
CASL interfaces to existing tools extend this inter-operability (see Chap. 11).

8 1 Introduction

The intention was to base the design of CASL on a critical selection of
concepts and constructs from existing specification languages. However, it
was not easy to reach a consensus on a coherent language design. A great deal
of careful consideration was given to the effect that the constructs available
in the language would have on such aspects as the methodology and tools. A
complete formal semantics for CASL was produced in parallel with the later
stages of the language design, and the desire for a relatively straightforward
semantics was one factor in the choice between various alternatives in the
design.

CASL represents a consolidation of past work on the design of algebraic
specification languages. With a few minor exceptions, all its features are
present in some form in other languages, but there is no language that comes
close to subsuming it. Designing a language with this particular novel col-
lection of features required solutions to a number of subtle problems in the
interaction between features. An overview of the CASL design is presented
in [2], and full details are provided in the CASL Reference Manual [20].

CASL is at the center of a family of languages.

It was clear from the start that no single language could suit all purposes.
On the one hand, sophisticated features are required to deal with specific pro-
gramming paradigms and special applications. On the other hand, important
methods for prototyping and reasoning about specifications only work in the
absence of certain features: for instance, term rewriting requires specifications
with equational or conditional equational axioms.

�� ���
�

�

�
�
�

�� ��

����

�� ��
Sublanguages

Extensions

CASL

•

•

• ••

• •

• •

• •

Fig. 1.1. The CASL Family of Languages

CASL is therefore at the center of a family of languages, see Fig. 1.1.
Some tools will make use of well-delineated sublanguages of CASL, obtained by
syntactic or semantic restrictions [29], while extensions of CASL are generally

1.2 CASL 9

designed to support various paradigms and applications. The design of CASL

took into account the need to define sublanguages and extensions.

CASL itself has several major parts.

The major parts of CASL are concerned with basic specifications, structured
specifications, architectural specifications, and libraries of specifications. They
have been designed to be used together: basic specifications can be used in
structured specifications, which in turn can be used in architectural specifi-
cations; structured and/or architectural specifications can be collected into
libraries. However, these parts of CASL are quite independent, and may be
understood separately, as we shall see in Part II.

2

Underlying Concepts

CASL is based on standard concepts of algebraic specification.

This chapter reviews the main concepts of algebraic specification. It briefly
explains and illustrates standard terminology regarding specification language
constructs and models of specifications (i.e., algebras), and indicates the dif-
ferences between basic, structured, and architectural specifications.

The focus here is on concepts that are relevant to CASL, and which will
be needed in later chapters. For comprehensive presentations of concepts and
results concerning algebraic specification, see [3, 10, 16, 27, 34, 35, 37]; for an
overview of the design of CASL, see [2]; and for full details of CASL, see the
CASL Reference Manual [20].

The reader is assumed to be familiar with basic mathematical notions
(sets, relations, and total and partial functions) and with the use of logical
formulas as axioms.

2.1 Basic Specifications

A basic specification declares symbols, and gives axioms and
constraints.

A basic specification in an algebraic specification language generally con-
sists of a set of declarations of symbols, and a set of axioms and constraints,
which restrict the interpretations of the declared symbols. CASL allows basic
specifications to include also items which simultaneously declare symbols and
restrict their interpretations.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 11–20, 2004.
c© IFIP International Federation for Information Processing 2004

12 2 Underlying Concepts

The semantics of a basic specification is a signature and a class of
models.

The meaning or semantics of a basic specification SP generally has two
parts:

• a signature Σ , corresponding to the symbols introduced by the specifica-
tion, and

• a class of Σ-models,1 corresponding to those interpretations of the signa-
ture Σ that satisfy the axioms and constraints of the specification.

When a model M satisfies a specification SP , we write M |= SP and say
that M is a model of SP . (Formalizing this within the theory of so-called
institutions involves categorical structure on the set of signatures and on the
class of models, and a natural condition on the satisfaction relation. We need
not bother with the details here – but see however the concept of a signature
morphism in Sect. 2.2.) A specification is said to be consistent when its class
of models is non-empty, and otherwise inconsistent.

CASL specifications may declare sorts, subsorts, operations, and
predicates.

A CASL signature represents declarations of sorts, subsorts, operations,
and predicates. The signature is called many-sorted when there are no subsort
declarations, and otherwise subsorted ; it is called algebraic when there are no
predicate declarations.

Sorts are interpreted as carrier sets.

A sort is a symbol which is interpreted as a set, called a carrier set. The
elements of a carrier set are generally abstract representations of the data
processed by software: numbers, characters, lists, etc. Thus a sort declared by
a specification corresponds to a type in a programming language. Sort symbols
are usually chosen to be strongly suggestive of their intended interpretations,
e.g., Int for a sort to be interpreted as the set of integers, List for a set of
lists. CASL allows also compound sort symbols, such as List [Int] for lists of
integers.
1 Readers who are not interested in foundational aspects may treat the word ‘class’

as a synonym for ‘set’. In general, the models of an algebraic specification in CASL

constitute a proper class, because there is no restriction on the elements of the
carrier sets.

2.1 Basic Specifications 13

Subsorts declarations are interpreted as embeddings.

A sort may be declared to be a subsort or a supersort of other sorts. The
subsort relation between two sorts could be interpreted as set inclusion. Its in-
terpretation in CASL is however more general: it is interpreted as an embedding,
i.e., a 1-1 function from the carrier set of the subsort to that of the supersort.
For example, if ASCII is specified to be a subsort of ISO Latin1 in CASL, the
carrier set for ASCII could be simply a subset of that for ISO Latin1 . If Char
were to be declared as a subsort of String, however, the carrier sets for Char
and String could be disjoint, with the embedding mapping each character to
the corresponding single-character string. (See also the concept of overloading,
below.)

Operations may be declared as total or partial.

An operation symbol consists of the name of the operation together with its
profile, which indicates the number and sorts of the arguments, and the result
sort. In CASL, a declared operation symbol is interpreted as either a total or a
partial function from the Cartesian product of the carrier sets of the argument
sorts to the carrier set of the result sort; the subset of the argument tuples for
which the result of a function is defined is called its domain of definition. The
declaration indicates whether the function is total or partial.2 For example,
integer addition would be declared as total, but integer division as partial. The
result of applying an operation is undefined whenever any of its arguments is
undefined (regardless of whether the operation itself is total or partial).

When there are no arguments, the operation is called a constant. A con-
stant is interpreted simply as an element of the result sort.

Predicates are different from boolean-valued operations.

A predicate symbol consists of the name of the predicate together with its
profile, which indicates the number and sorts of the arguments but no result
sort: predicates are syntactically different from boolean-valued operations,
and are used to form atomic formulas rather than terms. In CASL, a declared
predicate symbol is interpreted as a relation on (i.e., a subset of) the Cartesian
product of the carrier sets of the argument sorts. An application of a predicate
is said to hold when the tuple of arguments is in the relation. For example, a
2 A partial function might just happen to be everywhere defined, of course.

14 2 Underlying Concepts

symbol ‘<’ to be interpreted as the less-than relation could be declared as a
binary predicate on integers.

An application of a predicate simply fails to hold when any of its arguments
is undefined: there is no undefinedness about holding or not. This allows the
logic to remain two-valued, and the logical connectives to have their familiar
interpretations.

In contrast, the result of evaluating an application of even a total boolean-
valued operation could be true, false, or undefined: the last case arises when
any argument of the application is undefined. Thus boolean-valued operations
corresponding to logical connectives (conjunction, implication, etc.) have to
take account of undefinedness, which leads to a three-valued logic.

A further significant difference between predicates and boolean-valued op-
erations shows up in connection with the concept of initiality, see Sect. 2.2.
(Predicates of two-valued logic can be represented accurately by partial oper-
ations with a single-valued result sort, holding being represented by defined-
ness.)

Operation symbols and predicate symbols may be overloaded.

An operation or predicate name can be declared with different profiles in
the same specification. This is called overloading. For example, the constant
‘empty’ could be overloaded, being interpreted as (unrelated) elements of the
sorts List and Set , according to the context of its use. Similarly, a predicate
name such as ‘<’ could be overloaded on unrelated sorts such as Char and
Int .

In CASL, overloading is required to be compatible with embeddings between
subsorts. For example, the sort Nat , interpreted as the set of natural numbers,
might be a subsort of Int , interpreted as the set of all integers; then when the
operation name ‘+’ and the predicate name ‘<’ are declared both on Nat and
on Int , their interpretations are required to be such that it makes no difference
whether the embedding from Nat to Int is applied to the arguments or to the
result of the operation, and whether it is applied to the arguments of the
predicate or not.

Axioms are formulas of first-order logic.

The interpretation of quantification (universal, existential, and unique-
existential) and of the usual logical connectives (negation, conjunction, dis-
junction, implication, and equivalence) in CASL axioms is completely standard.
Variables in formulas range over the carrier sets of specified sorts.

2.2 Structured Specifications 15

Apart from the usual predicate applications, the atomic formulas in CASL

axioms are equations (strong or existential), definedness assertions, and sub-
sort membership assertions. An existential equation holds when the values of
its terms are defined and equal; a strong equation holds moreover when the
values of the terms are both undefined.

Regardless of whether the values of the terms occurring in an axiom are
defined, the axiom either holds or it does not hold in a particular model: the
logic is two-valued, there is no “maybe” or undefinedness about the holding
of axioms. Recall that when the value of any argument term is undefined,
an application of a predicate never holds; similarly, definedness and subsort
membership assertions never hold when their arguments are undefined.

Sort generation constraints eliminate ‘junk’ from specific carrier sets.

In general, the carrier sets of the models of a specification may contain
‘junk’ elements, i.e., elements which cannot be obtained by any composition
of the operations declared by the signature of the specification.

A sort generation constraint in CASL concerns specific sorts and opera-
tions, and is satisfied in a model when no elements of the indicated carrier
sets are junk with respect to the indicated operations – i.e., all the elements
of those sets can be obtained by consecutively applying those operations to
elements of the carrier sets of the remaining sorts. For example, the carrier
set for the sort Container might be constrained to be generated from that for
the sort Elem by the following operations:

• a constant ‘empty’ of sort Container , and
• a binary operation ‘insert ’ with argument sorts Elem and Container , and

result sort Container .

This constraint would ensure that the only elements of the Container carrier
are those obtained by a finite number of successive applications of the insert
operation to elements of sort Elem, starting with the empty value of sort
Container .

2.2 Structured Specifications

Structured specifications are formed from basic specifications, references to
named specifications, and instantiations of generic specifications, using various
constructs for composing specifications.

16 2 Underlying Concepts

The semantics of a structured specification is simply a signature and
a class of models.

The semantics of a structured specification is of the same form as that of
a basic specification: a signature, together with a class of models. Thus the
structure of a specification is not reflected in its models: it is used only to
present the specification in a modular style. (Specification of the architecture
of implementations is addressed in Sect. 2.3.) The symbols in the signature
are called the exported symbols of the specification.

The interpretation of structured specification constructs involves mappings
between signatures Σ , called signature morphisms, and corresponding map-
pings between models M , called reducts along morphisms. In CASL, a signature
morphism σ from Σ to Σ ′ consists of a mapping which gives:

• for each sort of Σ , a corresponding sort of Σ ′, preserving any subsort
relationships, and

• for each operation or predicate symbol whose profile has sorts in Σ , a
corresponding symbol in Σ ′ whose profile has the corresponding sorts,
preserving any overloading between symbols whose profiles are related by
subsorting. A partial operation may be mapped to a total operation, but
not vice versa.

Let M ′ be any Σ ′-model. We can define its reduct along the signature mor-
phism σ to be the Σ -model M obtained as follows: each symbol of Σ is
interpreted in M in exactly the same way as the corresponding symbol in
Σ ′ is interpreted in M ′. Conversely, given M , a model M ′ is said to be an
expansion of M when the reduct of M ′ is M .

Suppose that a specification SP has signature Σ and SP ′ has signature Σ ′.
A signature morphism σ from Σ to Σ ′ is said to be a specification morphism
from SP to SP ′ when the reduct along σ of each model of SP ′ is a model of
SP .

For two Σ -models M1 ,M2 , a (weak) homomorphism from M1 to M2 maps
the elements of the carrier sets of M1 to the elements of the corresponding car-
rier sets of M2 , preserving the embeddings between subsorts, the values (and
definedness) of operations, and the holding of predicates. A homomorphism
is an isomorphism when it has an inverse homomorphism.

A model M is initial in a class of Σ -models if there is a unique homo-
morphism from M to each model in the class. When a class of models has
an initial model (which need not be the case in CASL) it is unique, up to
isomorphism.

With reference to the above concepts of signature morphism, model reduct,
and homomorphism, we can now proceed to explain the constructs involved
with structured specifications.

2.2 Structured Specifications 17

A translation merely renames symbols.

Translating a sort symbol requires translating the profiles of all opera-
tion and predicate symbols involving that sort; translating an operation or
predicate symbol has to respect overloading between symbols whose profiles
are related by subsorting. The translation of sort, operation, and predicate
names in CASL determines a signature morphism σ mapping the signature Σ
of a specification SP onto a new signature Σ ′. The models of the translation
specification are all those models interpreting Σ ′ whose reducts along σ are
models of SP .

Hiding symbols removes parts of models.

Hiding a sort symbol implies hiding also all operation and predicate sym-
bols whose profiles involve that sort; hiding an operation or predicate symbol,
however, does not have further implications. Hiding a set of symbols that
occur in the signature Σ of a specification SP to give a subsignature Σ ′ de-
termines a signature morphism σ which simply includes Σ ′ in Σ . The models
of the hiding specification are the reducts of the models of SP along σ.

For example, the operation suc might be introduced purely to facilitate
the specification of the natural numbers, with sort Nat , constants 0 and 1 ,
and the usual arithmetic operations. Hiding suc removes the interpretation
of suc from the models of the specification3 but leaves the carrier set for Nat
unchanged.

Union of specifications identifies common symbols.

The signature of a union of specifications SP1 ,SP2 is simply the union of
their respective signatures Σ1 ,Σ2 . The models of the union are those mod-
els of the union signature whose reducts to Σ1 and Σ2 along the signature
inclusions satisfy SP1 and SP2 respectively. Thus each symbol that the two
signatures have in common has a single interpretation in any model of the
union specification. This is known as the ‘same name, same thing’ principle.
3 The successor of a number can of course still be obtained, using addition and 1 .

18 2 Underlying Concepts

Extension of specifications identifies common symbols too.

The signature of the extension of a specification SP by further specification
items (declarations, axioms, and constraints) is simply the extension of the
signature Σ of SP with the symbols of the new declarations. The models of
the extension are those models of the extended signature which satisfy the
axioms and constraints specified by the extension and whose reducts to Σ
satisfy SP . If the extension redeclares a symbol of SP , there is still only one
occurrence of that symbol in the signature of the extension, and hence only
one interpretation of it – again the ‘same name, same thing’ principle.

In CASL, unions, extensions, and other kinds of structured specification
can be formed from specification fragments that determine only signature
extensions, not necessarily complete signatures.

Free specifications restrict models to being free, with initiality as a
special case.

When a specification is freely extended by additional specification items,
the interpretations of the additional declarations are required to satisfy the
axioms, but nothing more: that is, properties that are not consequences of
the axioms should not hold. In particular, the domains of definition of partial
operations – and the sets of arguments for which predicates hold – are as
small as possible. The carriers for the original sorts are left unchanged; any
new carriers are no larger than is required to provide interpretations for the
operations, without unnecessary junk elements. This restriction of the models
is referred to as a freeness constraint. In the degenerate case where the speci-
fication being enriched is empty, the models of the free extension are just the
initial models.

The difference between predicates and boolean-valued operations is par-
ticularly apparent in free specifications: with predicates, it is only required to
specify when they hold, since not holding is the default; with boolean-valued
operations, however, the true and false values are treated symmetrically, and
it is necessary to specify both cases, since neither is the default.

Generic specifications have parameters, and have to be instantiated
when referenced.

A named specification may declare some parameters, the union of which
is extended by a body; it is then called generic. The purpose of a generic

2.3 Architectural Specifications 19

specification is to reuse the body in different contexts; hence a reference to a
generic specification should instantiate it by providing, for each parameter, an
argument specification together with a fitting morphism from the parameter
to the argument specification. Fitting may also be achieved by use of named
views between the parameter and argument specifications. The instantiation
of the generic specification gives the union of the arguments, together with
the translation of the generic specification by an expansion of the fitting mor-
phism. This corresponds to a so-called push-out construction – taking into
account any explicit imports of the generic specification.

2.3 Architectural Specifications

The semantics of an architectural specification reflects its modular
structure.

The intention with architectural specifications is primarily to impose struc-
ture on implementations, expressing their composition from component units
– and thereby also a decomposition of the task of developing such implemen-
tations, from requirements specifications. This is in contrast to the structured
specifications considered in Sect. 2.2, where the specified models have no more
structure than do those of the basic specifications considered in Sect. 2.1.

Architectural specifications involve the notions of persistent function
and conservative extension.

A function F mapping Σ -models to Σ ′-models, where the signature Σ ′

extends Σ , is said to be persistent when for each Σ -model M , the reduct of
F (M) to a Σ -model is exactly M .

A specification extension SP ′ of SP is said to be conservative when each
model of SP can be expanded to a model of SP ′.

A persistent function mapping models of SP to models of SP ′ exists only
if SP ′ is a conservative extension of SP .

20 2 Underlying Concepts

2.4 Libraries of Specifications

The semantics of a library of specifications is a mapping from the
names of the specifications to their semantics.

The specification of a library gives also a library name, and determines a
version number.

3

Getting Started

Simple specifications may be written in CASL essentially as in many
other algebraic specification languages.

The simplest kind of algebraic specification is when each specified opera-
tion is to be interpreted as an ordinary total mathematical function: it takes
values of particular types as arguments, and always returns a well-defined
value. Total functions correspond to software whose execution always termi-
nates normally. The types of values are named by simple symbols called sorts.

In practice, a realistic software specification involves partial as well as total
functions. However, it may well be formed from simpler specifications, some of
which involve only total functions. This chapter explains how to express such
simple specifications in CASL, illustrating various features of the language.

The simple specifications discussed in this chapter can also be expressed
in many previous specification languages; it is usually straightforward to re-
formulate them in CASL. Readers who know other specification languages will
probably recognize some familiar examples among the illustrations given in
this chapter.

CASL provides also useful abbreviations.

The technique of algebraic specification by axioms is generally well-
suited to expressing properties of functions. However, when functions have
commonly-occurring mathematical properties, it can be tedious to give the
corresponding axioms explicitly. CASL provides some useful abbreviations for
such cases. Similarly, so-called free datatype declarations allow sorts and value
constructors to be specified much as in functional programming languages, us-
ing a concise and suggestive notation.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 23–45, 2004.
c© IFIP International Federation for Information Processing 2004

24 3 Getting Started

CASL allows loose, generated and free specifications.

The models of a loose specification include all those where the declared
functions have the specified properties, without any restrictions on the sets
of values corresponding to the various sorts. In models of a generated speci-
fication, in contrast, it is required that all values can be expressed by terms
formed from the specified constructors, i.e. unreachable values are prohibited.
In models of free specifications, it is required that values of terms are distinct
except when their equality follows from the specified axioms: the possibility
of unintended coincidence between them is prohibited.

Section 3.1 below focuses on loose specifications; Sect. 3.2 discusses the use
of generated specifications, and Sect. 3.3 does the same for free specifications.
Loose, generated, and free specifications are often used together in CASL:
each style has its advantages in particular circumstances, as explained below
in connection with the illustrative examples.

3.1 Loose Specifications

CASL syntax for declarations and axioms involves familiar notation,
and is mostly self-explanatory.

spec Strict Partial Order =
%% Let’s start with a simple example !

sort Elem
pred < : Elem × Elem %% pred abbreviates predicate

∀x , y, z : Elem
• ¬(x < x) %(strict)%

• x < y ⇒ ¬(y < x) %(asymmetric)%

• x < y ∧ y < z ⇒ x < z %(transitive)%

%{ Note that there may exist x, y such that
neither x < y nor y < x. }%

end

The above (basic) specification, named Strict Partial Order, intro-
duces a sort Elem and a binary infix predicate symbol ‘<’. In the declaration
of a predicate symbol, argument sorts are separated by the sign ‘×’, which can
be input directly as such in ISO Latin-1 or as ‘*’ in ASCII. Note that CASL

allows so-called mixfix notation, i.e., the specifier is free to indicate, using ‘ ’
(pairs of underscores) as place-holders, how to place arguments when building

3.1 Loose Specifications 25

terms (single underscores are treated as letters in identifiers).1 Using mixfix
notation generally allows the use of familiar mathematical and programming
notations, which contributes substantially to the readability of specifications.

The interpretation of the binary predicate symbol ‘<’ is then constrained
by three axioms. A set of axioms is generally presented as a ‘bulleted’ list
of formulas, preceded by the universally quantified declaration of the relevant
variables, together with their respective sorts, as shown in the above example.
In CASL, axioms are written in first-order logic with equality, using quantifiers
and the usual logical connectives. The universal quantification preceding a list
of axioms applies to the entire list. Axioms can be annotated by labels written
%(. . .)%, which is convenient for proper reference in explanations or by tools.

Note that ‘∀’ is input as ‘forall’, and that ‘ • ’ is input as ‘.’ or ‘·’. The
usual logical connectives ‘⇒’, ‘⇔’, ‘∧’, ‘∨’, and ‘¬’, are input as ‘=>’, ‘<=>’,
‘/\’, ‘\/’, and ‘not’, respectively; ‘¬’ can also be input directly as an ISO
Latin-1 character. The existential quantifier ‘∃’ is input as ‘exists’, and ‘∃!’
is input as ‘exists!’.

It is advisable to comment as appropriate the various elements introduced
in a specification. The syntax for end-of-line and grouped multi-line comments
is illustrated in the above example. The ‘end’ keyword ending a specification
is optional.

The above Strict Partial Order specification is loose in the sense that
it has many (non-isomorphic) models, among which models where ‘<’ is in-
terpreted by a total ordering relation and models where it is interpreted by a
partial one.

Specifications can easily be extended by new declarations and axioms.

spec Total Order =
Strict Partial Order

then ∀x , y : Elem • x < y ∨ y < x ∨ x = y %(total)%

end

Extensions, introduced by the keyword ‘then’, may specify new symbols,
possibly constrained by some axioms, or merely require further properties of
old ones, as in the above Total Order example, or more generally do both
at the same time. In Total Order, we further constrain the interpretation
of the predicate symbol ‘<’ by requiring it to be a total ordering relation.

All symbols introduced in a specification are by default exported by it and
visible in its extensions. This is for instance the case here for the sort Elem and
1 Mixfix notation is so-called because it generalizes infix, prefix, and postfix nota-

tion to allow arbitrary mixing of argument positions and identifier tokens.

26 3 Getting Started

the predicate symbol ‘<’, which are introduced in Strict Partial Order,
exported by it, and therefore available in Total Order.2

In simple cases, an operation (or a predicate) symbol may be declared
and its intended interpretation defined at the same time.

spec Total Order With MinMax =
Total Order

then ops min(x , y : Elem) : Elem = x when x < y else y;
max (x , y : Elem) : Elem = y when min(x , y) = x else x

end

Total Order With MinMax extends Total Order by introducing
two binary operation symbols min and max , for which a functional notation
is to be used, so no place-holders are given. The intended interpretation of
the symbol min is defined simultaneously with its declaration, and the same
is done for max . For instance:

op min(x , y : Elem) : Elem = x when x < y else y

abbreviates:

op min : Elem × Elem → Elem
∀x , y : Elem • min(x , y) = x when x < y else y

(and similarly for max). As for predicate symbol declarations, in an operation
symbol declaration, the argument sorts are separated by the sign ‘×’; the
result sort is preceded by ‘→’, which is input as ‘->’.

The ‘. . . when . . . else . . .’ construct used above is itself an abbreviation,
and:

min(x , y) = x when x < y else y

abbreviates:

(x < y ⇒ min(x , y) = x) ∧ (¬(x < y) ⇒ min(x , y) = y)

In CASL specifications, visibility is linear, i.e., any symbol must be declared
before being used. In the above example, min should be declared before being
used to define max .

Linear visibility does not imply, however, that a fixed scheme is to be
used when writing specifications: the specifier is free to present the required
declarations and axioms in any order, as long as the linear visibility rule is re-
spected. For instance, one may prefer to declare first all sorts and all operation
2 See Chap. 6 for constructs allowing the explicit restriction of the set of symbols

exported by a specification.

3.1 Loose Specifications 27

or predicate symbols needed, and then specify their properties by the relevant
axioms. Or, in contrast, one may prefer to have each operation or predicate
symbol declaration immediately followed by the axioms constraining its inter-
pretations. Both styles are equally fine, and can even be mixed if desired. This
flexibility is illustrated in the following variant of the Total Order With
MinMax specification, where for explanatory purposes we refrain from using
the useful abbreviations explained above.

spec Variant Of Total Order With MinMax =
Total Order

then vars x , y : Elem
op min : Elem × Elem → Elem
• x < y ⇒ min(x , y) = x
• ¬(x < y) ⇒ min(x , y) = y
op max : Elem × Elem → Elem
• x < y ⇒ max (x , y) = y
• ¬(x < y) ⇒ max (x , y) = x

end

Note that in order to avoid the tedious repetition of the declaration of the
variables x and y for each list of axioms, we have used here a global variable
declaration which introduces x and y for the rest of the specification. Variable
declarations are of course not exported across specification extensions: the
variables x and y declared in Variant Of Total Order With MinMax
are not visible in any of its extensions.

Symbols may be conveniently displayed as usual mathematical
symbols by means of %display annotations.

%display <= %LATEX ≤

spec Partial Order =
Strict Partial Order

then pred ≤ (x , y : Elem) ⇔ (x < y ∨ x = y)
end

The above example relies on a %display annotation: while, for obvious
reasons, the specification text should be input using the ISO Latin-1 char-
acter set, it is often convenient to display some symbols differently, e.g., as
mathematical symbols. This is the case here where the ‘<=’ predicate symbol
is more conveniently displayed as ‘≤’. Display annotations, as any other CASL

annotations, are auxiliary parts of a specification, for use by tools, and do not
affect the semantics of the specification.3

3 Display annotations should be provided at the beginning of a library, and are
explained in more detail in Chap. 9.

28 3 Getting Started

In the above example, we have again used the facility of simultaneously
declaring and defining a symbol (here, the predicate symbol ‘≤’) in order to
obtain a more concise specification.

The %implies annotation is used to indicate that some axioms are
supposedly redundant, being consequences of others.

spec Partial Order 1 =
Partial Order

then %implies

∀x , y, z : Elem • x ≤ y ∧ y ≤ z ⇒ x ≤ z %(transitive)%

end

The %implies annotation above is used to emphasize that the transitivity
of ‘≤’ should follow from the other axioms, or, in other words, that the model
class of Partial Order 1 is exactly the same as the model class of Partial
Order. The %implies annotation applies to the whole of the specification
extension where it occurs (which happens here to introduce a single axiom).

Note however that an annotation does not affect the semantics of a spec-
ification, hence removing the %implies annotation does not change the class
of models of the above specification. The sole aim of an %implies annotation
is to stress the specifier’s intentions, and it will also help readers confirm their
understanding. Some tools may of course use such annotations to generate
corresponding proof obligations. For instance, here, the proof obligation is:

Partial Order |= ∀x , y, z : Elem • x ≤ y ∧ y ≤ z ⇒ x ≤ z

Discharging these proof obligations increases the trustworthiness of a specifi-
cation.

To fully understand that an %implies annotation has no effect on the
semantics, the best is to consider an example where the corresponding proof
obligation cannot be discharged, as shown below.

spec Implies Does Not Hold =
Partial Order

then %implies

∀x , y : Elem • x < y ∨ y < x ∨ x = y %(total)%

end

Since the loose specification Partial Order has models where ‘<’ is in-
terpreted by a partial ordering relation, the proof obligation corresponding
to the above %implies annotation cannot be discharged. However, since an-
notations have no impact on the semantics, the specification Implies Does
Not Hold is well-formed and just constrains the interpretation of ‘<’ to be a
total ordering relation. The fact that the proof obligation cannot be discharged
merely points out a potential mistake in the specification.

3.1 Loose Specifications 29

Attributes may be used to abbreviate axioms for associativity,
commutativity, idempotence, and unit properties.

spec Monoid =
sort Monoid
ops 1 : Monoid ;

∗ : Monoid × Monoid → Monoid , assoc, unit 1
end

The above example introduces a constant symbol 1 of sort Monoid , then a
binary operation symbol ‘∗’, which is asserted to be associative and to have 1
as unit element. (Note that there is no ‘→’ sign before the sort when declaring
a constant.) The assoc attribute abbreviates, as expected, the following axiom:

∀x , y, z : Monoid • (x ∗ y) ∗ z = x ∗ (y ∗ z)

The ‘unit 1 ’ attribute abbreviates:

∀x : Monoid • (x ∗ 1 = x) ∧ (1 ∗ x = x)

Note that to make the use of ‘unit 1 ’ legal, it is necessary to have previously
declared the constant 1 , to respect the linear visibility rule.

Other available attributes are comm , which abbreviates the obvious axiom
stating that a binary operation is commutative, and idem , which can be used
to assert the idempotence of a binary operation f (i.e., that f (x , x) = x).

Asserting ‘∗’ to be associative using the attribute assoc makes the term
x ∗ y ∗ z well-formed (assuming x , y, z of the right sort), while otherwise
grouping parentheses would be required. Moreover, it is expected that some
tools (e.g., systems based on rewriting) may make special use of the assoc
attribute, so it is generally advisable to use this attribute instead of stating
the same property by an axiom (the same applies to the other attributes).

Genericity of specifications can be made explicit using parameters.

spec Generic Monoid [sort Elem] =
sort Monoid
ops inj : Elem → Monoid ;

1 : Monoid ;
∗ : Monoid × Monoid → Monoid , assoc, unit 1

∀x , y : Elem • inj (x) = inj (y) ⇒ x = y
end

30 3 Getting Started

The above example describes monoids built over arbitrary elements (of sort
Elem). The intention here is to reuse the specification Generic Monoid to
derive from it specifications of monoids built over, say, characters, symbols,
etc. In such cases, it is appropriate to emphasize the intended genericity of
the specification by making explicit, in a distinguished parameter part (which
is here [sort Elem]), the piece of specification that is intended to vary in
the derived specifications. In these, it will then be possible to instantiate the
parameter part as desired in order to specialize the specification as appropriate
(to obtain, e.g., a specification of monoids built over characters). A named
specification with one or more parameter(s) is called generic.

The body of the generic specification Generic Monoid is an extension
of what is specified in the parameter part. Hence an alternative to the above
generic specification Generic Monoid is the following, less elegant, non-
generic specification (which cannot be specialized by instantiation):

spec Non Generic Monoid =
sort Elem

then sort Monoid
ops inj : Elem → Monoid ;

1 : Monoid ;
∗ : Monoid × Monoid → Monoid , assoc, unit 1

∀x , y : Elem • inj (x) = inj (y) ⇒ x = y
end

A generic specification may have more than one parameter, and parame-
ters can be arbitrary specifications, named or not. When reused by reference to
its name, a generic specification must be instantiated. Generic specifications
and how to instantiate them are discussed in detail later in Chap. 7. Using
generic specifications when appropriate improves the reusability of specifica-
tion definitions.

References to generic specifications always instantiate the
parameters.

spec Generic Commutative Monoid [sort Elem] =
Generic Monoid [sort Elem]

then ∀x , y : Monoid • x ∗ y = y ∗ x
end

The above (generic) specification Generic Commutative Monoid is de-
fined as an extension of Generic Monoid, which should therefore be in-
stantiated, as explained above. Instantiating a generic specification is done
by providing an argument specification that ‘fits’ the parameter part of the
generic specification to be instantiated.

3.1 Loose Specifications 31

It is however quite frequent that the instantiation is ‘trivial’, i.e., the ar-
gument specification is identical to the parameter one. This is the case for the
above example, where the generic specification Generic Monoid is instanti-
ated by providing the same argument specification ‘sort Elem’ as the original
parameter.

spec Generic Commutative Monoid 1 [sort Elem] =
Generic Monoid [sort Elem]

then op ∗ : Monoid × Monoid → Monoid , comm
end

Generic Commutative Monoid 1 is an alternative version of the for-
mer specification where, instead of requiring explicitly with an axiom the
commutativity of the operation ‘∗’, we require it using the attribute comm .
As explained before, it is in general better to describe such requirements using
attributes rather than explicit axioms, since it is expected that some tools will
rely on these attributes for specialized algorithms (e.g., AC term rewriting).

This example illustrates also an important feature of CASL, the ‘same
name, same thing’ principle. The operation symbol ‘∗’ is indeed declared
twice, with the same profile, first in Generic Monoid and then again in
Generic Commutative Monoid 1 (the second declaration being enriched
by the attribute comm). This is perfectly fine and defines only one binary
operation symbol ‘∗’ with the corresponding profile, according to the ‘same
name, same thing’ principle. This principle applies to sorts, as well as to
operation and predicate symbols. It applies both to symbols defined locally
and to symbols imported from an extended specification, as it is the case here
for ‘∗’. Of course, it does not apply between separate named specifications, i.e.,
the same symbol may be used in different named specifications with entirely
different interpretations.

Note that for operation and predicate symbols, the ‘same name, same
thing’ principle is a little more subtle than for sorts: the ‘name’ of an operation
(or of a predicate) includes its profile of argument and result sorts, so two
operations defined with the same symbol but with different profiles do not have
the same ‘name’, the symbol is just overloaded. When an overloaded symbol
is used, the intended profile is to be determined by the context (e.g., the sorts
of the arguments to which the symbol is applied).4 Explicit disambiguation
can be used when needed, by specifying the profile (or result sort) in an
application.5 Note that overloaded constants are allowed in CASL (e.g., empty
may be declared to be a constant of various sorts of collections).

4 See also the discussion of overloading in presence of subsorts in Chap. 5, p. 61.
5 For instance, depending on the context, the term t1 ∗ t2 can be disambiguated by

writing (op ∗ : Monoid×Monoid → Monoid)(t1 , t2), or just (t1 : Monoid)∗(t2 :
Monoid), or even (t1 ∗ t2) : Monoid .

32 3 Getting Started

Datatype declarations may be used to abbreviate declarations of sorts
and constructors.

spec Container [sort Elem] =
type Container ::= empty | insert(Elem; Container)
pred is in : Elem × Container
∀e, e ′ : Elem; C : Container
• ¬(e is in empty)
• e is in insert(e ′,C) ⇔ (e = e ′ ∨ e is in C)

end

Specifications of ‘datatypes’ with constructors are frequently needed. CASL

provides special constructs for datatype declarations to abbreviate the corre-
sponding rather tedious declarations. For instance, the above datatype decla-
ration:

type Container ::= empty | insert(Elem; Container)

abbreviates:

sort Container
ops empty : Container ;

insert : Elem × Container → Container

A datatype declaration looks like a context-free grammar in a variant
of BNF. It declares the symbols on the left of ‘::=’ as sorts, and for each
alternative on the right it declares a constructor.

A datatype declaration as the one above is loose since it does not imply
any constraint on the values of the declared sorts: there may be some values
of sort Container that are not built by any of the declared constructors, and
the same value may be built by different applications of the constructors to
some arguments.

Datatype declarations may also be specified as generated (see Sect. 3.2) or
free (see Sect. 3.3). Moreover, selectors, which are usually partial operations,
may be specified for each component (see Chap. 4).

Loose datatype declarations are appropriate when further
constructors may be added in extensions.

spec Marking Container [sort Elem] =
Container [sort Elem]

then type Container ::= mark insert(Elem; Container)

3.2 Generated Specifications 33

pred is marked in : Elem × Container
∀e, e ′ : Elem; C : Container
• e is in mark insert(e ′,C) ⇔ (e = e ′ ∨ e is in C)
• ¬(e is marked in empty)
• e is marked in insert(e ′,C) ⇔ e is marked in C
• e is marked in mark insert(e ′,C) ⇔ (e = e ′ ∨ e is marked in C)

end

The above specification extends Container (trivially instantiated) by
introducing another constructor mark insert for the sort Container (hence,
values added to a container may now be ‘marked’ or not). Note that we
heavily rely on the ‘same name, same thing’ principle here, since it ensures
that the sort Container introduced by the datatype declaration of Container
and the sort Container introduced by the datatype declaration of Marking
Container are the same sort, which implies that the combination of both
datatype declarations is equivalent to:

type Container ::= empty | insert(Elem; Container)
| mark insert(Elem; Container)

Note that since ‘new’ values may be constructed by mark insert , it is
necessary to extend the specification of the predicate symbol is in by an
extra axiom taking care of the newly introduced constructor.

3.2 Generated Specifications

Sorts may be specified as generated by their constructors.

spec Generated Container [sort Elem] =
generated type Container ::= empty | insert(Elem; Container)
pred is in : Elem × Container
∀e, e ′ : Elem; C : Container
• ¬(e is in empty)
• e is in insert(e ′,C) ⇔ (e = e ′ ∨ e is in C)

end

When a datatype is declared as generated, as in the above example, the
corresponding sort is constrained to be generated by the declared constructors,
which means that any value of this sort is built by application of construc-
tors. This constraint is sometimes referred to as the ‘no junk’ principle. For
instance, in the above example, having declared the datatype Container to be
generated entails that in any model of Generated Container, any value of

34 3 Getting Started

sort Container is denotable by a term built with empty, insert , and variables
of sort Elem only.

As a consequence, properties of values of sort Container can be proved
by induction on the declared constructors. A major benefit of generated
datatypes is indeed that induction on the declared constructors is a sound
proof principle.

The construct ‘generated type . . . ’ used above is just an abbreviation
for ‘generated { type . . . }’, and ‘generated’ can be used around arbitrary
signature declarations, enclosed in ‘{’ and ‘}’.

Generated specifications are in general loose.

spec Generated Container Merge [sort Elem] =
Generated Container [sort Elem]

then op merge : Container × Container → Container
∀e : Elem; C ,C ′ : Container
• e is in (C merge C ′) ⇔ (e is in C ∨ e is in C ′)

end

A generated specification is in general loose. For instance, Generated
Container is loose since, although all values of sort Container are specified to
be generated by empty and insert , the behavior of the insert constructor is still
loosely specified (nothing is said about the case where an element is inserted
into a container which already contains this element). Hence Generated
Container admits several non-isomorphic models.

Generated Container Merge is as loose as Generated Container
with respect to insert , and in addition, the newly introduced operation symbol
merge is also loosely specified: nothing is said about what happens when
merging two containers which share some elements.

It is important to understand that looseness of a specification is not a prob-
lem, but on the contrary avoids unnecessary overspecification. In particular,
loose specifications are in general well-suited to capturing requirements.

The fact that merge is loosely specified does not mean that it can pro-
duce new values of the sort Container . On the contrary, since this sort has
been specified as being generated by empty and insert , it follows that any
value denotable by a term of the form merge(. . . , . . .) can also be denoted by
a term built with empty and insert (and no merge). Hence, for the specifi-
cation Generated Container Merge, proofs by induction on Container
only need to consider empty and insert , and not merge, as was the case for
Generated Container.

3.2 Generated Specifications 35

Generated specifications need not be loose.

spec Generated Set [sort Elem] =
generated type Set ::= empty | insert(Elem; Set)
pred is in : Elem × Set
ops { }(e : Elem) : Set = insert(e, empty);

∪ : Set × Set → Set ;
remove : Elem × Set → Set

∀e, e ′ : Elem; S ,S ′ : Set
• ¬(e is in empty)
• e is in insert(e ′,S) ⇔ (e = e ′ ∨ e is in S)
• S = S ′ ⇔ (∀x : Elem • x is in S ⇔ x is in S ′) %(equal sets)%

• e is in (S ∪ S ′) ⇔ (e is in S ∨ e is in S ′)
• e is in remove(e ′,S) ⇔ (¬(e = e ′) ∧ e is in S)

then %implies

∀e, e ′ : Elem; S : Set
• insert(e, insert(e,S)) = insert(e,S)
• insert(e, insert(e ′,S)) = insert(e ′, insert(e,S))
generated type Set ::= empty | { }(Elem) | ∪ (Set ; Set)
op ∪ : Set × Set → Set , assoc, comm , idem , unit empty

end

Although generated specifications are in general loose, they need not be so,
as illustrated by the above Generated Set specification, where the axiom
%(equal sets)%, combined with the axioms defining is in, fully constrains (up
to isomorphism) the interpretations of the sort Set and of the constructors
empty and insert , once an interpretation for the sort Elem is chosen.

Note also that this example displays the power of the annotation %implies.
Remember that this annotation applies to the whole of the specification ex-
tension where it occurs, so here it applies not only to the two explicit axioms
about insert , but also to the properties corresponding to the attributes of ‘∪’
as well as to the generatedness constraint. Hence, the %implies annotation is
used here not only to stress that the usual properties of insert are expected to
follow from the preceding declarations and axioms, but also that an alterna-
tive induction scheme, based on empty, { } and ∪ , can be used for sets.
Moreover, it asserts that ∪ is expected to be associative, commutative,
idempotent (i.e., S ∪ S = S), and to have empty as unit. Note again that this
%implies part heavily relies on the ‘same name, same meaning’ principle.

36 3 Getting Started

Generated types may need to be declared together.

The following specification fragment illustrates what may go wrong.
sort Node
generated type Tree ::= mktree(Node; Forest)
generated type Forest ::= empty | add(Tree; Forest)

The above is incorrect, due to the linear visibility rule. This can easily
be fixed by replacing ‘sort Node’ by ‘sorts Node, Tree, Forest ’. Even when
corrected, the above is wrong, since the corresponding semantics is not what a
naive reader may expect. One may expect that only models where the carrier
sets of the sorts Tree and Forest are generated by mktree, empty and add are
acceptable, but more models satisfy the above two separate sort generatedness
constraints. For instance, a model with both a junk tree jt and a junk forest
jf fulfills the above declarations (assuming that the interpretations of mktree
and add on jt and jf in this model are such that jt = mktree(n, jf) for any
node n and that jf = add(jt , jf)). Hence, one must write instead:

sort Node
generated types Tree ::= mktree(Node; Forest);

Forest ::= empty | add(Tree; Forest)

Here, the mutually recursive datatypes Tree and Forest are correctly de-
fined simultaneously within the same generated types construct, and the
resulting semantics is the expected one (without junk values for trees and
forests). Note that therefore, the linear visibility rule is not applicable within
a generated types construct (to allow such mutually recursive definitions),
but that this is the only exception to the linear visibility principle. Only
mutually recursive generated datatypes need to be declared together; in sim-
pler cases, it makes no difference to have a sequence of successive generated
datatype declarations or just one introducing all the desired datatypes.6

3.3 Free Specifications

Free specifications provide initial semantics and avoid the need for
explicit negation.

spec Natural = free type Nat ::= 0 | suc(Nat)

6 The same explanations apply to free datatypes, introduced in the next subsection.

3.3 Free Specifications 37

A free datatype declaration corresponds to the so-called ‘no junk, no
confusion’ principle: there are no other values of sort Nat than those denoted
by the constructor terms built with 0 and suc, and all distinct constructor
terms denote different values.

Hence, a free datatype declaration such as the one above has exactly the
same effect as the corresponding generated datatype declaration, together
with axioms stating that suc is injective, and that 0 cannot be the successor
of a natural number. An alternative to the above ‘free type Nat ::= 0 |
suc(Nat)’ is therefore:

generated type Nat ::= 0 | suc(Nat)
∀x , y : Nat • suc(x) = suc(y) ⇒ x = y
∀x : Nat • ¬(0 = suc(x))

Free datatype declarations are particularly convenient for defining
enumerated datatypes.

spec Color =
free type RGB ::= Red | Green | Blue
free type CMYK ::= Cyan | Magenta | Yellow | Black

end

Using ‘free’ instead of ‘generated’ for defining enumerated datatypes
saves the writing of many explicit distinctness assertions (for instance, here,
¬(Red = Green), ¬(Red = Blue), . . .).

Free specifications can also be used when the constructors are related
by some axioms.

spec Integer =
free { type Int ::= 0 | suc(Int) | pre(Int)

∀x : Int • suc(pre(x)) = x
• pre(suc(x)) = x }

end

When some relations are to be imposed between the constructors (as is the
case here for suc and pre which are inverses of each other), a free datatype
declaration cannot be used, since the contradiction between the ‘no confu-
sion’ principle and the axioms imposed on the constructors would lead to an
inconsistent specification. Instead, one should impose a ‘freeness constraint ’
around the datatype declaration followed by the required axioms. A freeness

38 3 Getting Started

constraint, expressed by the keyword free, can be imposed around any spec-
ification.

In the case of the above Integer specification, the freeness constraint
imposes that the semantics of the specification is the class of all algebras iso-
morphic to the quotient of the constructor terms by (the minimal congruence
induced by) the given axioms. This is exactly the desired semantics. More gen-
erally, a freeness constraint around a specification indicates its initial model,
which may not exist, of course. It is however well-known that initial models of
basic specifications with axioms restricted to Horn clauses (of which equations
as in Integer are a special case) always exist.7 Remember also that equality
holds minimally in initial models of equational specifications.

Predicates hold minimally in models of free specifications.

spec Natural Order =
Natural

then free { pred < : Nat × Nat
∀x , y : Nat
• 0 < suc(x)
• x < y ⇒ suc(x) < suc(y) }

end

A freeness constraint imposed around a predicate declaration followed by
some defining axioms has the effect that the predicate only holds when this
follows from the given axioms, and does not hold otherwise. For instance, in
the above example, it is not necessary to explicitly state that ‘¬(0 < 0)’,
since this will follow from the imposed freeness constraint. Hence, in such
cases a freeness constraint has exactly the same effect as the so-called ‘nega-
tion as failure’ or ‘closed world assumption’ principles in logic programming.
More generally, it is often convenient to define a predicate within a freeness
constraint, since by doing so, one has to specify the ‘positive’ cases only.

Operations and predicates may be safely defined by induction on the
constructors of a free datatype declaration.

spec Natural Arithmetic =
Natural Order

7 Strictly speaking, existence of initial models depends on a further requirement:
namely the existence of a ground term for each sort. This ensures that the term-
algebra has non-empty carriers and hence is a CASL model.

3.3 Free Specifications 39

then ops 1 : Nat = suc(0);
+ : Nat × Nat → Nat , assoc, comm, unit 0 ;
∗ : Nat × Nat → Nat , assoc, comm, unit 1

∀x , y : Nat
• x + suc(y) = suc(x + y)
• x ∗ 0 = 0
• x ∗ suc(y) = (x ∗ y) + x

end

To define some operation on a free datatype, it is generally recommended
to make a case distinction with respect to the various constructors defined.
This is illustrated by the above definitions of ‘+’ and ‘∗’ (although for the
‘+’ operation, the case for the constructor 0 is already taken care of by the
attribute ‘unit 0 ’).8

More care may be needed when defining operations or predicates on
free datatypes when there are axioms relating the constructors.

spec Integer Arithmetic =
Integer

then ops 1 : Int = suc(0);
+ : Int × Int → Int , assoc, comm, unit 0 ;
− : Int × Int → Int ;
∗ : Int × Int → Int , assoc, comm, unit 1

∀x , y : Int
• x + suc(y) = suc(x + y)
• x + pre(y) = pre(x + y)
• x − 0 = x
• x − suc(y) = pre(x − y)
• x − pre(y) = suc(x − y)
• x ∗ 0 = 0
• x ∗ suc(y) = (x ∗ y) + x
• x ∗ pre(y) = (x ∗ y) − x

end

While a case distinction with respect to the constructors of a free datatype
is harmless, this may not be the case for a datatype defined within a freeness
constraint, since, due to the axioms relating the constructors to each other,
some cases may overlap. This does not mean, however, that one cannot use
the case distinction, but just that more attention should be paid than for a
free datatype – since one needs to ensure that the definitions lead to the same
8 In specification libraries, ordinary decimal notation for natural numbers can be

provided by use of so-called literal syntax annotations, see Chap. 9.

40 3 Getting Started

results for overlapping cases. For instance, in the above example no problem
arises. But one should be more careful with the next one, since a negative
integer can be of the form suc(x), hence asserting, e.g., 0 ≤ suc(x), would of
course be wrong.

spec Integer Arithmetic Order =
Integer Arithmetic

then preds ≤ , ≥ , < , > : Int × Int
∀x , y : Int
• 0 ≤ 0
• ¬(0 ≤ pre(0))
• 0 ≤ x ⇒ 0 ≤ suc(x)
• ¬(0 ≤ x) ⇒ ¬(0 ≤ pre(x))
• suc(x) ≤ y ⇔ x ≤ pre(y)
• pre(x) ≤ y ⇔ x ≤ suc(y)
• x ≥ y ⇔ y ≤ x
• x < y ⇔ (x ≤ y ∧ ¬(x = y))
• x > y ⇔ y < x

end

Generic specifications often involve free extensions of (loose)
parameters.

spec List [sort Elem] = free type List ::= empty | cons(Elem; List)

The parameter of a generic specification should be loose to cope with the
various expected instantiations. On the other hand, it is a frequent situation
that the body of the generic specification should have a free, initial interpre-
tation. This is illustrated by the above example, where we want to combine a
loose interpretation for the sort Elem with a free interpretation for lists. The
following example is similar in spirit.

spec Set [sort Elem] =
free { type Set ::= empty | insert(Elem; Set)

pred is in : Elem × Set
∀e, e ′ : Elem; S : Set
• insert(e, insert(e,S)) = insert(e,S)
• insert(e, insert(e ′,S)) = insert(e ′, insert(e,S))
• ¬(e is in empty)
• e is in insert(e,S)
• e is in insert(e ′,S) if e is in S }

end

3.3 Free Specifications 41

As for the List example, we want to have a loose interpretation for the
sort Elem and a free interpretation for sets. Since some axioms are required to
hold for the Set constructors empty and insert , we cannot use a free datatype
declaration, hence we use a freeness constraint.

Note that since, as already explained, predicates hold minimally in models
of free specifications, it would have been enough, in the above example, to
define the predicate is in by the sole axiom e is in insert(e,S).9 However,
doing so would have decreased the comprehensibility of the specification and
this is the reason why we have preferred a more verbose axiomatization of the
predicate is in.

Note also the use of the keyword ‘if ’ to write an implication in the reverse
order:

e is in insert(e ′,S) if e is in S

is equivalent to:

e is in S ⇒ e is in insert(e ′,S)

The following example specifies the transitive closure of an arbitrary binary
relation R on some sort Elem (both provided by the parameter).

spec Transitive Closure [sort Elem pred R : Elem × Elem] =
free { pred R+ : Elem × Elem

∀x , y, z : Elem
• x R y ⇒ x R+y
• x R+y ∧ y R+z ⇒ x R+z }

In the above example, it is crucial that predicates hold minimally in models
of free specifications, since this property ensures that what we define as ‘R+’
is actually the smallest transitive relation including R. Without requiring the
freeness constraint, one would allow arbitrary transitive relations containing
R (and these undesired relations cannot be eliminated merely by specifying
further first-order axioms).

Loose extensions of free specifications can avoid overspecification.

spec Natural With Bound =
Natural Arithmetic

then op max size : Nat
• 0 < max size

end
9 If an element e belongs to a set S ′, then this set S ′ can always be denoted by

a constructor term of the form insert(e, S), due to the axioms constraining the
constructor insert .

42 3 Getting Started

The above example shows another benefit of mixing loose and initial se-
mantics. Assume that at this stage we want to introduce some bound, of sort
Nat , without fixing its value yet (this value is likely to be fixed later in some
refinement, and all that we need for now is the existence of some bound). This
is provided by the above specification Natural With Bound, where we mix
an initial interpretation for the sort Nat (defined using a free datatype dec-
laration in Natural) and a loose interpretation for the constant max size.
Each model of Natural With Bound will provide a fixed interpretation
of the constant max size, and all these models are captured by Natural
With Bound, which is in this sense loose. Using such loose extensions is in
general appropriate to avoid unnecessary overspecification.

spec Set Choose [sort Elem] =
Set [sort Elem]

then op choose : Set → Elem
∀S : Set • ¬(S = empty) ⇒ choose(S) is in S

end

This example shows again the benefit of mixing initial and loose seman-
tics. Here, we want to extend sets, defined using a free constraint in Set, by a
loosely specified operation choose.10 At this stage, the only property required
for choose is to provide some element belonging to the set to which it is ap-
plied, and we do not want to specify more precisely which specific element is
to be chosen. Note that each model of Set Choose will provide a function
implementing some specific choice strategy, and that since all these interpreta-
tions of choose have to be functions, they are necessarily ‘deterministic’ (e.g.,
applied twice to the same set argument, they return the same result).

Datatypes with observer operations or predicates can be specified as
generated instead of free.

spec Set Generated [sort Elem] =
generated type Set ::= empty | insert(Elem; Set)
pred is in : Elem × Set
∀e, e ′ : Elem; S ,S ′ : Set
• ¬(e is in empty)
• e is in insert(e ′,S) ⇔ (e = e ′ ∨ e is in S)
• S = S ′ ⇔ (∀x : Elem • x is in S ⇔ x is in S ′)

end
10 For the purpose of this example, we disregard the fact that choose should be un-

defined on the empty set, and we just leave this case unspecified. Partial functions
are discussed in Chap. 4.

3.3 Free Specifications 43

The above specification is an alternative to the specification Set (see
p. 40). Both Set and Set Generated define exactly the same class of
models. The former specification relies on a freeness constraint, while Set
Generated relies on the observer is in to specify when two sets are equal.
Indeed, the last axiom of Set Generated expresses directly that two sets
having exactly the same elements are equal values. This axiom, together with
the first two axioms defining is in, will entail as well the expected proper-
ties on the constructor insert (see Generated Set p. 35). Note also that
since, in Set Generated, the predicate is in is not defined within a free-
ness constraint, we specify when it holds using ‘⇔’ rather than a one-way
implication.

While a freeness constraint may be unavoidable to define a predicate, as
illustrated by Transitive Closure, the choice between relying on a free-
ness constraint to define a datatype such as Set , or using instead a generated
datatype declaration together with some observers to unambiguously deter-
mine the values of interest, is largely a matter of convenience. One may argue
that Set is more suitable for prototyping tools based on term rewriting, while
Set Generated is more suitable for theorem-proving tools.

The %def annotation is useful to indicate that some operations or
predicates are uniquely defined.

spec Set Union [sort Elem] =
Set [sort Elem]

then %def

ops ∪ : Set × Set → Set , assoc, comm, idem , unit empty;
remove : Elem × Set → Set

∀e, e ′ : Elem; S ,S ′ : Set
• S ∪ insert(e ′,S ′) = insert(e ′,S ∪ S ′)
• remove(e, empty) = empty
• remove(e, insert(e,S)) = remove(e,S)
• remove(e, insert(e ′,S)) = insert(e ′, remove(e,S)) if ¬(e = e ′)

end

The annotation %def expresses that Set Union is a definitional extension
of Set, i.e., that each model of Set can be uniquely extended to a model of
Set Union, which means that the operations introduced in Set Union are
uniquely defined. As with the %implies annotation, the %def annotation
has no impact on the semantics, but a corresponding proof obligation can be
generated, to be discharged by theorem proving tools. The %def annotation
is especially useful to stress that the specifier’s intention is to impose a unique
interpretation of what is defined within the scope of this annotation (once an
interpretation for the part which is extended has been chosen).

44 3 Getting Started

Operations can be defined by axioms involving observer operations,
instead of inductively on constructors.

spec Set Union 1 [sort Elem] =
Set Generated [sort Elem]

then %def

ops ∪ : Set × Set → Set , assoc, comm, idem , unit empty;
remove : Elem × Set → Set

∀e, e ′ : Elem; S ,S ′ : Set
• e is in (S ∪ S ′) ⇔ (e is in S ∨ e is in S ′)
• e is in remove(e ′,S) ⇔ (¬(e = e ′) ∧ e is in S)

end

The specification Set Union 1 is an alternative to Set Union and de-
fines exactly the same model class. While an inductive definition style was cho-
sen for the operations ‘∪’ and remove in Set Union, in Set Union 1 these
operations are defined ‘implicitly’ by characterizing their results through the
observer is in. Note that this ‘observer’ style does not prevent us providing a
unique definition of both operations, as claimed by the %def annotation.

Similarly to the discussion on the respective merits of Set and of Set
Generated, the choice between an inductive definition style and an ‘ob-
server’ definition style is partly a matter of taste. One may argue that the
‘observer’ definition style is more abstract in the sense that there is no hint
to any algorithmic computation of the so-defined operations, while the induc-
tive definition style mimics a recursive definition in a functional programming
language. Again, the inductive definition style may be more suitable for pro-
totyping tools based on term rewriting, while the ‘observer’ definition style
may be more suitable for theorem-proving tools.

Sorts declared in free specifications are not necessarily generated by
their constructors.

spec UnNatural =
free { type UnNat ::= 0 | suc(UnNat)

op + : UnNat × UnNat → UnNat ,
assoc, comm, unit 0

∀x , y : UnNat • x + suc(y) = suc(x + y)
∀x : UnNat • ∃y : UnNat • x + y = 0 }

end

This rather peculiar example illustrates the fact that a sort defined within
a freeness constraint need not be generated by its constructors. In UnNat-
ural, the specification enclosed within the free { . . . } construct specifies

3.3 Free Specifications 45

Abelian groups with one generator suc(0), and the integers are the free such
Abelian group. Hence, the (unique up to isomorphism) model of UnNatural
corresponds to integers, and not to natural numbers as one may expect – just
consider the last axiom. This example points out why in general datatypes
defined using freeness constraints can be more difficult to understand than
datatypes defined using generatedness constraints. However, the reader should
be aware that the specification UnNatural uses a proper first-order formula
with an existential quantifier in the axioms. The specification UnNatural is
provided here for explanatory purposes only, and clearly the writing of simi-
lar specifications should be discouraged. When only Horn clauses are used as
axioms in a freeness constraint, then the datatype will indeed be generated
by its constructors.

4

Partial Functions

Partial functions arise naturally.

Partial functions arise in a number of situations. CASL provides means
for the declaration of partial functions, the specification of their domains of
definition, and more generally the specification of system properties involving
partial functions. The aim of this chapter is to discuss and illustrate how to
handle partial functions in CASL specifications.

4.1 Declaring Partial Functions

Partial functions are declared differently from total functions.

spec Set Partial Choose [sort Elem] =
Generated Set [sort Elem]

then op choose : Set →? Elem
end

The choose function on sets is naturally a partial function, expected to be
undefined on the empty set. In CASL, a partial function is declared similarly
to a total one, but for the question mark ‘?’ following the arrow in the profile.
It is therefore quite easy to distinguish the functions declared to be total from
the ones declared to be partial.

A function declared to be partial may happen to be total in some of
the models of the specification. For instance, the above specification Set
Partial Choose does not exclude models where the function symbol choose
is interpreted by a total function, defined on all set values. Axioms can be

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 47–56, 2004.
c© IFIP International Federation for Information Processing 2004

48 4 Partial Functions

used to specify the domain of definition of a partial function, and how to do
this is detailed later in this chapter.

Terms containing partial functions may be undefined, i.e., they may
fail to denote any value.

For instance, the (value of the) term choose(empty) may be undefined.1

This is more natural than insisting that choose(empty) has to denote some
arbitrary but fixed element of Elem.

Note that variables range only over defined values, and therefore a variable
always denotes a value, in contrast to terms containing partial functions.

Functions, even total ones, propagate undefinedness.

If the term choose(S) is undefined for some value of S , then the term
insert(choose(S),S ′) is undefined as well for this value of S , although insert
is a total function.

Predicates do not hold on undefined arguments.

CASL is based on classical two-valued logic. A predicate symbol is inter-
preted by a relation, and when the value of some argument term is undefined,
the application of a predicate to this term does not hold. For instance, if the
term choose(S) is undefined, then the atomic formula choose(S) is in S does
not hold.

Equations hold when both terms are undefined.

In CASL, equations are by default strong, which means that they hold
not only when both sides denote equal values, but also when both sides are
simultaneously undefined. For instance, let us consider the equation:

insert(choose(S), insert(choose(S), empty)) = insert(choose(S), empty)

1 Note that the term choose(empty) is well-formed and therefore is a ‘correct term’.
It is its value which may be undefined. To avoid unnecessary pedantry, in the
following we will simply write that a term is undefined to mean that its value
is so. Obviously, a term with variables may be defined for some values of the
variables and undefined for other values.

4.1 Declaring Partial Functions 49

Either choose(S) is defined and then both sides are defined and denote equal
values due to the axioms on insert , or choose(S) is undefined and then both
sides are undefined, and the strong equation ‘holds trivially’.

CASL provides also so-called existential equations, explained at the end of
this chapter.

Special care is needed in specifications involving partial functions.

Partial functions are intrinsically more difficult to understand and specify
than total ones. This is why special care is needed when writing the axioms
of specifications involving partial functions. The point is that an axiom may
imply the definedness of terms containing partial functions, and as a conse-
quence that these functions are total, which may not be what the specifier
intended. Here are three typical cases:

• Asserting choose(S) is in S as an axiom implies that choose(S) is defined,
for any S . The point here is that since predicates applied to an undefined
term do not hold, in any model satisfying choose(S) is in S , the function
choose must be total (i.e., always defined).

• Asserting remove(choose(S), insert(choose(S), empty)) = empty as an ax-
iom implies that choose(S) is defined for any S , since the term empty
is always defined. To understand this, assume that choose is undefined
for some set value of S ; then the above equation cannot hold for this
value, since the undefinedness of choose(S) implies the undefinedness of
remove(choose(S), insert(choose(S), empty)), giving a contradiction with
the definedness of empty. Hence, an equation between a term involving a
partial function PF and a term involving total functions only may imply
that the partial function PF is always defined.

• Asserting insert(choose(S),S) = S as an axiom implies that choose(S) is
defined for any S , since a variable always denotes a defined value. This
case is indeed similar to the previous one, the only difference being that
now the right-hand side of the equation is a variable (instead of a term
involving total functions only).

Moreover, the ‘same name, same thing’ principle has a subtle side-effect re-
garding partial operations: if an operation is declared both as a total operation
and as a partial operation with the same profile (i.e., the same argument sorts
and the same result sort) then it is interpreted as a total operation in all
models of the specification.

50 4 Partial Functions

4.2 Specifying Domains of Definition

The definedness of a term can be checked or asserted.

spec Set Partial Choose 1 [sort Elem] =
Set Partial Choose [sort Elem]

then • ¬ def choose(empty)
∀S : Set • def choose(S) ⇒ choose(S) is in S

end

A definedness assertion, written ‘def t ’, where t is a term, is a special kind
of atomic formula: it holds if and only if the value of the term t is defined. For
instance, in the above example, ¬ def choose(empty) explicitly asserts that
choose is undefined when applied to empty. Note that this axiom does not
say anything about the definedness of choose applied to values other than
empty, which means that choose may well be undefined on those values too.
The second axiom of the above example asserts choose(S) is in S under the
condition def choose(S), to avoid undesired definedness induced by axioms,
as explained in the previous section.

Note that if the two axioms of the above example were to be replaced by:

∀S : Set • ¬(S = empty) ⇒ choose(S) is in S

then we could conclude that choose(S) is defined when S is not equal to
empty, but nothing about the undefinedness of choose(empty).

The domains of definition of partial functions can be specified
exactly.

spec Set Partial Choose 2 [sort Elem] =
Set Partial Choose [sort Elem]

then ∀S : Set • def choose(S) ⇔ ¬(S = empty)
∀S : Set • def choose(S) ⇒ choose(S) is in S

end

In the above example, the domain of definition of the partial function
choose is exactly specified by the axiom def choose(S) ⇔ ¬(S = empty).

4.2 Specifying Domains of Definition 51

Loosely specified domains of definition may be useful.

spec Natural With Bound And Addition =
Natural With Bound

then op +? : Nat × Nat →? Nat
∀x , y : Nat
• def (x+?y) if x + y < max size
%{ x + y < max size implies both

x < max size and y < max size }%

• def (x+?y) ⇒ x+?y = x + y
end

In some cases, it is useful to loosely specify the domain of definition of a
partial function, as illustrated in the above example for ‘+?’, which is required
to be defined for all arguments x and y such that x + y < max size, but
may well be defined on larger natural numbers as well. The point in loose
specifications of definition domains is to avoid unnecessary constraints on the
models of the specification. For instance, the above example does not exclude a
model where ‘+?’ is interpreted by a total function (which would then coincide
with ‘+’).2

Indeed, in some cases, specifying exactly domains of definition can be con-
sidered as overspecification. In most specifications, however, one would expect
an exact specification of domains of definition, even for otherwise loosely spec-
ified functions (see, e.g., choose in Set Partial Choose 2).

Domains of definition can be specified more or less explicitly.

spec Set Partial Choose 3 [sort Elem] =
Set Partial Choose [sort Elem]

then • ¬ def choose(empty)
∀S : Set • ¬(S = empty) ⇒ choose(S) is in S

end

Set Partial Choose 3 specifies exactly the domain of definition of
choose, but does this too implicitly, since some reasoning is needed to con-
clude that the above specification entails def choose(S) ⇔ ¬(S = empty).

2 In this example, it is essential to choose a new name ‘+?’ for our partial addi-
tion operation. Otherwise, since ‘+’ is (rightly) declared as a total operation in
Natural With Bound, the declaration op + : Nat × Nat →? Nat would
be useless: the same name, same thing principle would lead to models with just
one, total, addition operation.

52 4 Partial Functions

To improve the clarity of specifications, it is in general advisable to specify
definition domains as explicitly as possible, and Set Partial Choose 2 is
somehow easier to understand than Set Partial Choose 3 (both specifica-
tions define the same class of models).

spec Natural Partial Pre =
Natural Arithmetic

then op pre : Nat →? Nat
• ¬ def pre(0)
∀x : Nat • pre(suc(x)) = x

end

In the above example, one can consider that the domain of definition of pre
is (exactly) specified in an explicit enough way, since the first axiom states
exactly that pre(0) is undefined while the second one implies that pre is
defined for all natural numbers of the form suc(x).

spec Natural Partial Subtraction 1 =
Natural Partial Pre

then op − : Nat × Nat →? Nat
∀x , y : Nat
• x − 0 = x
• x − suc(y) = pre(x − y)

end

The above specification is perfect from a mathematical point of view, but
is clearly not explicit enough, since there is no easy way to infer when x − y is
defined. From a methodological point of view, the following alternative version
is much better.

spec Natural Partial Subtraction =
Natural Partial Pre

then op − : Nat × Nat →? Nat
∀x , y : Nat
• def (x − y) ⇔ (y < x ∨ y = x)
• x − 0 = x
• x − suc(y) = pre(x − y)

end

The above examples clearly demonstrate why the explicit specification of
definition domains is generally advisable from a methodological point of view.
However, they also indicate that this recommendation should not be applied
in too strict a way, and that deciding whether a specification is explicit enough
or not is to some extent a matter of taste.

4.2 Specifying Domains of Definition 53

Partial functions are minimally defined by default in free
specifications.

spec List Selectors 1 [sort Elem] =
List [sort Elem]

then free { ops head : List →? Elem;
tail : List →? List

∀e : Elem; L : List
• head(cons(e,L)) = e
• tail(cons(e,L)) = L }

end

In the above example, the given axioms imply that head and tail are de-
fined on lists of the form cons(e,L). The freeness constraint requires that these
functions are minimally defined. Since the terms head(empty) and tail(empty)
are not equated to any other term, the freeness constraint implies that these
terms are undefined, and hence that the functions head and tail are unde-
fined on empty. The situation here is similar to the fact that predicates hold
minimally in models of free specifications (see Chap. 3, p. 38).

spec List Selectors 2 [sort Elem] =
List [sort Elem]

then ops head : List →? Elem;
tail : List →? List

∀e : Elem; L : List
• ¬ def head(empty)
• ¬ def tail(empty)
• head(cons(e,L)) = e
• tail(cons(e,L)) = L

end

The above specification List Selectors 2 is an alternative to List
Selectors 1; both specifications define exactly the same class of models.
However, List Selectors 2 is clearly easier to understand and can be con-
sidered as technically simpler, since it involves no freeness constraint.

Operations like head and tail are usually called selectors, and CASL pro-
vides abbreviations to specify selectors in a very concise way, as we see next.

54 4 Partial Functions

4.3 Partial Selectors and Constructors

Selectors can be specified concisely in datatype declarations, and are
usually partial.

spec List Selectors [sort Elem] =
free type List ::= empty | cons(head :? Elem; tail :? List)

The above free datatype declaration introduces, in addition to the con-
structors empty and cons , two partial selectors head and tail yielding the
respective arguments of the constructor cons . Hence, this free datatype decla-
ration with selectors has exactly the same effect as the ordinary free datatype
declaration free type List ::= empty | cons(Elem; List), together with
the operation declarations and axioms of List Selectors 2 (i.e., List
Selectors and List Selectors 2 define exactly the same class of models).
The following example is similar in spirit.

spec Natural Suc Pre = free type Nat ::= 0 | suc(pre :? Nat)

Selectors are usually total when there is only one constructor.

spec Pair 1 [sorts Elem1 , Elem2] =
free type Pair ::= pair(first : Elem1 ; second : Elem2)

While selectors are usually partial operations when there is more than one
alternative in the corresponding datatype declaration, they can be total, and
this is generally the case when there is only one constructor, as in the above
example. The free datatype declaration entails in particular axioms asserting
that first and second yield the respective arguments of the constructor pair
(i.e., first(pair(e1 , e2)) = e1 and second(pair(e1 , e2)) = e2).

Constructors may be partial.

spec Part Container [sort Elem] =
generated type

P Container ::= empty | insert(Elem; P Container)?
pred addable : Elem × P Container
vars e, e ′ : Elem; C : P Container
• def insert(e,C) ⇔ addable(e,C)

4.4 Existential Equality 55

pred is in : Elem × P Container
• ¬(e is in empty)
• (e is in insert(e ′,C) ⇔ (e = e ′ ∨ e is in C)) if addable(e ′ ,C)

end

The intention in the above example is to define a reusable specification of
partial containers. The insert constructor is specified as a partial operation,
defined if some condition on both the element e to be added and the container
C to which the element is to be added holds. This condition is abstracted
here in a predicate addable, so far left unspecified. Later on, instantiations
of the Part Container specification can be adapted to specific purposes by
extending them with axioms defining addable.

The above generated datatype declaration abbreviates as usual the dec-
laration of a sort P Container , a constant constructor empty, and a partial
constructor insert : Elem ×P Container →? P Container . It also entails the
corresponding generatedness constraint.

4.4 Existential Equality

Existential equality requires the definedness of both terms as well as
their equality.

spec Natural Partial Subtraction 2 =
Natural Partial Subtraction 1

then ∀x , y, z : Nat • y − x e= z − x ⇒ y = z
%{ y − x = z − x ⇒ y = z would be wrong,

def (y − x) ∧ def (z − x) ∧ y − x = z − x ⇒ y = z
is correct, but better abbreviated in the above axiom }%

end

An existential equation t1 e= t2 is equivalent to def (t1) ∧ def (t2) ∧
t1 = t2 , so it holds if and only if both terms t1 and t2 are defined and denote
the same value. Existential equality ‘ e=’ is input as ‘=e=’.

Note that while a trivial strong equation of the form t = t always holds,
this is not the case for existential equations. For instance, the trivial existential
equation x −y e= x −y does not hold, since the term x −y may be undefined.

In general consequences of undefinedness are undesirable. Hence a con-
ditional equation of the form t1 = t2 ⇒ t3 = t4 is often wrong if t1 and
t2 may be undefined, because the equality t3 = t4 would be implied when
both t1 and t2 are undefined (since then the strong equation t1 = t2 would
hold). The above specification provides a typical example of such a situation:
y − x = z − x ⇒ y = z would be wrong, since it would entail that any two

56 4 Partial Functions

arbitrary values y and z are equal (it is enough to choose an x greater than
y and z to make y − x and z − x both undefined).

Therefore, to avoid such undesirable consequences of undefinedness, it
is advisable to use existential equations instead of strong equations in the
premises of conditional equations involving partial operations. An alternative
is to add the relevant definedness assertions explicitly to the equations in the
premises.

5

Subsorting

Subsorts and supersorts are often useful in CASL specifications.

Many examples naturally involve subsorts and supersorts. CASL provides
means for the declaration of a sort as a subsort of another one when the values
of the subsort are regarded a special case of those in the other sort. The aim of
this chapter is to discuss and illustrate how to handle subsorts and supersorts
in CASL specifications.

5.1 Subsort Declarations and Definitions

Subsort declarations directly express relationships between carrier
sets.

spec Generic Monoid 1 [sort Elem] =
sorts Elem < Monoid
ops 1 : Monoid ;

∗ : Monoid × Monoid → Monoid , assoc, unit 1
end

The above example declares the sort Elem to be a subsort of Monoid , or,
symmetrically, the sort Monoid to be a supersort of Elem. Hence the spec-
ification Generic Monoid 1 is quite similar to the specification Generic
Monoid given in Chap. 3, p. 30, the only difference being the use of a subsort-
ing relation between Elem and Monoid instead of an explicit inj operation to
embed values of sort Elem into values of sort Monoid .

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 57–66, 2004.
c© IFIP International Federation for Information Processing 2004

58 5 Subsorting

In contrast to most other algebraic specification languages providing sub-
sorting facilities, subsorts in CASL are interpreted by arbitrary embeddings
between the corresponding carrier sets. In the above example, the subsort
declaration Elem < Monoid induces an implicit (unnamed) embedding from
the carrier of the sort Elem into the carrier of the sort Monoid . Thus the
main difference between Generic Monoid and Generic Monoid 1 is that
the embedding is explicit and named inj in Generic Monoid while it is
implicit in Generic Monoid 1.

Note that interpreting subsorting relations by embeddings rather than
inclusions does not exclude models where the (carrier of the) subsort hap-
pens to be a subset of (the carrier of) the supersort, and the embedding a
proper inclusion. Embeddings are just slightly more general than inclusions,
and technically not much more complex.

Operations declared on a sort are automatically inherited by its
subsorts.

spec Vehicle =
Natural

then sorts Car , Bicycle < Vehicle
ops max speed : Vehicle → Nat ;

weight : Vehicle → Nat ;
engine capacity : Car → Nat

end

The above example introduces three sorts, Car , Bicycle and Vehicle, and
declares both Car and Bicycle to be subsorts of Vehicle. A subsort declaration
entails that any term of a subsort is also a term of the supersort, so here, any
term of sort Car is also a term of sort Vehicle, and we can apply the operations
max speed and weight to it (and similarly for a term of sort Bicycle).

In other words, with the single declaration max speed : Vehicle → Nat ,
we get the effect of having declared also two other operations, max speed :
Car → Nat and max speed : Bicycle → Nat .1

Obviously, operations that are only meaningful for some subsort should
be defined at the appropriate level. This is the case here for the operation
engine capacity, which is only relevant for cars, and therefore defined with
the appropriate profile exploiting the subsort Car .

1 Strictly speaking, there is just one max speed operation in the signature of Vehi-
cle. The difference between the kind of inheritance described here and operations
actually declared on subsorts becomes important when writing symbol maps, see
Chap. 7.

5.1 Subsort Declarations and Definitions 59

Inheritance applies also for subsorts that are declared afterwards.

spec More Vehicle = Vehicle then sorts Boat < Vehicle

The order in which a subsort and an operation on the supersort are de-
clared is irrelevant. In More Vehicle, we introduce a further subsort Boat
of Vehicle, and as a consequence, we again get the effect of having both
max speed and weight available for boats, as was already the case for cars
and bikes.

Subsort membership can be checked or asserted.

spec Speed Regulation =
Vehicle

then ops speed limit : Vehicle → Nat ;
car speed limit , bike speed limit : Nat

∀v : Vehicle
• v ∈ Car ⇒ speed limit(v) = car speed limit
• v ∈ Bicycle ⇒ speed limit(v) = bike speed limit

end

A subsort membership assertion, written ‘t ∈ s ’, where t is a term and s
is a sort, is a special kind of atomic formula: it holds if and only if the value
of the term t is the embedding of some value of sort s . For instance, in the
above example, v ∈ Car holds if and only if v denotes a vehicle which is the
embedding of a car value. Note that ‘∈’ is input as ‘in’, but displayed as ‘∈’.

Datatype declarations can involve subsort declarations.

The sequence of declarations:

sorts Car , Bicycle, Boat
type Vehicle ::= sort Car | sort Bicycle | sort Boat

is equivalent to the declaration sorts Car , Bicycle, Boat < Vehicle. There
may be some values of sort Vehicle which are not the embedding of any value
of sort Car , Bicycle, or Boat . Intuitively, the above datatype declaration just
means that Vehicle ‘contains’ the union (which may not be disjoint) of Car ,
Bicycle and Boat . Note that the subsorts used in the datatype declaration
must already be declared beforehand.

60 5 Subsorting

The sequence of declarations:

sorts Car , Bicycle, Boat
generated type Vehicle ::= sort Car | sort Bicycle | sort Boat

is more restrictive, since the generatedness constraint implies that any value
of the supersort Vehicle must be the embedding of some value of the declared
subsorts Car , Bicycle and Boat . Intuitively, the above datatype declaration
means that Vehicle ‘is exactly’ the union (which again may not be disjoint)
of Car , Bicycle and Boat . In particular, this declaration prevents subsequent
introduction of further subsorts (unless the values of the new subsorts are
intended to correspond to some values of the already declared subsorts). For
instance, if we were now to extend the above specification with sorts Plane <
Vehicle, all values of sort Plane would have to correspond to Car , Bicycle or
Boat values (which is presumably not what we were intending).

The sequence of declarations:

sorts Car , Bicycle, Boat
free type Vehicle ::= sort Car | sort Bicycle | sort Boat

entails the same generatedness constraint as in the previous example, and,
moreover, the freeness constraint requires that there is no ‘common’ value in
the subsorts of Vehicle. Intuitively, the above declaration means that Vehicle
‘is exactly’ the disjoint union of Car , Bicycle and Boat . This means in par-
ticular that the introduction of a further common subsort of both Car and
Boat (say, sorts Amphibious < Car ,Boat) is impossible.

Subsorts may also arise as classifications of previously specified
values, and their values can be explicitly defined.

spec Natural Subsorts =
Natural Arithmetic

then pred even : Nat
• even(0)
• ¬ even(1)
∀n : Nat • even(suc(suc(n))) ⇔ even(n)
sort Even = {x : Nat • even(x)}
sort Prime = {x : Nat • 1 < x ∧

∀y, z : Nat • x = y ∗ z ⇒ y = 1 ∨ z = 1}
end

The subsort definition sort Even = {x : Nat • even(x)} is equivalent to
the declaration of a subsort Even of Nat (i.e., sorts Even < Nat) together
with the assertion ∀x : Nat • x ∈ Even ⇔ even(x).

5.2 Subsorts and Overloading 61

The main advantage of defining the subsort Even in addition to the predi-
cate even is that we may then use the subsort when declaring operations (e.g.,
op times2 : Nat → Even) and variables.

The subsort definition for Prime above illustrates that it is not always
necessary to introduce and define an explicit predicate characterizing the val-
ues of the subsort: the formula used in a subsort definition is not restricted
to predicate applications. In fact whenever a (unary) predicate p on a sort s
could be defined by pred p(x : s) ⇔ f for some formula f , we may instead
define sort P = {x : s • f }, and use sort membership assertions t ∈ P in-
stead of predicate applications p(t), avoiding the introduction of the predicate
p altogether.

The following example is a further illustration of subsort definitions. We
declare a subsort Pos of Nat and ensure that values of Pos correspond to
non-zero values of Nat . (Several alternative ways of specifying the sort Pos
will be considered later in this section.)

spec Positive =
Natural Partial Pre

then sort Pos = {x : Nat • ¬(x = 0)}

5.2 Subsorts and Overloading

It may be useful to redeclare previously defined operations, using the
new subsorts introduced.

spec Positive Arithmetic =
Positive

then ops 1 : Pos ;
suc : Nat → Pos ;

+ , ∗ : Pos × Pos → Pos ;
+ : Pos × Nat → Pos ;
+ : Nat × Pos → Pos

end

Since, in Positive, we have defined Pos as a subsort of Nat , all operations
defined on natural numbers, like suc, ‘+’ and ‘∗’ (see Natural Arithmetic
in Chap. 3, p. 38, which is extended into Natural Partial Pre in Chap. 4,
p. 52), are automatically inherited by Pos and can be applied to terms of sort
Pos . However, according to their declarations, these operations, when applied
to terms of sort Pos , yield results of sort Nat . To indicate that these results
always correspond to values in the subsort Pos , it is necessary to explicitly
overload these operations by similar ones with the appropriate profiles. This is

62 5 Subsorting

the aim of the first three lines of operation declarations in the above example.
The last two operation declarations further overload ‘+’ to specify that ‘+’
also yields a result of sort Pos as soon as one of its arguments is a term of
sort Pos .

It is quite important to understand that the above overloading declarations
are enough to achieve the desired effect, and that no axioms are necessary.
The fundamental rule is that, in models of CASL specifications with subsort-
ing, embedding and overloading have to be compatible: embeddings commute
with overloaded operations. This can be rephrased into the following intuitive
statement: If terms look the same, then they have the same value in the same
sort. Thus, in our example, the value of ‘1 + 1 ’ is the same in Nat whatever
the combination of the overloaded constant ‘1 ’ and operation ‘+’ is chosen,
and there is no need for any axiom to ensure this, since this is implicit in the
semantics of subsorting.

5.3 Subsorts and Partiality

A subsort may correspond to the definition domain of a partial
function.

spec Positive Pre =
Positive Arithmetic

then op pre : Pos → Nat

Since we have introduced the subsort Pos of non-zero natural numbers, it
makes sense to overload the partial pre operation on Nat by a total one on Pos ,
as illustrated above, to emphasize the fact that indeed pre is a total operation
on its definition domain. Note again that no further axiom is necessary, and
that the semantics of subsorting will ensure that both the partial and total
pre operations will give the same value when applied to the same non-zero
value.2

Using subsorts may avoid the need for partial functions.

spec Natural Positive Arithmetic =
free types Nat ::= 0 | sort Pos ;

Pos ::= suc(pre : Nat)

2 This should not be confused with the same name, same meaning principle, which
does not apply here: the total pre and the partial one have different profiles, and
hence are just overloaded.

5.3 Subsorts and Partiality 63

ops 1 : Pos = suc(0);
+ : Nat × Nat → Nat , assoc, comm, unit 0 ;
∗ : Nat × Nat → Nat , assoc, comm, unit 1 ;
+ , ∗ : Pos × Pos → Pos ;
+ : Pos × Nat → Pos ;
+ : Nat × Pos → Pos

∀x , y : Nat
• x + suc(y) = suc(x + y)
• x ∗ 0 = 0
• x ∗ suc(y) = x + (x ∗ y)

end

It is indeed tempting to exploit subsorting to avoid the declaration of par-
tial functions, as illustrated by the above Natural Positive Arithmetic
specification, which is an alternative to Positive Pre and avoids the intro-
duction of the partial predecessor operation. Note that in the above example,
we have fully used the facilities for defining free datatypes with subsorts, and
in particular non-linear visibility for the declared sorts, which allows us to
refer to the subsort Pos in the first line before defining it in the second one.

Avoiding the introduction of the partial predecessor operation has some
drawbacks, since some previously well-formed terms (with defined values) have
now become ill-formed, e.g., pre(pre(suc(1))), where pre(suc(1)) is a (well-
formed) term of sort Nat but pre expects an argument of sort Pos . (The fact
that pre(suc(1)) = 1 is a consequence of the specified axioms, and that 1 is
of sort Pos , does not of course entail that pre(suc(1)) is of sort Pos too, since
axioms are disregarded when checking for well-formedness.) See below for
possible workarounds using explicit casts. Moreover, it is not always possible,
or easy, to avoid the declaration of partial operations by using appropriate
subsorts—just consider, e.g., subtraction on natural numbers.

As a last remark on this issue, the reader should be aware of the fact that,
while overloading a partial operation on a supersort (say, pre on Nat) with a
total one on a subsort (pre on Pos) is fine, overloading a total operation on
a supersort with a partial one on a subsort forces the partial operation to be
total, and hence, the latter would be better declared as total too.3

Casting a term from a supersort to a subsort is explicit and the value
of the cast may be undefined.

3 Overloading a total cons on List with a partial cons on the subsort OrderedList
would either lead to a total cons operation on OrderedList, or to an inconsis-
tent specification, depending on how the definition domain of the partial cons is
specified.

64 5 Subsorting

In CASL, a term of a subsort can always be considered as a term of any
supersort, and embeddings are implicit. On the contrary, casting a term from
a supersort to a subsort is explicit, and since casting is essentially a partial op-
eration, the resulting casted term may not denote any value. Casting a term t
to a sort s is written t as s . Consider the term pre(pre(suc(1)) as Pos) which
is well-formed in the context of the Natural Positive Arithmetic speci-
fication. This term does indeed denote a value, but the value is not a positive
natural number, so the value of the term pre(pre(suc(1)) as Pos) as Pos is
undefined.

Note that def (t as s) is equivalent to t ∈ s , for a well-formed term t of a
supersort of s .

Supersorts may be useful when generalizing previously specified sorts.

spec Integer Arithmetic 1 =
Natural Positive Arithmetic

then free type Int ::= sort Nat | − (Pos)
ops + : Int × Int → Int , assoc, comm, unit 0 ;

− : Int × Int → Int ;
∗ : Int × Int → Int , assoc, comm, unit 1 ;

abs : Int → Nat
∀x : Int ; n : Nat ; p, q : Pos
• suc(n) + (−1) = n
• suc(n) + (−suc(q)) = n + (−q)
• (−p) + (−q) = −(p + q)
• x − 0 = x
• x − p = x + (−p)
• x − (−q) = x + q
• 0 ∗ (−q) = 0
• p ∗ (−q) = −(p ∗ q)
• (−p) ∗ (−q) = p ∗ q
• abs(n) = n
• abs(−p) = p

end

The specification Integer Arithmetic 1 extends Natural Positive
Arithmetic and defines the sort Int as a supersort of the sort Nat . As a
consequence, terms which have two parses in sort Int , depending whether the
embedding from Nat to Int is applied to the arguments or to the result of
overloaded operations, are required by the semantics of subsorting to have the
same value for both parses, and they can therefore be used without explicit
disambiguation.

5.3 Subsorts and Partiality 65

The situation would be quite different if one would be using a combination
of Natural Arithmetic and Integer Arithmetic (see Chap. 3), say by
extending both in a structured specification (see the next chapter for more
details on structured specifications). In such a combination, a term such as
suc(0) would have two parses, one in sort Nat and one in sort Int ; in the
absence of any subsort declaration relating Nat and Int , and hence of any
implicit embedding, this term would then be ambiguous, and would require
explicit disambiguation to become a well-formed term.

Supersorts may also be used for extending the intended values by new
values representing errors or exceptions.

spec Set Error Choose [sort Elem] =
Generated Set [sort Elem]

then sorts Elem < ElemError
op choose : Set → ElemError
pred is in : ElemError × Set
∀S : Set • ¬(S = empty) ⇒ choose(S) ∈ Elem ∧ choose(S) is in S

end

The above specification Set Error Choose is another variant of the
various specifications of sets equipped with a partial choose function given in
Chap. 4. This variant avoids the declaration of a partial function choose by
using instead a supersort of Elem, namely ElemError , as the target sort of
choose. The idea here is that values of ElemError which are not (embeddings
of) values of Elem represent errors, e.g., the application of choose to the
empty set. Note that to obtain the desired effect, it is necessary to explicitly
state that choose(S) ∈ Elem when S is not the empty set; moreover, to make
the term choose(S) is in S well-formed, we have to explicitly overload the
predicate is in : Elem × Set provided by Generated Set by a predicate

is in : ElemError × Set as shown above. This example demonstrates that
avoiding partial functions by the use of ‘error supersorts’ is not as innocuous
as it may seem, since in general one would need to enlarge the signatures
considerably by adding all required overloadings.

spec Set Error Choose 1 [sort Elem] =
Generated Set [sort Elem]

then sorts Elem < ElemError
op choose : Set → ElemError
∀S : Set • ¬(S = empty) ⇒ (choose(S) as Elem) is in S

end

The specification Set Error Choose 1 above is a last attempt to avoid
the use of partial functions; again, we introduce a supersort ElemError as

66 5 Subsorting

in Set Error Choose, but to avoid the need for overloading the predicate
is in, we explicitly cast the term choose(S) in (choose(S) as Elem) is in S .
Note that when, for some value of S , (choose(S) as Elem) is in S holds, this
implies that choose(S) as Elem is defined, and hence that choose(S) ∈ Elem
holds as well. This last version may seem preferable to the previous one.
However, one should be aware that here, despite our attempt to avoid the use
of partial functions, we rely on explicit casts, hence on terms that may not
denote values: partiality has not been eliminated, the partial functions have
merely been factorized as compositions of total functions with casting.

6

Structuring Specifications

Large and complex specifications are easily built out of simpler ones
by means of (a small number of) specification-building operations.

In the previous chapters, we have focused attention on basic specifications
and detailed how to use the various constructs of CASL to write meaningful,
but relatively simple, specifications. The aim of this chapter is to discuss and
illustrate how to assemble simple pieces of specifications into more complex,
structured ones. In particular we explain how to extend specifications, make
the union of several specifications, as well as how to rename or hide symbols
when assembling specifications. Parametrization and instantiation of generic
specifications are explained in the next chapter.

6.1 Union and Extension

Union and extension can be used to structure specifications.

spec List Set [sort Elem] =
List Selectors [sort Elem]

and Generated Set [sort Elem]
then op elements of : List → Set

∀e : Elem; L : List
• elements of empty = empty
• elements of cons(e,L) = {e} ∪ elements of L

end

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 67–75, 2004.
c© IFIP International Federation for Information Processing 2004

68 6 Structuring Specifications

The above example shows how to make the union (expressed by ‘and’)
of two specifications List Selectors (see Chap. 4, p. 54) and Generated
Set (see Chap. 3, p. 35), and then further extend this union by an operation
and some axioms (using ‘then’). Union and extension are the most commonly
used specification-building operations. In contrast with extension, whose pur-
pose is to extend a given piece of specification by new symbols and axioms,
union is generally used to combine two self-contained specifications. Union of
specifications is obviously associative and commutative.

All symbols introduced by a specification are by default exported by it
and visible in its extensions or in its unions with other specifications. (Vari-
ables are not considered as symbols, and never exported.) Remember also the
‘same name, same thing’ principle: in the above List Set specification, it is
therefore the same sort Elem which is used to construct both lists and sets.1

Specifications may combine parts with loose, generated, and free
interpretations.

spec List Choose [sort Elem] =
List Selectors [sort Elem]

and Set Partial Choose 2 [sort Elem]
then ops elements of : List → Set ;

choose : List →? Elem
∀e : Elem; L : List
• elements of empty = empty
• elements of cons(e,L) = {e} ∪ elements of L
• def choose(L) ⇔ ¬(L = empty)
• choose(L) = choose(elements of L)

end

spec Set to List [sort Elem] =
List Set [sort Elem]

then op list of : Set → List
∀S : Set • elements of (list of S) = S

end

The specification List Choose is built as an extension of the union of
List Selectors and Set Partial Choose 2 (see Chap. 4, p. 50). This
extension introduces an operation elements of (as in List Set) and a partial
operation choose, which are defined by some axioms. In List Selectors,
lists are defined by a free datatype construct (with selectors), hence have a

1 The constant empty is overloaded, since we have a constant empty : List for lists
and a constant empty : Set for sets.

6.2 Renaming 69

free interpretation. Set Partial Choose 2 is itself an extension of (Set
Partial Choose which is an extension of) Generated Set, where sets are
defined by a generated datatype construct. However, note that as discussed in
Chap. 3, p. 35, the apparently loose specification Generated Set is in fact
not so. Moreover, the choose partial function on sets is loosely defined in Set
Partial Choose 2, and so is therefore also the choose partial function on
lists defined in List Choose. It is easy to see that the operation elements of
is uniquely defined. The sort Elem has of course a loose interpretation.

Thus the specification List Choose combines parts with a free interpre-
tation, parts with a generated interpretation, and parts with a loose interpre-
tation. The situation is similar to that with List Set (and Set to List),
where the operation list of is loosely defined with the help of the operation
elements of .

6.2 Renaming

Renaming may be used to avoid unintended name clashes, or to
adjust names of sorts and change notations for operations and
predicates.

spec Stack [sort Elem] =
List Selectors [sort Elem] with sort List �→ Stack ,

ops cons �→ push onto ,
head �→ top,
tail �→ pop

end

While the ‘same name, same thing’ principle has proven to be appropri-
ate in numerous examples given in the previous chapters and above, it may
still happen that, when combining specifications, this principle leads to unin-
tended name clashes. An unintended name clash arises for instance when one
combines two specifications that both export the same symbol (with the same
profile in case of an operation or a predicate), while this symbol is not intended
to denote the same ‘thing’ in the combination. In such cases, it is necessary
to explicitly rename some of the symbols exported by the specifications put
together in order to avoid the unintended name clashes.

When reusing a named specification, it may be convenient to rename some
of its symbols; moreover, in the case of operation or predicate symbols, one
may also change the style of notation. This is illustrated in the specifica-
tion Stack above which is obtained as a renaming of the specification List
Selectors. (A renaming is introduced by the keyword ‘with’.) First, the sort
List is renamed into Stack , then the operation cons is renamed into a mixfix

70 6 Structuring Specifications

operation push onto , and finally the selectors head and tail are renamed
into top and pop, respectively. Note that ‘�→’ is input as ‘|->’.

The user only needs to indicate how symbols provided by the renamed
specification are mapped to new symbols. A signature morphism is auto-
matically deduced from this ‘symbol map’. For instance, the signature mor-
phism inferred from the symbol map specified in Stack maps the operation
symbol cons : Elem × List → List to the operation symbol push onto :
Elem × Stack → Stack : not only the operation name is changed, but also its
profile according to the renaming of List into Stack .

In a symbol map, one can qualify the symbol to be renamed by its kind,
using the keywords sort, op, and pred (or their plural forms), as appropriate;
this is illustrated in Stack above. Qualification in symbol maps is generally
recommended since it improves their readability.

While it is possible to change the syntax of an operation or predicate
symbol, as illustrated above for cons mapped to push onto , it is not possible
to change the order of the arguments of the renamed operation or predicate.

In general, one does not need to rename all the symbols provided by the
specification to be renamed. In the symbol map describing the intended re-
naming, it is indeed enough to mention only the symbols that change. By
default, any symbol not explicitly mentioned is left unchanged (although its
profile may be updated according to the renaming specified for some sorts).
This is illustrated here in Stack where there is no need to rename the constant
empty, which will therefore have the same name for both lists and stacks. How-
ever, the induced signature morphism maps the constant symbol empty : List
into the constant symbol empty : Stack .

One can also explicitly rename a symbol to itself, say by writing ‘empty �→
empty’, or just mention it without providing a new name, as in ‘with empty’,
which is equivalent to ‘with empty �→ empty’.

By default, overloaded symbols are renamed simultaneously. For instance,
in Integer Arithmetic 1 with + �→ plus , all the five overloaded infix
‘+’ operations exported by Integer Arithmetic 1 (see Chap. 5, p. 64) are
renamed into five plus operations, with a functional syntax and the appropri-
ate profiles.

In general, it is possible to specifically rename one of some overloaded sym-
bols, by specifying its profile in the symbol map. For instance, in List Set
with empty : List �→ nil , only the constant empty of sort List is renamed into
nil , while the constant empty of sort Set remains unchanged. However, care is
needed in the presence of subsorts, since the signature morphism induced by
the specified symbol map should preserve the overloading relations associated
with subsorts. For instance, if we attempt to only rename in the specification
Integer Arithmetic 1 the addition ‘+’ of two positive numbers into plus
and write Integer Arithmetic 1 with + : Pos × Pos → Pos �→ plus ,
we merely obtain an ill-formed specification. Thus in the specification Inte-
ger Arithmetic 1, all the five overloaded ‘+’ operations must be renamed
simultaneously, again into five overloaded symbols.

6.3 Hiding 71

When combining specifications, origins of symbols can be indicated.

spec List Set 1 [sort Elem] =
List Selectors [sort Elem] with empty, cons

and Generated Set [sort Elem] with empty, { }, ∪
then op elements of : List → Set

∀e : Elem; L : List
• elements of empty = empty
• elements of cons(e,L) = {e} ∪ elements of L

end

Since, as explained above, ‘with empty, cons ’ means ‘with empty �→
empty, cons �→ cons ’, identity renaming can be used just to emphasize the
fact that a given specification exports some symbols. This is illustrated in the
specification List Set 1 above, which is quite similar to List Set, but for the
fact that here we emphasize that List Selectors exports in particular the
operations empty and cons , and that Generated Set exports in particular
the operations empty, ‘{ }’, and ‘∪’.

6.3 Hiding

Auxiliary symbols used in structured specifications can be hidden.

spec Natural Partial Subtraction 3 =
Natural Partial Subtraction 1 hide suc, pre

end

spec Natural Partial Subtraction 4 =
Natural Partial Subtraction 1
reveal Nat , 0 , 1 , + , − , ∗ , <

end

When writing large specifications, it is quite frequent to rely on auxiliary
operations (and predicates) to specify the operations (and predicates) of in-
terest. Once these are defined, the auxiliary operations are no longer needed,
and are better removed from the exported signature of the specification, which
should include only the symbols that were required to be specified. This is the
purpose of the hide construct.

Consider for instance the specification Natural Partial Subtraction
1 given in Chap. 4, p. 52. Once addition and subtraction are defined, the

72 6 Structuring Specifications

two basic operations suc and pre are no longer needed (since suc(x) is more
conveniently written x + 1 , and similarly pre(x) is expressed by x − 1), and
can therefore be hidden. This is illustrated by the specification Natural
Partial Subtraction 3 given above.

Depending on the relative proportion of symbols to be hidden or not, in
some cases it may be more convenient to explicitly list the symbols to be
exported by a specification rather than those to be hidden. The construct
‘reveal’ can be used for that purpose, and ‘hide’ and ‘reveal’ are just two
symmetric constructs to achieve the same effect. The use of ‘reveal’ is il-
lustrated in Natural Partial Subtraction 4 above, and the reader can
convince himself that both Natural Partial Subtraction 3 and Natu-
ral Partial Subtraction 4 export exactly the same symbols. However,
in this case the first specification is clearly more concise. A more convincing
example of the use of ‘reveal’ is provided by the following example.

spec Partial Order 2 = Partial Order reveal pred ≤
Similar rules to the ones explained for renaming apply to the hide and

reveal constructs. One can qualify a symbol to be hidden or revealed by its
kind (sort, op or pred), and by default, overloaded symbols are hidden (or
revealed) simultaneously.

Note that hiding a sort entails hiding all the operations or predicates that
use it in their profile. Similarly, revealing an operation or a predicate entails
revealing all the sorts involved in its profile. For instance, in the specification
Partial Order 2 above, revealing the predicate ‘≤’ entails revealing also
the sort Elem.

As a consequence, hiding sorts should be used with care in the presence
of subsorts. For instance, hiding the sort Nat in the specification Positive
given in Chap. 5, p. 61, leads to a specification of positive natural numbers
with a sort Pos which has the expected carrier set, but without any operation
or predicate available on it. Hiding the sort Nat in the specification Posi-
tive Arithmetic (see Chap. 5, p. 61) may seem more appropriate, but one
should still note that the predicate ‘<’ is no longer available in Positive
Arithmetic hide sort Nat .

As a last remark, note that when convenient, reveal can be combined
with a renaming of (some of) the exported symbols. For instance, in the
above Partial Order 2 specification, we could have written ‘reveal pred

≤ �→ leq’ if, in addition to a restriction of the signature of Partial
Order, we wanted to rename the infix predicate ‘ ≤ ’ into a predicate leq
with a functional notation.

6.4 Local Specifications 73

6.4 Local Specifications

Auxiliary symbols can be made local when they do not need to be
exported.

spec List Order [Total Order with sort Elem, pred <] =
List Selectors [sort Elem]

then local op insert : Elem × List → List
∀e, e ′ : Elem; L : List
• insert(e, empty) = cons(e, empty)
• insert(e, cons(e ′,L)) = cons(e ′, insert(e,L)) when e ′ < e

else cons(e, cons(e ′,L))
within op order : List → List

∀e : Elem; L : List
• order(empty) = empty
• order(cons(e,L)) = insert(e, order(L))

end

In many cases, auxiliary symbols are introduced for immediate use, and
they do not need to be exported by the specification where they are declared.
Then the best is to limit the scope of the declarations of such auxiliary symbols
by using the ‘local . . . within . . . ’ construct. This is illustrated in the above
specification List Order, where the insert operation is introduced only for
the purpose of the axiomatization of order . The declaration of insert has its
scope limited to the part that follows ‘within’, and insert is therefore not
exported by the specification List Order.

It is generally advisable to ensure that auxiliary symbols are declared in
local parts of specifications.

spec List Order Sorted
[Total Order with sort Elem, pred <] =
List Selectors [sort Elem]

then local pred is sorted : List
∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

cons(e ′,L) is sorted ∧ ¬(e ′ < e)
within op order : List → List

∀L : List • order(L) is sorted
end

The specification List Order Sorted above is a variant of the specifi-
cation List Order illustrating again the use of the ‘local . . . within . . . ’

74 6 Structuring Specifications

construct – this time to declare an auxiliary predicate. (Actually, the two
specifications are not equivalent, since List Order Sorted is much looser
and only requires that order(L) is a sorted list, but perhaps not with the same
elements as L.)

Care is needed with local sort declarations.

spec Wrong List Order Sorted
[Total Order with sort Elem, pred <] =
List Selectors [sort Elem]

then local pred is sorted : List
sort SortedList = {L : List • L is sorted}
∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

cons(e ′,L) is sorted ∧ ¬(e ′ < e)
within op order : List → SortedList

end

Note that the above specification Wrong List Order Sorted, which
may at first glance be considered as a slight variant of List Order Sorted,
is ill-formed : order is exported by Wrong List Order Sorted, and hence
all sorts occurring in its profile should also be exported, which cannot be,
since the sort SortedList is auxiliary. So, if the specifier really intends to insist
that the result sort of order is SortedList , this subsort should be exported, as
shown below.

spec List Order Sorted 2
[Total Order with sort Elem, pred <] =
List Selectors [sort Elem]

then local pred is sorted : List
∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

cons(e ′,L) is sorted ∧ ¬(e ′ < e)
within sort SortedList = {L : List • L is sorted}

op order : List → SortedList
end

In fact the ‘local . . . within . . . ’ construct abbreviates a combination
of extension and explicit hiding. The specification List Order Sorted 2
above, for instance, abbreviates:

6.5 Named Specifications 75

spec List Order Sorted 3
[Total Order with sort Elem, pred <] =
List Selectors [sort Elem]

then { pred is sorted : List
∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

cons(e ′,L) is sorted ∧ ¬(e ′ < e)
then sort SortedList = {L : List • L is sorted}

op order : List → SortedList
} hide is sorted

end

The main advantage of using the ‘local . . . within . . . ’ construct is that
hiding the symbols introduced in the local part is left implicit. The conve-
nience of this generally outweighs the danger of overlooking a locally-declared
sort that is needed for the profile of an exported symbol. In any case, CASL

allows both styles, and users can simply choose the one they prefer.

6.5 Named Specifications

Naming a specification allows its reuse.

It is in general advisable to define as many named specifications as felt
appropriate, since this improves the reusability of specifications: a named
specification can easily be reused by referring to its name.

Not only do the names serve as abbreviations when writing specifications,
they also make it easy for readers to notice reuse. Moreover, when the name
of a specification is aptly chosen, e.g., Natural Arithmetic, readers may
well be able to guess its signature – and perhaps even the specified axioms –
from the name itself. (In Chap. 9, we shall see how named specifications and
other items can be collected in libraries, and particular versions of them made
available for use over the Internet.)

References to named specifications are particularly convenient for specifi-
cations structured using unions and extensions, where verbatim insertion of
unnamed specifications would tend to obscure the structure. When needed,
the signature of a referenced specification can be adjusted through appropri-
ate combinations of renaming and hiding (although this should not often be
necessary, provided that auxiliary symbols are made local, as explained in the
previous section).

7

Generic Specifications

Making a specification generic (when appropriate) improves its
reusability.

As mentioned in the previous chapter, naming specifications is a good
idea. In many cases, however, datatypes are naturally generic, having sorts,
operations, and/or predicates that are deliberately left loosely specified, to be
determined when the datatype is used. For instance, datatypes of lists and
sets are generic regarding the sort of elements. Generic specifications allow the
genericity of a datatype to be made explicit by declaring parameters when the
specification is named: in the case of lists and sets, there is a single parameter
that simply declares the sort Elem.1 A fitting argument specification has
to be provided for each parameter of a generic specification whenever it is
referenced; this is called instantiation of the generic specification.

The aim of this chapter is to discuss and illustrate how to define generic
specifications and instantiate them. We have seen plenty of simple examples
of generic specifications and instantiations in the previous chapters. In more
complicated cases, however, explicit fitting symbol maps may be required
to determine the exact relationship between parameters and arguments in
instantiations, and so-called imports should be separated from the bodies of
generic specifications.
1 Generic specifications are also useful to ensure loose coupling between several

named specifications, replacing an explicit extension by a parameter including
only the necessary symbols and their required properties. This is illustrated in
the Steam-Boiler Control System case study, see Chap. 13.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 77–92, 2004.
c© IFIP International Federation for Information Processing 2004

78 7 Generic Specifications

7.1 Parameters and Instantiation

Parameters are arbitrary specifications.

Any specification, named or not, can be used as the parameter of a generic
specification. Commonly, the parameter is a rather trivial specification con-
sisting merely of a single sort declaration, as in most of the examples given in
the previous chapters, e.g.:

spec Generic Monoid [sort Elem] = %{ See Chap. 3, p. 30 }%

spec List Selectors [sort Elem] = %{ See Chap. 4, p. 54 }%

However, the parameter can also be a more complex, possibly structured,
specification, as in:

spec List Order [Total Order with sort Elem, pred <] =
%{ See Chap. 6, p. 73 }%

Recall that ‘with’ requires the signature of the specification to include the
listed symbols; here, in fact, the signature of Total Order does not contain
any further symbols, so those are all the symbols that have to be supplied
when instantiating List Order.

The argument specification of an instantiation must provide symbols
corresponding to those required by the parameter.

spec List Order Nat = List Order [Natural Order]

The correspondence between the symbols provided by the argument spec-
ification and those required by the parameter can be described by a fitting
symbol map or left implicit when it is not ambiguous, which is often the case.

In the above example, the argument specification Natural Order pro-
vides the sort Nat , the operation symbols 0 and suc, and the binary predicate
symbol ‘<’. Hence this specification indeed provides symbols corresponding
to those required by the parameter specification Total Order and the cor-
respondence can be left implicit because the argument Natural Order has
only single symbols of the right kind. (The coincidence of the predicate sym-
bol in the parameter and argument is irrelevant here.)

How to describe explicit fitting symbol maps and when they can be omitted
is detailed later in this section.

7.1 Parameters and Instantiation 79

The argument specification of an instantiation must ensure that the
properties required by the parameter hold.

spec Nat Word = Generic Monoid [Natural]

A (fitting) signature morphism from the signature of the parameter part to
the signature of the argument specification is automatically deduced, taking
into account the explicitly specified fitting symbol map if any (the situation
here is quite similar to a renaming, where a signature morphism is deduced
from a symbol map). The instantiation is defined if all models of the argument
specification, when reduced along the induced fitting signature morphism,
provide models of the parameter part. In particular the symbols provided
by the argument specification must have the properties, if any, specified in
the parameter for their counterparts. When this is the case, we get not only
a signature morphism, but also a (fitting) specification morphism from the
argument specification to the parameter specification.2

In the above Nat Word example, since the parameter of Generic
Monoid is trivial, it is obvious that the instantiation is defined.

The effect of the instantiation is to make the union of the argument spec-
ification and of the (non generic equivalent of the) generic specification, re-
named according to the induced fitting signature morphism. In particular, a
side-effect of the instantiation is to rename the symbols of the generic specifica-
tion according to the fitting signature morphism induced by the instantiation.
In our Nat Word example, the operation symbol inj : Elem → Monoid is
renamed into inj : Nat → Monoid , while the operation symbols ‘1 ’ and ‘∗’
are left unchanged (as well as the sort Monoid). Thus, the specification Nat
Word abbreviates the following specification:
Natural and { Non Generic Monoid with Elem �→ Nat }.

When convenient, the instantiation can be completed by a renaming, as
illustrated in the following variant of Nat Word.

spec Nat Word 1 =
Generic Monoid [Natural]
with Monoid �→ Nat Word

end

In the case of the specification List Order Nat above, checking the de-
finedness of the instantiation corresponds to a non-trivial proof obligation.
The instantiation is defined since the predicate ‘<’ provided by Natural
Order is indeed a total ordering relation, hence the properties required by
2 Note that consistency is entirely orthogonal to definedness: a defined instantiation

may be consistent or not.

80 7 Generic Specifications

Total Order are fulfilled, even if there is no syntactic correspondence be-
tween the axioms given in Total Order and those in Natural Order.

There must be no shared symbols between the argument specification
and the body of the instantiated generic specification.

spec This Is Wrong = Generic Monoid [Monoid]

The intention in the above example may have been to specify monoids
of monoids. However, the above instantiation is ill-formed since the sort
Monoid and the operation symbols ‘1 ’ and ‘∗’ are shared between the body
of the generic specification Generic Monoid and the argument specification
Monoid.

Section 7.3 provides useful hints on how to structure generic specifications
in order to avoid as far as possible undesirable clashes of symbols in instanti-
ations. A correct specification of monoids of monoids is provided in Sect. 7.2,
p. 86.

In instantiations, the fitting of parameter symbols to identical
argument symbols can be left implicit.

spec Generic Commutative Monoid [sort Elem] =
Generic Monoid [sort Elem]

then . . .

When the parameter and the argument have symbols in common, these
parameter symbols are implicitly taken to fit directly to the corresponding ar-
gument symbols. Thus it is never necessary to make explicit that a symbol is
mapped identically. In the above example, for instance, the parameter specifi-
cation of Generic Monoid is exactly the same as the argument specification
in its instantiation, so the fitting can be left implicit.

The fitting of parameter sorts to unique argument sorts can also be
left implicit.

When the argument specification has only a single sort, the fitting of all
parameter sorts to that sort is obvious, and can again be left implicit, as
illustrated earlier by the Nat Word specification. Of course, this does not
apply the other way round: if the parameter has a single sort (which is often

7.1 Parameters and Instantiation 81

the case in practice) but the argument specification has more than one sort,
the parameter sort could be mapped to any of the argument sorts, so the
fitting symbol map has to be made explicit – except when the parameter sort
is identical to one of the argument sorts, as previously explained, or when the
fitting of sorts can be implied from the fitting of other symbols, as explained
below.

Fitting of operation and predicate symbols can sometimes be left
implicit too, and can imply fitting of sorts.

spec List Order Positive = List Order [Positive]

Fitting of operation and predicate symbols can imply fitting of sorts. For
instance, when a parameter predicate symbol is fitted to an argument predi-
cate symbol whose profile involves different sorts, this implies that the param-
eter sorts involved have to be fitted to the corresponding sorts in the argument
specification.

This is illustrated in the above List Order Positive specification. In a
first step, the fitting of the parameter sort Elem to one of the argument sorts
Nat and Pos provided by the specification Positive (see Chap. 5, p. 61) may
seem ambiguous. However, no explicit fitting of symbols is necessary here,
since the argument specification provides only one binary predicate symbol,
and the fitting of the corresponding binary predicate symbol of the parameter
specification to it entails the fitting of the sort Elem to the sort Nat (Again,
the coincidence of the predicate symbol in the parameter and argument is
irrelevant here.)

As may be clear by now, the exact rules for when the fitting between pa-
rameter and argument symbols can be left implicit are quite sophisticated. It
seems best to make the intended fitting explicit whenever it is not completely
obvious, using the notation for fitting arguments illustrated in the following
examples.

The intended fitting of the parameter symbols to the argument
symbols may have to be specified explicitly.

spec Nat Word 2 =
Generic Monoid [Natural Subsorts fit Elem �→ Nat]

The correspondence between the symbols required by the parameter and
those provided by the argument specification can be made explicit using so-
called fitting symbol maps. For instance, the above Nat Word 2 specifica-
tion, which differs from Nat Word only regarding the presence of subsorts of

82 7 Generic Specifications

Nat , is obtained as an instantiation of Generic Monoid, fitting the param-
eter part ‘sort Elem’ to the Natural Subsorts specification. The mapping
between the parameter sort Elem and the sort Nat provided by Natural
Subsorts is described by the fitting symbol map ‘fit Elem �→ Nat ’.

A generic specification may have more than one parameter.

spec Pair [sort Elem1] [sort Elem2] =
free type Pair ::= pair(first : Elem1 ; second : Elem2)

Using several parameters is merely a notational convenience, since they
are equivalent to their union. For instance, the above Pair specification is
nothing but a variant of the specification Pair 1 with just one parameter
‘sorts Elem1 , Elem2 ’ defined in Chap. 4, p. 54.

Note that writing:

spec Homogeneous Pair 1 [sort Elem] [sort Elem] =
free type Pair ::= pair(first : Elem; second : Elem)

merely defines pairs of values of the same sort, and Homogeneous Pair 1
is (equivalent to and) better defined as follows:

spec Homogeneous Pair [sort Elem] =
free type Pair ::= pair(first : Elem; second : Elem)

since the two parameters in Homogeneous Pair 1 are equivalent to just one
‘sort Elem’ parameter.

From a methodological point of view, it is generally advisable to use as
many parameters as convenient: the part of the specification that is intended
to be specialized at instantiation time is better split into logically coherent
units, each one corresponding to a parameter. Consider for instance:

spec Table [sort Key] [sort Val] = . . .

Here, using two parameters in Table emphasizes that Key and Val are
logically distinct entities which can be specialized as desired independently of
each other.

Instantiation of generic specifications with several parameters is
similar to the case of just one parameter.

spec Pair Natural Color =
Pair [Natural Arithmetic] [Color fit Elem2 �→ RGB]

7.1 Parameters and Instantiation 83

In the above example, the first parameter ‘sort Elem1 ’ of Pair is instan-
tiated by Natural Arithmetic, which exports only one sort Nat , hence no
explicit fitting symbol map is necessary. The second parameter ‘sort Elem2 ’
of Pair is instantiated by Color: in this case a fitting symbol map must be
provided, since Color exports two sorts, RGB and CMYK .

Using the specification Pair 1 would require us to write:

spec Pair Natural Color 1 =
Pair 1 [Natural Arithmetic and Color

fit Elem1 �→ Nat , Elem2 �→ RGB]

which clearly demonstrates the benefit of using two parameters as in Pair
instead of just one as in Pair 1.

When parameters are trivial ones (i.e., just one sort), one can always avoid
explicit fitting maps. Consider for instance the following alternative to Pair
Natural Color:

spec Pair Natural Color 2 =
Pair [sort Nat] [sort RGB]

and Natural Arithmetic and Color

This may be convenient when the argument specification exports several
sorts. Compare for instance:

spec Pair Pos =
Homogeneous Pair [sort Pos] and Integer Arithmetic 1

with:

spec Pair Pos 1 =
Homogeneous Pair [Integer Arithmetic 1 fit Elem �→ Pos]

Note that the instantiation:
Homogeneous Pair 1 [Natural] [Color fit Elem �→ RGB]
is ill-formed, since it entails mapping the sort Elem to both Nat and RGB .

More generally, care is needed when the several parameters of a generic
specification share some symbols, which in general is not advisable.

As a last remark, note that it is easy to specialize a generic specification
with several parameters, using a ‘partial instantiation’, as in the following
version of Table:

spec My Table [sort Val] =
Table [Natural Arithmetic] [sort Val]

where we still have a parameter for the values to be stored, but have decided
that the keys are natural numbers.

84 7 Generic Specifications

Composition of generic specifications is expressed using instantiation.

spec Set of List [sort Elem] =
Generated Set [List Selectors [sort Elem] fit Elem �→ List]

The above generic specification Set of List describes sets of lists of ar-
bitrary elements, and is obtained by an instantiation of the generic specifi-
cation Generated Set, whose parameter ‘sort Elem’ is instantiated by the
specification List Selectors, itself trivially instantiated. Since the (trivially
instantiated) specification List Selectors exports two sorts Elem and List ,
it is of course necessary to specify, in the instantiation of Generated Set,
the fitting symbol map from the parameter sort Elem to the argument sort
List .

Note especially that the following specification:

spec Mistake [sort Elem] =
Generated Set [List Selectors [sort Elem]]

does not provide sets of lists of elements: The sort Elem in the parameter
of Generated Set is mapped by the identity fitting symbol map to the
sort Elem provided by the instantiation of the generic specification List
Selectors [sort Elem], rather than to the sort List .3 Thus Mistake just
provides sets of arbitrary elements and lists of arbitrary elements. If this was
indeed the desired effect, then one should rather write instead:

spec Set and List [sort Elem] =
Generated Set [sort Elem] and List Selectors [sort Elem]

As illustrated by Set of List, composition of generic specifications is
fairly easy in CASL. Note however that this composition is achieved by means
of appropriate instantiations (some possibly trivial), and that CASL does not
provide higher-order genericity.

It may be worth mentioning that the following composition of generic
specifications is ill-formed:

spec This Is Still Wrong =
Generic Monoid [Generic Monoid [sort Elem]

fit Elem �→ Monoid]

3 However, the situation would be different if the parameter of Generated Set
had been, e.g., ‘sort Val ’, since then the absence of an explicit fitting symbol map
would have led to an ambiguity: in that case the specifier would have to specify
whether the sort Val is to be mapped to Elem or to List .

7.2 Compound Symbols 85

The above instantiation is ill-formed since the sort Monoid and the operation
symbols ‘1 ’ and ‘∗’ are shared between the body of the generic specification
Generic Monoid and the argument specification Generic Monoid [sort
Elem] (where this time the generic specification Generic Monoid is triv-
ially instantiated). The next section provides (p. 86) a correct specification of
monoids of monoids.

7.2 Compound Symbols

Compound sorts introduced by a generic specification get
automatically renamed on instantiation, which avoids name clashes.

spec List Rev [sort Elem] =
free type List [Elem] ::= empty |

cons(head :? Elem; tail :? List [Elem])
ops ++ : List [Elem] × List [Elem] → List [Elem],

assoc, unit empty;
reverse : List [Elem] → List [Elem]

∀e : Elem; L,L1 ,L2 : List [Elem]
• cons(e,L1) ++ L2 = cons(e,L1 ++ L2)
• reverse(empty) = empty
• reverse(cons(e,L)) = reverse(L) ++ cons(e, empty)

end

spec List Rev Nat = List Rev [Natural]

A compound sort is a sort of the form ‘Name[Name1 , . . . ,NameN]’. In the
specification List Rev, we introduce a compound sort List [Elem] to denote
lists (of arbitrary elements), instead of the simple sort List used in the previous
examples. When the specification List Rev is instantiated as in List Rev
Nat, the translation induced by the (implicit) fitting symbol map is applied
to the component Elem also where it occurs in List [Elem], providing a sort
List [Nat]. Thus, compound sorts can be seen as a convenient way of implicitly
completing the instantiation by an appropriate renaming of the (compound)
sorts introduced by the generic specification.

spec Two Lists =
List Rev [Natural] %% Provides the sort List [Nat]

and List Rev [Color fit Elem �→ RGB] %% Provides the sort List [RGB]

Using a compound sort List [Elem] proves particularly useful in the above
example Two Lists, where we make the union of two distinct instantiations

86 7 Generic Specifications

of List Rev. If we had used an ordinary sort List , then an unintentional name
clash would have arisen,4 and we would have to complete each instantiation
by an explicit renaming of the sort List .

Note that in the specification Two Lists, we have two sorts List [Nat] and
List [RGB], hence two overloaded constants empty (one of each sort), which
may need disambiguation when used in terms. (How to disambiguate terms
is explained in Chap. 3, p. 31.)

Similarly, we have overloaded operation symbols cons , head , tail , ++,
and reverse, but in general their context of use in terms will be enough to
disambiguate which one is meant.

spec Two Lists 1 =
List Rev [Integer Arithmetic 1 fit Elem �→ Nat]

and List Rev [Integer Arithmetic 1 fit Elem �→ Int]

Since the specification Integer Arithmetic 1 provides three sorts Nat ,
Pos , and Int , an explicit fitting symbol map is needed in the above instantia-
tions, which provide the sorts List [Nat] and List [Int]. Note that the subsorting
relation Nat < Int does not entail List [Nat] < List [Int], but of course this
can be added if desired in an extension by a subsorting declaration.

Using compound sorts, we can now easily specify monoids of monoids.

spec Monoid C [sort Elem] =
sort Monoid [Elem]
ops inj : Elem → Monoid [Elem];

1 : Monoid [Elem];
∗ : Monoid [Elem] × Monoid [Elem] → Monoid [Elem],

assoc, unit 1
∀x , y : Elem • inj (x) = inj (y) ⇒ x = y

end

spec Monoid of Monoid [sort Elem] =
Monoid C [Monoid C [sort Elem] fit Elem �→ Monoid [Elem]]

The instantiation in Monoid of Monoid is now correct, since the use of a
compound sort Monoid [Elem] ensures there is no clash of symbols between the
body of the instantiated generic specification and the argument specification.
4 And the specification Two Lists would have been inconsistent, due to the same

name, same thing principle and the fact that List is defined by a free type con-
struct.

7.2 Compound Symbols 87

Compound symbols can also be used for operations and predicates.

spec List Rev Order [Total Order] =
List Rev [sort Elem]

then local op insert : Elem × List [Elem] → List [Elem]
∀e, e ′ : Elem; L : List [Elem]
• insert(e, empty) = cons(e, empty)
• insert(e, cons(e ′,L)) = cons(e ′, insert(e,L)) when e ′ < e

else cons(e, cons(e ′,L))
within op order [<] : List [Elem] → List [Elem]

∀e : Elem; L : List [Elem]
• order [<](empty) = empty
• order [<](cons(e,L)) = insert(e, order [<](L))

end

spec List Rev with Two Orders =
List Rev Order
[Integer Arithmetic Order fit Elem �→ Int , < �→ <]
%% Provides the sort List [Int] and the operation order [<]

and List Rev Order
[Integer Arithmetic Order fit Elem �→ Int , < �→ >]
%% Provides the sort List [Int] and the operation order [>]

then %implies

∀L : List [Int] • order [<](L) = reverse(order [>](L))
end

The above example illustrates the use of compound identifiers for operation
symbols, and the same rules apply to predicate symbols. While in most cases
using compound identifiers for sorts will be sufficient, in some situations it
is also convenient to use them for operation or predicate symbols, as done
here for order [<]. When List Rev Order is instantiated, not only does
the sort List [Elem] get renamed (here, to List [Int]), but also the operation
symbol order [<], according to the fitting symbol map corresponding to
the instantiation. If we had not used a compound identifier for the order
operation, then an unintentional name clash would have arisen. Note that on
the other hand we rely on the same name, same thing principle to ensure that
the sorts List [Int] provided by each of the two instantiations are the same,
which indeed is what we want for this example.

Of course we do not bother to use a compound identifier for the insert
operation symbol. This operation being local, it is not exported by List
Rev Order and cannot be the source of unintentional name clashes in in-
stantiations.

88 7 Generic Specifications

7.3 Generic Specifications with Imports

Parameters should be distinguished from references to fixed
specifications that are not intended to be instantiated.

spec List Weighted Elem [sort Elem op weight : Elem → Nat]
given Natural Arithmetic =

List Rev [sort Elem]
then op weight : List [Elem] → Nat

∀e : Elem; L : List [Elem]
• weight(empty) = 0
• weight(cons(e,L)) = weight(e) + weight(L)

end

In the above example, we specialize lists of arbitrary elements to lists
of elements equipped with a weight operation, which is then overloaded by
a weight operation on lists. Therefore we specify that the generic specifica-
tion List Weighted Elem has for parameter a specification extending the
‘given’ specification Natural Arithmetic by a sort Elem and an operation
symbol weight . Thereby the intention is to emphasize the fact that only the
sort Elem and the operation weight are intended to be specialized when the
specification List Weighted Elem is instantiated, and not the ‘fixed part’
Natural Arithmetic. In CASL, the specifications listed after the ‘given’
keyword are called imports. One could have written instead:

spec List Weighted Elem
[Natural Arithmetic then sort Elem op weight : Elem → Nat]
= . . .

but the latter, which is correct, misses the essential distinction between the
part which is intended to be specialized and the part which is ‘fixed’ (since,
by definition, the parameter is the part which has to be specialized).

Note also that omitting the ‘given Natural Arithmetic’ clause would
make the declaration:

spec List Weighted Elem [sort Elem op weight : Elem → Nat] = . . .

ill-formed, since the sort Nat is not available.
To summarize, the ‘given’ construct is useful to distinguish the ‘true’

parameter from the part which is ‘fixed’. Both the parameter and the body of
the generic specification extend what is provided by the imports (i.e., by the
specifications listed after the ‘given’ keyword), whose exported symbols are
therefore available.

7.3 Generic Specifications with Imports 89

Argument specifications are always implicitly regarded as extension of
the imports.

spec List Weighted Pair Natural Color =
List Weighted Elem [Pair Natural Color fit Elem �→ Pair ,

weight �→ first]

The instantiation specified in List Weighted Pair Natural Color is
correct since the fitting symbol map is the identity on all the symbols exported
by the ‘fixed part’ Natural Arithmetic (which happens here to be included
in the argument specification Pair Natural Color). More generally, the
argument specification is always regarded as an extension of the imports, and
the fitting symbol map should be the identity on all symbols provided by these
imports. This is illustrated in the next example:

spec List Weighted Instantiated =
List Weighted Elem [sort Value op weight : Value → Nat]

Here we rely on a rather trivial instantiation (whose purpose is merely
to illustrate our point) where the fitting symbol map can be omitted since
no ambiguity arises and where the argument specification ‘sort Value op
weight : Value → Nat ’ is well-formed because it is regarded as an extension
of the imports of List Weighted Elem (i.e., as an extension of Natural
Arithmetic), which implies that the sort Nat is available.

Imports are also useful to prevent ill-formed instantiations.

spec List Length [sort Elem] given Natural Arithmetic =
List Rev [sort Elem]

then op length : List [Elem] → Nat
∀e : Elem; L : List [Elem]
• length(empty) = 0
• length(cons(e,L)) = length(L) + 1

then %implies

∀L : List [Elem] • length(reverse(L)) = length(L)
end

The specification List Length needs the sort Nat and the usual arith-
metic operations provided by Natural Arithmetic to specify the length
operation. In this case it is clear that the imports have nothing to do with
the (trivial) parameter of List Length. The reason to specify Natural
Arithmetic as an import is that this will make instantiations of List
Length similar to the following one well-formed.

90 7 Generic Specifications

spec List Length Natural =
List Length [Natural Arithmetic]

To understand this point, consider the following variant of List Length:

spec Wrong List Length [sort Elem] =
Natural Arithmetic and List Rev [sort Elem]

then . . .
end

The specification Wrong List Length is fine as long as one does not
need to instantiate it with Natural Arithmetic as argument specifica-
tion. The instantiation Wrong List Length [Natural Arithmetic] is
ill-formed since some symbols of the argument specification are shared with
some symbols of the body (and not already occurring in the parameter) of the
instantiated generic specification, which is wrong, as already explained p. 80.
Of course the same problem will occur with any argument specification which
provides, e.g., the sort Nat .

In generic specifications, auxiliary required specifications should be
imported rather than extended.

As illustrated by the above examples, one should remember the follow-
ing essential point. Since an instantiation is ill-formed as soon as there are
some shared symbols between the argument specification and the body of
the generic specification, when designing a generic specification, it is gener-
ally advisable to turn auxiliary required specifications (such as Natural
Arithmetic for List Length) into imports, and generic specifications of
the form ‘F [X] = SP then . . . ’ are better written ‘F [X] given SP = . . . ’
to allow the instantiation ‘F [SP]’.

7.4 Views

Views are named fitting maps, and can be defined along with
specifications.

view Integer as Total Order :
Total Order to Integer Arithmetic Order =
Elem �→ Int , < �→ <

7.4 Views 91

view Integer as Reverse Total Order :
Total Order to Integer Arithmetic Order =
Elem �→ Int , < �→ >

spec List Rev with Two Orders 1 =
List Rev Order [view Integer as Total Order]

and List Rev Order [view Integer as Reverse Total Order]
then %implies

∀L : List [Int] • order [<](L) = reverse(order [>](L))
end

A view is nothing but a convenient way to name a specification morphism
(induced by a symbol map) from a (parameter) specification to an (argument)
specification. The rules regarding the omission of ‘evident’ symbol maps in
explicit fittings apply to views too. A view proves particularly useful when
the same instantiation (with the same fitting symbol map) is intended to be
used several times: naming a specification morphism once and for all makes
its reuse easier. Once a view is defined, as e.g. Integer as Total Order
above, it can be referenced in instantiations as in List Rev Order [view
Integer as Total Order], where the keyword ‘view’ makes it clear that
the argument is not merely a named specification with an implicit fitting map,
which would be written differently.

Since a view is defined only when the given symbol map induces a spec-
ification morphism (i.e., all models of the target specification, when reduced
along the signature morphism induced by the given symbol map, provide
models of the source specification), it may be convenient to use views just
to explicitly document the existence of some specification morphisms, even
when these are not intended to be used in any instantiation. For instance, the
view Integer as Total Order can be seen as the assertion that Integer
Arithmetic Order indeed specifies ‘<’ to be a total ordering relation, and
would therefore make sense even without being used later on in instantiations.

Views can also be generic.

view List as Monoid [sort Elem] :
Monoid to List Rev [sort Elem] =
Monoid �→ List [Elem], 1 �→ empty, ∗ �→ + +

A view can be generic, being then defined with some parameters (as il-
lustrated above in the List as Monoid view) and possibly some imports.
The reader should be aware that, in a generic view, the target specification
(here, the trivially instantiated specification List Rev) is not interpreted as
such, but as the body of a generic specification with the same parameters and

92 7 Generic Specifications

imports as the view. (The source specification is on the contrary interpreted
exactly as provided.)

The above example illustrates again the use of a view as a ‘proof obliga-
tion’, asserting that lists (equipped with the ‘++’ operation) form a monoid.

8

Specifying the Architecture of Implementations

Architectural specifications impose structure on implementations,
whereas specification-building operations only structure the text of
specifications.

As explained in the previous chapters, the specification of a complex sys-
tem may be fairly large and should be structured into coherent, easy to grasp,
pieces. CASL provides a number of specification-building operations to achieve
this, as detailed in Chap. 6. Moreover, generic specifications, described in
Chap. 7, provide pieces of specification that are easy to reuse in different
contexts, where they can be adapted as desired by instantiating them.

Specification-building operations and generic specifications are useful to
structure the text of the specification of the system under consideration. How-
ever, the models of a structured specification have no more structure than do
those of a flat, unstructured, specification. Indeed, most examples given in
the previous chapters could have been structured differently, with the same
meaning (i.e., with the same models). Structured specifications are usually ad-
equate at the requirements stage, where the focus is on the expected overall
properties of the system under consideration.

In contrast, the aim of architectural specifications is to prescribe the in-
tended architecture of the implementation of the system. Architectural speci-
fications provide the means for specifying the various components from which
the system will be built, and describing how these components are to be assem-
bled to provide an implementation of the system of interest. At the same time,
they allow the task of implementing a system to be split into independent,
clearly-specified sub-tasks. Thus, architectural specifications are essential at
the design stage, where the focus is on how to factor the implementation of
the system into components.

The aim of this chapter is to discuss and illustrate both the role of archi-
tectural specifications and how to express them in CASL.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 93–109, 2004.
c© IFIP International Federation for Information Processing 2004

94 8 Specifying the Architecture of Implementations

The idea underlying architectural specifications is that eventually in the
process of systematic development of modular software from specifications,
components are implemented as software modules in some chosen program-
ming language. However, this step is beyond the scope of specification for-
malisms, so in CASL and in this chapter we identify components with models
(and with functions from models to models, in the case of generic components).
The modular structure of the software under development, as described by an
architectural specification, is therefore captured here simply as an explicit,
structural way to build CASL models.

The examples in this chapter are artificially simple.

Architectural specifications, and more generally component-oriented ap-
proaches, are intended for relatively large systems. In this chapter, however,
we have to rely on simple small examples to illustrate and explain CASL ar-
chitectural specification concepts and constructs. After reading this chapter,
the reader is encouraged to study Chap. 13, which provides realistic exam-
ples of the use of architectural specifications. A more detailed account of the
rationale behind architectural specifications in the context of formal software
development by stepwise refinement can be found in [11].

The following structured specifications will be referred to later in this
chapter when illustrating CASL architectural specifications:

spec Color = %{ As defined in Chap. 3, p. 37 }%

spec Natural Order = %{ As defined in Chap. 3, p. 38 }%

spec Natural Arithmetic = %{ As defined in Chap. 3, p. 38 }%

spec Elem = sort Elem

spec Cont [Elem] =
generated type Cont [Elem] ::= empty | insert(Elem; Cont [Elem])
preds is empty : Cont [Elem];

is in : Elem × Cont [Elem]
ops choose : Cont [Elem] →? Elem;

delete : Elem × Cont [Elem] → Cont [Elem]
∀e, e ′ : Elem; C : Cont [Elem]
• empty is empty
• ¬ insert(e,C) is empty
• ¬ e is in empty
• e is in insert(e ′,C) ⇔ (e = e ′ ∨ e is in C)
• def choose(C) ⇔ ¬ C is empty
• def choose(C) ⇒ choose(C) is in C
• e is in delete(e ′,C) ⇔ (e is in C ∧ ¬(e = e ′))

end

8.1 Architectural Specifications 95

spec Cont Diff [Elem] =
Cont [Elem]

then op diff : Cont [Elem] × Cont [Elem] → Cont [Elem]
∀e : Elem; C ,C ′ : Cont [Elem]
• e is in diff (C ,C ′) ⇔ (e is in C ∧ ¬(e is in C ′))

end

spec Req = Cont Diff [Natural Order]

spec Flat Req =
free type Nat ::= 0 | suc(Nat)
pred < : Nat × Nat
generated type Cont [Nat] ::= empty | insert(Nat ; Cont [Nat])
preds is empty : Cont [Nat];

is in : Nat × Cont [Nat]
ops choose : Cont [Nat] →? Nat ;

delete : Nat × Cont [Nat] → Cont [Nat];
diff : Cont [Nat] × Cont [Nat] → Cont [Nat]

∀e, e ′ : Nat ; C ,C ′ : Cont [Nat]
• 0 < suc(e)
• ¬(e < 0)
• suc(e) < suc(e ′) ⇔ e < e ′

• empty is empty
• ¬ insert(e,C) is empty
• ¬ e is in empty
• e is in insert(e ′,C) ⇔ (e = e ′ ∨ e is in C)
• def choose(C) ⇔ ¬ C is empty
• def choose(C) ⇒ choose(C) is in C
• e is in delete(e ′,C) ⇔ (e is in C ∧ ¬(e = e ′))
• e is in diff (C ,C ′) ⇔ (e is in C ∧ ¬(e is in C ′))

end

8.1 Architectural Specifications

Let’s assume in the following that Req describes our requirements about the
system to be implemented. First, note that both Req and Flat Req have
the same models, which illustrates our point about the fact that the CASL

specification-building operations are merely facilities to structure the text of
specifications into coherent units.

96 8 Specifying the Architecture of Implementations

An architectural specification consists of a list of unit declarations,
specifying the required components, and a result part, indicating how
they are to be combined.

arch spec System =
units N : Natural Order;

C : Cont [Natural Order] given N ;
D : Cont Diff [Natural Order] given C

result D

The System architectural specification is intended to prescribe a specific
architecture for implementing the system specified by Req.

The first part, introduced by the keyword units, indicates that we require
the implementation of our system to be made of three components N , C , and
D . The second part, introduced by the keyword result, indicates that the
component D provides the desired implementation.

Each component is provided with its specification. The line:

N : Natural Order

declares a component N specified by Natural Order, which means simply
that N should be a model of Natural Order.

The line:

C : Cont [Natural Order] given N

declares a component C which, given the previously declared component N ,
provides a model of Cont [Natural Order]. It is essential to understand
that the component C must expand the assumed component N into a model
of Cont [Natural Order], which means that C reduced to the signature
of Natural Order must be equal to N . This property reflects the fact that
a software module is supposed to use what it is given exactly as supplied,
without altering it.

Similarly, the line:

D : Cont Diff [Natural Order] given C

declares a component D which, given the component C , expands it into a
model of Cont Diff [Natural Order].

The final result is therefore simply D . (More complex examples of result
expressions will be illustrated in examples below.)

As in the rest of CASL, visibility is linear in architectural specifications,
meaning that any component must be declared before being used (e.g., the
component N should be declared before being referred to by ‘given N ’ in the
declaration of the component C in the architectural specification System).

8.1 Architectural Specifications 97

Component names (such as N , C , and D in System) are local to the ar-
chitectural specification where they are declared, and are not visible outside
it.

There can be several distinct architectural choices for the same
requirements specification.

arch spec System 1 =
units N : Natural Order;

CD : Cont Diff [Natural Order] given N
result CD

The architectural specifications System and System 1 both provide mod-
els of Req. However, the former insists on an implementation made of three
components, while the latter insists on an implementation made of two com-
ponents. Thus the architectural specification System 1 corresponds to a dif-
ferent architectural choice for implementing our Req specification. Of course,
further design for implementing the component CD of System 1 may lead
to splitting this implementation task exactly as in System above. However,
there are also other possibilities, including for instance an architectural design
where we would split the task of implementing CD into two different tasks,
one for implementing containers with all their operations (including diff) ex-
cept delete, the other for implementing delete by means of diff and other
operations.

Each unit declaration listed in an architectural specification
corresponds to a separate implementation task.

For instance, in the architectural specification System, the task of provid-
ing a component D expanding C and implementing Cont Diff [Natural
Order] is independent from the tasks of providing implementations N of
Natural Order and C of Cont [Natural Order] given N . Hence,
when providing the component D , one cannot make any further assumption
on how the component C is (or will be) implemented, besides what is expressly
ensured by its specification.

To understand this, let us consider again the requirements specification
Req (or its variant Flat Req). Among its models, there is one where con-
tainers are implemented by sorted lists (in increasing order, without repeti-
tions), and in this model we can choose to implement diff by the following
algorithm:

98 8 Specifying the Architecture of Implementations

diff (L,L′) = nil when L = nil
else L when L′ = nil
else insert(head(L), diff (tail(L),L′)) when head(L) < head(L′)
else diff (tail(L), tail(L′)) when head(L) = head(L′)
else diff (L, tail(L′))

In this model, however, we rely on knowledge about the implementation
of containers to decide how to implement diff – which is fine, since both
are simultaneously implemented in the same component. In contrast, in the
architectural specification System, we request that containers are to be im-
plemented in the component C while diff is to be provided by a separate com-
ponent D . Imposing that the component D can be developed independently of
the component C means that for D it is no longer possible to implement diff
as sketched above, since this specific implementation choice may not be com-
patible with an independently chosen realization for C (where containers may
be implemented by bags, for instance). Hence an implementation of diff in the
component D can only rely on the operations provided by C (e.g., choose and
delete); this may turn out to be less efficient for some particular realization of
C , but should be compatible with any independently chosen realization for C
(bags, for instance). In the case of the architectural specification System 1,
since both containers and the diff operation are implemented in the same
component CD , we can of course decide to implement containers by ordered
lists without repetitions and diff as sketched above.

Thus the component D should expand any given implementation C of
Cont [Natural Order] and provide an implementation of Cont Diff
[Natural Order], which is tantamount to providing a generic implemen-
tation G of Cont Diff [Natural Order] which takes the particular im-
plementation of Cont [Natural Order] as a parameter to be expanded.
Then we obtain D by simply applying G to C .

Genericity here arises from the independence of the developments of C
and D , rather than from the desire to build multiple implementations of
Cont Diff [Natural Order] using different implementations of Cont
[Natural Order]. This is reflected by the fact that G is left implicit in the
architectural specification System.

A unit can be implemented only if its specification is a conservative
extension of the specifications of its given units.

For instance, the component D can exist only if the specification Cont
Diff [Natural Order] is a conservative extension of Cont [Natural
Order], i.e., if any model of the latter specification can be expanded into a
model of the former one, which is indeed the case here. Similarly, the compo-
nent C can exist since Cont [Natural Order] is a conservative extension
of Natural Order.

8.1 Architectural Specifications 99

Consider now the following variant of Cont Diff [Natural Order]
and the associated variant of the architectural specification System.

spec Cont Diff 1 =
Cont [Natural Order]

then op diff : Cont [Nat] × Cont [Nat] → Cont [Nat]
∀x , y : Nat ; C ,C ′ : Cont [Nat]
• diff (C , empty) = C
• diff (empty,C ′) = empty
• diff (insert(x ,C), insert(y,C ′)) =

insert(x , diff (C , insert(y,C ′))) when x < y
else diff (C ,C ′) when x = y
else diff (insert(x ,C),C ′)

• x is in diff (C ,C ′) ⇔ (x is in C ∧ ¬(x is in C ′))
end

arch spec Inconsistent =
units N : Natural Order;

C : Cont [Natural Order] given N ;
D : Cont Diff 1 given C

result D

The specification Cont Diff 1 is consistent (has some models, for in-
stance sorted lists, in increasing order, without repetitions), but is not a con-
servative extension of Cont [Natural Order] (since, for instance, a model
of Cont [Natural Order] where containers are realized by arbitrary lists,
possibly with repetitions, cannot be expanded into a model of Cont Diff 1
– in that case, the last two axioms are contradictory). As a consequence, in the
architectural specification Inconsistent, the specification of the component
D is inconsistent, since no component can expand all implementations C of
Cont [Natural Order] into models of Cont Diff 1. The architectural
specification Inconsistent is therefore itself inconsistent.

To summarize, architectural specifications not only prescribe the intended
architecture of the implementation of the system, but they also ensure that
the specified components can be developed independently of each other (which
imposes a certain degree of genericity for these components).

100 8 Specifying the Architecture of Implementations

8.2 Generic Components

Genericity of components can be made explicit in architectural
specifications.

arch spec System G =
units N : Natural Order;

F : Natural Order → Cont [Natural Order];
G : Cont [Natural Order] → Cont Diff [Natural Order]

result G [F [N]]

The architectural specification System G is a variant of System; here
we choose to specify the second and third components as explicit generic
components.

The line:

F : Natural Order → Cont [Natural Order]

declares a generic component F . Given any component implementing (i.e.,
model of) Natural Order, F should expand it into an implementation of
Cont [Natural Order]. The models of the generic-component specifica-
tion Natural Order → Cont [Natural Order] are functions that map
any model of Natural Order to a model of Cont [Natural Order].
These functions are required to be persistent, meaning that the result model
expands the argument model.

The third component G is also specified as a generic component: given
any implementation of Cont [Natural Order], G should expand it into
an implementation of Cont Diff [Natural Order].

Hence the whole system is obtained by the composition of applications
G [F [N]], as described in the result part. In CASL, such combinations of com-
ponents are called unit terms. (More complex examples of unit terms will be
illustrated in examples below.)

The component C of System corresponds to the application F [N] in
System G, and similarly the component D in System corresponds to G [C],
i.e., to G [F [N]] in System G.

The models of a specification of the form SP1 → SP2 are generic com-
ponents GC that should always expand their argument into a model of the
target specification. This only makes sense as long as the signature of the tar-
get specification contains the signature of SP1 . This is why in CASL, SP2 is
always considered as an implicit extension of SP1 , and SP1 → SP2 abbrevi-
ates SP1 → { SP1 then SP2 }.1 Moreover, since the generic component GC

1 When SP2 is already defined as an extension of SP1 , as it is the case for instance
here for Cont Diff [Natural Order], SP2 is equivalent to SP1 then SP2 .

8.2 Generic Components 101

should expand any model of SP1 , the specification SP1 → SP2 is consistent
(i.e., has some models) if and only if the specification SP1 then SP2 is a
conservative extension of SP1 . Forgetting this fact is a potential source of in-
consistent specifications of generic components in architectural specifications.
For instance, the specification Cont [Natural Order] → Cont Diff 1 is
inconsistent, for the reasons explained at the end of the previous section.

A generic component may be applied to an argument richer than
required by its specification.

arch spec System A =
units NA : Natural Arithmetic;

F : Natural Order → Cont [Natural Order];
G : Cont [Natural Order] → Cont Diff [Natural Order]

result G [F [NA]]

The above architectural specification System A is a variant of Sys-
tem G. Here we require a component NA implementing the specification
Natural Arithmetic, instead of a component N implementing Natural
Order as in System G (perhaps because we know that such a component is
already available in some collection of previously-implemented components.)

The generic component F requires a component fulfilling the specification
Natural Order, but can of course be applied to a richer argument, as in
F [NA]. A similar reasoning applies to G.

More generally, a generic component can be applied to any component (or
to any unit term) that can be reduced along some morphism to an argument
of the required ‘type’ (i.e., to a model of the required specification). When
necessary, a fitting symbol map can be used to describe the correspondence
between the symbols provided by the argument and those expected by the
generic component. We do not detail here the technicalities related to these
fitting symbol maps, since they are quite similar to those used in instantiations
of generic specifications and the notations are the same.

As a last remark, note that, similarly to what happens when instantiating a
generic specification by an argument specification, when a generic component
is applied to an argument richer than required, the extra symbols are kept in
the result. Hence the result of the architectural specification System A above
contains also the interpretations of the arithmetic and ordering operations on
natural numbers, as they are provided by the component NA. This means in
particular that the implementations described by System A have a larger
signature than the ones described by System G.

102 8 Specifying the Architecture of Implementations

Specifications of components can be named for further reuse.

unit spec Cont Comp = Elem → Cont [Elem]

unit spec Diff Comp = Cont [Elem] → Cont Diff [Elem]

arch spec System G1 =
units N : Natural Order;

F : Cont Comp;
G : Diff Comp

result G [F [N]]

In the above example, we give the name Cont Comp to the specification
(of generic components) Elem → Cont [Elem]. Similarly, we give the name
Diff Comp to the specification Cont [Elem] → Cont Diff [Elem]. Then
both named specifications can be reused in the architectural specification
System G1 which is similar to the architectural specification System G.

In the architectural specification System G1, we use again the fact that
the generic component F can be applied to richer arguments than models
of Elem (and similarly for G). Since Elem is more general (has more mod-
els) than Natural Order, there are potentially fewer possibilities for im-
plementing the generic component specified by Cont Comp (which should
be compatible with any model of Elem) than there are for implementing
the generic component specified by Natural Order → Cont [Natural
Order] (which only needs to be compatible with models of Natural
Order; a similar argument holds for Diff Comp). As a consequence, the
architectural specifications System G and System G1 do not describe the
same implementations of the requirements specification Req.

Both named and unnamed specifications can be used to specify
components.

unit spec Diff Comp 1 =
Cont [Elem] → { op diff : Cont [Elem] × Cont [Elem] → Cont [Elem]

∀e : Elem; C ,C ′ : Cont [Elem]
• e is in diff (C ,C ′) ⇔

(e is in C ∧ ¬(e is in C ′)) }
So far we have always used named (structured) specifications to specify

components. unnamed specifications can be used as well, as illustrated by
the above variant Diff Comp 1 of Diff Comp. Here, for the sake of the
example, we directly specify the diff operation instead of referring to the

8.2 Generic Components 103

named specification Cont Diff. Remember that in a specification of a generic
component of the form SP1 → SP2 , SP2 is always considered as an implicit
extension of SP1 , which explains why the above example is well-formed.

Specifications of generic components should not be confused with
generic specifications.

Generic specifications naturally give rise to specifications of generic com-
ponents, which can be named for later reuse, as illustrated above by Cont
Comp. However, the reader should not confuse a generic specification (which
is nothing other than a piece of specification that can easily be adapted by
instantiation) with the corresponding specification of a generic component:
the latter cannot be instantiated, it is the specified generic component which
gets applied to suitable components.

Conservative extensions of the form ‘spec SP2 = SP1 then SP ’ also
naturally give rise to specifications of generic components of the form SP1 →
SP2 , as illustrated by Diff Comp above.

A generic component may be applied more than once in the same
architectural specification.

arch spec Other System =
units N : Natural Order;

C : Color;
F : Cont Comp

result F [N] and F [C fit Elem �→ RGB]

The above architectural specification requires a component N specified
by Natural Order, a component C specified by Color, and a generic
component F specified by Cont Comp. Then, as described by the result
part, the desired system is obtained by applying F to N and applying F to C
(in this case, an explicit fitting symbol map is necessary, since Color exports
two sorts RGB and CMYK). Finally both application results are combined,
which is expressed by ‘and’.

Apart from ‘free’, all specification-building operations for structured
specifications have natural counterparts at the level of components, which
are expressed using the same keywords.2 The reader should remember that
specification-building operations work with specifications defining classes of
2 The situation is however a bit different with specification extensions, which lead

to specifications of generic components, as explained above, or to specifications of
components expanding a given component, as illustrated in the previous section.

104 8 Specifying the Architecture of Implementations

models (e.g., union of specifications, denoted by ‘and’), while in architectural
specifications we work with individual models (corresponding to components,
as is the case here in Other System where ‘and’ is used to combine the two
components F [N] and F [C fit Elem �→ RGB]).

Hence renaming and hiding also have natural counterparts at the level of
components. For instance, remember that the implementations described by
System A have a larger signature than the implementations described by
System G. It is however easy to modify the result part of System A if what
we really want are implementations with the same signature as the imple-
mentations described by System G: one has just to hide the extra symbols
resulting from the component NA as follows:

result G [F [NA]] hide 1 , + , ∗
or:

result G [F [NA hide 1 , + , ∗]]

Symbol maps used in renaming and hiding at the level of components
follow the same rules as symbol maps used in renaming and hiding at the
level of structured specifications (see Chap. 6).

Several applications of the same generic component is different from
applications of several generic components with similar specifications.

arch spec Other System 1 =
units N : Natural Order;

C : Color;
FN : Natural Order → Cont [Natural Order];
FC : Color → Cont [Color fit Elem �→ RGB]

result FN [N] and FC [C]

The above architectural specification Other System 1 is a variant of
Other System. However, in Other System, we insist on choosing one im-
plementation for containers in the generic component F , and then we apply it
twice, first to a component N implementing Natural Order, and then to
a component C implementing Color. In contrast, in Other System 1, we
may choose two different implementations for containers, one for containers
of natural numbers in the component FN and another one for containers of
colors in the component FC .

The architectural specifications Other System and Other System 1
are therefore similar but clearly different. Neither is better than the other:
each corresponds to a different architectural decision, and selecting one rather
than the other is a matter of architectural design. Components that are more
widely reusable tend to have less efficient implementations, in general. (Here

8.2 Generic Components 105

the fact that RGB has only three values might be exploited in FC to give a
more space-efficient representation of containers than is possible for FN .)

Generic components may have more than one argument.

unit spec Set Comp = Elem → Generated Set [Elem]

spec Cont2Set [Elem] =
Cont [Elem] and Generated Set [Elem]

then op elements of : Cont [Elem] → Set
∀e : Elem; C : Cont [Elem]
• elements of empty = empty
• elements of insert(e,C) = {e} ∪ elements of C

end

arch spec Arch Cont2Set Nat =
units N : Natural Order;

C : Cont Comp;
S : Set Comp;
F : Cont [Elem] × Generated Set [Elem]

→ Cont2Set [Elem]
result F [C [N]] [S [N]]

The architectural specification Arch Cont2Set Nat requires a compo-
nent N implementing Natural Order, a generic component C implement-
ing Cont Comp, i.e., containers, and a generic component S implementing
Set Comp, i.e., sets. Then it further requires a generic component F that,
given any pair of compatible models X of Cont [Elem] and Y of Gener-
ated Set [Elem], expands them into a model of Cont2Set [Elem].

Models X and Y are said to be compatible if they share a common interpre-
tation for all symbols they have in common. Here the only symbol they have
in common is the sort Elem, so the compatibility condition means that X and
Y have the same carrier set for Elem. Compatibility is a natural condition,
since it is obviously necessary that X and Y have a common interpretation of
their common symbols, otherwise they cannot be both expanded to the same
more complex component.

The result is then produced by applying F to the pair obtained by applying
C to N and S to N . Here the pair of arguments C [N] and S [N] are obviously
compatible, since their common symbols (the sort Nat equipped with the
operations 0 and suc) all come from the same component N which provides
their interpretation, which is expanded (hence cannot be modified) in C [N]
and in S [N], thus compatibility is guaranteed.

106 8 Specifying the Architecture of Implementations

Open systems can be described by architectural specifications using
generic unit expressions in the result part.

arch spec Arch Cont2Set =
units C : Cont Comp;

S : Set Comp;
F : Cont [Elem] × Generated Set [Elem]

→ Cont2Set [Elem]
result λX : Elem • F [C [X]] [S [X]]

arch spec Arch Cont2Set Used =
units N : Natural Order;

CSF : arch spec Arch Cont2Set
result CSF [N]

So far our example architectural specifications have described ‘closed’,
stand-alone systems where all components necessary to build the desired sys-
tem were declared in the architectural specification of interest. In CASL, it is
however possible to describe ‘open’ systems, i.e., systems made of some com-
ponents that would require further components to provide a ‘closed’ system.
This is illustrated by the architectural specification Arch Cont2Set which
describes a system with a generic component C implementing containers, a
generic component S implementing sets, and a generic component F that ex-
pands them to provide an implementation of the operation elements of . The
result part is therefore a generic structured component, i.e., an ‘open’ system,
which, given any component X implementing Elem, provides a system built
by applying F to the pair made of the applications of C to X and of S to X .
In CASL, ‘λ’ is input as ‘lambda’.

As illustrated by Arch Cont2Set Used, we can then describe a ‘closed’
system made of a component N implementing Natural Order, and of an
‘open’ system CSF specified by Arch Cont2Set, which is then applied to
N in the result part.

8.3 Writing Meaningful Architectural Specifications

In the previous sections we have already pointed out potential sources of in-
consistent specifications of components. Another issue which deserves some
attention when designing an architectural specification is compatibility be-
tween components (or, more generally, unit terms) that are to be combined
together, either by ‘and’, or by fitting them to a generic component with
multiple arguments.

8.3 Writing Meaningful Architectural Specifications 107

When components are to be combined, it is best to check that any
shared symbol originates from the same non-generic component.

arch spec Arch Cont2Set Nat 1 =
units N : Natural Order;

C : Cont Comp;
S : Set Comp;
G : { Cont [Elem] and Generated Set [Elem] }

→ Cont2Set [Elem]
result G [C [N] and S [N] fit Cont [Elem] �→ Cont [Nat]]

The architectural specification Arch Cont2Set Nat 1 is a variant of
Arch Cont2Set Nat where, instead of declaring a generic component F
with two arguments, we now declare a generic component G with a single
argument, which must be a model of the specification { Cont [Elem] and
Generated Set [Elem] }, obtained as the union of the two (trivially in-
stantiated) specifications of containers and sets.

As a consequence, to obtain the desired system, in the result part we apply
the generic component G to the combination (denoted by ‘and’) of C applied
to N and of S applied to N .3 This combination makes sense only if both C [N]
and S [N] share the same interpretation of their common symbols. Here their
common symbols (the sort Nat equipped with the operations 0 and suc)
all come from the same component N which provides their interpretation,
which is expanded (hence cannot be modified) in C [N] and in S [N], thus
compatibility is guaranteed.

There is a clear analogy here between the application of the generic com-
ponent F with multiple arguments in Arch Cont2Set Nat and the com-
bination of C [N] and S [N] in Arch Cont2Set Nat 1: in both cases the
result is meaningful because we can trace shared symbols like the sort Nat
and the operations 0 and suc to a single component N introducing them.

Let us emphasize again that compatibility is a natural requirement: since
each unit declaration corresponds to a separate implementation task (and
hence each unit subterm to an independently developed subsystem), obviously
the combination of components or unit terms makes sense only when some
compatibility conditions are fulfilled.

Let us now consider an example where the compatibility condition is vio-
lated.
3 In the application of the generic component G we need an explicit fitting symbol

map since otherwise the sort Cont [Elem] can ambiguously be mapped to either
Cont [Nat] or Set .

108 8 Specifying the Architecture of Implementations

arch spec Wrong Arch Spec =
units CN : Cont [Natural Order];

SN : Generated Set [Natural Order];
F : Cont [Elem] × Generated Set [Elem]

→ Cont2Set [Elem]
result F [CN] [SN]

The architectural specification Wrong Arch Spec is a variant of Arch
Cont2Set Nat where, instead of requiring a component N implementing
Natural Order and two generic components implementing containers and
sets respectively, we just require a component CN implementing containers of
natural numbers and a component SN implementing sets of natural numbers.
However, then the application F [CN] [SN] makes no sense since there is
no way to ensure that the common symbols of CN and SN have the same
interpretation. It may indeed be the case that natural numbers are interpreted
in some way in CN and in a different way in SN , which makes the application
of F impossible. (Hence a similar problem would arise if one would use the
combination of components ‘CN and SN ’.)

Let us now consider a more complex example.

arch spec Badly Structured Arch Spec =
units N : Natural Order;

A : Natural Order → Natural Arithmetic;
C : Cont Comp;
S : Set Comp;
F : Cont [Elem] × Generated Set [Elem]

→ Cont2Set [Elem]
result F [C [A [N]]] [S [A [N]]]

The architectural specification Badly Structured Arch Spec is a vari-
ant of Arch Cont2Set Nat where, in addition to the component N imple-
menting Natural Order, we require a generic component A which is used
to expand N into an implementation of Natural Arithmetic. In the archi-
tectural specification Arch Cont2Set Nat, the compatibility condition in
the application F [C [N]] [S [N]] was easy to discharge. Here, in the result unit
term F [C [A [N]]] [S [A [N]]] of Badly Structured Arch Spec, we apply
F to the pair made of C [A [N]] and S [A [N]]. In this case only a semantic
analysis can ensure that these two arguments are compatible, since the com-
mon symbols cannot be traced to the same non-generic component, but only
to two applications of the same generic component A to similar arguments.
(Actually the arguments are just the same here, but in general checking this
would require non-trivial semantic reasoning.)

It is advisable to use unit terms where compatibility can be checked by
a simple static analysis. CASL provides additional constructs which make it
easy to follow this recommendation, as explained below.

8.3 Writing Meaningful Architectural Specifications 109

Auxiliary unit definitions or local unit definitions may be used to
avoid repetition of generic unit applications.

arch spec Well Structured Arch Spec =
units N : Natural Order;

A : Natural Order → Natural Arithmetic;
AN = A [N];
C : Cont Comp;
S : Set Comp;
F : Cont [Elem] × Generated Set [Elem]

→ Cont2Set [Elem]
result F [C [AN]] [S [AN]]

arch spec Another Well Structured Arch Spec =
units N : Natural Order;

A : Natural Order → Natural Arithmetic;
C : Cont Comp;
S : Set Comp;
F : Cont [Elem] × Generated Set [Elem]

→ Cont2Set [Elem]
result local AN = A [N] within F [C [AN]] [S [AN]]

The problem illustrated in Badly Structured Arch Spec can be fixed
easily. An auxiliary unit definition may be used to avoid the repetition of
generic unit applications, such as ‘AN = A [N]’ in Well Structured
Arch Spec. An alternative is to make the definition of AN local to the result
unit term, as illustrated in Another Well Structured Arch Spec. In
both cases common symbols can be traced to a non-generic unit, and com-
patibility can be checked by an easy static analysis.

9

Libraries

Libraries are named collections of named specifications.

In the foregoing chapters, we have seen many examples of named specifica-
tions, and of references to them in later specifications. This chapter explains
how a collection of named specifications can itself be named, as a library. The
creation of libraries facilitates the reuse of specifications. For practical appli-
cations, it is important to be able to reuse (at least) existing specifications of
basic datatypes, such as those described in Chap. 12.

Local libraries are self-contained.

A library is called local when it is self-contained, i.e., for each reference to a
specification name in the library, the library includes a specification with that
name. Local libraries might appear at first sight to be all that we need, but
actually they provide poor support for reuse of specifications. The problem
is that when a specification from one local library is reused in another, it
has to be repeated verbatim. There is no formal link between the original
specification and the copy, despite them having the same name: the names
used in a library can be chosen freely, and different libraries could use the
same name for completely different specifications.

Distributed libraries support reuse.

Distributed libraries allow duplication of specifications to be avoided al-
together. Instead of making an explicit copy of a named specification from

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 111–122, 2004.
c© IFIP International Federation for Information Processing 2004

112 9 Libraries

one library for use in another, the second library merely indicates that the
specification concerned can be downloaded from the first one.

Different versions of the same library are distinguished by
hierarchical version numbers.

In practice, specifications evolve, e.g., to provide further operations or
predicates on the specified sorts, or to define new subsorts. The libraries
containing the specifications can evolve too, by adding or removing named
specifications. Without some form of version control, even a trifling change in
one library might cause specifications in other libraries to become ill-formed,
or affect their meanings. CASL allows different versions of the same library
to coexist (distinguishing them by hierarchical version numbers), and allows
downloadings in a library to indicate that a particular version of another
library is required.

Creation of new libraries is essential in connection with larger specification
projects, and projects of any scale can benefit from reuse of specifications
from existing libraries. The rest of this chapter illustrates the constructs used
to specify local libraries, distributed libraries, and versions, and gives some
advice on the organization of libraries.

9.1 Local Libraries

Local libraries are self-contained collections of specifications.

library UserManual/Examples
. . .
spec Natural = . . .
. . .
spec Natural Order = Natural then . . .
. . .

The collection of all the illustrative examples given in the foregoing chap-
ters is self-contained, so it could be made into a local library and named User-
Manual/Examples, as outlined above. To provide a separate local library
for each chapter would however involve a considerable amount of duplication,
since many of the specifications that are defined in the earlier chapters are
also referenced in later chapters (e.g., Set Partial Choose in Chap. 4 in-

9.1 Local Libraries 113

stantiates Generated Set, which is defined in Chap. 3). Using distributed
libraries, as explained in Sect. 9.2, this duplication can be avoided.1

The ‘same name, same thing’ principle of CASL applies only within specifi-
cations, and it is possible for a library to include alternative specifications for
the same symbols (e.g., using different sets of axioms). However, when such
alternative specifications are both extended (perhaps indirectly) in the same
specification, the principle does apply, and unintended name clashes might
then arise. Thus in general, it is advisable for the developers of a library to
respect the ‘same name, same thing’ principle when choosing symbols through-
out the library. In any case, this is obviously helpful to those who might later
browse the library. Alternative specifications for the same symbols should
therefore be given in separate libraries.2

Specifications can refer to previous items in the same library.

library UserManual/Examples
. . .
spec Strict Partial Order = . . .
. . .
spec Total Order = Strict Partial Order then . . .
. . .
spec Partial Order = Strict Partial Order then . . .
. . .

Although we may often regard libraries as sets of named specifications,
they are actually sequences, and the order in which the specifications occur is
significant.

Specification names have linear visibility: each specification can refer only
to the names of the specifications that precede it. Thus a series of extensions
has to be presented in a bottom-up fashion, starting with a specification that
is entirely self-contained, containing no references to other specifications at
all. Each specification name in a library has a unique defining occurrence, so
overriding cannot arise. Extensions that do not refer to each other may be
given in any order (e.g., Partial Order above could just as well be given
before Total Order).

Linear visibility of specification names means that mutual recursion be-
tween specifications is prohibited. When two specifications each make use of
symbols declared in the other, the declarations of those symbols have to be
duplicated, or moved to a preceding specification that can then be referenced
by them both.
1 A distributed library for each chapter of Part II is available via the CoFI web

pages; copies are provided on the CD-ROM accompanying this book.
2 If we intended our comprehensive UserManual/Examples library for general

use, we would remove all the illustrative alternative specifications.

114 9 Libraries

All kinds of named specifications can be included in libraries.

library UserManual/Examples
. . .
spec Strict Partial Order = . . .
. . .
spec Generic Monoid [sort Elem] = . . .
. . .
view Integer as Total Order : . . .
. . .
view List as Monoid [sort Elem] : . . .
. . .
arch spec System = . . .
. . .
unit spec Cont Comp = . . .
. . .

Items in libraries can be any kind of named specification, as illustrated
above: simple named specifications, generic specifications, named view defini-
tions, generic view definitions, and architectural and unit specifications. We
shall henceforth refer to them generally as library items.

Libraries themselves never include anonymous specifications, such as dec-
larations of sorts and operations. Moreover, the symbols declared by a library
item are not automatically available for use in subsequent items: an explicit
reference to the name of the library item is required to ‘import’ the item.

Technically, each library item is said to be closed, being interpreted with-
out any pre-declared symbols at all. This facilitates downloading items from
distributed libraries, see Sect. 9.2.

Display, parsing, and literal syntax annotations apply to entire
libraries.

library UserManual/Examples
. . .
%display <= %LATEX ≤
%display >= %LATEX ≥
%display union %LATEX ∪
%prec { + , − } < { ∗ }
%left assoc + , ∗
. . .
spec Strict Partial Order = . . .
. . .

9.1 Local Libraries 115

spec Partial Order = Strict Partial Order then . . .≤. . .
. . .
spec Generated Set [sort Elem] = . . .∪. . .
. . .
spec Integer Arithmetic Order = . . .≤. . .≥. . .
. . .

Annotations affecting the way terms are written or displayed apply to an
entire library, and have to be collected at the beginning of the library. These
annotations include display and precedence annotations, illustrated above.

Recall that various reserved words and symbols in CASL specifications are
input in ASCII, but displayed as mathematical signs (e.g., universal quantifi-
cation is input as ‘forall’, and displayed as ‘∀’ when this sign is available in
the current display format). Display annotations provide analogous flexibility
for declared symbols. For example, the display annotations illustrated above
determine how infix symbols input as ‘<=’, ‘>=’, and ‘union’ are displayed
when using LATEX to format the specification. Note that a display annotation
applies to all occurrences of the input symbol in the library, regardless of
overloading.

Display annotations can give alternative displays for different formats:
apart from LATEX, both RTF and HTML are presently supported. The display
of the annotation itself shows only the input syntax of the symbol and the
result produced by the current formatter. The input form of one of the above
annotations might be as follows:

%display __union__ %HTML __^U %LATEX __\cup__

When no display annotation is given for a particular format, the input format
itself is displayed. Thus the symbol displayed as ‘∪’ in the present LATEX
version of this User Manual would be displayed as ‘union’ in an RTF version,
unless the above annotation were to be extended with an RTF part.

Parsing annotations allow omission of grouping parentheses when terms
are input. A single annotation can indicate the relative precedence or the
associativity (left or right) of a group of operation symbols. The precedence
annotation for infix arithmetic operations given above, namely:

%prec { + , − } < { ∗ }
allows a term such as a + (b ∗ c) to be input (and hence also displayed) as
a + b ∗ c. The left-associativity annotation for + and ∗:

%left assoc + , ∗
allows (a + b) + c to be input as a + b + c, and similarly for ∗; but the
parentheses cannot be omitted in (a + b) − c (not even if ‘ − ’ were to be
included in the same left-associativity annotation).

116 9 Libraries

When an operation symbol is declared with the associativity attribute
assoc, an associativity annotation for that symbol is provided automatically.3

Thus in practice, explicit associativity annotations are needed only for non-
associative operations such as subtraction and division.

Libraries and library items can have author and date annotations.

library UserManual/Examples
%authors(Michel Bidoit <bidoit@lsv.ens-cachan.fr>,

Peter D. Mosses <pdmosses@brics.dk>)%
%dates 15 Oct 2003, 1 Apr 2000

. . .
spec Strict Partial Order = . . .
. . .
%authors Michel Bidoit <bidoit@lsv.ens-cachan.fr>

%dates 10 July 2003

spec Integer Arithmetic Order =
. . .

An author annotation at the beginning of a library indicates the collec-
tive authorship of the entire library; one preceding an individual library item
indicates its specific authorship.

A date annotation at the beginning of a library should indicate the release
date of the current version of the library. It may also give the release dates of
some previous major versions, possibly including that of the original version.
A date annotation on an individual library item should indicate when that
item was last changed, and (optionally) the dates of previous changes.

9.2 Distributed Libraries

Libraries can be installed on the Internet for remote access.

library Basic/Numbers
. . .
%left assoc @@

%number @@

%floating ::: , E

%prec { E } < { ::: }
3 This implicit parsing annotation is local to the enclosing specification and to

specifications that reference it, in contrast to ordinary parsing annotations.

9.2 Distributed Libraries 117

. . .
spec Nat =

free type Nat ::= 0 | suc(Nat)
. . .
ops 1 : Nat = suc(0); . . . ; 9 : Nat = suc(8);

@@ (m,n : Nat) : Nat = (m ∗ suc(9)) + n. . .
spec Int = Nat then . . .
spec Rat = Int then . . .
spec DecimalFraction = Rat then

. . .
ops ::: : Nat × Nat → Rat ;

E : Rat × Int → Rat. . .
The above example is an extract from one of the CASL libraries of basic

datatypes, described in Chap. 12 and available on the Internet. It illustrates
the overall structure of a library intended for general use, as well as some
helpful annotations concerning literal syntax for numbers, which are explained
below.

Validated libraries can be registered for public access.

CoFI will maintain a register of useful libraries. Registered CASL libraries
are identified by hierarchical path names. For instance, all the CASL libraries of
basic datatypes have names starting with ‘Basic/’, and path names starting
with ‘Casl/’ are reserved for libraries connected with the CASL language itself
(e.g., the specification of the abstract syntax of CASL in CASL).

Registered libraries will be mirrored at several sites, to ensure their con-
tinuous accessibility. The URLs of a library can be obtained from the library
name using a table provided on the CoFI web pages.

Libraries have to be validated before registration. The validation of a li-
brary ensures not only that it is well-formed, but also that semantic annota-
tions expressing consistency of specifications (or conservativity over the pa-
rameters, in case of generic or unit specifications) have been added, and that
all proof obligations (corresponding both to well-formedness conditions and
to semantic annotations in the library) have been verified.

It is likely that new versions of existing libraries will be produced, e.g.,
providing further operations whose usefulness was not realized beforehand.
Although the assignment and use of library version numbers allows users to
protect their specifications from changes due to new versions (see Sect. 9.3), at
least the names used in a registered library should not change much between
versions.

118 9 Libraries

Libraries should include appropriate annotations.

In particular, parsing and display annotations can be provided, as ex-
plained in Sect. 9.1. The above example illustrates a further kind of anno-
tation, used to provide literal syntax for numbers in CASL. The effect of the
illustrated annotations is that, after downloading the appropriate specifica-
tions from the library Basic/Numbers, conventional decimal notation can
be used for integers and decimal fractions, e.g., 42 , 2 .718 , 10E−12 . The digits
42 are interpreted as the term 4@@2 , and 2 .718 is interpreted as the term
2 :::718 (where 718 is subsequently interpreted as (7@@1)@@8). The defini-
tion of the operation @@ is shown above; those of ::: and E are a bit
more involved, and omitted here. Notice that the library Basic/Numbers is
not hard-wired into CASL, and users could provide annotations to interpret
the literal syntax for integers and decimal fractions as terms involving different
operations, e.g., on different sorts.

Libraries can include items downloaded from other libraries.

library Basic/StructuredDatatypes
. . .
from Basic/Numbers get Nat, Int
. . .
spec List [sort Elem] given Nat = . . .
. . .
spec Array . . . given Int = . . .
. . .

Individual specifications and other items can be downloaded from other
libraries. For example, the library Basic/StructuredDatatypes, outlined
above, does not itself provide the specifications of natural numbers and in-
tegers that are needed in the specifications List and Array, but instead
downloads Nat and Int from the Basic/Numbers library.

The names of the items to be downloaded from a library have to be listed
explicitly: one cannot request the downloading of all the items that happen to
be provided by a library. However, although the name of each item provided
by a downloading is always explicit, no indication is given of its kind (i.e.,
whether it is an ordinary, generic, or architectural specification, or a view) nor
of what symbols it declares. Thus the well-formedness of a library depends on
what items are actually downloaded from other libraries.

The construct ‘from . . .get . . . ’ above has the effect of downloading the
specifications that are named Nat and Int in Basic/Numbers, preserving
their names. It is also possible to give downloaded specifications different

9.2 Distributed Libraries 119

names, e.g., to avoid clashes with specification names that are already in use
locally:

from Basic/Numbers get Nat �→ Natural, Int �→ Integer

Items that are referenced by downloaded items are not themselves auto-
matically downloaded, e.g., downloading Int does not entail the downloading
of Nat. This is because downloading involves the semantics of the named
items, not their text. The semantics of Int consists of a signature and a class
of models, and is a self-contained entity – recall from Chap. 6 that the models
of a structured specification have no more structure than do those of a flat,
unstructured specification. Thus downloading Int gives exactly the same re-
sult as if the reference to Nat in its text had already been replaced by the text
of Nat before downloading. For the same reason, the presence of another item
with the name Nat in the current library makes no difference to the result of
downloading Int. In terms of software packages, downloading specifications
from CASL libraries is analogous to installing packages from binaries, rather
than from sources.

Downloading any item from another library B in a library A causes all the
parsing and display annotations of B to be inserted at the beginning of A.
(Conflicting annotations from different libraries are ignored altogether, and
local annotations override conflicting downloaded annotations.) The copied
annotations allow terms to be written and displayed in A in the same way as
in B.

Substantial libraries of basic datatypes are already available.

The organization of the following libraries of basic datatypes is explained
in Chap. 12:

Basic/Numbers: natural numbers, integers, and rationals.
Basic/RelationsAndOrders: reflexive, symmetric, and transitive rela-

tions, equivalence relations, partial and total orders, boolean algebras.
Basic/Algebra I: monoids, groups, rings, integral domains, and fields.
Basic/SimpleDatatypes: booleans, characters.
Basic/StructuredDatatypes: sets, lists, strings, maps, bags, arrays, trees.
Basic/Graphs: directed graphs, paths, reachability, connectedness, colorabil-

ity, and planarity.
Basic/Algebra II: monoid and group actions on a space, euclidean and

factorial rings, polynomials, free monoids, and free commutative monoids.
Basic/LinearAlgebra I: vector spaces, bases, and matrices.
Basic/LinearAlgebra II: algebras over a field.
Basic/MachineNumbers: bounded subtypes of naturals and integers.

120 9 Libraries

These libraries form a coherent collection of highly-polished specifications.
The libraries themselves are provided in full in the CASL Reference Manual
[20], and are available on the Internet.

Libraries need not be registered for public access.

library http://www.cofi.info/CASL/Test/Security
. . .
from http://casl:password@www.cofi.info/CASL/RSA get Key
. . .
spec Decrypt = Key then . . .
. . .

Libraries under development, and libraries provided for restricted groups
of users, are named and accessed by their URLs (instead of the simple path
names used for registered libraries). This allows the CASL library constructs
to be fully exploited for libraries that are not yet – and perhaps never will
be – registered for public access. Moreover, validation of libraries can be a
demanding and time-consuming process, and getting a library approved and
registered is appropriate only when it provides specifications that are likely
to be found useful by persons not directly involved in its development.

The primary Internet access protocols HTTP and FTP both support pass-
word protection of libraries and the insertion of usernames and passwords in
URLs allows downloading between protected libraries (With HTTP, the user-
name and password can be unrelated to those used for the host file system.)

9.3 Version Control

Subsequent versions of a library are distinguished by explicit version
numbers.

library Basic/Numbers version 1.0
. . .
spec Nat = . . .
. . .
spec Int = Nat then . . .
. . .
spec Rat = Int then . . .
. . .

9.3 Version Control 121

As illustrated above, a library can be assigned an explicit version num-
ber, allowing it to be distinguished from previous and future versions of the
same library. CASL allows conventional hierarchical version numbers, familiar
from version numbers of software packages: the initial digits indicate a major
version, digits after a dot indicate sub-versions, and digits after a further dot
indicate patches to correct bugs. (Distinctions between alpha, beta, and other
pre-release versions are not supported.)

The smallest version number is written simply ‘0’, and can be omitted
when specifying the initial version of a library; this is the case with the version
of Basic/Numbers shown in Sect. 9.2, it implicitly has version number ‘0’,
but in general the first-installed version of a library could have any version
number at all. The numbers of successively installed versions do not have to
be contiguous, nor even increasing: e.g., a patched version 0.99.1 could be
installed after version 1.0.

Individual library items do not have separate version numbers. Date anno-
tations can be used to indicate which items have changed between two versions
of a library.

Libraries can refer to specific versions of other libraries.

library Basic/StructuredDatatypes version 1.0
. . .
from Basic/Numbers version 1.0 get Nat, Int
. . .
spec List [sort Elem] given Nat = . . .
. . .
spec Array . . . given Int = . . .
. . .

Downloading items from particular versions of libraries is necessary if one
wants to ensure coherence between libraries. For example, as illustrated above,
version 1.0 of Basic/StructuredDatatypes downloads Nat and Int from
version 1.0 of Basic/Numbers. Omitting the version number when down-
loading gives implicitly the current version of the library, which may of course
change. By the way, the current version of a library is not necessarily the one
most recently installed: it is the one with the largest version number. As pre-
viously mentioned, a patched version 0.99.1 could be installed after version
1.0, but a downloading without an explicit version number would still refer to
version 1.0.

Even though the developers of libraries may try to ensure backwards com-
patibility between versions, it could happen that symbols introduced in a new
version of a downloaded specification clash with symbols already in use in
the library that specified the downloading, causing ill-formedness or incon-
sistency. So for safety, it is advisable to give explicit version numbers when

122 9 Libraries

downloading (also when downloading from version ‘0’ of another library). If
one subsequently wants to use symbols that are introduced only in some later
version of another library, all that is needed is to change the version number
in the downloading(s).

An alternative strategy is to ensure consistency with the current versions
of all libraries from which specifications are downloaded, by observing the
changes in the new versions and adapting the downloading library accord-
ingly. For instance, one might download Int from the current version of Ba-
sic/Numbers, instead of from version 1.0 of that library. This may involve
extra work when a new version of Basic/Numbers appears, but it has sev-
eral advantages over the more cautious approach. CASL leaves the choice to
the user, although registered libraries will generally be required to use explicit
version numbers when downloading from other libraries.

All downloadings should be collected at the beginning of a library.

Although CASL allows downloadings to be interleaved with specification
definitions, it is advisable to collect the downloadings at the beginning of
libraries (together with any parsing and display annotations). This makes
it easy to see dependencies between libraries, and to ensure that different
downloadings from the same library all refer to the same version of it.

10

Foundations

Donald Sannella and Andrzej Tarlecki

A complete presentation of CASL is in the Reference Manual.

This User Manual has introduced the potential user to the features of CASL

mainly by means of illustrative examples. It has presented and discussed the
typical ways in which the language concepts and constructs are expected to be
used in the course of building system specifications. Thus, the presentation in
Part II focused on what the constructs and concepts of CASL are for, and how
they should (and should not) be used. We tried to make these points as clear
as possible by referring to simple examples, and by discussing both the general
ideas and some details of CASL specifications. We hope that this has given the
reader a sufficient feel of the formalism, and enough understanding, to look
through the presentation of a basic library of CASL specifications in Chap. 12,
to follow the case study in Chap. 13, and to start experimenting with the
use of CASL for writing specifications – perhaps employing the support tools
presented in Chap. 11.

By no means, however, should this book be regarded as a complete presen-
tation of the CASL specification formalism – this is given in the accompanying
volume, the CASL Reference Manual [20].

CASL has a definitive summary.

The CASL Reference Manual begins with a definitive summary of the en-
tire CASL language: all the language constructs are listed there systematically,
together with the syntax used to write them down and a detailed explana-
tion of their intended meaning. However, although it tries to be precise and
complete, the CASL Summary still relies on natural language to present CASL.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 125–129, 2004.
c© IFIP International Federation for Information Processing 2004

126 10 Foundations

This inherently leaves some room for interpretation and ambiguity in vari-
ous corners of the language, for example where details of different constructs
interact.

CASL has a complete formal definition.

A key aim of the entire CoFI initiative is to avoid any potential ambiguities
by providing a complete formal definition for CASL, and sound mathematical
foundations for the advocated methodology of its use in software specification
and development.

Abstract and concrete syntax of CASL are defined formally.

The next part of the Reference Manual is a formal definition of the syntax
of CASL. Abstract syntax is given, where each phrase is written in a way that
directly indicates its components, thus making evident its internal structure.
In essence, the use of each construct of the language is explicitly labeled
here. This is convenient for formal manipulation and analysis, but is not so
readable. Therefore, the so-called concrete syntax of CASL (as used for instance
in the examples throughout this book) is given as well, retaining a direct
correspondence with the abstract syntax. This offers to the user of CASL a
convenient and readable way of writing down CASL specifications, in a way
that makes clear the formal structure of the phrases and constructs used to
build them. As usual, the syntax is given as a context-free grammar, using
a variant of the BNF notation, relying on well-established theory to give its
formal meaning, and on a variety of tools and techniques available for syntactic
analysis of languages presented in such a style.

CASL has a complete formal semantics.

The ultimate definition of the meaning of CASL specifications is provided
by the semantics of CASL in the Reference Manual. The semantics first defines
mathematical entities that formally model the intended meaning of various
concepts underlying CASL, as already hinted at in Chap. 2, and further intro-
duced and discussed throughout the summary.

The key concepts here are that of CASL signature, model and formula,
together with the satisfaction relation between models and formulas over a
common signature. In fact, these are variants of the standard algebraic and
logical notions, thus linking work on CASL to well-established mathematical
theories and ideas.

10 Foundations 127

In a more or less standard way, we use these concepts to build the semantic
domains which the meanings of phrases in various syntactic categories of CASL

inhabit. We have chosen to give the semantics in the form of so-called natural
semantics, with formal deduction rules to derive judgments concerning the
meaning of each CASL phrase from the meanings of its constituent parts. Not
only is this a mathematically well-established formalism with an unambiguous
interpretation, but we also hope that this makes the semantics itself more
readable, with details easier to follow than in some other approaches.

The overall semantics of CASL consists of two parts. The static semantics
captures a form of static analysis of CASL specifications, in which they are
checked for well-formedness – for example, that axioms are well-typed, and
references to named entities are in scope. Then the model semantics takes a
well-formed CASL specification and assigns a model-theoretic meaning to it.

CASL specifications denote classes of models.

In CASL, well-formed specifications denote signatures (static semantics)
and classes of models (model semantics). Basic specifications, which in essence
present a signature and a set of axioms over this signature, denote the class
of models that satisfy all the axioms. The semantics of basic specifications is
split into two parts: first many-sorted basic specifications are described and
then features for defining and using subsorts are added.

The semantics is largely institution-independent.

A few more concepts are needed to explain the semantics of structured
specifications. Key here is the notion of signature morphism, and the model
reducts and translation of sentences that signature morphisms induce. Having
introduced those, we obtain the institution [23] of CASL, that is, the under-
lying logical system of CASL equipped with extra structure to capture ways
of moving between signatures linked by signature morphisms. One important
point of the semantics is that all the layers of the semantics “above” basic
specifications are institution-independent, i.e., well-defined for any institution
chosen to build basic specifications (as long as the institution comes with a bit
of extra structure concerned with forming unions of signatures and defining
signature morphisms).

Next, we have the semantics of architectural specifications, which relies
on a formal counterpart of the concept of a unit (module) of a system to be
developed: self-contained units are viewed simply as models of the underly-
ing institution, and parametrized units as functions mapping such parameter
models to result models. Architectural specifications provide a way of speci-
fying the component units of a system and indicating how the overall system

128 10 Foundations

is built by putting these units together. This intuition is captured by the se-
mantics of architectural specifications, which denote a class of permitted unit
bindings and a function that maps each such environment to a result unit.

Finally, the libraries layer of CASL is given a rather standard description
with libraries modeled as environments giving names to the entities introduced
(specifications, architectural specifications, etc.).

The semantics is the ultimate reference for the meanings of all CASL

constructs.

Overall, the formal mathematical semantics is crucial in the understanding
of CASL specifications. It provides their unambiguous meaning, and thus gives
the ultimate reference point for all questions concerning the interpretation of
any CASL phrase in any context.

We have already experienced how important such a formal semantics may
be in the design of CASL itself. In many cases, the intended semantics was
prominent in internal discussions on the details of the constructs under con-
sideration, and provided guidelines for many choices in the design of CASL.
Indeed, the concrete syntax of CASL was designed only after the semantics
was settled.

Proof systems for various layers of CASL are provided.

The semantics is also a necessary prerequisite for the development of mech-
anisms for formal reasoning about CASL specifications. This is the role of proof
calculi that support reasoning about the various layers of CASL. The starting
point is a formal system of deduction rules which determines a proof-theoretic
counterpart of the consequence relation between sets of formulas, thus provid-
ing a way for deriving consequences of sets of axioms in CASL specifications.
This is then extended to systems of rules for deriving consequences of struc-
tured specifications and for proving inclusions between classes of models of
such specifications. These systems are also used in rules for formal verification
of the internal correctness of system designs as captured by architectural spec-
ifications. For all these systems, their soundness is proved and completeness
discussed by reference to the formal semantics of CASL.

One point of interest is that, again, the extension of the basic proof system
for consequences between sets of formulas to structured and architectural
specifications does not really rely on the specifics of the underlying institution,
but just reflects the way in which the structuring and architectural constructs
are defined for an arbitrary institution.

10 Foundations 129

The foundations of our CASL are rock-solid!

All this work on the mathematical underpinnings of CASL and related
specification and development methodology, as documented in the Reference
Manual, should make it exceptionally trustworthy – at least in the sense that
it provides a formal point of reference against which all the claims may (and
should) be checked.

11

Tools

Till Mossakowski

This chapter gives an overview of the CASL tools. Analysis tools for CASL like
parsers and static checkers, as well as formatters, are stable now and cover
the whole of CASL. Proof tools are available but are less mature.

CASL has been designed with the goal of subsuming many previous spec-
ification languages. Most of these languages come with specific tools, and of
course, these tools should be reusable in the context of CASL. Hence, a central
issue is to build bridges to existing tools (rather than building new tools from
scratch). Using an interchange format generated by the analysis tools, CASL

has been interfaced in this way to rewriting engines and theorem provers,
usually working for a subset of CASL.

Naturally, due to the ongoing development of these tools, detailed descrip-
tions would become outdated sooner or later. Therefore, we give here just an
appetizer, intended to encourage the reader to install the tools and experiment
with them (and to convince her/him that this is rather easy). More detailed
descriptions of the tools, as well as their latest versions and other tools that
may be developed in the future, are available by following the links on the
CoFI tools home page [21]: http://www.cofi.info/Tools.

The analysis tools for CASL have been used to check all the examples
contained in this book, as well as the CASL Basic Libraries [20]. Moreover,
some proofs from a case study in refinement have been carried out with the
proof tools.

CASL specifications can be checked for well-formedness using a
form-based web page.

The easiest way to check a CASL specification for well-formedness is to
visit the web interface. Using a web form, you can submit your specification
(without the need to install anything on your machine), and get immediate

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 131–142, 2004.
c© IFIP International Federation for Information Processing 2004

132 11 Tools

feedback about the well-formedness of the specification. Follow the “web in-
terface” link on the CoFI tools home page.

11.1 The Heterogeneous Tool Set (HETS)

The Heterogeneous Tool Set (HETS) is the main analysis tool for
CASL.

HETS is a tool set for the analysis of specifications written in CASL, its
extensions and sublanguages – hence the name “heterogeneous”. HETS con-
sists of logic-specific tools for the parsing and static analysis of the different
CASL extensions and sublanguages, as well as a logic-independent parsing and
static analysis tool for structured and architectural specifications and libraries
(which of course calls the logic-specific tools whenever a basic specification is
encountered). In order to be able to tackle proof obligations occurring in
(statically well-formed) specifications, HETS is interfaced with various logic-
specific theorem proving, rewriting and consistency checking tools. On top of
this, there is a logic-independent proof engine called MAYA, which manages
the proof obligations. MAYA uses so-called development graphs, a graphical
representation of CASL structured specifications.

The architecture of HETS is shown in Fig. 11.1. The latest version can be
obtained from the CoFI tools home page [21]. Installation is easy; just follow
the instructions.

Consider the first example in this book:

spec Strict Partial Order =
sort Elem
pred < : Elem × Elem
∀x , y, z : Elem
• ¬(x < x) %(strict)%

• x < y ⇒ ¬(y < x) %(asymmetric)%

• x < y ∧ y < z ⇒ x < z %(transitive)%

%{ Note that there may exist x, y such that
neither x < y nor y < x. }%

end

HETS can be used for parsing and checking static well-formedness of
specifications.

11.1 The Heterogeneous Tool Set (HETS) 133

�

�

�

�

�

�

�

�

�
��

�
��

����

�� ��
����

�� ��

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

	

�

�

	

�
� 	

�
�

	

�
�

�

Text

Parser

Abstract syntax

Static analysis

(Signature, Sentences)

Interfaces

XML, ATerms

CASL

CoCASL CASL-LTL

CSP-CASL

SB-CASLHasCASL

SubFOL= PFOL=

FOL=

Horn=• •

Basic specifications

(logic-specific tools for

CASL and extensions)

Graph of CASL Structured and

architectural

specifications

Text

Parser

Abstract syntax

Static analysis

Development graph

Interfaces

XML, ATerms

(e.g. CCC)
Consistency checker

(e.g. HOL-CASL)

Theorem prover

Management of proofs & change

Heterogeneous proof engine

MAYA
(e.g. ELAN-CASL)

Rewriter

proposed extensions

sublanguages and

Fig. 11.1. Architecture of the heterogeneous tool set.

Let us assume that the example is in a file named Order.casl (actually,
this file is provided on the web and on the CD-ROM coming with this volume).
Then you can check the well-formedness of the specification by typing (into
some shell):

hets Order.casl

HETS checks both the correctness of this specification with respect to the
CASL syntax, as well as its correctness with respect to the static semantics
(e.g. whether all identifiers have been declared before they are used, whether
operators are applied to arguments of the correct sorts, whether the use of
overloaded symbols is unambiguous, and so on).

It is also possible to generate a pretty printed LATEX version of Order.casl
by typing:

hets -o pp.tex Order.casl

One use of Order.casl might be to express the fact that the natural
numbers form a strict partial order as a view, as follows:

spec Natural = free type Nat ::= 0 | suc(Nat) end

134 11 Tools

spec Natural Order 2 =
Natural

then pred < : Nat × Nat
∀x , y : Nat
• 0 < suc(x)
• ¬x < 0
• suc(x) < suc(y) ⇔ x < y

end

view v1 : Strict Partial Order to Natural Order 2 =
Elem �→ Nat

end
Again, these specifications can be checked with HETS. However, this only

checks syntactic and static semantic well-formedness – it is not checked
whether the predicate ‘ < ’ introduced in Natural Order 2 actually
is constrained to be interpreted by a strict partial ordering relation. Checking
this requires theorem proving, which will be discussed below.

HETS also displays and manages proof obligations, using development
graphs.

However, before coming to theorem proving, let us first inspect the proof
obligations arising from a specification. This can be done with:

hets -g Order.casl

(assuming that the above two specifications and the view have been added to
the file Order.casl). HETS now displays a so-called development graph (which
is just an overview graph showing the overall structure of the specifications
in the library), see Fig. 11.2.

Strict_Partial_Order

Natural_Order_2

Natural

Fig. 11.2. Sample development graph.

11.1 The Heterogeneous Tool Set (HETS) 135

Nodes in a development graph correspond to CASL specifications.
Arrows show how specifications are related by the structuring
constructs.

The solid arrow denotes an ordinary import of specifications (generated
by the extension), while the dashed1 arrow denotes a proof obligation (corre-
sponding to the view). This proof obligation needs to be discharged in order
to show that the view is well-formed.

As a more complex example, consider the following loose specification of
a sorting function, taken from Chap. 6:
spec List Order Sorted

[Total Order with sort Elem, pred <] =
List Selectors [sort Elem]

then local pred is sorted : List
∀e, e ′ : Elem; L : List
• empty is sorted
• cons(e, empty) is sorted
• cons(e, cons(e ′,L)) is sorted ⇔

(cons(e ′,L) is sorted ∧ ¬(e ′ < e))
within op order : List → List

∀L : List • order(L) is sorted
end

The following specification of sorting by insertion also is taken from
Chap. 6:
spec List Order [Total Order with sort Elem, pred <] =

List Selectors [sort Elem]
then local op insert : Elem × List → List

∀e, e ′ : Elem; L : List
• insert(e, empty) = cons(e, empty)
• insert(e, cons(e ′,L)) = cons(e ′, insert(e,L)) when e ′ < e

else cons(e, cons(e ′,L))
within op order : List → List

∀e : Elem; L : List
• order(empty) = empty
• order(cons(e,L)) = insert(e, order(L))

end

Both specifications are related. To see this, we first inspect their signatures.
This is possible with:

hets -g Sorting.casl

1 Actually, the dashed arrow will be displayed as solid and in red by HETS; we do
not have colors available here.

136 11 Tools

assuming that Sorting.casl contains the above specifications. HETS now
displays a more complex development graph, see Fig. 11.3.

ElemStrict_Partial_Order

Total_Order List_Selectors

List_Order_Sorted

List_Order

Fig. 11.3. Development graph for the two sorting specifications.

11.1 The Heterogeneous Tool Set (HETS) 137

Internal nodes in a development graph correspond to unnamed parts
of a structured specification.

In the above-mentioned development graph, we have two types of nodes.
The named ones correspond to named specifications, but there are also un-
named nodes corresponding to anonymous basic specifications like the dec-
laration of the insert operation in List Order above. Basically, there is an
internal node for each structured specification that is not named.

Again, the simple solid arrows denote an ordinary import of specifications
(corresponding to the extensions and unions in the specifications), while the
double arrows denote hiding (corresponding to the local specification).

By clicking on the nodes, one can inspect their signatures. In this way,
we can see that both List Order Sorted and List Order have the same
signature. Hence, it is legal to add a view:
view v2[Total Order] : List Order Sorted[Total Order] to List

Order[Total Order]
end

We have already added this view to Sorting.casl. The corresponding
proof obligation between List Order Sorted and List Order is displayed
in Fig. 11.3 as a dotted arrow.

Proof obligations can be discharged in various ways.

Trivial proof obligations can be discharged by HETS alone using the
“Proofs” menu. The proof obligation in Fig. 11.3, indicated by the lower dotted
arrow between List Order Sorted and List Order, states that insertion
sort, as defined by the operation order in List Order, actually has the prop-
erties of a sorting algorithm. Here, one has to choose a theorem prover that
is to be used to discharge the proof obligation, which is then done by using
commands specific to the theorem prover (cf. e.g. Section 11.2). Alternatively,
one can state that one just conjectures the obligation to be true.

HETS is written in Haskell. Its parser uses combinator parsing. The user-
defined (also known as “mixfix”) syntax of CASL calls for a two-pass approach.
In the first pass, the skeleton of a CASL abstract syntax tree is derived, in order
to extract user-defined syntax rules. In a second pass, which is performed
during static analysis, these syntax rules are used to parse any expressions
that use mixfix notation. The output is stored in the so-called ATerm format
[12], which is used as interchange format for interfacing with other tools.

HETS provides an abstract interface for institutions, so that new logics can
be integrated smoothly. In order to do so, a parser, a static checker and a
prover for basic specifications in the logic have to be provided.

138 11 Tools

HETS has been built based on experiences with its precursors, CATS and
MAYA. The CASL Tool Set (CATS) [28, 30] comes with roughly the same anal-
ysis tools as HETS. The management of development graphs is not integrated
in CATS, but is provided with a stand-alone version of the tool MAYA [5, 4].
CATS and MAYA can be obtained from the CoFI tools home page [21].

11.2 HOL-CASL

HOL-CASL is an interactive theorem prover for CASL, based on the
tactical theorem prover ISABELLE.

The HOL-CASL system [28] provides an interface between CASL and the
theorem proving system ISABELLE/HOL [31]. We have chosen ISABELLE be-
cause it has a very small core guaranteeing correctness, and its provers, like
the simplifier or the tableaux prover, are built on top of this core. Further-
more, there is over ten years of experience with it, and several mathematical
textbooks have been partially verified with ISABELLE.

CASL is linked to ISABELLE/HOL by an encoding.

Since subsorting and partiality are present in CASL but not in ISABELLE/HOL,
we have to encode these features, as explained in [29]. This means that theorem
proving is not done in the CASL logic directly, but in the logic HOL (for higher-
order logic) of ISABELLE. HOL-CASL tries to make the user’s life easy by:

• choosing a shallow embedding of CASL into HOL, which means that e.g.
CASL’s logical implication => is mapped directly to ISABELLE/HOL’s logical
implication --> (and the same holds for other logical connectives and
quantifiers); and

• adapting ISABELLE/HOL’s syntax to conform with the CASL syntax, e.g.
ISABELLE/HOL’s --> is displayed as =>, as in CASL.

However, it is essential to be aware of the fact that the ISABELLE/HOL logic is
different from the CASL logic. Therefore, the formulas appearing in subgoals of
proofs with HOL-CASL will not fully conform to the CASL syntax: they may use
features of ISABELLE/HOL such as higher-order functions that are not present
in CASL. HOL-CASL can be obtained from the CoFI tools home page [21].

To start the HOL-CASL system, follow the installation instructions, and
then type:

HOL-CASL

11.3 ASF+SDF Parser and Syntax-Directed Editor 139

You can load the above specification file Order.casl by typing:

use_casl "Order";

Let us try to prove part of the view v1 above. To prepare for conducting
a proof in the target specification of the view, Natural Order 2, type in:

CASL_context Natural_Order_2.casl;

AddsimpAll();

The first command just selects the specification as the current proof context;
the second one adds all the axioms of the specification to ISABELLE’s simplifier
(a rewriting engine). Note that the latter is advisable only if the axioms are
terminating, when considered as a set of rewrite rules.

To prove the first property expressed by the view, we first have to type
in the goal. Then we chose to perform induction over the variable x , and the
rest can be done with automatic simplification. Finally, we name the theorem
for later reference:

Goal "forall x:Nat . not x<x";
by (induct_tac "x" 1);
by Auto_tac;
qed "Nat_irreflexive";

Both the stand-alone MAYA as well as the MAYA part of HETS also provide
an interface to HOL-CASL, so that it can be used to discharge proof obligations
arising in development graphs.

11.3 ASF+SDF Parser and Syntax-Directed Editor

ASF+SDF was used to prototype the CASL syntax.

The algebraic specification formalism ASF+SDF [22] and the ASF+SDF

Meta-Environment [13] have been deployed to prototype CASL’s concrete syn-
tax, and to develop a mapping for the concrete syntax to an abstract syntax
representation using so-called ATerms [12]. Currently, only the first pass of
parsing (i.e. without mixfix analysis) is realized in SDF. Parsing is performed
based on the underlying Scannerless Generalized LR parsing technology. A
prototype of the mapping from the concrete to abstract representation is writ-
ten in ASF rewrite rules.

140 11 Tools

The ASF+SDF Meta-Environment provides syntax-directed editing of
CASL specifications.

Given the concrete syntax definition of CASL in SDF, syntax-directed ed-
itors within the ASF+SDF Meta-Environment come for free. Recent develop-
ments in the Meta-Environment even allow for the development of a CASL

specification environment.
The ASF+SDF Meta-Environment provides a built-in library mechanism

which contains a collection of grammars, among others CASL. Via the library
the user of the Meta-Environment has access to the CASL syntax in SDF and
a collection of ASF equations to map CASL specifications into an interchange
format named CasFix. The asfc tool compiles the CASL grammar into a
stand-alone C program.

A link to the ASF+SDF Meta-Environment with further information and
a download possibility can be found at the CoFI tools home page [21]. The
built-in library of the Meta-Environment (Version 1.5 and higher) will pro-
vide the full CASL grammar in SDF and the mapping to CasFix as an ASF
specification.

11.4 Other Tools

The following tools are at a prototype stage at the time of appearance of this
volume. Please refer to at the CoFI tools home page [21], where the latest
versions can be downloaded.

Translation to OCAML

A translation from CASL into OCAML has been developed at Paris and
Poitiers. The translation works for a “functional programming” sublanguage
of CASL that includes free datatypes and recursive definitions of operations
over these types.

Translation to Haskell

A translation from CASL into Haskell has been developed in Bremen. Actually,
the translation works on an executable subset of HASCASL (a higher-order ex-
tension of CASL). Using an embedding of CASL into HASCASL, this translation
can also be used for CASL.

ELAN-CASL

ELAN-CASL is a rewriting engine for the HORN
= sublanguage of CASL. It is

based on a translation of that sublanguage to the input language of the rewrit-
ing engine ELAN.

11.4 Other Tools 141

Given a CASL specification and a query term, ELAN-CASL computes the
normal forms of the term. Note that because the set of rules is not required to
be terminating nor confluent, a query term may have several normal forms,
or may not terminate.

ELAN can be called either as an interpreter or as a compiler.

CASL consistency checker

The CASL consistency checker (CCC) has been developed in Bremen and
Swansea. With CCC, one can interactively check whether a CASL specification
is consistent. It is a faithful implementation of a consistency calculus for full
CASL [32].

Besides using certain syntactical criteria, the consistency calculus relies
heavily on the CASL structuring mechanisms and their semantic annotations.
Consequently, consistency proofs follow the structure of the given specifica-
tion. In this way, the calculus highlights the (usually few) ‘hot spots’ of a
specification (e.g. views requiring theorem proving), while the (lengthy) ‘triv-
ial’ parts of the consistency argument are discharged automatically. As the
consistency calculus works along the structure of the specification, the need
to construct (and prove correct) actual models of specifications is avoided as
far as possible.

definitional CATS
static analysis

is_theorem

wellformed

HOL−CASL
...

...

Ext

Ext

Cons

Cons

Derived

Basic

Rules Provers

...

sig_test

Logical

Core

Proof Infrastructure

Goals, Tactics and Rules Library

CASL Abstract Syntax

Unification & Substitution

Fig. 11.4. CCC System Architecture

142 11 Tools

The CASL Consistency Checker consists of four parts (see Fig. 11.4): first,
a logical core implementing a representation of the propositions to be proved,
and the basic proof rules, along with a generic unification package for the
CASL abstract syntax; secondly, representations of the calculi : the base rules
which are stated axiomatically, and derived rules; thirdly, proof procedures
(automatic or semi-automatic decision procedures), which serve to discharge
specific proof obligations; and finally, proof infrastructure such as a package
which helps users to conduct goal-directed proofs, tactics that support writing
advanced proof procedures, and a simple database which allows storage and
retrieval of proved theorems. The system is encapsulated by a single interface
which does not allow the end-user (i.e. the working specifier) to add any more
axiomatic rules or provers; thus, the typing is used to both increase confidence
in the correctness of the implementation in the style of LCF, and to protect
the integrity of the system from user intervention.

12

Basic Libraries

Till Mossakowski

The CASL Basic Libraries contain the standard datatypes.

The CASL Basic Libraries consist of specifications of often-needed datatypes
and views between them, freeing the specifier from re-inventing well-known
things. This can be compared to standard libraries in programming languages.
While this book often discusses several styles of specification with CASL, the
basic datatypes consistently follow a specific style described in [20].

Here we show a cut-down version without axioms.

Here, we describe two of the libraries (see the overview in Fig. 12.1): the
libraries of numbers and of structured datatypes. We also provide stripped-
down versions of the libraries themselves, with some of the specifications and
all axioms and annotations removed. These stripped-down versions can serve
for getting a first overview of the signatures of the specified datatypes.

The full CASL Basic Libraries with complete specifications is presented in
the CASL Reference Manual [20], and is also included in the CD-ROM coming
with this volume. The latest version is available at:

http://www.cofi.info/Libraries

HETS can be used to get an overview of the Basic Libraries.

The HETS tool described in Chap. 11 allows the structure of the specifi-
cations in the libraries to be displayed as a graph and their signatures to be
inspected. This is recommended as a way of obtaining a better overview, and
also for answering specific questions that arise when using the basic datatypes.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 143–154, 2004.
c© IFIP International Federation for Information Processing 2004

144 12 Basic Libraries

Numbers

RelationsAndOrders

Algebra_I SimpleDatatypes MachineNumbers

StructuredDatatypes

Algebra_II Graphs

LinearAlgebra_I

LinearAlgebra_II

Fig. 12.1. Dependency graph of the libraries of basic datatypes.

12.1 Library Basic/Numbers

This library provides specifications of natural numbers, integers, and rational
numbers.

The natural numbers are specified as a free datatype.

In the specification Nat, the natural numbers are specified as a free
datatype, together with a collection of predicates and operations over the
sort Nat of natural numbers.

Note that the names for the partial operations subtraction −? and
division /? include a question mark. This is to avoid overloading with the
total operations − on integers and / on rationals, which would lead
to inconsistencies as both these specifications import the specification Nat.
The total operation for subtraction differs from subtraction on the integers as

12.1 Library Basic/Numbers 145

well. It is written −! , and it is 0 whenever the partial subtraction −? is
undefined, while it otherwise coincides with the latter.

The digits are introduced as constants, together with an operation @@
for concatenation of digits. Together with an annotation (see Chap. 9):

%number @@

this allows one to write the usual literals (like e.g. 8364) for natural numbers.
The introduction of the subsort Pos , consisting of the positive naturals,

gives rise to certain new operations, e.g.:

× : Pos × Pos → Pos,

whose semantics is completely determined by overloading.

library Basic/Numbers

spec Nat =
free type Nat ::= 0 | suc(pre:?Nat)
preds ≤ , ≥ , < , > : Nat × Nat ;

even, odd : Nat
ops ! : Nat → Nat ;

+ , × , ˆ , min, max, −! : Nat × Nat → Nat ;
−? , /? , div , mod , gcd : Nat × Nat →? Nat

%% Operations to represent natural numbers with digits:

ops 1 : Nat = suc(0); %(1 def Nat)%

2 : Nat = suc(1); %(2 def Nat)%

3 : Nat = suc(2); %(3 def Nat)%

4 : Nat = suc(3); %(4 def Nat)%

5 : Nat = suc(4); %(5 def Nat)%

6 : Nat = suc(5); %(6 def Nat)%

7 : Nat = suc(6); %(7 def Nat)%

8 : Nat = suc(7); %(8 def Nat)%

9 : Nat = suc(8); %(9 def Nat)%

@@ (m: Nat ; n: Nat): Nat = (m × suc(9)) + n
%(decimal def)%

sort Pos = {p: Nat • p > 0}
ops 1 : Pos = suc(0); %(1 as Pos def)%

× : Pos × Pos → Pos ;
+ : Pos × Nat → Pos ;
+ : Nat × Pos → Pos ;

suc : Nat → Pos
end

The integers are specified as difference pairs of naturals.

146 12 Basic Libraries

The specification Int of integers is built on top of the specification Nat:
integers are defined as equivalence classes of pairs of naturals written as dif-
ferences — the axioms (which are omitted in the specification below) specify
that two pairs are equivalent if their differences are equal:

∀ a, b, c, d : Nat
• a − b = c − d ⇔ a + d = c + b %(equality Int)%

The sort Nat is then declared to be a subsort of Int . Besides the division
operator /? , the specification Int also provides the function pairs div/mod
and quot/rem, respectively, as constructs for division — behaving differently
on negative numbers, see [20] for a discussion. The operation sign gives the
sign of an integer (which is either -1, 0, or 1).

spec Int =
Nat

then generated type Int ::= − (Nat ; Nat)
sort Nat < Int

%% a system of representatives for sort Int is

%% a - 0 and 0 - p, where a: Nat and p: Pos

preds ≤ , ≥ , < , > : Int × Int ;
even, odd : Int

ops − , sign : Int → Int ;
abs : Int → Nat ;

+ , × , − , min, max : Int × Int → Int ;
ˆ : Int × Nat → Int ;
/? , div , quot , rem : Int × Int →? Int ;
mod : Int × Int →? Nat

end

The rationals are specified as fractions of integers.

The specification Rat of rational numbers follows the same scheme as
the specification of integers discussed above. This time, the specification Int
is imported. The rationals are then defined as equivalence classes of pairs
consisting of an integer and a positive number written as fractions, using the
axiom:

∀ i, j : Int ; p, q: Pos
• i / p = j / q ⇔ i × q = j × p %(equality Rat)%

The sort Int is then declared to be a subsort of Rat . Note that thanks to the
behavior of subsorted overloading in CASL, the declaration of the operation:

12.2 Library Basic/StructuredDatatypes 147

/ : Rat × Rat →? Rat;

allows rationals to be written also as x/y, for arbitrary integers x and y �= 0 .

spec Rat =
Int

then generated type Rat ::= / (Int ; Pos)
sort Int < Rat
preds ≤ , < , ≥ , > : Rat × Rat
ops − , abs : Rat → Rat ;

+ , − , × , min, max : Rat × Rat → Rat ;
/ : Rat × Rat →? Rat ;
ˆ : Rat × Int → Rat

end

12.2 Library Basic/StructuredDatatypes

This library provides specifications of the familiar structured datatypes as
used e.g. for the design of algorithms or within programming languages. Its
main focus is data structures like (finite) sets, lists, strings, (finite) maps,
(finite) bags, arrays, and various kinds of trees. Common to all these concepts
is that they are generic. Consequently, all of the specifications of this library
are generic.

Finite sets, maps and bags are specified as generated datatypes, with
equality determined by means of observers.

Finite sets, finite maps and finite bags are specified using a generated
sort. An observer operation or predicate is then introduced in order to define
equality on this sort. Concerning finite sets, equality on the sort Set [Elem] is
characterized using the predicate eps (displayed as ε) in the specification
GenerateSet. This leads to the extensionality axiom:

• M = N ⇔ ∀x : Elem • x εM ⇔ x εN %(equality Set)%

library Basic/StructuredDatatypes

148 12 Basic Libraries

spec GenerateSet [sort Elem] =
generated type Set [Elem] ::= {} | + (Set [Elem]; Elem)
pred ε : Elem × Set [Elem]

%% a system of representatives for sort Set[Elem] is

%%

%% {} and {} + x 1 + x 2 + ... + x n

%%

%% where x 1 < x 2 < ... < x n, n >= 1, x i of type Elem,

%% for an arbitrary strict total order < on Elem.

end

spec Set [sort Elem] given Nat =
GenerateSet [sort Elem]

then %def

preds isNonEmpty : Set [Elem];
⊆ : Set [Elem] × Set [Elem]

ops { } : Elem → Set [Elem];
� : Set [Elem] → Nat ;

+ : Elem × Set [Elem] → Set [Elem];
− : Set [Elem] × Elem → Set [Elem];
∩ , ∪ , − , symDiff :

Set [Elem] × Set [Elem] → Set [Elem]
end

Finite maps, i.e. elements of the sort Map[S ,T], are considered to be
identical if looking up any value in S yields the same result in both cases:

• M = N ⇔ ∀s : S • lookup(s,M) = lookup(s,N) %(equality Map)%

On top of this, the specification Map adds e.g. predicates for elementhood
(ε) as well as for determining the profile of a map (f :: x → y means that f is
a map from x to y).

The specification TotalMap restricts maps to everywhere-defined maps
(which are isomorphic to tuples). Since maps are finite, totality is only possible
for maps over finite argument sorts. The latter is specified in the specification
Finite, using a partial surjection from the natural numbers. Since this spec-
ification is rather unusual, we make an exception and also show its axioms.

spec GenerateMap [sort S] [sort T] =
generated type Map[S,T] ::= empty | [/](Map[S,T]; T ; S)
op lookup : S × Map[S,T] →? T

end

12.2 Library Basic/StructuredDatatypes 149

spec Map [sort S] [sort T] given Nat =
GenerateMap [sort S] [sort T]

and Set [sort S]
and Set [sort T]
then %def

free type Entry[S,T] ::= [/](target :T ; source:S)
preds isEmpty : Map[S,T];

ε : Entry[S,T] × Map[S,T];
:: → : Map[S,T] × Set [S] × Set [T]

ops + , − : Map[S,T] × Entry[S,T] → Map[S,T];
− : Map[S,T] × S → Map[S,T];
− : Map[S,T] × T → Map[S,T];

dom : Map[S,T] → Set [S];
range : Map[S,T] → Set [T];
∪ : Map[S,T] × Map[S,T] →? Map[S,T]

end
spec Finite [sort Elem] =

{ Nat
then op f : Nat →? Elem

• ∀ x : Elem • ∃ n: Nat • f (n) = x %(f surjective)%

• ∃ n: Nat • ∀ m: Nat • def f (m) ⇒ m < n %(f bounded)%

}
reveal Elem

end

spec TotalMap [Finite [sort S]] [sort T] =
{ Map [sort S] [sort T]
then sort TotalMap[S,T] =

{M : Map[S,T] • ∀ x : S • def lookup(x, M)}
ops [/] : TotalMap[S,T] × T × S → TotalMap[S,T];

lookup : S × TotalMap[S,T] → T ;
+ : TotalMap[S,T] × Entry[S,T] → TotalMap[S,T];

range : TotalMap[S,T] → Set [T];
∪ : TotalMap[S,T] × TotalMap[S,T]

→? TotalMap[S,T]
pred ε : Entry[S,T] × TotalMap[S,T]

}
hide Map[S,T]

end

In the specification GenerateBag, those elements of sort Bag[Elem] are
identified that show the same number of occurrences (observed by the opera-
tion freq) for all entries:

• M = N ⇔ ∀x : Elem • freq(M, x) = freq(N, x) %(equality Bag)%

150 12 Basic Libraries

spec GenerateBag [sort Elem] given Nat =
generated type Bag[Elem] ::= {} | + (Bag[Elem]; Elem)
op freq : Bag[Elem] × Elem → Nat

end

spec Bag [sort Elem] given Nat =
GenerateBag [sort Elem]

then preds isEmpty : Bag[Elem];
ε : Elem × Bag[Elem];
⊆ : Bag[Elem] × Bag[Elem]

ops + : Elem × Bag[Elem] → Bag[Elem];
− : Bag[Elem] × Elem → Bag[Elem];
− , ∪ , ∩ : Bag[Elem] × Bag[Elem] → Bag[Elem]

end

Lists are specified as a free datatype.

In the specification GenerateList, lists are built up from the empty list
by adding elements in front. The usual list operations are provided: first and
last select the first or last element of a list, while rest or front select the
remaining list; # counts the number of elements in a list, while freq counts
the number of occurrences of a given element; take takes the first n elements
of a list, while drop drops them.

spec GenerateList [sort Elem] =
free type List [Elem] ::= [] | :: (first :?Elem; rest :?List [Elem])

end

spec List [sort Elem] given Nat =
GenerateList [sort Elem]

then preds isEmpty : List [Elem];
ε : Elem × List [Elem]

ops + : List [Elem] × Elem → List [Elem];
first, last : List [Elem] →? Elem;
front, rest : List [Elem] →? List [Elem];
� : List [Elem] → Nat ;

++ : List [Elem] × List [Elem] → List [Elem];
reverse : List [Elem] → List [Elem];

! : List [Elem] × Nat →? Elem;
take, drop : Nat × List [Elem] →? List [Elem];
freq : List [Elem] × Elem → Nat

end

12.2 Library Basic/StructuredDatatypes 151

Arrays are specified as certain finite maps.

The specification Array includes the condition min ≤ max as an axiom
in its first parameter. This ensures a non-empty index set. Arrays are defined
as finite maps from the sort Index to the sort Elem, where the typical array
operations lookup (!) and assignment (! :=) are introduced in terms
of finite map operations. Finally, revealing the essential signature elements
yields the desired datatype.

spec Array [ops min, max : Int • min ≤ max %(Cond nonEmptyIndex)%]
[sort Elem]

given Int =
sort Index = {i : Int • min ≤ i ∧ i ≤ max}

then { Map [sort Index] [sort Elem]
with sort Map[Index,Elem] �→ Array[Elem],

op empty �→ init
then ops ! := : Array[Elem] × Index × Elem → Array[Elem];

! : Array[Elem] × Index →? Elem
}
reveal sort Array[Elem], ops init, ! , ! :=

end

Several kinds of tree are available, differing in the branching and in
the positions of elements.

The library concludes with several specifications concerning trees. There
are specifications of binary trees (BinTree, BinTree2), k -branching trees
(KTree), and trees with possibly different branching at each node (NTree).
Each of these branching structures can be equipped with data in different
ways: Either all nodes of a tree carry data (as is the case in BinTree, KTree,
and NTree), or just the leaves of a tree have a data entry (as in BinTree2).

152 12 Basic Libraries

Binary trees admit two children for each internal node.

spec GenerateBinTree [sort Elem] =
free type

BinTree[Elem] ::= nil
| binTree(entry:?Elem; left :?BinTree[Elem];

right :?BinTree[Elem])
end

spec BinTree [sort Elem] given Nat =
GenerateBinTree [sort Elem] and Set [sort Elem]

then preds isEmpty, isLeaf : BinTree[Elem];
isCompoundTree : BinTree[Elem];

ε : Elem × BinTree[Elem]
ops height : BinTree[Elem] → Nat ;

leaves : BinTree[Elem] → Set [Elem]
end

spec GenerateBinTree2 [sort Elem] =
free type NonEmptyBinTree2 [Elem] ::=

leaf (entry:?Elem)
| binTree(left :?NonEmptyBinTree2 [Elem];

right :?NonEmptyBinTree2 [Elem])
free type BinTree2 [Elem] ::= nil | sort NonEmptyBinTree2 [Elem]

end

spec BinTree2 [sort Elem] given Nat =
GenerateBinTree2 [sort Elem] and Set [sort Elem]

then %def

preds isEmpty, isLeaf : BinTree2 [Elem];
isCompoundTree : BinTree2 [Elem];

ε : Elem × BinTree2 [Elem]
ops height : BinTree2 [Elem] → Nat ;

leaves : BinTree2 [Elem] → Set [Elem]
end

12.2 Library Basic/StructuredDatatypes 153

k-trees admit k children for each internal node (with k fixed).

We now come to k -branching trees. The branching is specified by using
arrays of trees of size k , which are used to contain the children of a node in
the tree.

spec GenerateKTree [op k : Int • k ≥ 1 %(Cond nonEmptyBranching)%]
[sort Elem] given Int =

Array [ops 1 : Int ; k : Int
fit ops min : Int �→ 1, max : Int �→ k]

[sort KTree[k,Elem]]
then free type

KTree[k,Elem] ::= nil
| kTree(entry:?Elem;

branches :?Array[KTree[k,Elem]])
end

spec KTree [op k : Int • k ≥ 1 %(Cond nonEmptyBranching)%]
[sort Elem]

given Int =
GenerateKTree [op k : Int] [sort Elem]

and Set [sort Elem]
then %def

preds isEmpty, isLeaf : KTree[k,Elem];
isCompoundTree : KTree[k,Elem];

ε : Elem × KTree[k,Elem]
ops height : KTree[k,Elem] → Nat ;

maxHeight : Index × Array[KTree[k,Elem]] → Nat ;
leaves : KTree[k,Elem] → Set [Elem];
allLeaves : Index × Array[KTree[k,Elem]] → Set [Elem]

end

154 12 Basic Libraries

n-trees admit arbitrary branching.

Finally, n-trees are trees with possibly different branching at each node.
This is specified by equipping each node in a tree with a list of child trees.

spec GenerateNTree [sort Elem] =
List [sort NTree[Elem]]

then free type
NTree[Elem] ::= nil

| nTree(entry:?Elem;
branches :?List [NTree[Elem]])

end

spec NTree [sort Elem] given Nat =
GenerateNTree [sort Elem] and Set [sort Elem]

then preds isEmpty, isLeaf : NTree[Elem];
isCompoundTree : NTree[Elem];

ε : Elem × NTree[Elem]
ops height : NTree[Elem] → Nat ;

maxHeight : List [NTree[Elem]] → Nat ;
leaves : NTree[Elem] → Set [Elem];
allLeaves : List [NTree[Elem]] → Set [Elem]

end

13

Case Study: The Steam-Boiler Control System

In this chapter we illustrate the use of CASL on a fairly large and complex case
study, the steam-boiler control system. This case study is particularly interest-
ing since it has been used several times as a competition problem, and many
other specification frameworks have been illustrated with it, see [1]. Here we
describe how to derive a CASL specification of the steam-boiler control system,
starting from the informal requirements provided to the participants of the
Dagstuhl meeting Methods for Semantics and Specification, organized jointly
by Jean-Raymond Abrial, Egon Börger and Hans Langmaack in June 1995.
The aim of this formalization process is to analyze the informal requirements,
to detect inconsistencies and loose ends, and to translate the requirements into
a CASL specification. During this process we have to provide interpretations
for the unclear or missing parts. We explain how we can keep track of these
additional interpretations by localizing very precisely in the formal specifica-
tion where they lead to specific axioms, thereby taking care of the traceability
issues. We also explain how the CASL specification is obtained in a stepwise
way by successive analysis of various parts of the problem description. Finally
we discuss the validation of the CASL requirements specification resulting from
the formalization process, and in a last step we refine the requirements specifi-
cation in a sequence of architectural specifications that describe the intended
architecture of the steam-boiler control system.1

The reader not already familiar with the steam-boiler control system
case study may want to start by reading App. C, where the original
description of the problem is reproduced.

1 This chapter partially relies on an earlier work published in [8] where the Pluss
specification language [7, 9] was used together with the Larch prover [25]. How-
ever, the specification methodology illustrated in this chapter is significantly im-
proved, and moreover CASL provides several features that lead to a much more
concise and perspicuous specification, as illustrated later in this chapter.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 155–190, 2004.
c© IFIP International Federation for Information Processing 2004

156 13 Case Study: The Steam-Boiler Control System

13.1 Introduction

The aim of this chapter is to illustrate how one can solve the steam-boiler
control specification problem with CASL. For this we have to provide a CASL

specification of the software system that controls the level of water in the
steam-boiler. Our work plan can be described as follows:

1. The main task is to derive, starting from the informal requirements, a
requirements specification, written in CASL, of the steam-boiler control
system. In particular, this task involves the following activities:
a) We must perform an in-depth analysis of the informal requirements.

Obviously, this is necessary to gain a sufficient understanding of the
problem to be specified, and this preliminary task may not seem worth
mentioning. Let us stress, however, that the kind of preliminary anal-
ysis required for writing a formal specification proves especially useful
to detect discrepancies in the informal requirements that would other-
wise be very difficult to detect. Indeed, from our practical experience,
this step is usually very fruitful from an engineering point of view,
and one could argue that the benefits to be expected here are enough
in themselves to justify the use of formal methods, even if for lack of
time (or other resources) no full formal development of the system is
performed.

b) Once we have a sufficient understanding of the problem to be specified,
we must translate the informal requirements into a formal specifica-
tion. This step will require us to provide interpretations for the unclear
or missing parts of the informal requirements. Moreover, this formal-
ization process will also be helpful to further detect inconsistencies
and loose ends in the informal requirements. Here, a very important
issue is to keep track of the interpretations made during the formaliza-
tion process, in order to be able, later on, to take into account further
modifications and changes of the informal requirements.

c) When we have written the formal requirements specification, we must
carefully check its adequacy with respect to the informal requirements:
this part is called the validation of the formal specification.

In principle there should be some interaction between the specification
team and the team who has designed the informal requirements, in par-
ticular to check whether the suggested interpretations of the detected
loose ends are adequate. In the framework of this case study, however,
such interactions were not possible, and we can only use our intuition to
assess the soundness of the interpretations made during the writing of the
formal specification.

2. Once a validated requirements specification is obtained, we can proceed
toward a program by a sequence of refinements. Here a crucial step is the
choice of an architecture of the desired implementation, expressed by an
architectural specification as explained in Chap. 8. Each refinement step

13.2 Getting Started 157

leads to proof obligations which allow the correctness of the performed
refinement to be assessed. In a last step, a program is derived from the
final design specification.

Before starting to explain how to write a CASL requirements specification
of the steam-boiler control system, let us make a few comments on this case
study. First, note that, although in principle a hybrid system, the steam-boiler
control system turns out to be merely a reactive system, not even a ‘hard real-
time’ system (see e.g. the assumptions made in App. C.3). Moreover, even if
the whole system, i.e., the control program and its physical environment is
distributed, this is not the case, at least at the requirements level, for the
steam-boiler control system. CASL turns out to be especially well-suited to
capture the features of systems like the steam-boiler control system, where
data and control are equally important (in particular, here data play a promi-
nent role in failure detection). The various constructs provided by CASL allow
the specifications to be formulated straightforwardly and perspicuously – and
significantly more concisely than in other algebraic specification languages.

As a last remark we must make clear that for the sake of simplicity the
initialization phase of the steam-boiler control system (see App. C.4.1) is
not specified. However, it should be clear that it would be straightforward to
extend our specification so as to take the initialization phase into account,
following exactly the same methodology as for the rest of the case study.

This chapter is organized as follows. In Sect. 13.2 we start by providing
some elementary specifications that will be useful for the rest of the case
study. In Sect. 13.3 we explain how we will proceed to derive the CASL re-
quirements specification in a stepwise way. Then in Sect. 13.4 we detail the
specification of the mode of operation of the steam-boiler control system. In
Sect. 13.5 we specify the detection of the various equipment failures, and in
Sect. 13.6 we explain how we can compute, at each cycle, some predicted val-
ues for the messages to be received at the next cycle. In Sect. 13.9 we explain
how our CASL requirements specification can be validated, and in Sect. 13.10
we refine the CASL requirements specification in a sequence of architectural
specifications that describe the intended architecture of the implementation
of the steam-boiler control system.

13.2 Getting Started

As explained in App. C.3, in each cycle the steam-boiler control system collects
the messages received, performs some analysis of the information contained
in them, and then sends messages to the physical units. We will therefore
start with the specification of some elementary datatypes, such as “messages
received” and “messages sent”. To specify the messages sent and received, we
follow App. C.5 and C.6. Note that some messages have parameters (e.g. pump
number, pump state, pump controller state, mode of operation), and we must

158 13 Case Study: The Steam-Boiler Control System

therefore specify the corresponding datatypes as well. For the sake of clarity,
we group together all similar messages (e.g. all “repaired” messages, all “fail-
ure acknowledgement” messages) by introducing a suitable parameter “physi-
cal unit”. A physical unit is either a pump, a pump controller, the water level
measuring device or the steam output measuring device. Remember that we
do not specify the physical units as such, since we do not specify the physical
environment of the steam-boiler (we do not specify the steam-boiler either,
we only specify the steam-boiler control system). Hence the datatype “physi-
cal unit” is just an elementary datatype that says that we have some pumps,
some pump controllers, and the two measuring devices.

Some messages have a value v as parameter. From the informal require-
ments we can infer that these values are (approximations of) real numbers,
but it is not necessary at this level to make any decision about the exact
specification of these values. In our case study, we will therefore rely on a
very abstract (loose) specification Value, introducing a sort Value together
with some operations and predicates, which are left unspecified (we expect
of course that these operations and predicates will have the intuitive inter-
pretation suggested by their names). This means that we consider Value as
being a general parameter of our specification.2 This point is discussed again
in Sect. 13.10. Note also that we will abstract from measuring units (such as
liter, liter/sec), since ensuring that these units are consistently used is a very
minor aspect of this particular case study.3

This first analysis leads to the following specifications: Value, Basics,
Messages Sent, and Messages Received.

from Basic/Numbers get Nat

%display half %LATEX /2

%display square %LATEX 2

spec Value =
%% At this level we don’t care about the exact specification of values.

Nat
then sorts Nat < Value

ops + : Value × Value → Value, assoc, comm , unit 0 ;
− : Value × Value → Value;
× : Value × Value → Value, assoc, comm , unit 1 ;

2 We leave Value as an implicit parameter of our specifications, rather than us-
ing generic specifications taking Value as a parameter, since our specifications
are not to be instantiated by argument specifications describing several kinds
of values, but on the contrary should all refer to the same abstract datatype of
values.

3 It is of course possible to take measuring units into account, following for instance
the method described in [18]. Appropriate CASL libraries supporting measuring
units are currently being developed.

13.2 Getting Started 159

/2 , 2 : Value → Value;
min, max : Value × Value → Value

preds < , ≤ : Value × Value
end

spec Basics =
free type PumpNumber ::= Pump1 | Pump2 | Pump3 | Pump4 ;
free type PumpState ::= Open | Closed ;
free type PumpControllerState ::= Flow | NoFlow ;
free type PhysicalUnit ::= Pump(PumpNumber)

| PumpController(PumpNumber)
| SteamOutput | WaterLevel ;

free type Mode ::= Initialization | Normal | Degraded
| Rescue | EmergencyStop;

end

spec Messages Sent =
Basics

then free type
S Message ::= MODE(Mode) | PROGRAM READY | VALVE

| OPEN PUMP(PumpNumber)
| CLOSE PUMP(PumpNumber)
| FAILURE DETECTION (PhysicalUnit)
| REPAIRED ACKNOWLEDGEMENT (PhysicalUnit);

end

spec Messages Received =
Basics and Value

then free type
R Message ::= STOP | STEAM BOILER WAITING

| PHYSICAL UNITS READY
| PUMP STATE(PumpNumber ; PumpState)
| PUMP CONTROLLER STATE(PumpNumber ;

PumpControllerState)
| LEVEL(Value) | STEAM (Value)
| REPAIRED(PhysicalUnit)
| FAILURE ACKNOWLEDGEMENT (PhysicalUnit)
| junk ;

end

In addition to the “messages received” specified in App. C.6, we add an
extra constant message junk . This message will represent any message received
which does not belong to the class of recognized messages. We do not add a
similar message to the messages sent, since we may assume that the steam-
boiler control system will only send proper messages. Obviously, receiving a

160 13 Case Study: The Steam-Boiler Control System

junk message will lead to the detection of a failure of the message transmission
system.

In the Sbcs Constants specification we describe the various constants
that characterize the steam-boiler (these constants are explained in App. C.2.6).

spec Sbcs Constants =
Value

then ops C , M1 , M2 , N1 , N2 , W , U1 , U2 , P : Value;
dt : Value %% Time duration between two cycles (5 sec.)

%% These constants must verify some obvious properties:

• 0 < M1 • M1 < N1 • N1 < N2 • N2 < M2 • M2 < C
• 0 < W • 0 < U1 • 0 < U2 • 0 < P

end

We will also specify the datatypes “set of messages received” and “set
of messages sent” since, as suggested at the end of App. C.3, all messages
are supposed to be received (or emitted) simultaneously at each cycle. The
two latter specifications are obtained by instantiation of a generic specifi-
cation Set of “sets of elements”, which is imported from the library Ba-
sic/StructuredDatatypes.

from Basic/StructuredDatatypes get Set

spec Preliminary =
Set [Messages Received fit Elem �→ R Message]

and Set [Messages Sent fit Elem �→ S Message]
and Sbcs Constants
end

♥ As illustrated by the above specifications, it is particularly conve-
nient to structure our formal specification into coherent, easy to grasp,
named specifications that will be easily reused later on by referring to
their names (and this of course will prove even more important in
the sequel). Moreover, free datatypes are especially useful here to ob-
tain concise specifications. On the other hand, loose specifications are
useful to avoid overspecification of values in Value and of the steam-
boiler constants in Sbcs Constants. Declaring that Nat is a subsort
of Value ensures that natural numbers can be used as arguments of op-
erations on values. Reusing standard specifications of usual datatypes
from the Basic libraries avoids the need to specify them again, and
of course it is essential that these specifications are generic in order
to easily adapt them as desired when they are reused. Finally, display
annotations are useful to conveniently display some symbols as usual
mathematical symbols.4 ♥

4 In this chapter, metacomments about the adequacy of CASL features will be
highlighted like this.

13.3 Carrying On 161

13.3 Carrying On

As emphasized in App. C.3, the steam-boiler control system is a typical ex-
ample of a control-command system. The specification of such systems always
follows the same pattern:

• A preliminary set of specifications group all the basic information about
the system to be controlled, such as the specification of the various mes-
sages to be exchanged between the system and its environment, and the
specification of the various constants related to the system of interest.
This is indeed the aim of the specification Preliminary introduced in
the previous section.

• Then, the various states of the control system should be described. At this
stage, however, it would be much too early to determine which state vari-
ables are needed. Thus states will be represented by values of a (loosely
specified) sort State, equipped with some observers (corresponding to ac-
cess to state variables). During the requirements analysis and formalization
phase we may need further observers, to be introduced on a by-need basis.

• Then a (group of) specification(s) will take care of the analysis of the
messages received – here, of failure detection in particular. On the basis of
this analysis, some actions should be taken, corresponding to the messages
to be sent to the environment. State variables are also updated according
to the result of the analysis of the messages received and to the messages
to be sent.

• Finally a specification describes the overall control-command system as a
labeled transition system.

A very rough preliminary sketch of the steam-boiler control system speci-
fication looks therefore as follows:

library Sbcs
from Basic/Numbers get Nat
from Basic/StructuredDatatypes get Set
%display half %LATEX /2

%display square %LATEX 2

...
spec Preliminary = %{ See previous section. }%

spec Sbcs State =
Preliminary

then sort State
ops %% Needed state observers are introduced here.

%% E.g., we need an observer for the mode of operation:

mode : State → Mode;
. . .

end

162 13 Case Study: The Steam-Boiler Control System

spec Sbcs Analysis =
Sbcs State

then %% Analysis of messages received and in particular failure detection.

%% Computation of the messages to be sent.

op messages to send : State × Set [R Message] → Set [S Message];
%% Computation of the updates of the state variables.
%{ For each observer obs defined in Sbcs State,

we introduce an operation next obs that computes the
corresponding update according to the analysis of the messages
received in this round. For instance, we specify here an operation
next mode corresponding to the update of the observer mode. }%

ops next mode : State × Set [R Message] → Mode;
. . .

end

spec Steam Boiler Control System =
Sbcs Analysis

then op init : State
pred is step : State × Set [R Message] × Set [S Message] × State
%% Specification of the initial state init by means of the observers, e.g:

• mode(init) = . . .
• . . .
%{ Specification of is step by means of the observers

and of the updating operations, e.g.: }%

∀s , s ′ : State; msgs : Set [R Message]; Smsg : Set [S Message]
• is step(s ,msgs ,Smsg, s ′) ⇔

mode(s ′) = next mode(s ,msgs) ∧ . . . ∧
Smsg = messages to send(s ,msgs)

then %% Specification of the reachable states:

free { pred reach : State
∀s , s ′ : State; msgs : Set [R Message]; Smsg : Set [S Message]
• reach(init)
• reach(s) ∧ is step(s ,msgs ,Smsg, s ′) ⇒ reach(s ′) }

end

Of course the specification Sbcs Analysis is likely to be further struc-
tured into smaller pieces of specifications. Indeed, since the informal require-
ments are too complex to be handled as a whole, we will therefore succes-
sively concentrate on various parts of them. The study and formalization of
each chunk of requirements will lead to specifications that will later on be put
together to obtain the Sbcs Analysis specification. As already pointed out,
it is likely that when analyzing a chunk of requirements we will discover the
need for new observers on states (i.e., new state variables). This means that
the specification Sbcs State will be subject to iterated extensions where we
introduce the new observers that are needed.

13.4 Specifying the Mode of Operation 163

For instance, in App. C.6 it is explained that when the STOP mes-
sage has been received three times in a row, the program must go into the
EmergencyStop mode. We need therefore an observer (i.e., a state variable) to
record the number of times we have successively received the STOP message.
So in the sequel we will start from the following specification of states:

spec Sbcs State 1 =
Preliminary

then sort State
ops mode : State → Mode;

numSTOP : State → Nat
end

Introducing the new observer numSTOP means that we will have to spec-
ify a corresponding next numSTOP operation in the Sbcs Analysis specifi-
cation.

♥ Let us insist again on the importance of structuring our formal
specification into coherent, easy to grasp, named specifications that
will be easy to reuse later on by referring to their names. As explained
above it is moreover essential to rely on a loose specification of states
so that we can introduce later on as many observers as needed. Using
a predicate (such as is step) to describe a labeled transition system is
quite convenient here, and provides us with an elegant way of handling
both input and output for each transition. Finally, it is essential to
use a free constraint to specify the reachable states, and thus we need
to combine parts with a loose interpretation and parts with an initial
interpretation in the same specification. ♥

13.4 Specifying the Mode of Operation

Our next step is the specification of the various operating modes in which the
steam-boiler control system operates. (As explained in Sect. 13.1 we do not
take into account the Initialization mode in this specification.) According to
App. C.4, the operating mode of the steam-boiler control system depends on
which failures have been detected (see e.g. “all physical units [are] operating
correctly”, “a failure of the water level measuring unit”, “detection of an
erroneous transmission”). It depends also on the expected evolution of the
water level (see “If the water level is risking to reach. . . ”).

We will therefore assume that the specification Sbcs Analysis will pro-
vide the following predicates which, given a known state and newly received
messages, should reflect the failures detected by the steam-boiler control sys-
tem:5

5 It is important to make a subtle distinction between the actual failures, about
which we basically know nothing, and the failures detected by the steam-boiler

164 13 Case Study: The Steam-Boiler Control System

• Transmission OK : State × Set [R Message]
should hold iff we rely on the message transmission system,

• PU OK : State × Set [R Message] × PhysicalUnit
should hold iff we rely on the corresponding physical unit,

• DangerousWaterLevel : State × Set [R Message]
should hold iff we estimate that the water level risks reaching the min
(M1) or max (M2) limits.

However, at this stage our understanding of the steam-boiler control system is
still quite preliminary, and it is therefore too early to attempt to specify these
predicates. Therefore, our specification Mode Evolution, where we specify
the new operating mode according to the previous one and the newly received
messages (i.e., the operation next mode), will be made generic w.r.t. these
predicates. Let us emphasize that here genericity is used to ensure a loose
coupling between the current specification of interest, Mode Evolution,
and other specifications expected to provide the needed predicates.

Let us now explain how to specify the new mode of operation. At first
glance the informal requirements (see App. C.4) look quite complicated,
mainly because they explain, for each operating mode, under which condi-
tions the steam-boiler control system should stay in the same operating mode
or switch to another one. However, things get simpler if we analyze under
which conditions the next mode is one of the specified operating modes. In
particular, a careful analysis of the requirements shows that, except for switch-
ing to the EmergencyStop mode, we can determine the new operating mode
(after receiving some messages) without even taking into account the previous
one.

To improve the legibility of our specification it is better to introduce some
auxiliary predicates (Everything OK , AskedToStop, SystemStillControllable,
and Emergency) that will facilitate the characterization of the conditions un-
der which the system switches from one mode to another:

• The aim of the predicate Everything OK is to express that we believe that
all physical units are operating correctly, including the message transmis-
sion system.

• The aim of the predicate AskedToStop is to determine if we have received
the STOP message three times in a row.

• The aim of the predicate SystemStillControllable is to characterize the con-
ditions under which the steam-boiler control system will operate in Rescue
mode. Let us point out that the corresponding part of the informal require-
ments (see App. C.4.4) is not totally clear, in particular the exact meaning
of the sentence “if one can rely upon the information which comes from the
units for controlling the pumps”. There is a double ambiguity here: on the
one hand it is unclear whether “the pumps” means “all pumps” or “at least

control system. The behavior of the steam-boiler control system is induced by the
failures detected, whatever the actual failures are.

13.4 Specifying the Mode of Operation 165

one pump”; on the other hand there are two ways of “controlling” each
pump (the information sent by the pump and the information sent by the
pump controller), and it is unclear whether “controlling” refers to both of
them or only to the pump controller. Our interpretation will be as follows:
we consider it is enough that at least one pump is “correctly working”,
and for us correctly working will mean we rely on both the pump and the
associated pump controller. As with all interpretations made during the
formalization process, we should in principle interact with the designers of
the informal requirements in order to clarify what was the exact intended
meaning and to check that our interpretation is adequate. The important
point is that our interpretation is entirely localized in the axiomatization
of SystemStillControllable, and it will therefore be fairly easy to change
our specification in case of misinterpretation.

• The aim of the predicate Emergency is to characterize when we should
switch to the EmergencyStop mode. In App. C.4.2, it is said that the
steam-boiler control system should switch from Normal mode to Rescue
mode as soon as a failure of the water level measuring unit is detected.
However, in App. C.4.4, it is explained that the steam-boiler control system
can only operate in Rescue mode if some additional conditions hold (rep-
resented by our predicate SystemStillControllable). We decide therefore
that when in Normal mode, if a failure of the water level measuring unit
is detected, the steam-boiler control system will switch to Rescue mode
only if SystemStillControllable holds, otherwise it will switch (directly) to
EmergencyStop mode.6

The axiomatization of the next mode of operation is now both simple and
clear, as illustrated by the Mode Evolution specification.7

spec Mode Evolution
[preds Transmission OK : State × Set [R Message];

PU OK : State × Set [R Message] × PhysicalUnit ;
DangerousWaterLevel : State × Set [R Message]]

given Sbcs State 1 =
local %% Auxiliary predicates to structure the specification of next mode.

6 If our interpretation is incorrect, then in some cases we may have replaced
a sequence Normal → Rescue → EmergencyStop by a sequence Normal →
EmergencyStop. Note that a sequence Normal → Rescue → Normal or Degraded
is not possible since several cycles are necessary between a failure detection and
the decision that the corresponding unit is again fully operational, see Sect. 13.5,
i.e., we must have a sequence of the form Normal → Rescue → . . . → Rescue →
Normal or Degraded in such cases.

7 Note that once in the EmergencyStop mode, we specify that we stay in this mode
forever, rather than specifying that the steam-boiler control system actually stops.
Note also that we realize that the operation next numSTOP is better specified
in this Mode Evolution specification.

166 13 Case Study: The Steam-Boiler Control System

preds Everything OK , AskedToStop, SystemStillControllable,
Emergency : State × Set [R Message]

∀s : State; msgs : Set [R Message]
• Everything OK (s ,msgs) ⇔

(Transmission OK (s ,msgs) ∧
(∀pu : PhysicalUnit • PU OK (s ,msgs , pu)))

• AskedToStop(s ,msgs) ⇔ numSTOP(s) = 2 ∧ STOP ε msgs
• SystemStillControllable(s ,msgs) ⇔

(PU OK (s ,msgs ,SteamOutput) ∧
(∃pn : PumpNumber • PU OK (s ,msgs ,Pump(pn))

∧ PU OK (s ,msgs ,PumpController(pn))))
• Emergency(s ,msgs) ⇔

(mode(s) = EmergencyStop ∨
AskedToStop(s ,msgs) ∨
¬Transmission OK (s ,msgs) ∨
DangerousWaterLevel(s ,msgs) ∨
(¬PU OK (s ,msgs ,WaterLevel) ∧
¬ SystemStillControllable(s ,msgs)))

within ops next mode : State × Set [R Message] → Mode;
next numSTOP : State × Set [R Message] → Nat

∀s : State; msgs : Set [R Message]
%% Emergency stop mode:

• Emergency(s ,msgs) ⇒ next mode(s ,msgs) = EmergencyStop
%% Normal mode:

• ¬Emergency(s ,msgs) ∧
Everything OK (s ,msgs) ⇒ next mode(s ,msgs) = Normal

%% Degraded mode:

• ¬Emergency(s ,msgs) ∧
¬Everything OK (s ,msgs) ∧
PU OK (s ,msgs ,WaterLevel) ∧
Transmission OK (s ,msgs) ⇒ next mode(s ,msgs) = Degraded

%% Rescue mode:

• ¬Emergency(s ,msgs) ∧
¬PU OK (s ,msgs ,WaterLevel) ∧
SystemStillControllable(s ,msgs) ∧
Transmission OK (s ,msgs) ⇒ next mode(s ,msgs) = Rescue

%% next numSTOP :

• next numSTOP(s ,msgs) = numSTOP(s) + 1 when STOP ε msgs
else 0

end

In the next step of our formalization process, we will specify the predicates
assumed by Mode Evolution, which amounts to specifying the detection
of equipment failures. This will be the topic of the next section.

13.5 Specifying the Detection of Equipment Failures 167

♥ Two essential features of CASL have been used in the specification
Mode Evolution. On the one hand, the use of a generic specification
(with imports) ensures loose coupling of the current specification of
interest with the rest of the steam-boiler control system specification.
On the other hand, auxiliary predicates improve the legibility of the
specification, and declaring them in the local part of the specification
ensures they are hidden and therefore not exported. ♥

13.5 Specifying the Detection of Equipment Failures

The detection of equipment failures is described in App. C.7. It is quite clear
that this detection is the most difficult part to formalize, mainly because
both our intuition and the requirements (see e.g. “knows from elsewhere”,
“incompatible with the dynamics”) suggest that we should take into account
some inter-dependencies when detecting the various possible failures.

For instance, if we ask a pump to stop, and if in the next cycle the pump
state still indicates that the pump is open, we may in principle infer either
a failure of the message transmission system (e.g. the stop order was not
properly sent or was not received, or the message indicating the pump state
has been corrupted) or a failure of the pump (which was not able to execute
the stop order or which sends incorrect state messages). Our understanding
of the requirements is that in such a case we must conclude there has been
a failure of the pump, not of the message transmission system. Let us stress
again that it is important to distinguish between the actual failures of the
various pieces of equipment, and the diagnosis we will make. Only the latter
is relevant in our specification.

13.5.1 Understanding the Detection of Equipment Failures

Before starting to specify the detection of equipment failures, we must proceed
to a careful analysis of App. C.7, in order to clarify the inter-dependencies
mentioned above. Only then will we be able to understand how to structure
our specification of this crucial part of the problem.

A first rough analysis of the part of App. C.7 devoted to the description of
potential failures of the physical units (i.e. of the pumps, the pump controllers
and the two measuring devices) shows that these failures are detected on
the basis of the information contained in the messages received: we must
check that the received values are in accordance with some expected values
(according to the history of the system, i.e. according to the “dynamics of
the system” and to the messages previously sent by the steam-boiler control
system). In particular, the detection of failures of the physical units relies on
the fact that we have effectively received the necessary messages. If we have
not received these messages, then we should conclude there has been a failure
of the message transmission system (see below), and in these cases (see the

168 13 Case Study: The Steam-Boiler Control System

Mode Evolution specification), the steam-boiler control system switches
to the EmergencyStop mode. The further detection of failures of the physical
units (in addition to the already detected failure of the message transmission
system) is therefore irrelevant in such cases.

Let us now consider the message transmission system. The description of
potential failures of the message transmission system in App. C.7 is quite
short. Basically, it tells us that we should check that the steam-boiler con-
trol system has received all the messages it was expecting, and that none of
the messages received is aberrant. However, it is important to note that the
involved analysis of the messages received combines two aspects: on the one
hand, there is some ‘static’ analysis of the messages received in order to check
that all messages that must be present in each transmission are effectively
present (see App. C.6). These messages are exactly the messages required to
proceed to the detection of the failures of the physical units. On the other
hand, the steam-boiler control system expects to receive (or, on the contrary,
not to receive) some specific messages according to the history of the system
(for instance, the steam-boiler control system expects to receive a “failure
acknowledgement” from a physical unit once it has detected a corresponding
failure and sent a “failure” message to this unit, but not before), and here some
‘dynamic’ analysis is required. Obviously, the static analysis of the messages
can be made on the basis of the messages received only, while the dynamic
analysis must take into account, in addition to the messages received, the his-
tory of the system, and more precisely the history of the failures detected so
far and of the “failure acknowledgement” and “repaired” messages received
so far.

From this first analysis we draw the following conclusions on how to specify
the detection of equipment failures:

1. In a first step we should keep track of the failure status of the physical
units. This will lead to a new observer status on states, and to a specifica-
tion Status Evolution of how this status evolves, i.e., of a next status
operation.

2. Then we specify the detection of the message transmission system failures
(hence Transmission OK) in the specification Message Transmission
System Failure. As explained above, in a first step we take care of the
static analysis of the messages received, and then in a second step we take
care of the dynamic analysis of the messages received, using how we have
kept track of the “status” of the physical units, i.e., using the observer
status .

3. Then, for each physical unit, we specify the detection of its failures by
comparing the message received with the expected one. For this compari-
son we can freely assume that the static analysis of the messages received
has been successful, i.e., that the message sent by the physical unit has
been received.

The corresponding specifications are described in the next subsections.

13.5 Specifying the Detection of Equipment Failures 169

13.5.2 Keeping Track of the Status of the Physical Units

Remember that to perform the dynamic analysis of the messages received, as
explained above, we must check that we receive “failure acknowledgement”
and “repaired” messages when appropriate. In order to do this, we must keep
track of the failures detected and of the “failure acknowledgement” and “re-
paired” messages received. Since the same reasoning applies for all physical
units, we can do the analysis in a generic way. For each physical unit, we
will keep track of its status, which can be either OK , FailureWithoutAck or
FailureWithAck . The status of a physical unit will then be updated accord-
ingly to the detection of failures, and receipt of “failure acknowledgement”
and “repaired” messages.

Thus, in a first step we should extend the specification Sbcs State 1 to
add an observer related to the failure status of physical units:

spec Sbcs State 2 =
Sbcs State 1

then free type Status ::= OK | FailureWithoutAck | FailureWithAck
op status : State × PhysicalUnit → Status ;

end

Now the specification of how the status of a physical unit evolves, i.e.,
of the operation next status in Status Evolution, is quite straightforward.
We rely again on the predicate PU OK .8

spec Status Evolution
[pred PU OK : State × Set [R Message] × PhysicalUnit]
given Sbcs State 2 =
op next status : State × Set [R Message] × PhysicalUnit → Status
∀s : State; msgs : Set [R Message]; pu : PhysicalUnit
• status(s , pu) = OK ∧ PU OK (s ,msgs , pu)

⇒ next status(s ,msgs , pu) = OK
• status(s , pu) = OK ∧ ¬PU OK (s ,msgs , pu)

⇒ next status(s ,msgs , pu) = FailureWithoutAck
• status(s , pu) = FailureWithoutAck ∧

FAILURE ACKNOWLEDGEMENT (pu) ε msgs
⇒ next status(s ,msgs , pu) = FailureWithAck

• status(s , pu) = FailureWithoutAck ∧
¬ (FAILURE ACKNOWLEDGEMENT (pu) ε msgs)

⇒ next status(s ,msgs , pu) = FailureWithoutAck

8 The reader may detect that the specification Status Evolution is not com-
pletely correct. However, we prefer to give here the text of the specification as
it was originally written, and we will explain in Sect. 13.9 how we detect, when
validating the specification of the steam-boiler control system, that something is
not correct, and how the problem can be fixed.

170 13 Case Study: The Steam-Boiler Control System

• status(s , pu) = FailureWithAck ∧ REPAIRED(pu) ε msgs
⇒ next status(s ,msgs , pu) = OK

• status(s , pu) = FailureWithAck ∧ ¬ (REPAIRED(pu) ε msgs)
⇒ next status(s ,msgs , pu) = FailureWithAck

end

♥ Here again we rely on a generic specification with imports to en-
sure loose coupling. As claimed earlier, the loose specification of states
makes it easy to introduce further observers (hence further state vari-
ables). ♥

13.5.3 Detection of the Message Transmission System Failures

As explained above, we first specify the static analysis of the messages re-
ceived, and then we specify the dynamic analysis of these messages.

To specify the static analysis of messages, it is necessary to check that all
“indispensable” messages are present. In addition, a set of messages received
is “acceptable” if there are no “duplicated” messages in this set. Since we have
specified the collection of messages received as a set, we cannot have several
occurrences of exactly the same message in this set. (Note that this means
that our choice of using “sets” instead of “bags”, for instance, is therefore not
totally innocent: either we assume that receiving several occurrences of exactly
the same message will never happen, and this is an assumption about the
environment, or we assume that this case should not lead to the detection of
a failure of the message transmission system, and this is an assumption about
the requirements.) However, specifying the collection of messages received as
a set does not imply that a set of messages received cannot contain several
LEVEL(v) messages, with distinct values (for instance). Hence we must check
this explicitly.

Remember that receiving “unknown” messages (i.e., messages that do not
belong to the list of messages as specified in App. C.6) is taken into account via
the extra constant junk message (see the specification Messages Received).
Another erroneous situation is when we simultaneously receive a failure ac-
knowledgement and a repaired message for the same physical unit, i.e., that
at least one cycle is needed between acknowledging the failure and repairing
the unit. We will check this as well.9

We focus now on the dynamic analysis of the messages received. As ex-
plained above, to perform this dynamic analysis, we check that we receive
“failure acknowledgement” and “repaired” messages when appropriate, ac-
cording to the current status of each physical unit. We understand that for
9 We must confess that this belief is induced by our intuition about the behavior

of the system. Indeed nothing in the requirements allows us to make either this
interpretation or the opposite one. Although not essential, this assumption will
simplify the axiomatization.

13.5 Specifying the Detection of Equipment Failures 171

each failure signaled by the steam-boiler control system, the corresponding
physical unit will send just one failure acknowledgement. Moreover, we will
specify the steam-boiler control system in such a way that when it receives
a “repaired” message, the steam-boiler control system acknowledges it imme-
diately. Hence, if there is no problem with the message transmission system,
and due to the fact that transmission time can be neglected, the steam-boiler
control system must in principle receive only one repaired message for a given
failure. Note that this does not contradict the “until. . . ” part of the sen-
tences describing the “repaired” messages in the informal requirements (see
App. C.6). To summarize, we consider that we have received an unexpected
message when:

• the program receives initialization messages but is no longer in initializa-
tion mode; or

• the program receives for some physical unit a “failure acknowledgement”
without having previously sent the corresponding failure detection mes-
sage, or receives redundant failure acknowledgements; or

• the program receives for some physical unit a “repaired message”, but the
unit is OK or its failure is not yet acknowledged.

We now have all the ingredients required to specify the Transmission OK
predicate, taking into account both static and dynamic aspects, which leads
to the following Message Transmission System Failure specification.

spec Message Transmission System Failure =
Sbcs State 2

then local %% Static analysis:

pred is static OK : Set [R Message]
∀msgs : Set [R Message]
• msgs is static OK ⇔

(¬(junk ε msgs) ∧
(∃!v : Value • LEVEL(v) ε msgs) ∧
(∃!v : Value • STEAM (v) ε msgs) ∧
(∀pn : PumpNumber • ∃!ps : PumpState •

PUMP STATE(pn, ps) ε msgs) ∧
(∀pn : PumpNumber • ∃!pcs : PumpControllerState •

PUMP CONTROLLER STATE(pn, pcs) ε msgs) ∧
(∀pu : PhysicalUnit •

¬ (FAILURE ACKNOWLEDGEMENT (pu) ε msgs
∧ REPAIRED(pu) ε msgs)))

%% Dynamic analysis:

pred is NOT dynamic OK for : Set [R Message] × State

172 13 Case Study: The Steam-Boiler Control System

∀s : State; msgs : Set [R Message]
• msgs is NOT dynamic OK for s ⇔

((¬(mode(s) = Initialization) ∧
(STEAM BOILER WAITING ε msgs ∨

PHYSICAL UNITS READY ε msgs))
∨ (∃pu : PhysicalUnit •

FAILURE ACKNOWLEDGEMENT (pu) ε msgs ∧
(status(s , pu) = OK ∨ status(s , pu) = FailureWithAck))

∨ (∃pu : PhysicalUnit •
REPAIRED(pu) ε msgs ∧
(status(s , pu) = OK ∨ status(s , pu) = FailureWithoutAck)))

within
pred Transmission OK : State × Set [R Message]
∀s : State; msgs : Set [R Message]
• Transmission OK (s ,msgs) ⇔

(msgs is static OK ∧ ¬(msgs is NOT dynamic OK for s))
end

♥ Here again auxiliary predicates declared in the local part of the
specification are quite useful to improve the legibility of the specifica-
tion. Note also the use of nested quantifiers in axioms (‘∀’, ‘∃’ as well
as ‘∃!’) – without them the axioms would be much more intricate, or
further auxiliary operations would be needed. ♥

13.5.4 Detection of the Pump and Pump Controller Failures

We start by considering the detection of the failures of the pumps.
As explained in Sec 13.5.1, we rely on the predicted pump state message.

Thus, in a first step we should extend the specification Sbcs State 2 to
add an observer related to the prediction of pump state messages. The pre-
diction (Open or Closed) can however only be made when the status of the
corresponding pump is OK . This is why we extend the sort PumpState to
introduce a constant Unknown PS :

spec Sbcs State 3 =
Sbcs State 2

then free type ExtendedPumpState ::= sort PumpState | Unknown PS
op PS predicted : State × PumpNumber → ExtendedPumpState;
%{ status(s,Pump(pn)) = OK ⇔

¬ (PS predicted(s, pn) = Unknown PS) }%
end

The specification of the detection of pump failures is now straightforward
and is given in the Pump Failure specification. Remember that the meaning
of Pump OK is only relevant when Transmission OK holds, which in partic-
ular implies that for each pump, there is only one PUMP STATE message for

13.5 Specifying the Detection of Equipment Failures 173

it in msgs . Moreover, we check the received value only if the predicted value
is not Unknown PS .

spec Pump Failure =
Sbcs State 3

then pred Pump OK : State × Set [R Message] × PumpNumber
∀s : State; msgs : Set [R Message]; pn : PumpNumber
• Pump OK (s ,msgs , pn) ⇔

PS predicted(s , pn) = Unknown PS ∨
PUMP STATE(pn,PS predicted(s , pn) as PumpState) ε msgs

end

Let us now consider the detection of the failures of the pump controllers.
Again we rely on the predicted pump state controller message. Here, we must
be a bit careful in order to reflect the fact that stopping a pump has an
instantaneous effect, while starting it takes five seconds (see App. C.2.3).
Since five seconds is, unfortunately, exactly the elapsed time between two
cycles, when we decide to activate a pump we may have to wait two cycles to
receive a corresponding Flow pump controller state. This is why, in addition
to the constant Unknown PCS , used for the cases where no prediction can be
made since the pump controller is not working correctly, we also introduce a
constant SoonFlow to be used for the prediction related to a just activated
pump.

spec Sbcs State 4 =
Sbcs State 3

then free type
ExtendedPumpControllerState ::= sort PumpControllerState

| SoonFlow | Unknown PCS
op PCS predicted : State × PumpNumber

→ ExtendedPumpControllerState;
%{ status(s,PumpController(pn)) = OK ⇒

¬ (PCS predicted(s, pn) = Unknown PCS) }%

end

The specification of the detection of pump controller failures is now
straightforward and is given in the Pump Controller Failure specifica-
tion. Remember that the meaning of Pump Controller OK is only relevant
when Transmission OK holds, which in particular implies that for each pump,
there is only one PUMP CONTROLLER STATE message for it in msgs .
Moreover, we check the received value only if the predicted value is either
Flow or NoFlow , since if it is SoonFlow or Unknown PCS we cannot con-
clude.

174 13 Case Study: The Steam-Boiler Control System

spec Pump Controller Failure =
Sbcs State 4

then pred Pump Controller OK : State × Set [R Message]×PumpNumber
∀s : State; msgs : Set [R Message]; pn : PumpNumber
• Pump Controller OK (s ,msgs , pn) ⇔

PCS predicted(s , pn) = Unknown PCS
∨ PCS predicted(s , pn) = SoonFlow
∨ PUMP CONTROLLER STATE(pn,

PCS predicted(s , pn) as PumpControllerState) ε msgs
end

♥ In the above specifications, using supersorts to extend previously
defined datatypes is particularly convenient, and avoids the need to ex-
plicitly relate values of PumpState and values of ExtendedPumpState
(and similarly for PumpControllerState). Note the use of explicit cast-
ings in the axioms – in particular, the fact that predicates do not hold
on undefined arguments resulting from castings is used in the above
specifications. ♥

13.5.5 Detection of the Steam and Water Level Measurement
Device Failures

To specify the failures of the steam and water level measurement devices, we
must again rely on some predicted values. Here however we cannot predict
an exact value, but only an interval in which the received value should be
contained. This leads to the following extension of Sbcs State 4:

spec Sbcs State 5 =
Sbcs State 4

then free type Valpair ::= pair(low : Value; high : Value)
ops steam predicted , level predicted : State → Valpair ;
%{ low(steam predicted(s)) is the minimal steam output predicted,

high(steam predicted(s)) is the maximal steam output predicted,
and similarly for level predicted. }%

end

The specification of the failures of the measurement devices is again
straightforward and is given in the Steam Failure and Level Failure
specifications. Remember that the meaning of Steam OK (Level OK resp.) is
only relevant when Transmission OK holds, which in particular implies that
there is only one STEAM (v) (LEVEL(v) resp.) message in msgs (hence only
one possible v in the quantifications ∀v : Value . . . below). Note also that
here we assume that the predicted values will take care of the static limits (0
and W for the steam, 0 and C for the water level), thus we do not need to
check these static limits explicitly here.

13.5 Specifying the Detection of Equipment Failures 175

spec Steam Failure =
Sbcs State 5

then pred Steam OK : State × Set [R Message]
∀s : State; msgs : Set [R Message]
• Steam OK (s ,msgs) ⇔

(∀v : Value • STEAM (v) ε msgs ⇒
(low(steam predicted(s)) ≤ v) ∧
(v ≤ high(steam predicted(s))))

end

spec Level Failure =
Sbcs State 5

then pred Level OK : State × Set [R Message]
∀s : State; msgs : Set [R Message]
• Level OK (s ,msgs) ⇔

(∀v : Value • LEVEL(v) ε msgs ⇒
(low(level predicted(s)) ≤ v) ∧
(v ≤ high(level predicted(s))))

end

13.5.6 Summing Up

We now have all the ingredients necessary for the specification of the predi-
cate PU OK . This is done in the Failure Detection specification, which
integrates together all the specifications related to failure detection.

spec Failure Detection =
{ Message Transmission System Failure

and Pump Failure and Pump Controller Failure
and Steam Failure and Level Failure
then pred PU OK : State × Set [R Message] × PhysicalUnit

∀s : State; msgs : Set [R Message]; pn : PumpNumber
• PU OK (s ,msgs ,Pump(pn)) ⇔ Pump OK (s ,msgs , pn)
• PU OK (s ,msgs ,PumpController(pn)) ⇔

Pump Controller OK (s ,msgs , pn)
• PU OK (s ,msgs ,SteamOutput) ⇔ Steam OK (s ,msgs)
• PU OK (s ,msgs ,WaterLevel) ⇔ Level OK (s ,msgs)

} hide ops Pump OK , Pump Controller OK , Steam OK , Level OK
end

♥ In the above specification, we rely on explicit hiding of operations
that are no longer needed. Moreover, the ‘same name, same thing’
principle is essential here: each of the five specifications extended in
Failure Detection is itself an extension of some specification Sbcs
State i of states, but with the ‘same name, same thing’ principle we
get the effect that each of them extends Sbcs State 5. ♥

176 13 Case Study: The Steam-Boiler Control System

13.6 Predicting the Behavior of the Steam-Boiler

In the previous section we have explained that failure detection was to a large
extent based on a comparison between the messages received and the expected
ones. For this purpose we have extended the specification Sbcs State by sev-
eral observers, which means we have assumed that at each cycle, we record in
some state variables the information needed to compute the expected messages
at the next cycle. According to our explanations in Sect. 13.3, we must now
specify, for each observer obs introduced, a corresponding next obs operation.
This is the aim of this section.

We have already defined the operation next mode in the generic specifica-
tion Mode Evolution (see Sect. 13.4) and the operation next status in the
generic specification Status Evolution (see Sect. 13.5.2). Thus what is left
is the specification of the operations next PS predicted , next PCS predicted ,
next steam predicted and next level predicted .

As explained in Sect. 13.5, the informal requirements suggest that we
should take into account some inter-dependencies when predicting values to
be received at the next cycle. For instance, the water level in the steam-boiler
depends on how much steam is produced, but also on how much water is
poured into the steam boiler by the pumps which are open. The information
provided by the water level prediction is obviously crucial to decide whether
we should activate or stop some pumps. On the other hand, to predict the
pump state and pump controller state messages to be received at the next
cycle, we must know which pumps have been ordered to be activated or to be
stopped.

From this first analysis we draw the following conclusions on how to specify
the needed predictions:

1. In a first step we should predict the interval in which the steam output is
expected to stay during the next cycle: this prediction relies only on the
just received value STEAM (v) (if we trust it) or on the previously pre-
dicted values for the steam production. This is because the production of
steam is expected to vary according to its maximum gradients of increase
and decrease, and nothing else.

2. In the next step we should decide whether some pumps have to be ordered
to activate or to stop. This decision, plus the knowledge about the current
state of the pumps (as much as we trust it), and the predicted evolution
of the steam production, should allow us to predict the evolution of the
water level.

3. Then, on the basis of the current states of the pumps and pump controllers,
together with the choice of pumps to be activated or stopped, we can
predict the states of the pumps and of the pump controllers at the next
cycle.

Of course all these predictions are only meaningful as long as no failure of the
message transmission system has been detected (but if this is not the case the

13.6 Predicting the Behavior of the Steam-Boiler 177

steam-boiler control system switches to the EmergencyStop mode and stops,
so no predictions are needed anyway). The corresponding specifications are
described in the next subsections.

13.6.1 Predicting the Steam Output and the Water Level

To predict the intervals in which the steam output and the water level are
expected to stay during the next cycle, we will proceed as follows (taking into
account the “Additional Information” provided in [1, pp. 507–509]):

1. Following the analysis sketched above, when we are in the state s and
have received the messages msgs , to predict the interval in which the
steam output is expected to stay during the next cycle, we first should
compute the adjusted steam interval: this interval is either the (inter-
val reduced to the) received steam value if we can rely on it (i.e., if
PU OK (s ,msgs ,SteamOutput) holds), or the steam predicted interval
(stored in the state s at the previous cycle).

2. Then, we use the maximum gradients of increase and decrease (i.e., U1
and U2), to predict the interval in which the steam output is expected to
stay during the next cycle.

3. We proceed similarly for the water level: first we compute the adjusted level
interval, which is either the (interval reduced to the) received level value
if we can rely on it (i.e., if PU OK (s ,msgs ,WaterLevel) holds), or the
level predicted interval (stored in the state s at the previous cycle).

4. Then we should consider broken pumps (the pumps pn for which either
PU OK (s ,msgs ,Pump(pn)) does not hold or PU OK (s ,msgs ,Pump-
Controller(pn)) does not hold – or both) and the reliable pumps , which
are not broken and are therefore known to be either Open or Closed .

5. At this point we must decide which pumps are ordered to activate or to
stop.
However, the specific control strategy for deciding which pumps should be
activated or stopped need not to be detailed in this requirements specifica-
tion: this can be left to a further refinement towards an implementation of
the steam-boiler control system. (Obviously the strategy should compare
the adjusted level with the recommended interval (N1 ,N2) and decide
accordingly.)
We will therefore rely on a loosely specified chosen pumps operation, for
which we just impose some soundness conditions (e.g., a pump ordered to
activate should be currently considered as “reliable” and Closed , a pump
ordered to stop should be currently considered as “reliable” and Open).

6. Now we can compute the minimal and maximal amounts of water that
will be poured into the steam-boiler during the next cycle. To compute
minimal pumped water , we consider that only the pumps which are “re-
liable” and already Open will pour some water in; the broken pumps , the
pumps which are just ordered to activate, and the pumps which are or-
dered to stop are all considered not to be pouring water in. Similarly, to

178 13 Case Study: The Steam-Boiler Control System

compute maximal pumped water , we consider that the pumps which are
“reliable” and already Open, the pumps which are just ordered to acti-
vate, as well as all the broken pumps , may pour some water in; only the
“reliable” pumps just ordered to stop or already stopped are known not
to be pouring any water in.

7. Finally, we can predict the interval in which the water level is expected
to stay during the next cycle.

8. This prediction is the basis for deciding whether the water level risks to
reach a DangerousWaterLevel (i.e., below M1 or above M2).

Note that the intervals in which the steam output and the water level are
expected to stay during the next cycle are predicted without considering the
next status of these devices. This is indeed necessary for the Degraded and
Rescue operating modes. This leads to the following Steam And Level
Prediction specification.

spec Steam And Level Prediction =
Failure Detection and Set [sort PumpNumber]

then local
ops received steam : State × Set [R Message] → Value;

adjusted steam : State × Set [R Message] → Valpair ;
received level : State × Set [R Message] → Value;
adjusted level : State × Set [R Message] → Valpair ;
broken pumps : State × Set [R Message] → Set [PumpNumber];
reliable pumps :

State × Set [R Message] × PumpState → Set [PumpNumber]
∀s : State; msgs : Set [R Message]; pn : PumpNumber ; ps : PumpState
%% Axioms for STEAM:

• Transmission OK (s ,msgs) ⇒
STEAM (received steam(s ,msgs)) ε msgs

• adjusted steam(s ,msgs) =
pair(received steam(s ,msgs), received steam(s ,msgs))
when (Transmission OK (s ,msgs) ∧ PU OK (s ,msgs ,SteamOutput))
else steam predicted(s)

%% Axioms for LEVEL:

• Transmission OK (s ,msgs) ⇒
LEVEL(received level(s ,msgs)) ε msgs

• adjusted level(s ,msgs) =
pair(received level(s ,msgs), received level(s ,msgs))
when (Transmission OK (s ,msgs) ∧ PU OK (s ,msgs ,WaterLevel))
else level predicted(s)

%% Axioms for auxiliary pumps operations:

• pn ε broken pumps(s ,msgs) ⇔
¬ (PU OK (s ,msgs ,Pump(pn)) ∧

PU OK (s ,msgs ,PumpController(pn)))

13.6 Predicting the Behavior of the Steam-Boiler 179

• pn ε reliable pumps(s ,msgs , ps) ⇔
¬ (pn ε broken pumps(s ,msgs)) ∧
PUMP STATE(pn, ps) ε msgs

within
ops next steam predicted : State × Set [R Message] → Valpair ;

chosen pumps :
State×Set [R Message]×PumpState → Set [PumpNumber];

minimal pumped water ,maximal pumped water :
State × Set [R Message] → Value;

next level predicted : State × Set [R Message] → Valpair
pred DangerousWaterLevel : State × Set [R Message]
%% Axioms for STEAM:

∀s : State; msgs : Set [R Message]; pn : PumpNumber
• low(next steam predicted(s ,msgs)) =

max (0 , low(adjusted steam(s ,msgs)) − (U2 × dt))
• high(next steam predicted(s ,msgs)) =

min(W , high(adjusted steam(s ,msgs)) + (U1 × dt))
%% Axioms for PUMPS:

• pn ε chosen pumps(s ,msgs ,Open) ⇒
pn ε reliable pumps(s ,msgs ,Closed)

• pn ε chosen pumps(s ,msgs ,Closed) ⇒
pn ε reliable pumps(s ,msgs ,Open)

• minimal pumped water(s ,msgs) =
dt × P × �(reliable pumps(s ,msgs ,Open)

− chosen pumps(s ,msgs ,Closed))
• maximal pumped water(s ,msgs) =

dt × P × �((reliable pumps(s ,msgs ,Open)
∪ chosen pumps(s ,msgs ,Open)
∪ broken pumps(s ,msgs))
− chosen pumps(s ,msgs ,Closed))

%% Axioms for LEVEL:

• low(next level predicted(s ,msgs)) =
max (0 , (low(adjusted level(s ,msgs))

+ minimal pumped water(s ,msgs))
− ((dt2 × U1/2)

+ (dt × high(adjusted steam(s ,msgs)))))
• high(next level predicted(s ,msgs)) =

min(C , (high(adjusted level(s ,msgs))
+ maximal pumped water(s ,msgs))

− ((dt2 × U2/2)
+ (dt × low(adjusted steam(s ,msgs)))))

• DangerousWaterLevel(s ,msgs) ⇔
(low(next level predicted(s ,msgs)) ≤ M1) ∨
(M2 ≤ high(next level predicted(s ,msgs)))

180 13 Case Study: The Steam-Boiler Control System

hide ops minimal pumped water , maximal pumped water
end

♥ Note the combination of implicit hiding of auxiliary operations de-
clared in the local part and of explicit hiding: the operations minimal
pumped water and maximal pumped water cannot be made local since
their specification relies on chosen pumps which must be exported. ♥

13.6.2 Predicting the Pump and Pump Controller States

Specifying the predicted state of each pump at the next cycle is almost trivial.
The next pump state is Unknown PS if the next status of the pump is not
OK , otherwise it should be Open if:

• it is Open now and the pump is not ordered to stop, or
• the pump is ordered to activate;

otherwise, it should be Closed since:

• it is Closed now and the pump is not ordered to activate, or
• it is ordered to stop.

This leads to the following Pump State Prediction specification. This
specification extends Steam And Level Prediction (since we rely on
chosen pumps for our predictions), and Status Evolution (which provides
next status) instantiated by Failure Detection (which provides the pred-
icate PU OK parameter of Status Evolution).

spec Pump State Prediction =
Status Evolution [Failure Detection]
and Steam And Level Prediction

then op next PS predicted :
State × Set [R Message] × PumpNumber → ExtendedPumpState

∀s : State; msgs : Set [R Message]; pn : PumpNumber
• next PS predicted(s ,msgs , pn) =

Unknown PS when ¬ (next status(s ,msgs ,Pump(pn)) = OK)
else Open when (PUMP STATE(pn,Open) ε msgs ∧

¬ (pn ε chosen pumps(s ,msgs ,Closed)))
∨ pn ε chosen pumps(s ,msgs ,Open)

else Closed
end

The reasoning to predict the pump controller state is similar, but we must
take into account that two cycles may be needed before a just activated pump
leads to a Flow state (provided the pump is not stopped meanwhile). Thus,
the next pump controller state is Unknown PCS if the next status of the
pump controller is not OK , or if the next status of the corresponding pump
is not OK , otherwise the predicted pump controller state value is:

13.6 Predicting the Behavior of the Steam-Boiler 181

• Flow when the pump is not ordered to stop and it is currently Flow , or it
is currently NoFlow but PCS predicted SoonFlow ;

• NoFlow if the pump is ordered to stop, or if it is currently NoFlow and is
not PCS predicted SoonFlow and the pump is not ordered to activate;

• SoonFlow otherwise.

This leads to the following Pump Controller State Prediction spec-
ification.

spec Pump Controller State Prediction =
Status Evolution [Failure Detection]
and Steam And Level Prediction

then op next PCS predicted :
State × Set [R Message] × PumpNumber

→ ExtendedPumpControllerState
∀s : State; msgs : Set [R Message]; pn : PumpNumber
• next PCS predicted(s ,msgs , pn) =

Unknown PCS when
¬ (next status(s ,msgs ,PumpController(pn)) = OK ∧

next status(s ,msgs ,Pump(pn)) = OK)
else Flow when

(PUMP CONTROLLER STATE(pn,Flow) ε msgs ∨
(PUMP CONTROLLER STATE(pn,NoFlow) ε msgs ∧

PCS predicted(s , pn) = SoonFlow))
∧ ¬ (pn ε chosen pumps(s ,msgs ,Closed))

else NoFlow when
(pn ε chosen pumps(s ,msgs ,Closed))
∨ (PUMP CONTROLLER STATE(pn,NoFlow) ε msgs ∧

¬ (PCS predicted(s , pn) = SoonFlow) ∧
¬ (pn ε chosen pumps(s ,msgs ,Open)))

else SoonFlow
end

All our predictions are summarized in the following PU Prediction spec-
ification.

spec PU Prediction =
Pump State Prediction
and Pump Controller State Prediction
%{ Both specifications extend Status Evolution

(instantiated by Failure Detection)
and Steam And Level Prediction }%

end

♥ Since the specification Failure Detection provides the predi-
cate PU OK required by Status Evolution, we can now put pieces

182 13 Case Study: The Steam-Boiler Control System

together as illustrated by PU Prediction. Again the ‘same name,
same thing’ principle is essential here. ♥

13.7 Specifying the Messages to Send

At this stage we are left with the specification of the messages to send at each
cycle. This is easily specified, following App. C.5, and leads to the following
Sbcs Analysis specification.

The specification Sbcs Analysis is obtained by instantiating the Mode
Evolution specification by PU Prediction, and extending the result by
the specification of the operation messages to send .

spec Sbcs Analysis =
Mode Evolution [PU Prediction]

then local
ops PumpMessages, FailureDetectionMessages :

State × Set [R Message] → Set [S Message];
RepairedAcknowledgementMessages :

Set [R Message] → Set [S Message]
∀s : State; msgs : Set [R Message]; Smsg : S Message
• Smsg ε PumpMessages(s ,msgs) ⇔

(∃pn : PumpNumber •
(pn ε chosen pumps(s ,msgs ,Open)
∧ Smsg = OPEN PUMP(pn))

∨ (pn ε chosen pumps(s ,msgs ,Closed)
∧ Smsg = CLOSE PUMP(pn)))

• Smsg ε FailureDetectionMessages(s ,msgs) ⇔
(∃pu : PhysicalUnit •

Smsg = FAILURE DETECTION (pu) ∧
next status(s ,msgs , pu) = FailureWithoutAck)

• Smsg ε RepairedAcknowledgementMessages(msgs) ⇔
(∃pu : PhysicalUnit •

Smsg = REPAIRED ACKNOWLEDGEMENT (pu) ∧
next status(s ,msgs , pu) = FailureWithAck)

within
op messages to send : State × Set [R Message] → Set [S Message]
∀s : State; msgs : Set [R Message]
• messages to send(s ,msgs) =

(PumpMessages(s ,msgs) ∪
FailureDetectionMessages(s ,msgs) ∪
RepairedAcknowledgementMessages(msgs))
+ MODE(next mode(s ,msgs))

end

13.8 The Steam-Boiler Control System Specification 183

♥ We rely again here on auxiliary operations declared in the local part,
and their axiomatization is fairly easy using existential quantifiers. ♥

13.8 The Steam-Boiler Control System Specification

According to our work plan detailed in Sect. 13.3, we have already specified
the main parts of our case study. First, let us display a basic (flat) specifica-
tion equivalent to Sbcs State 5 and where all the state observers are listed
together.

spec Sbcs State =
Preliminary

then sort State
free type Status ::= OK | FailureWithoutAck | FailureWithAck
free type ExtendedPumpState ::= sort PumpState | Unknown PS
free type

ExtendedPumpControllerState ::= sort PumpControllerState
| SoonFlow | Unknown PCS

free type Valpair ::= pair(low : Value; high : Value)
ops mode : State → Mode;

numSTOP : State → Nat ;
status : State × PhysicalUnit → Status ;
PS predicted : State × PumpNumber

→ ExtendedPumpState;
PCS predicted : State × PumpNumber

→ ExtendedPumpControllerState;
steam predicted , level predicted : State → Valpair

end

We are now ready to provide the specification of the steam-boiler control
system, considered as a labeled transition system. We leave partly unspeci-
fied the initial state init , since in our specification this state represents the
state immediately following the receipt of the PHYSICAL UNITS READY
message. Hence intuitively the omitted axioms should take into account the
messages sent and received during the initialization phase (at least at the end
of it). It is therefore better to leave open for now the value of most observers
on init , and to note that this would have to be taken care of when specifying
the initialization phase. The value of mode(init) is specified according to the
end of App. C.4.1.

spec Steam Boiler Control System =
Sbcs Analysis

then op init : State
pred is step : State × Set [R Message] × Set [S Message] × State

184 13 Case Study: The Steam-Boiler Control System

%% Specification of the initial state init :

• mode(init) = Normal ∨ mode(init) = Degraded
%% Specification of is step:

∀s , s ′ : State; msgs : Set [R Message]; Smsg : Set [S Message]
• is step(s ,msgs ,Smsg, s ′) ⇔

mode(s ′) = next mode(s ,msgs) ∧
numSTOP(s ′) = next numSTOP(s ,msgs) ∧
(∀pu : PhysicalUnit •
status(s ′, pu) = next status(s ,msgs , pu)) ∧

(∀pn : PumpNumber •
PS predicted(s ′, pn) = next PS predicted(s ,msgs , pn) ∧
PCS predicted(s ′, pn) = next PCS predicted(s ,msgs , pn)) ∧

steam predicted(s ′) = next steam predicted(s ,msgs) ∧
level predicted(s ′) = next level predicted(s ,msgs) ∧
Smsg = messages to send(s ,msgs)

then %% Specification of the reachable states:

free { pred reach : State
∀s , s ′ : State; msgs : Set [R Message]; Smsg : Set [S Message]
• reach(init)
• reach(s) ∧ is step(s ,msgs ,Smsg, s ′) ⇒ reach(s ′) }

end

13.9 Validation of the CASL Requirements Specification

Once the formalization of the informal requirements is completed, we must
now face the following question: is our formal specification adequate? This
is a difficult question to answer since there is no formal way to establish
the adequacy of a formal specification w.r.t. informal requirements, i.e., we
cannot prove this adequacy. However, we can try to test it, by performing
various ‘experiments’. When these experiments are successful, our confidence
in the formal specification is increased. If some experiment fails, then we
can inspect the specification and try to understand the causes of the failure,
possibly detecting some flaw in the specification.

We will base our validation process on theorem proving, i.e., we will check
that some formulas are logical consequences of our requirements specifica-
tion Steam Boiler Control System. For this purpose we use the tools
described in Chap. 11. During this validation process we can consider two
kinds of proof obligations:

1. We can inspect the text of the specification and derive from this inspec-
tion some formulas that are expected to be logical consequences of our
specification. This can be considered as a kind of internal validation of
the formal specification.

13.9 Validation of the CASL Requirements Specification 185

2. We can check that some expected properties inferred from the informal
requirements are logical consequences of our specification (external valida-
tion). To do this, we must first reanalyze the informal specification, state
some expected properties, translate them into formulas, and then attempt
to prove that these formulas are logical consequences of our specification.
This task is not easy, since in general one has the feeling that all expected
properties were already detected and included in the axioms during the
formalization process.

The application of these principles to the requirements specification of the
steam-boiler control system leads to various proofs. Below we give only a few
illustrative examples.

For instance, let us consider the specification of next mode in Mode
Evolution: it is advisable to prove that all the cases considered in the spec-
ification of next mode are mutually exclusive, and that their disjunction is
equivalent to true. This is a typical example of internal validation of the spec-
ification, since we just consider the text of the specification to decide which
proof attempt will be performed, without considering the informal require-
ments again. We do not spell out the corresponding proofs here, but the
reader can easily check that indeed the operation next mode is well-defined
(i.e., all cases are mutually exclusive and their disjunction is equivalent to
true). In the same spirit we can prove that the same pump cannot simulta-
neously be ordered to activate and to stop, that we never resignal a failure
which has already been signaled, that as long as the operating mode is not
set to EmergencyStop the water level is safe, etc.

Let us now consider an example of external validation. According to our
understanding of failure detection (see Sect. 13.5), if we have detected a failure
of some physical unit pu (so PU OK does not hold for pu), then the status of
this physical unit should not be set to OK . The corresponding proof obligation
reads as follows:

Steam Boiler Control System |=
∀s : State; msgs : Set [R Message]; pu : PhysicalUnit
• Transmission OK (s ,msgs) ∧ ¬PU OK (s ,msgs , pu)

∧ reach(s) ⇒ ¬ (next status(s ,msgs , pu) = OK)

However here we are unable to discharge this proof obligation. A careful
analysis of the proof attempt shows that the proof fails since it could be
the case that, simultaneously with the receipt of a repaired message for the
physical unit pu, we nevertheless detect again a failure of the same unit. From
this analysis we conclude that the following axiom in Status Evolution is
not adequate:

• status(s , pu) = FailureWithAck ∧ REPAIRED(pu) is in msgs
⇒ next status(s ,msgs , pu) = OK

This means we must fix the Status Evolution specification and replace
the above axiom by:

186 13 Case Study: The Steam-Boiler Control System

• status(s , pu) = FailureWithAck ∧ REPAIRED(pu) is in msgs
⇒ next status(s ,msgs , pu) = OK when PU OK (s ,msgs , pu)

else FailureWithoutAck

Once the specification Status Evolution is modified as explained above,
we can prove that the expected property holds.

To conclude, the reader should keep in mind that the validation of the
specification is a very important task that deserves some serious attention. In
this section we have only briefly illustrated some typical proof attempts that
would naturally arise when validating the Steam Boiler Control System
specification, and obviously many other proof attempts are required to reach
a stage where we can trust our requirements specification of the steam-boiler
control system.

13.10 Designing the Architecture

We now have a validated requirements specification Steam Boiler Control
System of the steam-boiler control system. The next step is to refine it into
an architectural specification, thereby prescribing the intended architecture
of the implementation of the steam-boiler control system. Indeed, the expla-
nations given in Sect. 13.3 suggest the following rather obvious architecture
for the steam-boiler control system:

arch spec Arch Sbcs =
units P : Value → Preliminary;

S : Preliminary → Sbcs State;
A : Sbcs State → Sbcs Analysis;
C : Sbcs Analysis → Steam Boiler Control System

result λV : Value • C [A [S [P [V]]]]
end

Note that we decide to describe the implementation of the steam-boiler
control system as an open system, relying on an external component V im-
plementing Value. This is consistent with our explanations in Sect. 13.2:
choosing a specific implementation of Value is obviously orthogonal to de-
signing the implementation of the steam-boiler control system. This means in
particular that the component V implementing Value will encapsulate the
chosen representation of natural numbers and values, together with operations
and predicates operating on them.

♥ As illustrated by Arch Sbcs, the intended architecture of the
steam-boiler control system is easily described by an architectural
specification. Then we can proceed with four separate implementa-
tion tasks, which are independent of each other. ♥

13.10 Designing the Architecture 187

In a next step, we can refine the specification Value → Preliminary of
the component P into the following architectural specification.

arch spec Arch Preliminary =
units SET : { sort Elem} × Nat → Set [sort Elem];

B : Basics;
MS : Messages Sent given B ;
MR : Value → Messages Received given B ;
CST : Value → Sbcs Constants

result λV : Value • SET [MS fit Elem �→ S Message] [V]
and SET [MR [V] fit Elem �→ R Message] [V]
and CST [V]

end

Here we decide to implement (generic) sets in a component SET , reused
both for sets of messages received and sets of messages sent. Since the imple-
mentation of natural numbers is provided by the (external) component V , we
use V for the second argument of the generic component SET in the result
unit term.

♥ Note how the generic specification with imports Set is transposed
into a specification of a generic component SET . Note also, for the
component MR, the use of a specification of a generic component ex-
tending a given unit. ♥
The specification of the components C and S of Arch Sbcs are simple

enough that they do not need to be further architecturally refined. The speci-
fication of the component S (which implements the states of the steam-boiler
control system) can be refined into the following specification Unit Sbcs
State, which provides a concrete implementation of states as a record of all
the observable values.

from Basic/StructuredDatatypes get TotalMap

spec Sbcs State Impl =
Preliminary

then free type Status ::= OK | FailureWithoutAck | FailureWithAck
free type ExtendedPumpState ::= sort PumpState | Unknown PS
free type ExtendedPumpControllerState ::=

sort PumpControllerState | SoonFlow | Unknown PCS
free type Valpair ::= pair(low : Value; high : Value)

then TotalMap [Basics fit S �→ PhysicalUnit] [sort Status]
and TotalMap [Basics fit S �→ PumpNumber] [sort ExtendedPumpState]
and TotalMap [Basics fit S �→ PumpNumber]

[sort ExtendedPumpControllerState]

188 13 Case Study: The Steam-Boiler Control System

then free type State ::= mk state(
mode : Mode;
numSTOP : Nat ;
status : TotalMap[PhysicalUnit ,Status];
PS predicted :
TotalMap[PumpNumber ,ExtendedPumpState];

PCS predicted :
TotalMap[PumpNumber ,ExtendedPumpControllerState];

steam predicted , level predicted : Valpair)
ops status(s : State; pu : PhysicalUnit) : Status

= lookup(pu, status(s));
PS predicted(s : State; pn : PumpNumber) : ExtendedPumpState

= lookup(pn,PS predicted(s));
PCS predicted(s : State; pn : PumpNumber)

: ExtendedPumpControllerState
= lookup(pn,PCS predicted(s))

end

unit spec Unit Sbcs State =
Preliminary → Sbcs State Impl

♥ During the formalization process it was convenient to rely on a loose
specification of states. At the design stage, this loose specification is
refined into a specification where state variables are now explicit. ♥
The specification Sbcs State → Sbcs Analysis of the component A of

Arch Sbcs can be refined into the following architectural specification:

arch spec Arch Analysis =
units FD : Sbcs State → Failure Detection;

PR : Failure Detection → PU Prediction;
ME : PU Prediction → Mode Evolution [PU Prediction];
MTS : Mode Evolution [PU Prediction] → Sbcs Analysis

result λS : Sbcs State • MTS [ME [PR [FD [S]]]]
end

In the above architectural specification Arch Analysis, the component
FD provides an implementation of failure detection, the component PR an
implementation of the predicted state variables for the next cycle, the compo-
nent ME provides an implementation of next mode (and of next numSTOP),
and the component MTS provides an implementation of messages to send .

The specifications of the components ME and MTS are simple enough to
be directly implemented. The specifications of the components FD and PR
can be refined as follows.

13.10 Designing the Architecture 189

arch spec Arch Failure Detection =
units MTSF : Sbcs State

→ Message Transmission System Failure;
PF : Sbcs State → Pump Failure;
PCF : Sbcs State → Pump Controller Failure;
SF : Sbcs State → Steam Failure;
LF : Sbcs State → Level Failure;
PU : Message Transmission System Failure

× Pump Failure × Pump Controller Failure
× Steam Failure × Level Failure

→ Failure Detection

result λS : Sbcs State •
PU [MTSF [S]] [PF [S]] [PCF [S]] [SF [S]] [LF [S]]
hide Pump OK , Pump Controller OK , Steam OK , Level OK

end

The above architectural specification Arch Failure Detection refines
the specification Sbcs State → Failure Detection of the component FD
in Arch Analysis and introduces a component for each kind of failure de-
tection. Then the component PU implements PU OK , and in the result unit
expression we hide the auxiliary predicates provided by the components PF ,
PCF , SF , and LF .10

We refine the specification Failure Detection → PU Prediction of
the component PR of the architectural specification Arch Analysis as fol-
lows:

arch spec Arch Prediction =
units SE : Failure Detection →

Status Evolution [Failure Detection];
SLP : Failure Detection → Steam And Level Prediction;
PP : Status Evolution [Failure Detection]

× Steam And Level Prediction
→ Pump State Prediction;

PCP : Status Evolution [Failure Detection]
× Steam And Level Prediction

→ Pump Controller State Prediction

result λFD : Failure Detection •
local SEFD = SE [FD]; SLPFD = SLP [FD] within
PP [SEFD] [SLPFD] and PCP [SEFD] [SLPFD]

end
10 These auxiliary predicates are already hidden in the specification Failure

Detection. However, remember that in the specification of a generic component,
the target specification is always an implicit extension of the argument specifica-
tions. This is why it is necessary to hide the auxiliary predicates at the level of
the result unit expression.

190 13 Case Study: The Steam-Boiler Control System

In the above architectural specification, the component SE provides an im-
plementation of next status . The component SLP provides an implementation
of next steam predicted , next level predicted , chosen pumps , and Dangerous-
WaterLevel . The component PP provides an implementation of next PS pred -
icted , and the component PCP provides an implementation of next PCS pred -
icted .

We are now left with specifications of components that are simple enough
to be directly implemented, and this concludes our case study.

A

CASL Quick Reference

This appendix provides an overview of the (concrete) syntax of each part of
CASL.

Basic specifications

• declarations, definitions:
– sorts, subsorts
– functions: total, partial
– constants: total, partial
– predicates
– datatypes
– sort generation constraints

• variables, axioms
– formulas
– terms

• symbols
• comments
• annotations

Architectural specifications

• named architectures, units
• architectural specifications
• unit specifications
• unit declarations, definitions
• unit expressions, terms

Structured specifications

• specification structure
– translation
– hiding, revealing
– union, extension
– free extension, initiality
– hiding local symbols
– reference
– instantiation

• named, generic specifications
– fitting arguments

• named, generic views
– fitting views

• symbol lists, maps

Libraries

• named libraries
• downloadings
• library names, versions

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 193–201, 2004.
c© IFIP International Federation for Information Processing 2004

194 A CASL Quick Reference

A.1 Basic Specifications

. . . ; . . . list of items (‘;’ optional)

sorts . . . sort declarations and definitions

ops . . . operation declarations and definitions

preds . . . predicate declarations and definitions

types . . . datatype declarations and definitions

generated { . . . } sort generation constraint

vars . . . global variable declarations

∀. . . • F1 . . . • Fn universally-quantified list of axioms

• F1 . . . • Fn unquantified list of axioms

A.1.1 Declarations and Definitions

Sort Declarations and Definitions

sort s sort declaration

sorts s1 , . . . , sn sorts declaration

sorts s < s ′ subsort declaration

sorts s1 , . . . , sn < s ′ subsorts and supersort declaration

sorts s < s1 ; . . . ; s < sn subsort and supersorts declaration

sorts s1 = . . . = sn isomorphic sorts declaration

sort s = {v : s ′ • F} subsort definition

Function Declarations and Definitions

op f : s1 × · · · × sn → s total function declaration

op f : s1 × · · · × sn →? s partial function declaration

op f : s × s → s , assoc associative binary function

op f : s × s → s ′, comm commutative binary function

op f : s × s → s , idem idempotent binary function

op f : s × s → s , unit T unit term for binary function

op f : s × s → s , . . . , . . . multiple function attributes

ops f1 , . . . , fn : . . . functions declaration

op f (v1 : s1 ; . . . ; vn : sn) : s = T total function definition

op f (v1 : s1 ; . . . ; vn : sn) :?s = T partial function definition

op f (. . . vi1 , . . . , vim : si . . .) . . . abbreviated arguments

ops . . . ; . . . multiple declarations/definitions

Constant Declarations and Definitions

op c : s constant declaration

op c :?s partial constant declaration

ops c1 , . . . , cn : s constants declaration

op c : s = T constant definition

op c :?s = T partial constant definition

ops . . . ; . . . multiple declarations/definitions

A.1 Basic Specifications 195

Predicate Declarations and Definitions

pred p : s1 × · · · × sn predicate declaration

pred p : () constant predicate declaration

preds p1 , . . . , pn : . . . predicates declaration

pred p(v1 : s1 ; . . . ; vn : sn) ⇔ F predicate definition

pred p ⇔ F constant predicate definition

pred p(. . . vi1 , . . . , vim : si . . .) . . . abbreviated arguments

preds . . . ; . . . multiple declarations/definitions

Datatype Declarations

type s ::= A datatype declaration with alternatives

types s1 ::= A1 ;
. . . ;
sn ::= An

multi-sorted datatype declaration

generated types . . . generated datatype declaration

free types . . . free datatype declaration

Alternatives (A)

f (s ′1 ; . . . ; s ′k) total constructor function

f (s ′1 ; . . . ; s ′k)? partial constructor function

f (. . . fi : si . . .) total constructor and selector functions

f (. . . fi :?si . . .) total constructor, partial selector functions

f (. . . fi1 , . . . , fim : si . . .) abbreviated selectors

c constant constructor value

sort s subsort

sorts s ′1 , . . . , s ′k subsorts

A1 | . . . | Am multiple alternatives

Sort Generation Constraints

generated { sorts . . . generated sorts

ops . . . generating operations

preds . . .
types . . . generated sorts

} and generating constructors

196 A CASL Quick Reference

A.1.2 Variables and Axioms

var v : s global variable declaration

vars v1 : s1 ; . . . ; vn : sn global variables declaration

vars . . . v1 , . . . , vn : sn . . . abbreviated variables declaration

vars . . . ; . . . multiple global variable declarations

∀v : s • F1 . . . • Fn universally-quantified list of axioms

∀v1 , . . . , vn : s • . . . abbreviated quantifications

∀. . . ; . . . • . . . multiple quantifications

• F1 . . . • Fn unquantified list of axioms

Formulas (F)

∀ . . . • F universal quantification on formula

∃ . . . • F existential quantification

∃! . . . • F unique-existential quantification

F1 ∧ . . . ∧ Fn conjunction

F1 ∨ . . . ∨ Fn disjunction

F ⇒ F ′ implication

F ′ if F reverse implication

F ⇔ F ′ equivalence

¬F negation

true truth

false falsity

p(T1 , . . . ,Tn) predicate application

t0 T1 t1 . . .Tn tn mixfix predicate application

q constant predicate

T = T ′ ordinary (strong) equality

T e= T ′ existential equality

def T definedness

T ∈ s subsort membership

Terms (T)

f (T1 , . . . ,Tn) application

t0 T1 t1 . . .Tn tn mixfix application

t0 T1 , . . . ,Tn t1 literal syntax

c constant

v variable

T : s sorted term

T as s projection to subsort

T when F else T ′ conditional choice

A.1 Basic Specifications 197

A.1.3 Symbols

Character set: ASCII (with optional use of ISO Latin-1).

Key Words and Signs

Reserved key words (always lowercase):

and arch as axiom axioms closed def else end exists false fit
forall free from generated get given hide if in lambda library local
not op ops pred preds result reveal sort sorts spec then to true
type types unit units var vars version view when with within

Reserved key signs:

: :? ::= = => <=> ¬ . · | |−> \/ /\
Unreserved key signs:

< ∗ × −> ? ! [] { }
Key words and signs representing mathematical symbols:

forall exists exists! not in lambda =e= −> => <=> . · |−> /\ \/
∀ ∃ ∃! ¬ ∈ λ

e= → ⇒ ⇔ • • �→ ∧ ∨

Identifiers

Identifiers for sorts and variables are simple words (other than reserved words)
possibly containing digits, primes, and single underscores:

Elem Y 1 Z2 ′ A Rather Long Identifier

Sort identifiers can also be compound:

List [Int] Map[Index ,Elem]

Identifier for operations and predicates can moreover be sequences of (unre-
served) signs, with any brackets [] { } balanced:

+−∗ / \& =<> [] { } ! ? : . $ @ #ˆ˜ ¡ ¿×÷£ c©±¶§ 1 2 3 · �c ◦ ¬µ |
or single decimal digits 1 2 3 4 5 6 7 8 9 0 , or single quoted characters ′c′.

The signs () ; , ‘ ” % are not allowed in identifiers, nor are the ISO
Latin-1 signs for general currency, yen, broken vertical bar, registered trade
mark, masculine and feminine ordinals, left and right angle quotes, fractions,
soft hyphen, acute accent, cedilla, macron, and umlaut.

Operation and predicate identifiers can also be compound:

order [<]

198 A CASL Quick Reference

Function and predicate identifiers can also be infixes, prefixes, postfixes,
and general mixfixes, formed from words and/or sequences of signs separated
by double underscores (indicating the positions of the arguments), with any
brackets [] { } balanced:

++ || || {[]} push onto .select1

Invisible mixfix identifiers (such as) with two or more arguments are
allowed. (Subsort embeddings give the effect of invisible unary functions.)

An operation, or predicate identifier can be compound, with a list of iden-
tifiers appended to its final token.

Literal Strings and Numbers

”this is a string” 42 3 .14159 1E−9 27 .3e6

Library Identifiers

Names of libraries are either paths, e.g.:

Basic/Numbers Basic/Algebra II

or URLs formed from A. . . Za. . . z0. . . 9$- @.&+!*”’(),˜ and
hexadecimal codes %xx, and prefixed by http://, ftp://, or file:///.

Version numbers of libraries are hierarchical: 0, 0.999, 1, 1.0, 1.0.2.

A.1.4 Comments

%% This is a comment at the end of a line. . .

. . .%{ This is an in-line comment }% . . .

. . .%{ This a comment that might take
several lines }%

%[This is for commenting-out text
%{ including other kinds of comment }%]%

A.1.5 Annotations

A label is of the form %(text)%.

An end-of-line annotation is of the general form %word . . .

with a space following the word.

A possibly multi-line annotation is of the general form %word(. . .)%

with no space preceding the ‘(’.

A.2 Structured Specifications 199

A.2 Structured Specifications

A.2.1 Specifications (SP)

SP with SM symbol translation

SP hide SL hiding listed symbols

SP reveal SM revealing/translating listed symbols

SP1 and . . . and SPn union

SP1 then . . . then SPn extension

free SP free or initial

local SP within SP ′ hiding of local symbols

closed SP self-contained

SN reference to named specification

SN [FA1]. . . [FAn] instantiation of generic specification

A.2.2 Named and Generic Specifications

spec SN = SP end named specification (end optional)

spec SN [SP1]. . . [SPn] = SP end generic specification (end optional)

spec SN [SP1]. . . [SPn]
given SP ′′

1 ,. . . ,SP ′′
m = SP end

generic specification

with imports (end optional)

Fitting Arguments (FA)

SP fit SM fitting by symbol map

SP implicit fitting

FV fitting view

A.2.3 Named and Generic Views

view VN : SP to SP ′ = SM end named view (end optional)

view VN [SP1]. . . [SPn]
: SP to SP ′ = SM end

generic view

(end optional)

view VN [SP1]. . . [SPn]
given SP ′′

1 ,. . . ,SP ′′
m

: SP to SP ′ = SM end

generic view
with imports

(end optional)

Fitting Views (FV)

view VN reference to named view

view VN [FA1]. . . [FAn] instantiation of generic view

A.2.4 Symbol Lists (SL) and Maps (SM)

SY1 , . . . ,SYn lists (maybe with sorts, ops, preds)

SY1 �→ SY ′
1 , . . . ,SYn �→ SY ′

n maps (maybe with sorts, ops, preds)

. . . ,SYi , . . . in a map, abbreviates . . . ,SYi �→ SYi , . . .

200 A CASL Quick Reference

A.3 Architectural Specifications

A.3.1 Named Architectures and Units

arch spec ASN = ASP end named arch. spec. (end optional)

unit spec SN = USP end named unit spec. (end optional)

A.3.2 Architectural Specifications (ASP)

ASN arch. spec. name

units UD1 ; . . . ; UDn result UE basic arch. spec.

A.3.3 Unit Specifications (USP)

SP unit specification

SP1 × . . . × SPn → SP generic-unit specification

closed USP self-contained

arch spec ASP models of arch. spec.

A.3.4 Unit Declarations and Definitions (UD)

UN : USP unit declaration

UN : USP given UT1 , . . . ,UTn importing units

UN = UE unit definition

A.3.5 Unit Expressions (UE)

UT unit term

λUN1 : SP1 ; . . . ; UNn : SPn • UT unit composition

A.3.6 Unit Terms (UT)

UT with SM symbol translation

UT hide SL hiding listed symbols

UT reveal SM revealing/translating listed symbols

UT1 and . . . and UTn amalgamation

local UD1 ; . . . ; UDn within UT local units

UN unit name

UN [UT1]. . . [UTn] generic-unit application

UN [UT1 fit SM1]. . . [UTn fit SMn] with fitting by symbol maps

A.4 Libraries 201

A.4 Libraries

library LN . . . named library of downloadings,

specifications, views

A.4.1 Downloadings

from LN get IN1 ,. . . , INn end downloads listed items

from LN get . . . IN �→ IN ′ . . . end renames downloaded items

A.4.2 Library Names (LN)

Basic/Numbers greatest version registered

Basic/Algebra II version 0 .999 specified version registered

http://. . . greatest version unregistered

http://. . . version 1 .0 .2 specified version unregistered

B

Points to Bear in Mind

B.1 Introduction

• CoFI aims at establishing a wide consensus. 4
• The focus of CoFI is on algebraic techniques. 5
• CoFI has already achieved its main aims. 5
• CoFI is an open, voluntary initiative. 6
• CoFI has received funding as an ESPRIT Working Group, and is

sponsored by IFIP WG 1.3. 6
• New participants are welcome! . 7
• CASL has been designed as a general-purpose algebraic specification

language, subsuming many existing languages. 7
• CASL is at the center of a family of languages. 8
• CASL itself has several major parts. 9

B.2 Underlying Concepts

• CASL is based on standard concepts of algebraic specification. 11
• A basic specification declares symbols, and gives axioms and

constraints. 11
• The semantics of a basic specification is a signature and a class of

models. 12
• CASL specifications may declare sorts, subsorts, operations, and

predicates. 12
• Sorts are interpreted as carrier sets. 12
• Subsorts declarations are interpreted as embeddings. 13
• Operations may be declared as total or partial. 13
• Predicates are different from boolean-valued operations. 13
• Operation symbols and predicate symbols may be overloaded. 14
• Axioms are formulas of first-order logic. 14

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 203–210, 2004.
c© IFIP International Federation for Information Processing 2004

204 B Points to Bear in Mind

• Sort generation constraints eliminate ‘junk’ from specific carrier sets. 15
• The semantics of a structured specification is simply a signature

and a class of models. 16
• A translation merely renames symbols. 17
• Hiding symbols removes parts of models. 17
• Union of specifications identifies common symbols. 17
• Extension of specifications identifies common symbols too. 18
• Free specifications restrict models to being free, with initiality as a

special case. 18
• Generic specifications have parameters, and have to be instantiated

when referenced. 18
• The semantics of an architectural specification reflects its modular

structure. 19
• Architectural specifications involve the notions of persistent

function and conservative extension. 19
• The semantics of a library of specifications is a mapping from the

names of the specifications to their semantics. 20

B.3 Getting Started

• Simple specifications may be written in CASL essentially as in many
other algebraic specification languages. 23

• CASL provides also useful abbreviations. 23
• CASL allows loose, generated and free specifications. 24
• CASL syntax for declarations and axioms involves familiar notation,

and is mostly self-explanatory. 24
• Specifications can easily be extended by new declarations and axioms. 25
• In simple cases, an operation (or a predicate) symbol may be

declared and its intended interpretation defined at the same time. . . . 26
• Symbols may be conveniently displayed as usual mathematical

symbols by means of %display annotations. 27
• The %implies annotation is used to indicate that some axioms are

supposedly redundant, being consequences of others. 28
• Attributes may be used to abbreviate axioms for associativity,

commutativity, idempotence, and unit properties. 29
• Genericity of specifications can be made explicit using parameters. . . 29
• References to generic specifications always instantiate the parameters. 30
• Datatype declarations may be used to abbreviate declarations of

sorts and constructors. 32
• Loose datatype declarations are appropriate when further

constructors may be added in extensions. 32
• Sorts may be specified as generated by their constructors. 33
• Generated specifications are in general loose. 34
• Generated specifications need not be loose. 35

B.4 Partial Functions 205

• Generated types may need to be declared together. 36
• Free specifications provide initial semantics and avoid the need for

explicit negation. 36
• Free datatype declarations are particularly convenient for defining

enumerated datatypes. 37
• Free specifications can also be used when the constructors are

related by some axioms. 37
• Predicates hold minimally in models of free specifications. 38
• Operations and predicates may be safely defined by induction on

the constructors of a free datatype declaration. 38
• More care may be needed when defining operations or predicates

on free datatypes when there are axioms relating the constructors. . . 39
• Generic specifications often involve free extensions of (loose)

parameters. 40
• Loose extensions of free specifications can avoid overspecification. . . . 41
• Datatypes with observer operations or predicates can be specified

as generated instead of free. 42
• The %def annotation is useful to indicate that some operations or

predicates are uniquely defined. 43
• Operations can be defined by axioms involving observer operations,

instead of inductively on constructors. 44
• Sorts declared in free specifications are not necessarily generated

by their constructors. 44

B.4 Partial Functions

• Partial functions arise naturally. 47
• Partial functions are declared differently from total functions. 47
• Terms containing partial functions may be undefined, i.e., they may

fail to denote any value. 48
• Functions, even total ones, propagate undefinedness. 48
• Predicates do not hold on undefined arguments. 48
• Equations hold when both terms are undefined. 48
• Special care is needed in specifications involving partial functions. . . . 49
• The definedness of a term can be checked or asserted. 50
• The domains of definition of partial functions can be specified exactly. 50
• Loosely specified domains of definition may be useful. 51
• Domains of definition can be specified more or less explicitly. 51
• Partial functions are minimally defined by default in free

specifications. 53
• Selectors can be specified concisely in datatype declarations, and

are usually partial. 54
• Selectors are usually total when there is only one constructor. 54
• Constructors may be partial. 54

206 B Points to Bear in Mind

• Existential equality requires the definedness of both terms as well
as their equality. 55

B.5 Subsorting

• Subsorts and supersorts are often useful in CASL specifications. 57
• Subsort declarations directly express relationships between carrier

sets. 57
• Operations declared on a sort are automatically inherited by its

subsorts. 58
• Inheritance applies also for subsorts that are declared afterwards. . . . 59
• Subsort membership can be checked or asserted. 59
• Datatype declarations can involve subsort declarations. 59
• Subsorts may also arise as classifications of previously specified

values, and their values can be explicitly defined. 60
• It may be useful to redeclare previously defined operations, using

the new subsorts introduced. 61
• A subsort may correspond to the definition domain of a partial

function. 62
• Using subsorts may avoid the need for partial functions. 62
• Casting a term from a supersort to a subsort is explicit and the

value of the cast may be undefined. 63
• Supersorts may be useful when generalizing previously specified sorts. 64
• Supersorts may also be used for extending the intended values by

new values representing errors or exceptions. 65

B.6 Structuring Specifications

• Large and complex specifications are easily built out of simpler ones
by means of (a small number of) specification-building operations. . . 67

• Union and extension can be used to structure specifications. 67
• Specifications may combine parts with loose, generated, and free

interpretations. 68
• Renaming may be used to avoid unintended name clashes, or to

adjust names of sorts and change notations for operations and
predicates. 69

• When combining specifications, origins of symbols can be indicated. . 71
• Auxiliary symbols used in structured specifications can be hidden. . . 71
• Auxiliary symbols can be made local when they do not need to be

exported. 73
• Care is needed with local sort declarations. 74
• Naming a specification allows its reuse. 75

B.8 Specifying the Architecture of Implementations 207

B.7 Generic Specifications

• Making a specification generic (when appropriate) improves its
reusability. 77

• Parameters are arbitrary specifications. 78
• The argument specification of an instantiation must provide

symbols corresponding to those required by the parameter. 78
• The argument specification of an instantiation must ensure that the

properties required by the parameter hold. 79
• There must be no shared symbols between the argument

specification and the body of the instantiated generic specification. . . 80
• In instantiations, the fitting of parameter symbols to identical

argument symbols can be left implicit. 80
• The fitting of parameter sorts to unique argument sorts can also be

left implicit. 80
• Fitting of operation and predicate symbols can sometimes be left

implicit too, and can imply fitting of sorts. 81
• The intended fitting of the parameter symbols to the argument

symbols may have to be specified explicitly. 81
• A generic specification may have more than one parameter. 82
• Instantiation of generic specifications with several parameters is

similar to the case of just one parameter. 82
• Composition of generic specifications is expressed using instantiation. 84
• Compound sorts introduced by a generic specification get

automatically renamed on instantiation, which avoids name clashes. . 85
• Compound symbols can also be used for operations and predicates. . . 87
• Parameters should be distinguished from references to fixed

specifications that are not intended to be instantiated. 88
• Argument specifications are always implicitly regarded as extension

of the imports. 89
• Imports are also useful to prevent ill-formed instantiations. 89
• In generic specifications, auxiliary required specifications should be

imported rather than extended. 90
• Views are named fitting maps, and can be defined along with

specifications. 90
• Views can also be generic. 91

B.8 Specifying the Architecture of Implementations

• Architectural specifications impose structure on implementations,
whereas specification-building operations only structure the text of
specifications. 93

208 B Points to Bear in Mind

• An architectural specification consists of a list of unit declarations,
specifying the required components, and a result part, indicating
how they are to be combined. 96

• There can be several distinct architectural choices for the same
requirements specification. 97

• Each unit declaration listed in an architectural specification
corresponds to a separate implementation task. 97

• A unit can be implemented only if its specification is a conservative
extension of the specifications of its given units. 98

• Genericity of components can be made explicit in architectural
specifications. 100

• A generic component may be applied to an argument richer than
required by its specification. 101

• Specifications of components can be named for further reuse. 102
• Both named and unnamed specifications can be used to specify

components. 102
• Specifications of generic components should not be confused with

generic specifications. 103
• A generic component may be applied more than once in the same

architectural specification. 103
• Several applications of the same generic component is different from

applications of several generic components with similar specifications.104
• Generic components may have more than one argument. 105
• Open systems can be described by architectural specifications using

generic unit expressions in the result part. 106
• When components are to be combined, it is best to check that any

shared symbol originates from the same non-generic component. 107
• Auxiliary unit definitions or local unit definitions may be used to

avoid repetition of generic unit applications. 109

B.9 Libraries

• Libraries are named collections of named specifications. 111
• Local libraries are self-contained. 111
• Distributed libraries support reuse. 111
• Different versions of the same library are distinguished by

hierarchical version numbers. 112
• Local libraries are self-contained collections of specifications. 112
• Specifications can refer to previous items in the same library. 113
• All kinds of named specifications can be included in libraries. 114
• Display, parsing, and literal syntax annotations apply to entire

libraries. 114
• Libraries and library items can have author and date annotations. . . . 116
• Libraries can be installed on the Internet for remote access. 116

B.11 Tools 209

• Validated libraries can be registered for public access. 117
• Libraries should include appropriate annotations. 118
• Libraries can include items downloaded from other libraries. 118
• Substantial libraries of basic datatypes are already available. 119
• Libraries need not be registered for public access. 120
• Subsequent versions of a library are distinguished by explicit

version numbers. 120
• Libraries can refer to specific versions of other libraries. 121
• All downloadings should be collected at the beginning of a library. . . 122

B.10 Foundations

• A complete presentation of CASL is in the Reference Manual. 125
• CASL has a definitive summary. 125
• CASL has a complete formal definition. 126
• Abstract and concrete syntax of CASL are defined formally. 126
• CASL has a complete formal semantics. 126
• CASL specifications denote classes of models. 127
• The semantics is largely institution-independent. 127
• The semantics is the ultimate reference for the meanings of all CASL

constructs. 128
• Proof systems for various layers of CASL are provided. 128
• The foundations of our CASL are rock-solid! . 129

B.11 Tools

• CASL specifications can be checked for well-formedness using a
form-based web page. 131

• The Heterogeneous Tool Set (HETS) is the main analysis tool for
CASL. 132

• HETS can be used for parsing and checking static well-formedness
of specifications. 133

• HETS also displays and manages proof obligations, using
development graphs. 134

• Nodes in a development graph correspond to CASL specifications.
Arrows show how specifications are related by the structuring
constructs. 135

• Internal nodes in a development graph correspond to unnamed
parts of a structured specification. 137

• HOL-CASL is an interactive theorem prover for CASL, based on the
tactical theorem prover ISABELLE. 138

• CASL is linked to ISABELLE/HOL by an encoding. 138
• ASF+SDF was used to prototype the CASL syntax. 139

210 B Points to Bear in Mind

• The ASF+SDF Meta-Environment provides syntax-directed editing
of CASL specifications. 140

B.12 Basic Libraries

• The CASL Basic Libraries contain the standard datatypes. 143
• HETS can be used to get an overview of the Basic Libraries. 143

C

The Steam-Boiler Control Specification
Problem

For completeness, the text describing the steam-boiler control system case
study, as originally provided by Jean-Raymond Abrial, is reproduced here
(except for the “Additional Information” section, see [1, pp. 507–509]).

C.1 Introduction

This text constitutes an informal specification of a program which serves to
control the level of water in a steam-boiler. It is important that the program
works correctly because the quantity of water present when the steam-boiler
is working has to be neither too low nor to high; otherwise the steam-boiler
or the turbine sitting in front of it might be seriously affected.

The proposed specification is derived from an original text that has been
written by LtCol. J.C. Bauer for the Institute for Risk Research of the Uni-
versity of Waterloo, Ontario, Canada. The original text has been submitted
as a competition problem to be solved by the participants to the International
Software Safety Symposium organized by the Institute for Risk Research. It
has been given to us by the Institut de Protection et de Sûreté Nucléaire,
Fontenay-aux-Roses, France. We would like to thank the author, the Institute
for Risk Research, and the Institut de Protection et de Sûreté Nucléaire for
their kind permission to use their text.

The text to follow is severely biased to a particular implementation. This
is very often the case with industrial specifications that are rarely indepen-
dent from a certain implementation people have in mind. In that sense, this
specification is realistic. Your first formal specification steps could be much
more abstract if that seems important to you (in particular if your formalism
allows you to do so). In other words, you are encouraged to structure your
specification in a way that is not necessarily the same as the one proposed
in what follows. But in any case, you are asked to demonstrate that your
specification can be refined to an implementation that is close enough to the
functional requirements of the “specification” proposed below.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 211–219, 2004.
c© IFIP International Federation for Information Processing 2004

212 C The Steam-Boiler Control Specification Problem

You might also judge that the specification contain some loose ends and
inconsistencies. Do not hesitate to point them out and to take yourself some
appropriate decisions. The idea, however, is that such inconsistencies should
be solely within the organization of the system and not within its physical
properties.

We are aware of the fact that the text to follow does not propose any precise
model of the physical evolution of the system, only elementary suggestions.
As a consequence, you may have to take some simple, even simplistic, abstract
decisions concerning such a physical model.

C.2 Physical Environment

The system comprises the following units:

• the steam-boiler,
• a device to measure the quantity of water in the steam-boiler,
• four pumps to provide the steam-boiler with water,
• four devices to supervise the pumps (one controller for each pump),
• a device to measure the quantity of steam which comes out of the steam-

boiler,
• an operator desk,
• a message transmission system.

C.2.1 The Steam-Boiler

The steam-boiler is characterized by the following elements:

• A valve for evacuation of water. It serves only to empty the steam-boiler
in its initial phase.

• Its total capacity C (indicated in liters).
• The minimal limit quantity M1 of water (in liters). Below M1 the steam-

boiler would be in danger after five seconds, if the steam continued to come
out at its maximum quantity without supply of water from the pumps.

• The maximal limit quantity M2 of waters (in liters). Above M2 the steam-
boiler would be in danger after five seconds, if the pumps continued to
supply the steam-boiler with water without possibility to evacuate the
steam.

• The minimal normal quantity N1 of water in liters to be maintained in
the steam-boiler during regular operation (M1 < N1).

• The maximal normal quantity N2 of water (in liters) to be maintained in
the steam-boiler during regular operation (N2 < M2).

• The maximum quantity W of steam (in liters/sec) at the exit of the steam-
boiler.

• The maximum gradient U1 of increase of the quantity of steam (in
liters/sec/sec).

C.2 Physical Environment 213

• The maximum gradient U2 of decrease of the quantity of steam (in
liters/sec/sec).

C.2.2 The Water Level Measurement Device

The device to measure the level of water in the steam-boiler provides the
following information:

• the quantity q (in liters) of water in the steam-boiler.

C.2.3 The Pumps

Each pump is characterized by the following elements:

• Its capacity P (in liters/sec).
• Its functioning mode: on or off.
• It’s being started: after having been switched on, the pump needs five

seconds to start pouring water into the boiler (this is due to the fact that
the pump does not balance instantaneously the pressure of the steam-
boiler).

• It’s being stopped: with instantaneous effect.

C.2.4 The Pump Control Devices

Each pump controller provides the following information:

• the water circulates from the pump to the steam-boiler or, on the contrary,
it does not circulate.

C.2.5 The Steam Measurement Device

The device to measure the quantity of steam which comes out of the steam-
boiler provides the following information:

• a quantity of steam v (in liters/sec).

C.2.6 Summary of Constants and Variables

The following table summarizes the various constants or physical variables of
the system:

214 C The Steam-Boiler Control Specification Problem

Unit Comment
Quantity of water in the steam-boiler

C liter Maximal capacity
M1 liter Minimal limit
M2 liter Maximal limit
N1 liter Minimal normal
N2 liter Maximal normal

Outcome of steam at the exit of the steam-boiler
W liter/sec Maximal quantity
U1 liter/sec/sec Maximum gradient of increase
U2 liter/sec/sec Maximum gradient of decrease

Capacity of each pump
P liter/sec Nominal capacity

Current measures
q liter Quantity of water in the steam-boiler
p liter/sec Throughput of the pumps
v liter/sec Quantity of steam exiting the steam-boiler

C.3 The Overall Operation of the Program

The program communicates with the physical units through messages which
are transmitted over a number of dedicated lines connecting each physical
unit with the control unit. In first approximation, the time for transmission
can be neglected.

The program follows a cycle and a priori does not terminate. This cycle
takes place each five seconds and consists of the following actions:

• Reception of messages coming from the physical units.
• Analysis of informations which have been received.
• Transmission of messages to the physical units.

To simplify matters, and in first approximation, all messages coming from (or
going to) the physical units are supposed to be received (emitted) simultane-
ously by the program at each cycle.

C.4 Operation Modes of the Program

The program operates in different modes, namely initialization, normal, de-
graded, rescue, emergency stop.

C.4 Operation Modes of the Program 215

C.4.1 Initialization Mode

The initialization mode is the mode to start with. The program enters a state
in which it waits for the message STEAM-BOILER WAITING to come from
the physical units. As soon as this message has been received the program
checks whether the quantity of steam coming out of the steam-boiler is really
zero. If the unit for detection of the level of steam is defective (that is, when v
is not equal to zero), the program enters the emergency stop mode. If the quan-
tity of water in the steam-boiler is above N2 the program activates the valve
of the steam-boiler in order to empty it. If the quantity of water in the steam-
boiler is below N1 then the program activates a pump to fill the steam-boiler.
If the program realizes a failure of the water level detection unit it enters the
emergency stop mode. As soon as a level of water between N1 and N2 has
been reached the program send continuously the signal PROGRAM READY
to the physical units until it receives the signal PHYSICAL UNITS READY
which must necessarily be emitted by the physical units. As soon as this sig-
nal has been received, the program enters either the mode normal if all the
physical units operate correctly or the mode degraded if any physical unit is
defective. A transmission failure puts the program into the mode emergency
stop.

C.4.2 Normal Mode

The normal mode is the standard operating mode in which the program tries
to maintain the water level in the steam-boiler between N1 and N2 with all
physical units operating correctly. As soon as the water level is below N1 or
above N2 the level can be adjusted by the program by switching the pumps
on or off. The corresponding decision is taken on the basis of the information
which has been received from the physical units. As soon as the program
recognizes a failure of the water level measuring unit it goes into rescue mode.
Failure of any other physical unit puts the program into degraded mode. If
the water level is risking to reach one of the limit values M1 or M2 the
program enters the mode emergency stop. This risk is evaluated on the basis
of a maximal behavior of the physical units. A transmission failure puts the
program into emergency stop mode.

C.4.3 Degraded Mode

The degraded mode is the mode in which the program tries to maintain a
satisfactory water level despite of the presence of failure of some physical
unit. It is assumed however that the water level measuring unit in the steam-
boiler is working correctly. The functionality is the same as in the preceding
case. Once all the units which were defective have been repaired, the program
comes back to normal mode. As soon as the program sees that the water
level measuring unit has a failure, the program goes into mode rescue. If the

216 C The Steam-Boiler Control Specification Problem

water level is risking to reach one of the limit values M1 or M2 the program
enters the mode emergency stop. A transmission failure puts the program into
emergency stop mode.

C.4.4 Rescue Mode

The rescue mode is the mode in which the program tries to maintain a sat-
isfactory water level despite of the failure of the water level measuring unit.
The water level is then estimated by a computation which is done taking
into account the maximum dynamics of the quantity of steam coming out
of the steam-boiler. For the sake of simplicity, this calculation can suppose
that exactly n liters of water, supplied by the pumps, do account for exactly
the same amount of boiler contents (no thermal expansion). This calculation
can however be done only if the unit which measures the quantity of steam
is itself working and if one can rely upon the information which comes from
the units for controlling the pumps. As soon as the water measuring unit is
repaired, the program returns into mode degraded or into mode normal. The
program goes into emergency stop mode if it realizes that one of the following
cases holds: the unit which measures the outcome of steam has a failure, or
the units which control the pumps have a failure, or the water level risks to
reach one of the two limit values. A transmission failure puts the program
into emergency stop mode.

C.4.5 Emergency Stop Mode

The emergency stop mode is the mode into which the program has to go, as
we have seen already, when either the vital units have a failure or when the
water level risks to reach one of its two limit values. This mode can also be
reached after detection of an erroneous transmission between the program and
the physical units. This mode can also be set directly from outside. Once the
program has reached the Emergency stop mode, the physical environment is
then responsible to take appropriate actions, and the program stops.

C.5 Messages Sent by the Program

The following messages can be sent by the program:

• MODE(m): The program sends, at each cycle, its current mode of opera-
tion to the physical units.

• PROGRAM READY: In initialization mode, as soon as the program as-
sumes to be ready, this message is continuously sent until the message
PHYSICAL UNITS READY coming from the physical units has been re-
ceived.

C.6 Messages Received by the Program 217

• VALVE: In initialization mode this message is sent to the physical units
to request opening and then closure of the valve for evacuation of water
from the steam-boiler.

• OPEN PUMP(n): This message is sent to the physical units to activate a
pump.

• CLOSE PUMP(n): This message is sent to the physical units to stop a
pump.

• PUMP FAILURE DETECTION(n): This message is sent (until receipt of
the corresponding acknowledgement) to indicate to the physical units that
the program has detected a pump failure.

• PUMP CONTROL FAILURE DETECTION(n): This message is sent (un-
til receipt of the corresponding acknowledgement) to indicate to the physi-
cal units that the program has detected a failure of the physical unit which
controls a pump.

• LEVEL FAILURE DETECTION: This message is sent (until receipt of
the corresponding acknowledgement) to indicate to the physical units that
the program has detected a failure of the water level measuring unit.

• STEAM FAILURE DETECTION: This message is sent (until receipt of
the corresponding acknowledgement) to indicate to the physical units that
the program has detected a failure of the physical unit which measures the
outcome of steam.

• PUMP REPAIRED ACKNOWLEDGEMENT(n): This message is sent
by the program to acknowledge a message coming from the physical units
and indicating that the corresponding pump has been repaired.

• PUMP CONTROL REPAIRED ACKNOWLEDGEMENT(n): This mes-
sage is sent by the program to acknowledge a message coming from the
physical units and indicating that the corresponding physical control unit
has been repaired.

• LEVEL REPAIRED ACKNOWLEDGEMENT: This message is sent by
the program to acknowledge a message coming from the physical units
and indicating that the water level measuring unit has been repaired.

• STEAM REPAIRED ACKNOWLEDGEMENT: This message is sent by
the program to acknowledge a message coming from the physical units and
indicating that the unit which measures the outcome of steam has been
repaired.

C.6 Messages Received by the Program

The following messages can be received by the program:

• STOP: When the message has been received three times in a row by the
program, the program must go into emergency stop.

• STEAM BOILER WAITING: When this message is received in initializa-
tion mode it triggers the effective start of the program.

218 C The Steam-Boiler Control Specification Problem

• PHYSICAL UNITS READY: This message when received in initialization
mode acknowledges the message PROGRAM READY which has been sent
previously by the program.

• PUMP STATE(n, b): This message indicates the state of pump n (open
or closed). This message must be present during each transmission.

• PUMP CONTROL STATE(n, b): This message gives the information which
comes from the control unit of pump n (there is flow of water or there is
no flow of water). This message must be present during each transmission.

• LEVEL(v): This message contains the information which comes from the
water level measuring unit. This message must be present during each
transmission.

• STEAM(v): This message contains the information which comes from the
unit which measures the outcome of steam. This message must be present
during each transmission.

• PUMP REPAIRED(n): This message indicates that the corresponding
pump has been repaired. It is sent by the physical units until a corre-
sponding acknowledgement message has been sent by the program and
received by the physical units.

• PUMP CONTROL REPAIRED(n): This message indicates that the cor-
responding control unit has been repaired. It is sent by the physical units
until a corresponding acknowledgement message has been sent by the pro-
gram and received by the physical units.

• LEVEL REPAIRED: This message indicates that the water level measur-
ing unit has been repaired. It is sent by the physical units until a cor-
responding acknowledgement message has been sent by the program and
received by the physical units.

• STEAM REPAIRED: This message indicates that the unit which mea-
sures the outcome of steam has been repaired. It is sent by the physical
units until a corresponding acknowledgement message has been sent by
the program and received by the physical units.

• PUMP FAILURE ACKNOWLEDGEMENT(n): By this message the phys-
ical units acknowledge the receipt of the corresponding failure detection
message which has been emitted previously by the program.

• PUMP CONTROL FAILURE ACKNOWLEDGEMENT(n): By this mes-
sage the physical units acknowledge the receipt of the corresponding failure
detection message which has been emitted previously by the program.

• LEVEL FAILURE ACKNOWLEDGEMENT: By this message the phys-
ical units acknowledge the receipt of the corresponding failure detection
message which has been emitted previously by the program.

• STEAM FAILURE ACKNOWLEDGEMENT: By this message the phys-
ical units acknowledge the receipt of the corresponding failure detection
message which has been emitted previously by the program.

C.7 Detection of Equipment Failures 219

C.7 Detection of Equipment Failures

The following erroneous kinds of behavior are distinguished to decide whether
certain physical units have a failure:

• PUMP: (1) Assume that the program has sent a start or stop message to
a pump. The program detects that during the following transmission that
pump does not indicate its having effectively been started or stopped. (2)
The program detects that the pump changes its state spontaneously.

• PUMP CONTROLLER: (1) Assume that the program has sent a start
or stop message to a pump. The program detects that during the second
transmission after the start or stop message the pump does not indicate
that the water is flowing or is not flowing; this despite of the fact that
the program knows from elsewhere that the pump is working correctly. (2)
The program detects that the unit changes its state spontaneously.

• WATER LEVEL MEASURING UNIT: (1) The program detects that the
unit indicates a value which is out of the valid static limits (that is, between
0 and C). (2) The program detects that the unit indicates a value which
is incompatible with the dynamics of the system.

• STEAM LEVEL MEASURING UNIT: (1) The program detects that the
unit indicates a value which is out of the valid static limits (that is, between
0 and W). (2) The program detects that the unit indicates a value which
is incompatible with the dynamics of the system.

• TRANSMISSION: (1) The program receives a message whose presence is
aberrant. (2) The program does not receive a message whose presence is
indispensable.

References

1. J.-R. Abrial, E. Börger, and H. Langmaack, editors. Formal Methods for Indus-
trial Applications: Specifying and Programming the Steam Boiler Control, LNCS
Vol. 1165. Springer, 1996.

2. E. Astesiano, M. Bidoit, B. Krieg-Brückner, P. D. Mosses, D. Sannella, and
A. Tarlecki. Casl: The Common Algebraic Specification Language. Theoretical
Comput. Sci., 286(2):153–196, 2002.

3. E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner, editors. Algebraic Foun-
dations of Systems Specification. IFIP State-of-the-Art Reports. Springer, 1999.

4. S. Autexier, D. Hutter, T. Mossakowski, and A. Schairer. The development
graph manager Maya (system description). In H. Kirchner and C. Ringeissen,
editors, Algebraic Methods and Software Technology, 9th International Confer-
ence, AMAST 2002, Saint-Gilles-les-Bains, Reunion Island, France, Proceed-
ings, LNCS Vol. 2422, pages 495–502. Springer, 2002.

5. S. Autexier and T. Mossakowski. Integrating Hol-Casl into the development
graph manager Maya. In A. Armando, editor, Frontiers of Combining Systems,
4th International Workshop, FroCoS 2002, Santa Margherita Ligure, Italy, Pro-
ceedings, LNCS Vol. 2309, pages 2–17. Springer, 2002.

6. J. A. Bergstra, J. Heering, and P. Klint. The algebraic specification formalism
ASF. In J. A. Bergstra, J. Heering, and P. Klint, editors, Algebraic Specification,
ACM Press Frontier Series. Addison-Wesley, 1989.

7. M. Bidoit. Development of modular specifications by stepwise refinements using
the Pluss specification language. In C. Rattray and R. G. Clark, editors, Unified
Computation Laboratory: Modelling, Specifications, and Tools, pages 171–192.
Oxford Univ. Press, 1992.

8. M. Bidoit, C. Chevenier, C. Pellen, and J. Ryckbosch. An algebraic specification
of the steam-boiler control system. In Abrial et al. [1], pages 79–108.

9. M. Bidoit, M.-C. Gaudel, and A. Mauboussin. How to make algebraic spec-
ifications more understandable? An experiment with the Pluss specification
language. Science of Computer Programming, 12(1):1–38, 1989.

10. M. Bidoit, H.-J. Kreowski, P. Lescanne, F. Orejas, and D. Sannella, editors.
Algebraic System Specification and Development. LNCS Vol. 501. Springer, 1991.

11. M. Bidoit, D. Sannella, and A. Tarlecki. Architectural specifications in Casl.
Formal Aspects of Computing, 13:252–273, 2002.

M. Bidoit and P.D. Mosses: CASL User Manual, LNCS 2900, pp. 221–223, 2004.
c© IFIP International Federation for Information Processing 2004

222 References

12. M. G. J. van den Brand, H. A. de Jong, P. Klint, and P. Olivier. Efficient
annotated terms. Software, Practice & Experience, 30:259–291, 2000.

13. M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju,
E. Visser, and J. Visser. The Asf+Sdf Meta-Environment: A component-
based language development environment. In R. Wilhelm, editor, Compiler
Construction, 10th International Conference, CC 2001, Genova, Italy, Proceed-
ings, LNCS Vol. 2027, pages 365–370. Springer, 2001.

14. M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hußmann, D. Nazareth, F. Regens-
burger, O. Slotosch, and K. Stølen. The requirement and design specification
language Spectrum: An informal introduction (v 1.0). Technical Report TUM-
I9311, TUM-I9312, Institut für Informatik, Technische Universität München,
1993.

15. R. M. Burstall and J. A. Goguen. The semantics of Clear, a specification lan-
guage. In D. Bjørner, editor, Abstract Software Specifications, 1979 Copenhagen
Winter School, Proceedings, LNCS Vol. 86, pages 292–332. Springer, 1980.

16. M. Cerioli, M. Gogolla, H. Kirchner, B. Krieg-Brückner, Z. Qian, and M. Wolf,
editors. Algebraic System Specification and Development: Survey and Annotated
Bibliography. BISS Monographs. Shaker, 2nd edition, 1997.

17. M. Cerioli and G. Reggio, editors. Recent Trends in Algebraic Development Tech-
niques, 15th International Workshop, WADT 2001, Joint with the CoFI WG
Meeting, Genova, Italy, 2001, Selected Papers, LNCS Vol. 2267. Springer, 2001.

18. F. Chen, G. Rosu, and R. P. Venkatesan. Rule-based analysis of dimensional
safety. In R. Nieuwenhuis, editor, Rewriting Techniques and Applications,
14th International Conference, RTA 2003, Valencia, Spain, Proceedings, LNCS
Vol. 2706, pages 197–207. Springer, 2003.

19. I. Claßen, H. Ehrig, and D. Wolz. Algebraic Specification Techniques and Tools
for Software Development. AMAST Series in Computing Vol. 1. World Scientific,
1993.

20. CoFI (The Common Framework Initiative). Casl Reference Manual. LNCS,
IFIP Series. Springer, 2004. To appear.

21. CoFI (The Common Framework Initiative) Tools Group. Home page.
http://www.cofi.info/Tools.

22. A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping: An
Algebraic Specification Approach. AMAST Series in Computing Vol. 5. World
Scientific, 1996.

23. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for spec-
ification and programming. J. ACM, 39(1):95–146, 1992.

24. J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud.
Introducing OBJ3. In J. Goguen and G. Malcolm, editors, Software Engineering
with OBJ: Algebraic Specification in Action. Kluwer, 1992.

25. J. V. Guttag and J. J. Horning. Larch: Languages and Tools for Formal Speci-
fication. Springer, 1993.

26. S. Kahrs, D. Sannella, and A. Tarlecki. The definition of Extended ML: A gentle
introduction. Theoretical Comput. Sci., 173:445–484, 1997.

27. J. Loeckx, H.-D. Ehrich, and M. Wolf. Specification of Abstract Data Types.
Wiley/Teubner, 1996.

28. T. Mossakowski. Casl: From semantics to tools. In S. Graf and M. Schwartz-
bach, editors, Tools and Algorithms for the Construction and Analysis of Sys-

References 223

tems, 6th International Conference, TACAS 2000, Berlin, Germany, Proceed-
ings, LNCS Vol. 1785, pages 93–108. Springer, 2000.

29. T. Mossakowski. Relating Casl with other specification languages: The insti-
tution level. Theoretical Comput. Sci., 286:367–475, 2002.

30. T. Mossakowski, Kolyang, and B. Krieg-Brückner. Static semantic analysis and
theorem proving for Casl. In F. Parisi-Presicce, editor, Recent Trends in Alge-
braic Development Techniques, 12th International Workshop, WADT’97, Tar-
quinia, Italy, 1997, Selected Papers, LNCS Vol. 1376, pages 333–348. Springer,
1998.

31. L. C. Paulson. Isabelle: A Generic Theorem Prover. LNCS Vol. 828. Springer,
1994.

32. M. Roggenbach and L. Schröder. Towards trustworthy specifications I: Consis-
tency checks. In Cerioli and Reggio [17], pages 305–327.

33. D. Sannella. The Common Framework Initiative for algebraic specification and
development of software: Recent progress. In Cerioli and Reggio [17], pages
328–343.

34. D. Sannella and A. Tarlecki. Foundations of Algebraic Specification and Formal
Program Development. To appear.

35. D. Sannella and A. Tarlecki. Essential concepts of algebraic specification and
program development. Formal Aspects of Computing, 9:229–269, 1997.

36. M. Wirsing. Structured algebraic specifications: A kernel language. Theoretical
Comput. Sci., 42:123–249, 1986.

37. M. Wirsing. Algebraic specification. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, chapter 13. Elsevier Science Publish-
ers, Amsterdam; and MIT Press, 1990.

List of Named Specifications

Strict Partial Order . 24
Total Order . 25
Total Order With MinMax . 26
Variant Of Total Order With MinMax 27
Partial Order . 27
Partial Order 1 . 28
Implies Does Not Hold . 28
Monoid . 29
Generic Monoid . 29
Non Generic Monoid . 30
Generic Commutative Monoid . 30
Generic Commutative Monoid 1 . 31
Container . 32
Marking Container . 32
Generated Container . 33
Generated Container Merge . 34
Generated Set . 35
Natural . 36
Color . 37
Integer . 37
Natural Order . 38
Natural Arithmetic . 38
Integer Arithmetic . 39
Integer Arithmetic Order . 40
List . 40
Set . 40
Transitive Closure . 41
Natural With Bound . 41
Set Choose . 42
Set Generated . 42
Set Union . 43

226 Named Specifications

Set Union 1 . 44
UnNatural . 44
Set Partial Choose . 47
Set Partial Choose 1 . 50
Set Partial Choose 2 . 50
Natural With Bound And Addition . 51
Set Partial Choose 3 . 51
Natural Partial Pre . 52
Natural Partial Subtraction 1 . 52
Natural Partial Subtraction . 52
List Selectors 1 . 53
List Selectors 2 . 53
List Selectors . 54
Natural Suc Pre . 54
Pair 1 . 54
Part Container . 54
Natural Partial Subtraction 2 . 55
Generic Monoid 1 . 57
Vehicle . 58
More Vehicle . 59
Speed Regulation . 59
Natural Subsorts . 60
Positive . 61
Positive Arithmetic . 61
Positive Pre . 62
Natural Positive Arithmetic . 62
Integer Arithmetic 1 . 64
Set Error Choose . 65
Set Error Choose 1 . 65
List Set . 67
List Choose . 68
Set to List . 68
Stack . 69
List Set 1 . 71
Natural Partial Subtraction 3 . 71
Natural Partial Subtraction 4 . 71
Partial Order 2 . 72
List Order . 73
List Order Sorted . 73
Wrong List Order Sorted . 74
List Order Sorted 2 . 74
List Order Sorted 3 . 75
List Order Nat . 78
Nat Word . 79
Nat Word 1 . 79

Named Specifications 227

This Is Wrong . 80
List Order Positive . 81
Nat Word 2 . 81
Pair . 82
Homogeneous Pair 1 . 82
Homogeneous Pair . 82
Table . 82
Pair Natural Color . 82
Pair Natural Color 1 . 83
Pair Natural Color 2 . 83
Pair Pos . 83
Pair Pos 1 . 83
My Table . 83
Set of List . 84
Mistake . 84
Set and List . 84
This Is Still Wrong . 84
List Rev . 85
List Rev Nat . 85
Two Lists . 85
Two Lists 1 . 86
Monoid C . 86
Monoid of Monoid . 86
List Rev Order . 87
List Rev with Two Orders . 87
List Weighted Elem . 88
List Weighted Pair Natural Color . 89
List Weighted Instantiated . 89
List Length . 89
List Length Natural . 90
Integer as Total Order . 90
Integer as Reverse Total Order . 91
List Rev with Two Orders 1 . 91
List as Monoid . 91
Elem . 94
Cont . 94
Cont Diff . 95
Req . 95
Flat Req . 95
System . 96
System 1 . 97
Cont Diff 1 . 99
Inconsistent . 99
System G . 100
System A . 101

228 Named Specifications

Cont Comp . 102
Diff Comp . 102
System G1 . 102
Diff Comp 1 . 102
Other System . 103
Other System 1 . 104
Set Comp . 105
Cont2Set . 105
Arch Cont2Set Nat . 105
Arch Cont2Set . 106
Arch Cont2Set Used . 106
Arch Cont2Set Nat 1 . 107
Wrong Arch Spec . 108
Badly Structured Arch Spec . 108
Well Structured Arch Spec . 109
Another Well Structured Arch Spec 109
Natural Order 2 . 134
v1 . 134
v2 . 137
Numbers . 144
Basic/Numbers . 145
Nat . 145
Int . 146
Rat . 147
StructuredDatatypes . 147
Basic/StructuredDatatypes . 147
GenerateSet . 148
Set . 148
GenerateMap . 148
Map . 149
Finite . 149
TotalMap . 149
GenerateBag . 150
Bag . 150
GenerateList . 150
List . 150
Array . 151
GenerateBinTree . 152
BinTree . 152
GenerateBinTree2 . 152
BinTree2 . 152
GenerateKTree . 153
KTree . 153
GenerateNTree . 154
NTree . 154

Named Specifications 229

Value . 158
Basics . 159
Messages Sent . 159
Messages Received . 159
Sbcs Constants . 160
Preliminary . 160
Sbcs . 161
Sbcs State 1 . 163
Mode Evolution . 165
Sbcs State 2 . 169
Status Evolution . 169
Message Transmission System Failure 171
Sbcs State 3 . 172
Pump Failure . 173
Sbcs State 4 . 173
Pump Controller Failure . 174
Sbcs State 5 . 174
Steam Failure . 175
Level Failure . 175
Failure Detection . 175
Steam And Level Prediction . 178
Pump State Prediction . 180
Pump Controller State Prediction . 181
PU Prediction . 181
Sbcs Analysis . 182
Sbcs State . 183
Steam Boiler Control System . 183
Arch Sbcs . 186
Arch Preliminary . 187
Sbcs State Impl . 187
Unit Sbcs State . 188
Arch Analysis . 188
Arch Failure Detection . 189
Arch Prediction . 189

Index of Library and Specification Names

Another Well Structured Arch
Spec 109

Arch Analysis 188
Arch Cont2Set 106
Arch Cont2Set Nat 105
Arch Cont2Set Nat 1 107
Arch Cont2Set Used 106
Arch Failure Detection 189
Arch Prediction 189
Arch Preliminary 187
Arch Sbcs 186
Array 151

Badly Structured Arch Spec 108
Bag 150
Basic/Numbers 145
Basic/StructuredDatatypes 147
Basics 159
BinTree 152
BinTree2 152

Color 37
Cont 94
Cont2Set 105
Cont Comp 102
Cont Diff 95
Cont Diff 1 99
Container 32

Diff Comp 102
Diff Comp 1 102

Elem 94

Failure Detection 175
Finite 149
Flat Req 95

GenerateBag 150
GenerateBinTree 152
GenerateBinTree2 152
Generated Container 33
Generated Container Merge 34
Generated Set 35
GenerateKTree 153
GenerateList 150
GenerateMap 148
GenerateNTree 154
GenerateSet 148
Generic Commutative Monoid 30
Generic Commutative Monoid 1

31
Generic Monoid 29
Generic Monoid 1 57

Homogeneous Pair 82
Homogeneous Pair 1 82

Implies Does Not Hold 28
Inconsistent 99
Int 146
Integer 37
Integer Arithmetic 39
Integer Arithmetic 1 64
Integer Arithmetic Order 40
Integer as Reverse Total Order

91
Integer as Total Order 90

232 Index of Library and Specification Names

KTree 153

Level Failure 175
List 40, 150
List as Monoid 91
List Choose 68
List Length 89
List Length Natural 90
List Order 73
List Order Nat 78
List Order Positive 81
List Order Sorted 73
List Order Sorted 2 74
List Order Sorted 3 75
List Rev 85
List Rev Nat 85
List Rev Order 87
List Rev with Two Orders 87
List Rev with Two Orders 1 91
List Selectors 54
List Selectors 1 53
List Selectors 2 53
List Set 67
List Set 1 71
List Weighted Elem 88
List Weighted Instantiated 89
List Weighted Pair Natural

Color 89

Map 149
Marking Container 32
Message Transmission System

Failure 171
Messages Received 159
Messages Sent 159
Mistake 84
Mode Evolution 165
Monoid 29
Monoid C 86
Monoid of Monoid 86
More Vehicle 59
My Table 83

Nat 145
Nat Word 79
Nat Word 1 79
Nat Word 2 81
Natural 36
Natural Arithmetic 38

Natural Order 38
Natural Order 2 134
Natural Partial Pre 52
Natural Partial Subtraction 52
Natural Partial Subtraction 1

52
Natural Partial Subtraction 2

55
Natural Partial Subtraction 3

71
Natural Partial Subtraction 4

71
Natural Positive Arithmetic 62
Natural Subsorts 60
Natural Suc Pre 54
Natural With Bound 41
Natural With Bound And

Addition 51
Non Generic Monoid 30
NTree 154
Numbers 144

Other System 103
Other System 1 104

Pair 82
Pair 1 54
Pair Natural Color 82
Pair Natural Color 1 83
Pair Natural Color 2 83
Pair Pos 83
Pair Pos 1 83
Part Container 54
Partial Order 27
Partial Order 1 28
Partial Order 2 72
Positive 61
Positive Arithmetic 61
Positive Pre 62
Preliminary 160
PU Prediction 181
Pump Controller Failure 174
Pump Controller State

Prediction 181
Pump Failure 173
Pump State Prediction 180

Rat 147
Req 95

Index of Library and Specification Names 233

Sbcs 161

Sbcs Analysis 182
Sbcs Constants 160
Sbcs State 183

Sbcs State 1 163
Sbcs State 2 169
Sbcs State 3 172

Sbcs State 4 173
Sbcs State 5 174
Sbcs State Impl 187

Set 40, 148
Set and List 84
Set Choose 42

Set Comp 105
Set Error Choose 65
Set Error Choose 1 65

Set Generated 42
Set of List 84
Set Partial Choose 47

Set Partial Choose 1 50
Set Partial Choose 2 50
Set Partial Choose 3 51
Set to List 68

Set Union 43
Set Union 1 44
Speed Regulation 59

Stack 69
Status Evolution 169
Steam And Level Prediction 178

Steam Boiler Control System
183

Steam Failure 175
Strict Partial Order 24
StructuredDatatypes 147
System 96
System 1 97
System A 101
System G 100
System G1 102

Table 82
This Is Still Wrong 84
This Is Wrong 80
Total Order 25
Total Order With MinMax 26
TotalMap 149
Transitive Closure 41
Two Lists 85
Two Lists 1 86

Unit Sbcs State 188
UnNatural 44

v1 134
v2 137
Value 158
Variant Of Total Order With

MinMax 27
Vehicle 58

Well Structured Arch Spec 109
Wrong Arch Spec 108
Wrong List Order Sorted 74

Concept Index

abbreviation 23
abstract syntax 126

algebraic signature 12
analysis, static 127, 133
annotation 115

associativity 115
author 116

date 116, 121
definitional extension 43
display 27, 115, 119
implies 28
label 25

literal syntax 118
parsing 115, 119
precedence 115
relative precedence 115

architectural specification 93, 186

argument
specification 19, 30

fitting 77
ASF+SDF 139
assertion

definedness 50
subsort membership 59

associativity
annotation 115
attribute 29, 116

ATerms 137, 139

attribute 29
associativity 29, 116
commutativity 29
idempotence 29
unit 29

author annotation 116
auxiliary

operation 71
predicate 71
symbol 73

axiom 11, 12, 14, 25

basic
datatypes, libraries of 117, 119, 143
specification 11, 194

body 30
specification 18

carrier set 12
casting 64
CATS 138
class of models 12
closed

specification 114
system 106
world assumption 38

comment 25
commutativity attribute 29
compatibility 105, 106

overloading with
embedding 62
renaming 70
subsorting 14

completeness 128
component 93

declaration 96
generic 100

application of 101
specification 96

236 Concept Index

named 102
composition 19

generic specification 84
compound

sort 12, 85
symbol 85

operation 87
predicate 87

concrete syntax 126
consequence relation 128
conservative extension 19, 98
consistency checker 141
consistent 12
constant

operation 13
overloaded 31
symbol 29

constraint 11, 12
sort generation 15, 33

constructor 32
partial 55

current version 121

datatype
declaration 32, 59
enumerated 37
free 37
generated 33
structured 147

date annotation 116, 121
decimal notation 118
declaration 11

before use see linear visibility
component 96
datatype 32, 59
function

partial 47
total 26

subsort 57, 59
symbol 11
unit 96
variable 25

global 27
decomposition 19
deduction rule 128
definedness assertion 50
definition

domain of 13, 50
operation 26

predicate 28
style 44
subsort 60
unit 109

definitional extension 43
development graph 134
disambiguation 31
display

annotation 27, 115, 119
format 27

distributed library 111, 116
domain

of definition 13, 50
semantic 127

downloaded specification 112, 118

editor, syntax-directed 139
embedding 13, 64

compatibility with overloading 62
end-of-line comment 25
enumerated datatype 37
equation

existential 15, 55
strong 15, 48, 55

error supersort 65
evolution of specification 112
existential

equation 15, 55
quantification 14, 25

expansion 16
explicit fitting 81
exported symbol 16, 25
expression, unit 106
extension 25

conservative 19, 98
definitional 43
specification 18, 68

fitting
argument specification 77
explicit 81
implicit 80
morphism 19
symbol map 81

fixed part 88
formal

specification 156
verification 128, 138

formalization process 156

Concept Index 237

formula 25
free

datatype 37
model 18
specification 18, 36

freeness constraint 18, 37
function

partial 13, 47
persistent 19, 100
total 13, 23

generated
datatype 33
specification 33

generic
component 100

application 101
specification 15, 18, 30, 77

composition 84
view 91

global variable declaration 27

HETS 132
hiding

specification 17, 71
with revealing 72

HOL-CASL 138
homomorphism 16

idempotence attribute 29
identity renaming 71
ill-formed instantiation 80, 90
implementation 93, 140
implicit fitting 80
implies annotation 28
imports 19, 88
inconsistent 12
independence, institution 127, 137
induction 34

proof 139
scheme 35

inductive definition 38
style 44

informal requirements 156
inherited 58
initial model 16, 38
input format 27
instantiation 15, 19, 30, 77, 78

ill-formed 80, 90

institution 12, 127, 128
independence 127, 137

interpretation 11, 12
isomorphism 16

junk 15

label annotation 25
libraries of basic datatypes 117, 119,

143
library 111

current version 121
distributed 111, 116
item 114
local 111, 112
registered 117
self-contained 111, 112
under development 120
validation 117
version 112, 121

linear visibility 26, 96, 113
literal syntax annotation 118
local

library 111, 112
specification 73
unit definition 109

logic 15, see institution
loose specification 24

many-sorted signature 12
map, symbol 70
mathematical theory 126
MAYA 138
meaning 12
mixfix notation 24
model

class 12
free 18
of specification 12
semantics 127

morphism
fitting 19
signature 16
specification 16

multi-line comment 25
mutual recursion 36, 113

name, path 117
named

specification 15, 24, 75

238 Concept Index

view 19
natural semantics 127
negation as failure 38
’no junk, no confusion’ principle 37
‘no junk’ principle 33
non-isomorphic models 25
non-linear visibility 36, 63
notation, decimal 118
number 144

observer 43
definition style 44

open system 106
operation

auxiliary 71
boolean-valued v. predicate 13, 18
constant 13
definition 26
symbol 13

compound 87
overloaded

constant 31
symbol 31

renaming 70
overloading 14, 61

compatibility
with embedding 62
with renaming 70

parameter 30
specification 18, 77, 78

parsing 133, 137, 139
annotation 115, 119

partial
constructor 55
function 13, 47

declaration 47
selector 54

path name 117
persistent function 19, 100
place-holder 24
precedence annotation 115
predicate

auxiliary 71
definition 28
symbol 13, 24

compound 87
v. boolean-valued operation 13, 18

principle

’no junk, no confusion’ 37
‘no junk’ 33
‘same name, same thing’ 17, 31, 113

process of formalization 156
profile 13
programming language 140
proof

calculus 128
induction 139
obligation 28, 134

propagate undefinedness 48

quantification
existential 14, 25
unique-existential 14
universal 14, 25

recursion, mutual 36, 113
reduct 16
reference to name 15
refinement 156
registered library 117
relative precedence annotation 115
renaming

compatibility with overloading 70
identity 71
overloaded symbol 70
specification 69

requirements
informal 156
specification 156

result sort 13
reuse of specification 111
revealing with hiding 72
rewriting 140

‘same name, same thing’ principle 17,
31, 113

satisfaction relation 12
scheme, induction 35
selector 53

partial 54
total 54

self-contained
library 111, 112
specification see closed

semantic domain 127
semantics 12, 126

model 127
natural 127

Concept Index 239

static 127
set

carrier 12
inclusion 13

signature 12
algebraic 12
many-sorted 12
morphism 16
subsorted 12

software modules 94
sort 12, 24

compound 12, 85
generation constraint 15, 33
result 13
union 59

soundness 128
specification

architectural 93, 186
argument 19, 30

fitting 77
basic 11, 194
body 18
closed 114
downloaded 112, 118
evolution 112
extension 18, 68
fitting argument 77
formal 156
free 18, 36
generated 33
generic 15, 18, 30, 77
hiding 17, 71
instantiation 77, 78
local 73
loose 24
model of 12
morphism 16
named 15, 24, 75
of component 96

named 102
parameter 18, 77, 78
reference 15
renaming 69
requirements 156
reuse 111
structured 67
subsorted 57
translation 17
union 17, 68

unit 98
static

analysis 127, 133
semantics 127

strong equation 15, 48, 55
structured

datatype 147
specification 67

subsort 13, 57
declaration 57, 59
definition 60
membership assertion 59

subsorted
signature 12
specification 57

supersort 13, 57
symbol 12

auxiliary 73
compound 85
constant 29
declaration 11
exported 16, 25
map 70

fitting 81
operation 13
overloaded 31
predicate 13, 24

syntax 126
-directed editor 139

system 106

term, unit 100
theorem prover 138
total

function 13, 23
declaration 26

selector 54
translation 17
two-valued logic 48

undefined value 48
union

sort 59
specification 17, 68

unique-existential quantification 14
unit

attribute 29
declaration 96
definition 109

240 Concept Index

expression 106
local definition 109
specification 98
term 100

universal quantification 14, 25

validation 156
of library 117

variable 14
declaration 25

version

control 112, 120
current 121
library 121
number 121
of library 112

view 90
generic 91
named 19

visibility
component name 97
linear 26, 96, 113

	29000003.pdf
	1.1 CoFI
	1.2 CASL

	29000011.pdf
	2.1 Basic Specifications
	2.2 Structured Specifications
	2.3 Architectural Specifications
	2.4 Libraries of Specifications

	29000023.pdf
	3.1 Loose Specifications
	3.2 Generated Specifications
	3.3 Free Specifications

	29000047.pdf
	4.1 Declaring Partial Functions
	4.2 Specifying Domains of Definition
	4.3 Partial Selectors and Constructors
	4.4 Existential Equality

	29000057.pdf
	5.1 Subsort Declarations and Definitions
	5.2 Subsorts and Overloading
	5.3 Subsorts and Partiality

	29000067.pdf
	6.1 Union and Extension
	6.2 Renaming
	6.3 Hiding
	6.4 Local Specifications
	6.5 Named Specifications

	29000077.pdf
	7.1 Parameters and Instantiation
	7.2 Compound Symbols
	7.3 Generic Specifications with Imports
	7.4 Views

	29000093.pdf
	8.1 Architectural Specifications
	8.2 Generic Components
	8.3 Writing Meaningful Architectural Specifications

	29000111.pdf
	9.1 Local Libraries
	9.2 Distributed Libraries
	9.3 Version Control

	29000131.pdf
	11.1 The Heterogeneous Tool Set (HETS)
	11.2 HOL-CASL
	11.3 ASF+SDF Parser and Syntax-Directed Editor
	11.4 Other Tools

	29000143.pdf
	12.1 Library Basic/Numbers
	12.2 Library Basic/StructuredDatatypes

	29000155.pdf
	13.1 Introduction
	13.2 Getting Started
	13.3 Carrying On
	13.4 Specifying the Mode of Operation
	13.5 Specifying the Detection of Equipment Failures
	13.5.1 Understanding the Detection of Equipment Failures
	13.5.2 Keeping Track of the Status of the Physical Units
	13.5.4 Detection of the Pump and Pump Controller Failures
	13.5.5 Detection of the Steam and Water Level Measurement Device Failures
	13.5.6 Summing Up

	13.6 Predicting the Behavior of the Steam-Boiler
	13.6.1 Predicting the Steam Output and the Water Level
	13.6.2 Predicting the Pump and Pump Controller States

	13.7 Specifying the Messages to Send
	13.8 The Steam-Boiler Control System Specification
	13.9 Validation of the CASL Requirements Specification
	13.10 Designing the Architecture

	29000193.pdf
	A.1 Basic Specifications
	A.1.1 Declarations and Definitions
	A.1.2 Variables and Axioms
	A.1.3 Symbols
	A.1.4 Comments
	A.1.5 Annotations

	A.2 Structured Specifications
	A.2.1 Specifications (SP)
	A.2.2 Named and Generic Specifications
	A.2.3 Named and Generic Views
	A.2.4 Symbol Lists (SL) and Maps (SM)

	A.3 Architectural Specifications
	A.3.1 Named Architectures and Units
	A.3.2 Architectural Specifications (ASP)
	A.3.3 Unit Specifications (USP)
	A.3.4 Unit Declarations and Definitions (UD)
	A.3.5 Unit Expressions (UE)
	A.3.6 Unit Terms (UT)

	A.4 Libraries
	A.4.1 Downloadings
	A.4.2 Library Names (LN)

	29000203.pdf
	B.1 Introduction
	B.2 Underlying Concepts
	B.3 Getting Started
	B.4 Partial Functions
	B.5 Subsorting
	B.6 Structuring Specifications
	B.7 Generic Specifications
	B.8 Specifying the Architecture of Implementations
	B.9 Libraries
	B.10 Foundations
	B.11 Tools
	B.12 Basic Libraries

	29000211.pdf
	C.1 Introduction
	C.2 Physical Environment
	C.2.1 The Steam-Boiler
	C.2.2 The Water Level Measurement Device
	C.2.3 The Pumps
	C.2.4 The Pump Control Devices
	C.2.5 The Steam Measurement Device
	C.2.6 Summary of Constants and Variables

	C.3 The Overall Operation of the Program
	C.4 Operation Modes of the Program
	C.4.1 Initialization Mode
	C.4.2 Normal Mode
	C.4.3 Degraded Mode
	C.4.4 Rescue Mode
	C.4.5 Emergency Stop Mode

	C.5 Messages Sent by the Program
	C.6 Messages Received by the Program
	C.7 Detection of Equipment Failures

	2900cont.pdf
	Title
	Preface
	Structure
	Part I: Background
	Part II: Writing CASL Specifications
	Part III: Carrying On
	Appendices and Indexes

	Organization

	Contents

	2900ind2.pdf
	List of Named Specifications
	Index of Library and Specification Names
	Concept Index

