
Towards Trustworthy Specifications I:
Consistency Checks

Markus Roggenbach and Lutz Schröder

BISS, Department of Computer Science, Bremen University

Abstract. As the first of two methodological devices aimed at increas-
ing the trust in the ‘correctness’ of a specification, we develop a calculus
for proving consistency of Casl specifications. It turns out to be possible
to delegate large parts of the proof load to syntactical criteria by struc-
turing consistency proofs along the given specification structure, so that
only in rather few remaining focus points, actual theorem proving is re-
quired. The practical usability of the resulting calculus is demonstrated
by extensive examples taken from the Casl library of basic data types.

Introduction

The verification of programs is a well-established topic in computer science; here,
correctness of programs is usually defined w.r.t. requirements given in a more
or less formal language, possibly an algebraic specification language such as the
language Casl (Common Algebraic Specification Language) [7, ?] designed by
CoFI, the international Common Framework Initiative for Algebraic Specifica-
tion and Development [6]. However, these requirement specifications themselves
may very well contain errors in the sense that they fail to have exactly the in-
tended class of models; early detection of such errors will substantially reduce
the cost of software development.

Since the notion of an ‘intended’ class of models is not equipped with a
formal meaning, the correctness of a requirement specification in this sense can
only be ‘verified’ in an approximative process. This process splits into two parts,
corresponding to the two required inclusions between the actual and the intended
model class.

In order to increase the trust in the claim that the given specification does not
admit unwanted models, one can attempt to prove certain intended consequences
from the given axioms. Thus, it is shown that at least those models which fail
to have these intended properties are excluded from the actual model class.
This program is systematically pursued in the forthcoming [20]. (The opposite
strategy — constructing counterexamples for intended properties in order to
detect faulty specifications — is developed, e.g., in [1] and in [18].) Conversely, of
course, one has to make sure that none of the intended models fails to satisfy the
specification. The first step in this direction is to show that the specification has
at least one model, i.e. that it is (semantically) consistent. (Note that for Casl
specifications, semantical consistency and syntactical consistency, i.e. absence

2

of contradictions, do not coincide, since Casl sort generation constraints and
Casl free specifications are higher order concepts). It is important to note that
the proof of intended consequences as discussed above is meaningless without a
consistency proof — ex falso quodlibet.

Here, we develop a set of rules for checking consistency of Casl specifications
in a systematic way. As these rules work along the actual specification text, the
need to construct (and prove) actual models of specifications is avoided as far
as possible. The given set of rules is certainly far from complete. However, we
illustrate its applicability by demonstrating how it can be used to establish the
consistency of a large part of the Casl Basic Datatypes [19]. In order to be
able to deal with this example and other realistic specifications, we discuss the
calculus for full Casl here rather than restrict to a possibly more digestible
sublanguage.

The consistency rules are designed in such a way that they can be automated
to a large extent: most of them can be statically checked, i.e. they make use of the
static semantics only. Just in a few cases, e.g. in rules that assume the correctness
of views, actual theorem proving is required to discharge proof obligations that
arise from the model semantics.

Besides using certain syntactical criteria, the consistency rules rely heavily on
the Casl structuring mechanisms and their semantic annotations. Consequently,
consistency proofs follow the structure of the given specification. A simple ex-
ample for this type of argument is the exploitation of specification morphisms
that arise e.g. from instantiations or extensions for transporting consistency.
In this way, our rules highlight the (usually few) ‘hot spots’ of a specification,
while the (lengthy) ‘trivial’ parts of the consistency argument are discharged
automatically.

The structuring of proofs along the structure of specifications is a well-
established concept. Proof systems of this kind for statements expressed within
the given logic are elaborated e.g. in [14]. The development graph [2] provides au-
tomatic proof support for this type of reasoning, as well as for structured ‘meta-
reasoning’ (although such terminology is deemed unsuitable for minors [11])
about specification refinement; the latter point is also addressed in [4, 10]. The
most central metapredicate used below is conservativity of extensions; reasoning
about this predicate within the development graph is discussed in [17]. To the
best of our knowledge, however, the question how to structure consistency proofs
along the structure of specifications has not been addressed before.

1 CASL

The specification language Casl has been designed by CoFI, the international
Common Framework Initiative for Algebraic Specification and Development [6].
Following [?], we present a short overview of those features of Casl which are
relevant here. For the full definition of the language, we refer to [7].

Roughly speaking, a Casl basic specification consists of a signature made up
of sorts, operations, and predicates (declared by means of the keywords sort, op,

3

and pred, respectively, optionally equipped with a defining term or formula), and
axioms referring to the signature items (keywords axiom, forall). Operations
can be partial or total. Furthermore, one may declare a subsort relation on the
sort symbols. Axioms are written in first-order logic. Going one step beyond
first order logic, Casl also features sort generation constraints for datatypes
(keywords generated, free type).

A model of such a specification is an algebra which interprets the sorts as
(non empty) sets and the operations and predicates as (partial) functions and
subsets, respectively, in such a way that the given axioms are satisfied. The
subsorting relation is reflected by injective coercion functions between the sets
interpreting the involved sorts (not by subset inclusion); for a discussion of the
difficulties arising from this subtlety and their solution see [21].

Moreover, Casl provides ways of building complex (structured) specifications
out of simpler ones (the simplest ones being basic specifications) by means of var-
ious specification-building operations. These include translation, hiding, union,
and both free and loose forms of extension.

Translations of declared symbols to new symbols are specified by giving lists
of ‘maplets’ of the form old 7→ new (keyword with).

Reducing a specification means removing symbols from its signature and the
corresponding items from its models. Casl provides two ways of specifying a
reduction: by listing the symbols to be hidden (keyword hide), or by listing
those to be left visible, i.e., revealed (keyword reveal). Casl also facilitates the
hiding of auxiliary symbols by allowing the local scope of their declarations to
be indicated (keyword local).

The signature of a union of two specifications is the union of their signatures.
Given models over the component signatures, the unique model over the union
signature that extends each of these models is called their amalgamation; a
pair of models is called compatible if their amalgamation exists. Clearly, not all
pairs of models over component signatures amalgamate: an obvious necessary
condition is that the models coincide on the common symbols (including subsort
embeddings) of the component signatures. The models of a union (keyword and)
are all amalgamations of the models of the component specifications.

Extensions (keyword then) may specify new symbols or merely require fur-
ther properties of old ones. Extensions can be classified by their effect on the
model class specified. For instance, an extension is called conservative when no
models are lost: every model of the specification being extended is a reduct of
some model of the extended specification. Casl provides annotations %implies,
%def, and %cons to denote that the model class is not changed, that each model
of the specification can be uniqueley extended to a model of the extended spec-
ification, or that the extension is conservative, resp. It is important to note that
these annotations have no effect on the semantics of a specification: a specifier
may use them to express his intentions, tools may use them to generate proof
obligations. In the consistency proofs of Section 3, we use these annotations as
a guideline for selecting appropriate rules.

4

Structured specifications may be named, and a named specification may be
generic in the sense that it declares parameters that need to be instantiated when
the specification is (re)used. Instantiation is a matter of providing an appropriate
argument specification together with a fitting morphism from the parameter
to the argument specification. A generic specification may also declare imports
(keyword given) which behave like immediately instantiated parameters; the
formal parameters (as well as the argument specifications in any instantiation)
are regarded as extensions of the imports.

To allow reuse of fitting ‘views’, specification morphisms (from parameters
to arguments) may themselves be named (keyword view).

Specifications may be declared to be closed (keyword closed), which means
that they behave as though there were no previously declared signature elements
(this becomes relevant as soon as there are translations in the scope of a closed
construct). Instantiations of generic specifications are implicitly closed.

The simplest case of a free specification (keyword free) is the one where the
specification constrained to be interpreted freely is closed. The signature of the
specification is unchanged, but its model class is restricted to the initial models.
More generally, a free specification may be a free extension, e.g.:

sort Elem then
free
{ type Set ::= {} | { }(Elem) | ∪ (Set ;Set)

op ∪ : Set × Set → Set ,assoc, comm, idem,unit {} }

Many structured specifications can be flattened, i.e. transformed into basic
specifications (although for general structured specifications, flattening is pre-
cluded by the presence of free specifications and hiding operations; cf. [4]). How-
ever, the strategy pursued here consists to a large extent in exploiting these struc-
turing operations in order to obtain correspondingly structured proofs; therefore,
flattening will not play any rôle.

2 The Calculus

The first point that needs to be stressed is that the calculus developed below is
really not about consistency at all, but rather about conservativity of extensions.
Intuitively speaking, an extension is conservative if it does not ‘specify away’ any
models, i.e. if each model of the original specification can be enlarged to a model
of the extended specification [22]. This can be formalized as follows: an extension
σ : Sp1 ↪→ Sp2 induces a model reduction

Mod(σ) : Mod(Sp2) → Mod(Sp1),

where Mod(Sp) may for the purposes of this paper be thought of as denoting
the class of models of a specification Sp (cf. [5, 7, 8] for details). σ is conservative
if Mod(σ) is surjective, and definitional if Mod(σ) is bijective. For both these
properties, Casl offers semantic annotations: conservative and definitional ex-
tensions may be indicated by the annotations %cons and %def, respectively.

5

Note that definitionality of an extension implies that it does not declare any
new sorts. There is a third annotation, %implies, which applies to definitional
extensions that do not affect the signature.

Now it is trivial to observe that a specification is consistent (in the sense
that its model class is non-empty) iff it conservatively extends the empty speci-
fication {}. Thus, it does indeed suffice to provide a calculus for conservativity
(which would necessarily have formed a part of a consistency calculus anyway).
Conservativity is in itself an important notion in many contexts; for a recent
application, see e.g. [17]. Moreover, we sketch the beginnings of a definitionality
calculus, which, in this context, serves primarily the purpose of improving the
readability of conservativity proofs.

The judgements of the conservativity calculus are of the form
cons(Sp1)(Sp2), where Sp1 ↪→ Sp2 is an extension (in a somewhat general-
ized sense to be made precise below). Similarly, definitionality is expressed by
the predicate def (Sp1)(Sp2). Moreover, we use a predicate implies(Sp1)(Sp2)
which corresponds to the annotation %implies in Casl, i.e. Sp1 and Sp2 have
the same signature and class of models. This predicate is not supported by a
calculus; instead, its verification will assumed to be discharged by a suitable the-
orem prover. Finally, we do introduce a consistency predicate c(Sp); however,
this is just an abbreviation for cons({})(Sp). Only a few rules refer specifically
to the consistency predicate.

The calculus has been minimized as far as possible in order to keep it man-
ageable and understandable. Its actual application, in particular by a tool, will
require a catalogue of derived rules in order to avoid overly clumsy proofs; some
examples of such rules are discussed at the end of this section.

The rules are organized as follows: Figure 1 contains a simple extension cal-
culus for Casl specifications. The conservativity calculus proper is then sub-
divided into general conservativity rules (Figure 2), rules for special extensions
(Figure 3), rules for structuring constructs (Figure 4), and definitionality rules
(Figure 5). Correctness proofs for the rules have been generally omitted.

In the following we use without further explanation the symbol system intro-
duced in the Casl Language Summary [7], where e.g. a specification is denoted
by Sp, FM is a fitting morphism, BI is a basic item, etc. All rules are subject
to the silent premise that the specifications they are applied to are well-formed.

Extension Calculus In order to keep the number of rules in the conservativity
calculus as small as possible, we begin by introducing an extension calculus for
specifications (Figure 1). This calculus is purely auxiliary and does not have any
claims to completeness (nor is it meant as a step towards a calculus for specifi-
cation refinement); however, it does allow a rather more elegant formulation of
many of the conservativity rules. The calculus concerns judgements of the form
Sp1 � Sp2, which are taken to mean that Sp1 ↪→ Sp2 is an extension. Here, the
word extension is to be understood as meaning that the signature defined by
Sp1 is a subsignature of that defined by Sp2, and that the associated signature
inclusion is in fact a specification morphism Sp1 → Sp2. At the level of Casl,
this can be rephrased as correctness of the view

6

view V: Sp1 to Sp2 end.

Most of the extension calculus is really about equivalence of Casl specifi-
cations. Equivalence of two specifications Sp1 and Sp2, denoted Sp1 ' Sp2, is
defined as mutual extension; i.e.,

Sp1 ' Sp2 : ⇐⇒ (Sp1 � Sp2 and Sp2 � Sp1).

Of course, Sp1 ' Sp2 is equivalent to implies(Sp1)(Sp2). However, the two
notations serve different methodological purposes: while Sp1 ' Sp2 is used to
transform specifications, implies(Sp1)(Sp2) denotes a proof obligation to be
discharged by a suitable theorem prover. Again, it should be stressed that the
notion ' is subsidiary to the conservativity calculus and by no means aimed at
normal forms of specifications and the like.

The relation � is reflexive and transitive; moreover, it is compatible with
the structuring operations. This implies that the same holds for ' (which is,
moreover, trivially symmetric).

The union operator and is commutative and associative. It is also idempotent
in the sense that a union of a specification and an extension of that specification
is essentially the same as the extension. There are rules for ‘unfolding’ instan-
tiations of (parametrized) specifications according to the circumscription in the
summary. Since we are really interested in keeping the structure of specifications
here, these rules have been included more for the sake of their obviousness than
in order to be routinely applied, with the exception of the simplest case, which
concerns instantiations of unparametrized named specifications.

The remaining rules of Figure 1 are largely self-explanatory, such as idem-
potency of the closed-construct, equivalence of extension and union under
well-formedness of the latter, or introductions of extra thens. Of course,
certain basic equivalences may be derived; e.g., by rules (inst-rp) and (cl),
SN [FA1] . . . [FAn] ' closed SN [FA1] . . . [FAn].

General Rules Some basic rules of the conservativity calculus are shown in Figure
2. Besides the obvious rules on trivial extensions and composition of extensions
and on the relation between the metapredicates cons, def, and implies, there is a
weakening rule (wk), as well as rules (rp1), (rp2) that allow replacing specifica-
tions by equivalent ones. Of course, the premises concerning the relations � and
' in the latter three rules are meant to be discharged by means of the extension
calculus of Figure 1. As discussed above, the main purpose of these rules is the
simplification of the calculus; they are intended for ‘conservative’ use, i.e. mostly
for minor syntactical adjustments rather than, say, for wholesale flattening and
the like.

Rules for Special Extensions These rules (Figure 3) provide mechanisms for
dealing with features of basic specifications such as axioms or data type defini-
tions; since we are not concerned with actual theorem proving here, their scope
is necessarily somewhat limited. Some of the rules listed here are discussed in a
similar context in [13, 16]. Most of them make use of a predicate newSorts which

7

(refl)
Sp � Sp

(trans)

Sp1 � Sp2
Sp2 � Sp3

Sp1 � Sp3

(cong)
Sp1 � Sp′

1

{Sp1 then Sp2} � {Sp′
1 then Sp2} etc.

(ext)
Sp1 � {Sp1 then Sp2}

(hdx)
Sp hide SL � Sp

(rvx)
Sp reveal SL � Sp

(rveq)
SL lists the symbols renamed by SM

Sp reveal SM ' Sp reveal SL with SM

(union-c)
{Sp1 and Sp2} ' {Sp2 and Sp1}

(union-a)
{{Sp1 and Sp2} and Sp3} ' {Sp1 and {Sp2 and Sp3}}

(union-i)
Sp1 � Sp2

Sp2 ' {Sp1 and Sp2}
(inst-eq1)

SN = Sp

SN ' closed{Sp}

(inst-eq2)

SN [Sp1] . . . [Spn] = Sp
Sp′ = {{Sp1 and . . . and Spn} then Sp}

FAi : Spi → Sp′
i, i = 1, . . . , n

FM is the extension of the FAi to Sp′

SN [FA1] . . . [FAn] ' closed{{Sp′ with FM} and Sp′
1 and . . . and Sp′

n}

(inst-eq3)

SN [Sp1] . . . [Spn] given Sp′′
1 , . . . , Sp′′

m = Sp
Sp′ = {{Sp′′

1 and . . . and Sp′′
m} then {Sp1 and . . . and Spn} then Sp}

FAi : {{Sp′′
1 and . . . and Sp′′

n} then Spi} → {{Sp′′
1 and . . . and Sp′′

n} then Sp′
i},

i = 1, . . . , n
FM is the extension of the FAi to Sp′

SN [FA1] . . . [FAn] ' closed{{Sp′ with FM} and Sp′
1 and . . . and Sp′

n}

(cl)
closed {Sp} ' Sp

(double)
Sp contains BI

Sp ' {Sp then BI}

(then-and)
Sp1 and Sp2 is well-formed

{Sp1 then Sp2} ' {Sp1 and Sp2}

(sep1)
{BI1 . . . BIn} ' {BI1 . . . BIk then BIk+1 . . . BIn}

(sep2)
Sp ' {} then Sp

(perm)

{BI1 . . . BIk BIk+1 . . . BIn} is well-formed
{BI1 . . . BIk+1 BIk . . . BIn} is well-formed

{BI1 . . . BIk BIk+1 . . . BIn} ' {BI1 . . . BIk+1 BIk . . . BIn}

(wkfree)
generated {SI1 . . . SIn} � free {SI1 . . . SIn}

Fig. 1. The extension calculus

8

(triv)
implies(Sp)(Sp)

(comp)

cons/def/implies(Sp1)(Sp2)
cons/def/implies(Sp2)(Sp3)

cons/def/implies(Sp1)(Sp3)

(wk)

Sp1 � Sp2 � Sp3

cons(Sp1)(Sp3)

cons(Sp1)(Sp2)

(rp1)

Sp1 ' Sp′
1

cons/def/implies(Sp1)(Sp2)

cons/def/implies(Sp′
1)(Sp2)

(rp2)

Sp2 ' Sp′
2

cons/def/implies(Sp1)(Sp2)

cons/def/implies(Sp1)(Sp′
2)

(def)
def (Sp1)(Sp2)

cons(Sp1)(Sp2)
(imp)

implies(Sp1)(Sp2)

def (Sp1)(Sp2)

Fig. 2. General conservativity rules

expresses the (easily checkable) fact that a sort s or the sorts declared in signa-
ture items SI1, . . . , SIn or datatype declarations DD1, . . . , DDn, respectively,
are not contained in the signature of Sp. If a new sort is declared to be (freely)
generated, it has to be checked whether the declared signature provides a closed
term (i.e. a term without free variables) of this sort. This complication is due to
the fact that the Casl semantics requires non-empty carriers.

Rule (horn) states that extensions in positive Horn logic are conservative if
they have no effect on the previously declared sorts. The metapredicate horn(Sp)
is true for a basic specification iff all its axioms (including the implicit ones) are
positive Horn clauses, possibly after performing skolemization, e.g. in the case of
the existence axiom for inverses in a group; cf. Section 3.1. (Note that the axiom
of choice is explicitly assumed in the Casl semantics.) Subsort declarations and
type definitions (without sort generation constraints) can be coded by positive
Horn clauses and hence are regarded as such. The horn predicate is recursively
extended to structured specifications in the obvious way, except that hiding
must be excluded here; i.e. if Sp is a specification in positive horn logic, then
Sp hide SM need not be equivalent to a specification in positive Horn logic. (In
the case of instantiations of parametrized specifications, the extension of the horn
predicate involves additional proof obligations concerning well-formedness of the
instantiation, i.e. correctness of the fitting morphism, in the same way as in rule
(inst-eq3) of Figure 1.) Note that the phrase ‘Conclusions in Sp2 concern new
predicates or equality in new sorts over Sp1’ refers also to implicitly generated
axioms arising, e.g., from subsorting and overloading.

Further, rather obvious rules (rules (sub), (free), and (gtd1)) concern the
introduction of subsorts, free datatypes, and (unrestricted) generated types, re-

9

spectively. The somewhat surprising satisfiability constraint expressed by the
premise implies(. . .)(. . .) in rule (sub) is necessary due to the fact that the Casl
semantics requires non-empty carriers; of course, discharging this constraint will
in general require some form of theorem proving (even if the formula in question
is in positive Horn form!). The case of generated types with a specified equiv-
alence relation is somewhat more complicated. The rules provided here for this
purpose (rules (gtd2) and (gtd3)) cover two syntactical patterns (the adherence
to which is meant to be mechanically checkable): definition of equality via an ob-
server or recursive definition of equality (where, for the time being, recursion is
restricted to primitive recursion over the term structure). An observer is under-
stood to be a function or a predicate which is defined by recursion over the term
structure of the relevant data types. Observers may contain additional parame-
ters of types other than the ones introduced in the datatype definition. A typical
example of an observer is the elementhood predicate for finite sets, c.f. Section
3.2; using this observer, equality of sets is defined by the usual extensionality
axiom. In both cases, the phrase ‘defines equality’ comes with a proof obligation,
namely that the resulting relation on terms is indeed a congruence on the asso-
ciated term algebra. If the ‘equality’ is defined by an observer, the equivalence
axioms come for free, but the compatibility with the constructors remains as a
proof obligation. Note that we have refrained from formulating explicit rules for
the generated types construct, which, as in [7], is regarded as a special case of
the generated construct.

Rules for Structuring Constructs As discussed above, consistency proofs profit
from being designed following the specification structure. This requires rules that
allow breaking down the structuring constructs of Casl. Rules of this type are
listed in Figure 4; some of them are related to rules presented in [17].

The rules on translation, hiding, revealing, and local specifications (rules (tr),
(hd1), (hd), (rv1), (rv2), and (local)) hardly require explanation. Rule (free)
captures the fact that specifications in positive Horn form have initial models,
provided there is a closed term for each sort. Rule (view) uses a ‘correctness
predicate’ for Casl views; discharging this premise will in general require actual
theorem proving. The rules on named specifications just state that a named
specification is consistent if its ‘unnamed version’ is consistent.

The last three rules of Figure 4 are somewhat more involved. All of them re-
quire certain diagrams of signatures to be amalgamable; this is to be understood
as follows: a commutative square

Σ1
- Σ2

Σ3

?
- Σ4

?

of signature morphisms is called amalgamable if it is mapped to a pullback (of
model classes or categories) under the model functor. Roughly speaking, this
means that for each pair (M,N), where M and N are models of Σ2 and Σ3,

10

(horn)

horn(Sp2)
Conclusions in Sp2 concern new predicates or equality in new sorts over Sp1

cons(Sp1)(Sp1 then Sp2)

(sub)

newSorts(s)(Sp)
implies(Sp)(Sp then axiom ∃ v : t • F)

cons(Sp)(Sp then sort s = {v : t • F})

(gtd1)

newSorts(SI1 . . . SIn)(Sp)
Sp then SI1 . . . SIn has a closed term for each new sort

cons(Sp)(Sp then generated {SI1 . . . SIn})

(gtd2)

newSorts(SI1 . . . SIn)(Sp)
Sp1 then SI1 . . . SIn has a closed term for each new sort

Sp2 recursively defines an observer f
Sp3 defines equality on new sorts by f

cons(Sp1)(Sp1 then generated {SI1 . . . SIn} then Sp2 then Sp3)

(gtd3)

newSorts(SI1 . . . SIn)(Sp)
Sp1 then SI1 . . . SIn has a closed term for each new sort

Sp2 recursively defines equality on new sorts

cons(Sp1)(Sp1 then generated {SI1 . . . SIn} then Sp2)

(free)

newSorts(DD1 . . . DDn)(Sp)
Sp then types DD1; . . . ; DDn has a closed term for each new sort

cons(Sp)(Sp then free types DD1; . . . ; DDn)

Fig. 3. Rules for special extensions

11

respectively, such that the respective reductions of M and N to Σ1 agree, there
exists a unique model of Σ4 that extends M and N (‘compatible models can
be amalgamated’). This requirement is approximated by the condition that the
above diagram forms a pushout in the signature category. However, there are
certain additional difficulties that arise from subsorting; see [21] for a detailed
discussion. In fact, whether or not a diagram as above is amalgamable is, in gen-
eral, undecidable; however, practically relevant cases are covered by a polynomial
algorithm which is currently implemented in the Casl tool set [15].

The relevant point here is that conservativity of the morphism Σ1 → Σ2 in
the above diagram implies conservativity of the morphism Σ3 → Σ4, provided
that the diagram is amalgamable (cf. [9]). A typical example is given by instanti-
ations of parametrized specifications: a parametrized specification SN [Sp1] = Sp
(for the sake of simplicity without imports and with only one parameter) defines,
at the level of signatures, a signature extension ΣF → ΣB , where ΣF is the sig-
nature of the formal parameter Sp1 and ΣB that of the body. An instantiation
of this parametrized specification requires a fitting morphism FA : Sp1 → Sp′1;
this fitting morphism is, in particular, a signature morphism ΣF → ΣA, where
ΣA is the signature of the actual parameter Sp′1. The result of the instantiation
SN [FA] then has signature ΣR, where

ΣF
- ΣB

ΣA

?
- ΣR

?

is a pushout in the signature category. In many typical situations, the body turns
out to be a conservative extension of Sp1. Thus, amalgamability of the above
diagram allows us to deduce that SN [FA] is conservative over Sp′1; this is the
essence of rules (inst2) and (inst3). (Of course, rule (inst3) may be regarded as
subsuming rule (inst2); the latter has been included for sake of its better read-
ability.) Note that this type of reasoning may substantially decrease the proof
burden, since the non-trivial task of verifying amalgamability can in practically
relevant cases be delegated to the above-mentioned algorithm.

There is an additional twist to the — otherwise similar — rule (union). At
the level of signatures, a union Sp1 and Sp2 corresponds to a diagram

Σ1 ∩Σ2
- Σ1

Σ2

?
- Σ1 ∪Σ2

?
,

where Σi is the signature defined by Spi, i = 1, 2. By the phrase ‘Σ1 ∪ Σ2 is
amalgamable’ we mean that this diagram is amalgamable. However, there is no
standard way of forming intersections of specifications in Casl. The model class
of such an intersection would consist of all reducts of models of either Sp1 or
Sp2 (such a structuring operation for specifications has been suggested in [3]);

12

this model class need not be specifiable in Casl. It suffices, however, to lift the
above diagram of signatures to a diagram

Sp - Sp1

Sp2

?
- Sp1 and Sp2

?

of specifications where Sp1 is conservative over Sp; these are precisely the re-
quirements on Sp in the premises of the rule (union).

Example 1. Without amalgamability, instantiations of parametrized specifica-
tions may produce nasty surprises. Consider, e.g., the following specifications:

spec Sp1 =
sorts s, t
op f : s → t
axiom ∀x , y : s • f (x) = f (y) ⇒ x = y

spec Sp2 =
Sp1

then
sorts s < t
op g : s → t
axiom ∀x : s • x = g(x)

spec Sp3[Sp1]=
sorts s < t
axiom ∀x : s • x = f (x)

The instantiation Sp3[Sp2] fails to be conservative over its argument Sp2
(since the interpretations of f and g are forced to be equal), although the
parametrized specification Sp3[Sp1] is conservative over its formal parameter
Sp1. Indeed, the signature diagram of the instantiation Sp3[Sp2] is the stan-
dard counterexample for amalgamation in Casl (cf. [21]).

A particular difficulty is attached to the closed construct, for which there is,
as yet, no rule in the conservativity calculus. Dealing with this construct properly
would require carrying around the local environment (cf. [7]), which appears, for
the moment, to be an undue complication of the calculus. For practical cases,
the equivalence rules of Figure 1 have proven to be sufficient.

Derived Rules One frequently used derived rule is

(cext)
c(Sp1), cons(Sp1)(Sp1 then Sp2)

c(Sp1 then Sp2)

13

The derivation of this rule makes use of the rule (comp) of Figure 2. Moreover,
using the existing conservativity rule for unions, one may derive

(union2)

cons(Sp1)(Sp′1)
cons(Sp2)(Sp′2)

The signatures of Sp′1 and Sp′2 are disjoint
cons(Sp1 and Sp2)(Sp′1 and Sp′2)

Finally, it is convenient to have the following rule, derived from rules (rp1) and
(rp2) of Figure 2:

(rpl)

Sp1 ' Sp′1
Sp2 ' Sp′2

cons/def/implies(Sp1)(Sp2)
cons/def/implies(Sp′1)(Sp′2)

Definitionality Rules A somewhat rudimentary definitionality calculus is shown
in Figure 5. Its rules cover two syntactical patterns: operations or predicates
that are defined by a term or a formula, respectively, at the time of their dec-
laration (basic items of this type are called operation and predicate definitions,
respectively, in [7]) are, of course, definitional. The same goes for operations that
come with axioms which amount to a recursive definition. The precise meaning
of the phrase ‘Sp2 recursively defines new operations and predicates over Sp1’
is as follows: all signature items newly declared in Sp2 are either operations or
predicates on existing sorts; for all these signature items, Sp2 contains recursive
definitions; Sp2 does not contain any further axioms; and Sp2 does not contain
hiding or renaming.

Recursion is only possible over constructor-generated sorts. Unless these sorts
are explicitly freely generated, it has to be guaranteed that the definitions are
independent of the choice of representative (the same goes for the recursive
definitions of equality or observers as required in rules (gtd1) and (gtd2) of
Figure 3).

Proof obligations It is quite instructive to briefly summarize what kinds of proof
obligations arise from applying the rules of the calculus to a Casl specifica-
tion. Astonishingly, only a few rules depend on ‘real’ theorem proving. One
such example is the rule (view): here one has to discharge the metapredicate
correct(view V N : Sp to Sp′ = SM). Other ‘real’ proof obligations are gen-
erated by the well-definedness condition for recursive definitions on non-freely
generated datatypes (rules (gtd1), (gtd2), and (def2)) and the congruence con-
dition for equality on such datatypes (rules (gtd1) and (gtd2)).

The ‘next hardest’ type of proof obligation arises in the context of instan-
tiations of parametrized specifications. Here, the premises require checking sig-
nature diagrams for amalgamability. As discussed above, this is algorithmically
hard in theory, but decidable by a polynomial algorithm in the practically rele-
vant cases.

14

(tr)

cons(Sp1)(Sp2)
injective(SM2)

SM1 is the restriction of SM2 to Sp1

cons(Sp1 with SM1)(Sp2 with SM2)

(hd)
cons(Sp hide SL)(Sp)

(rv)
cons(Sp reveal SL)(Sp)

(free)

horn(Sp)
Sp has a closed term for each sort

c(free Sp)
(local)

c(Sp1 then Sp2)

c(local Sp1 within Sp2)

(view)
c(Sp′), correct(view V N : Sp to Sp′ = SM)

c(Sp)

(name1)
c(Sp)

c(spec SN = Sp end)

(name2)
c({Sp1 and . . . and Spn} then Sp)

c(spec SN [Sp1] . . . [Spn] = Sp end)

(name3)
c({Sp′′

1 and . . . and Sp′′
m} then {Sp1 and . . . and Spn} then Sp)

c(spec SN [Sp1] . . . [Spn] given Sp′′
1 , . . . , Sp′′

m = Sp end)

(inst2)

SN [Sp1] . . . [Spn] = Sp
FAi : Spi → Sp′

i, i = 1, . . . , n
cons({Sp1 and . . . and Spn})({Sp1 and . . . and Spn} then Sp)
The instantiation diagram for SN [FA1] . . . [FAn] is amalgamable

cons(Sp′
1 and . . . and Sp′

n)(SN [FA1] . . . [FAn])

(inst3)

SN [Sp1] . . . [Spn] given Sp′′
1 , . . . , Sp′′

n = Sp
FAi : {{Sp′′

1 and . . . and Sp′′
n} then Spi} → {{Sp′′

1 and . . . and Sp′′
n} then Sp′

i},
i = 1, . . . , n

cons({Sp′′
1 and . . . and Sp′′

n} then {Sp1 and . . . and Spn})
({Sp′′

1 and . . . and Sp′′
n} then {Sp1 and . . . and Spn} then Sp)

The instantiation diagram for SN [FA1] . . . [FAn] is amalgamable

cons({Sp′′
1 and . . . and Sp′′

n} then {Sp′
1 and Sp′

n})(SN [FA1] . . . [FAn])

(union)

Spi defines the signature Σi, i = 1, 2
Σ1 ∪Σ2 is amalgamable

Sp � Sp1, Sp � Sp2
Sp defines Σ1 ∩Σ2

cons(Sp)(Sp1)

cons(Sp2)(Sp1 and Sp2)

Fig. 4. Rules for structuring constructs

15

(def1)
BI is an operation or predicate definition

def (Sp)(Sp then BI)

(def2)
Sp2 recursively defines new operations or predicates over Sp1

def (Sp1)(Sp1 then Sp2)

Fig. 5. Definitionality rules

Most of the rules, however, have only premises of a purely syntactical na-
ture: horn(Sp), newSorts(s)(Sp), and injective(Sp, SM) are typical examples.
Thus, our calculus indeed reduces the amount of theorem proving required in
consistency proofs.

3 Examples

In this section, we present selected consistency proofs for specifications taken
from the Casl library of Basic Datatypes [19]. Besides providing a standard
library, this library also illustrates how to write and structure specifications
in Casl. All important features of Casl basic and structured specifications
are used. Furthermore, the Basic Datatypes are the largest collection of Casl
specifications currently available.

We start with a simple proof within the horn fragment, an example of a
consistency proof that does not involve any theorem proving but which is based
solely on our calculus and simple syntactical analysis. As a more advanced exam-
ple, we prove the consistency of a specification for sets. This proof illustrates how
to propagate consistency along the Casl structuring constructs, how to handle
instantations, and how to deal with generated types. Finally, we present the
consistency proof for a specification of characters — a quite large, if not overly
difficult specification which can, using our calculus, be proven to be consistent
nearly exclusively by syntactical analysis.

3.1 Consistency Proofs within the Horn fragment

Figure 6 shows typical specifications from the library Algebra I in the col-
lection of Basic Datatypes [19]. Nearly all of this library’s specifications are in
positive Horn form. Their consistency proofs are similar to the one shown in
Figure 7 for the specification Group: first, we unfold the specification definition
using the rule (name1). The next step is to decode the consistency predicate into
a proposition on conservativity (decode). Now we add the empty specification
to the second argument, justified by rule (sep2) of the extension calculus and
the general replace rule (rp2). This finally allows us to apply the rule (horn). As
the empty specification has no signature, the second premise of this rule holds

16

trivially, and it remains to prove the metapredicate horn. Within the specifica-
tion Group we obtain by skolemization that the axiom inverse is in positive
Horn form. Since the specification Monoid is also in positive Horn form, we may
now conclude that Group is consistent. Note that the proof of the metapredi-
cate horn just involves syntax checks. Furthermore, note that the conservativity
calculus does not flatten the original specification.

spec BinAlg = sort Elem; op ∗ : Elem ∗ Elem → Elem

spec SemiGroup = BinAlg
then op ∗ : Elem ∗ Elem → Elem, assoc

spec Monoid = SemiGroup
then ops e : Elem; ∗ : Elem ∗ Elem → Elem, unit e

spec Group = Monoid
then forall x : Elem • ∃x ′ : Elem • x ′ ∗ x = e %(inverse)%

Fig. 6. Specifications within the Horn fragement of Casl

c(spec Group = . . .)
(name1)

c(Monoid then forall x : Elem • ∃x ′ : Elem • x ′ ∗ x = e)
(decode)

cons({})(Monoid then forall x : Elem • ∃x ′ : Elem • x ′ ∗ x = e)
(sep2, rp2)

cons({})({} then Monoid then forall x : Elem • ∃x ′ : Elem • x ′ ∗ x = e)
(horn)

horn(Monoid then forall x : Elem • ∃x′ : Elem • x′ ∗ x = e)

Fig. 7. Consistency proofs with (horn)

3.2 Consistency of the specification Set

The specification of sets in [19] is split up into two parts: GenerateSet (c.f. Fig-
ure 8) is concerned with sort generation, while Set (c.f. Figure 9) provides the
typical operations and predicates on sets.

Note that the following consistency proof of Set does not ‘import’
c(GenerateSet). What we need instead is a statement concerning conservativ-
ity, namely that in GenerateSet the specifiation body conservatively extends
the parameter. This illustrates again that – although we are primarily interested

17

in showing specifications to be consistent – our proofs are essentially about con-
servativity.

Again we start by unfolding the specification definition:

c(spec Set [sort Elem] given Nat = . . .)
(name3)

c(Nat then sort Elem then GenerateSet [sort Elem]
then %def . . . then %def . . . then %def . . . then %implies . . . end)

Now we show that the four extensions annotated with %def and %implies, resp.,
do not affect the consistency of the specification. To this end, our first step is to
produce two goals by applying the derived rule (cext) to the last extension:

c(Nat then sort Elem then GenerateSet [sort Elem]
then %def . . . then %def . . . then %def . . . then %implies . . . end)

(cext)
c(Nat . . . (M −N) ∪ (N −M)),

cons(Nat . . . (M −N) ∪ (N −M)) (Nat . . . end)

The first goal states that the first part of the specification up to the extension
operator is consistent; the second claims that the extension preserves models.

For the moment, we consider only the second goal and – guided by the
annotation %implies– strengthen it using the rules (def) and (imp):

cons(Nat . . . (M −N) ∪ (N −M)) (Nat . . . end)
(def)

def(Nat . . . (M −N) ∪ (N −M)) (Nat . . . end)
(imp)

implies(Nat . . . (M −N) ∪ (N −M)) (Nat . . . end)

Following our methodology, we assume here that this last predicate is discharged
by a suitable theorem prover, which has to show that ∪ and ∩ are
associative, commutative, and idempotent.

Thus, for the consistency proof of Set it remains to discharge

c(Nat . . . (M −N) ∪ (N −M)).

To this end, we apply rule (cext) to the last extension of this subspecification of
Set and strengthen the second of the resulting goals using (def):

c(Nat . . . (M −N) ∪ (N −M))
(cext, def)

c(Nat . . .when xεM else (]M) + 1),
def(Nat . . .when xεM else (]M) + 1) (Nat . . . (M −N) ∪ (N −M))

The second goal is discharged by syntactical analysis: as the operator
symmDiff is introduced by an operation definition, we can apply rule (def1).

The remaining proof obligation is

18

c(Nat . . .when xεM else (]M) + 1)

The technique for discharging this goal is the same as in the previous two steps:

c(Nat . . .when xεM else (]M) + 1)
(cext, def)

c(Nat . . . = M + x),
def(Nat . . . = M + x) (Nat . . .when xεM else (]M) + 1)

This time, the resulting proof obligation concerning definitionality is more inter-
esting: using (def2) to show that the operators ∪ , ∩ , − , − , and]
are definitional over the previous specification involves — besides syntactical
analysis — some theorem proving: e.g., given the axioms for ∪
• M ∪ {} = M
• M ∪ (N + x) = (M ∪N) + x ,

one has to show that
• {} = N + x ⇒ M = (M ∪N) + x
• N + x = O + y ⇒ (M ∪N) + x = (M ∪O) + y

Next, we have to establish

c(Nat . . . = M + x).

Here we again apply (cext) to the last extension, strengthen the second resulting
goal by (def), and discharge it by syntactical analysis using rule (def1).

Now the consistency problem for the original specification is reduced to

c(Nat then sort Elem then GenerateSet [sort Elem]).

By (cext), this again splits up into a consistency and a conservativity problem:

c(Nat then sort Elem then GenerateSet [sort Elem])
(cext)

c(Nat then sort Elem),
cons(Nat then sort Elem)

(Nat then sort Elem then GenerateSet [sort Elem])

Assuming Nat to be consistent, we obtain from the rules (cext) and (horn) the
consistency of Nat then sort Elem.

Thus it remains to deal with the second goal:

cons(Nat then sort Elem)
(Nat then sort Elem then GenerateSet [sort Elem])

Using the extension calculus, we obtain the equivalence

Nat then sort Elem then GenerateSet [sort Elem] '
Nat then GenerateSet [sort Elem]

which allows us to modify our goal by rule (rp2) into

cons(Nat then sort Elem) (Nat then GenerateSet [sort Elem])

19

The combination of rule (then-and) of the extension calculus and the derived
rule (rpl) transforms this into

cons(Nat and sort Elem) (Nat and GenerateSet [sort Elem])

As the signatures of Nat and GenerateSet [sort Elem] are disjoint, we can
apply the derived rule (union2) in order to obtain:

cons(Nat and sort Elem) (Nat and GenerateSet [sort Elem])
(union2)

cons(Nat)(Nat), cons(sort Elem)(GenerateSet [sort Elem])

cons(Nat)(Nat) holds if def (Nat)(Nat) is true (def), which can be justified
by implies(Nat)(Nat) (imp), which holds thanks to (triv).

Thus our remaining problem is:

cons(sort Elem)(GenerateSet[sort Elem]).

Rule (inst2) deals with the instantiation of GenerateSet:

cons(sort Elem)(GenerateSet[sort Elem])
(inst2)

amalg. inst. diagr. for GenerateSet[sort Elem],
cons(sort Elem)

(sort Elem then generated type FinSet[Elem] ::= . . .)

Obviously the instantiation diagram is amalgamable. Furthermore, we have to
make sure that the specification body of GenerateSet is conservative over its
parameter. (From a methodological point of view, in the consistency proof for
Set, one would import the following proof as an already established result on
GenerateSet.) This is achieved by applying rule (gtd2):

cons(sort Elem)
(sort Elem then generated type FinSet[Elem] ::= . . .)

(gtd2)
newSorts(FinSet [Elem])(sort Elem)

Sp2 recursively defines an observer ε
Sp3 defines equality on new sort by ε

where Sp2 is
pred ε : Elem ∗ FinSet [Elem];
forall x , y : Elem;M ,N : FinSet [Elem]
• not xε{}
• xε(M + y) ⇔ x = y ∨ xεM

and Sp3 denotes
forall M ,N : FinSet [Elem]
• M = N ⇔ (∀x : Elem • xεM ⇔ xεN)

20

Obviously, FinSet [Elem] is a new sort over {sort Elem}, and the pred-
icate ε is a recursively defined observer. Concerning the new equality on
FinSet [Elem], the proof obligation
forall M ,N : FinSet [Elem]
• (∀x : Elem • xεM ⇔ xεN) ⇒ (∀x , y : Elem • xε(M + y) ⇔ xε(N + y))

has to be discharged. As this is a consequence of the definition of ε , the
consistency proof for Set is finished.

spec GenerateSet [sort Elem] =
generated type FinSet [Elem] ::= {} | + (FinSet [Elem];Elem);

then %def
pred ε : Elem ∗ FinSet [Elem];
forall x , y : Elem;M ,N : FinSet [Elem]
• ¬ xε{}
• xε(M + y) ⇔ x = y ∨ xεM

then
forall M ,N : FinSet [Elem]
• M = N ⇔ (∀x : Elem • xεM ⇔ xεN)

end

Fig. 8. The specification GenerateSet

3.3 Consistency of Char

The specification Char of [19] (c.f. Figure 10) consists of about 1000 lines of
Casl text, most of them operation or predicate definitions. This allows us to
reduce the consistency problem for this specification by systematic use of the
rules (cext), (def), and (def1) to the consistency of
Nat
then sort Byte = {n : Nat • n ≤ 255}
then free type Char ::= chr(ord : Byte)
Again assuming Nat to be consistent, we can establish this using the rules
(cext), (sub), and (free): obviously, 0 ≤ 255, so that there is at least one element
in the carrier of sort Byte. The premises of (free) are discharged by syntactical
analysis: Char is a new sort, and chr(0) is a closed term of sort Char.

Thus, theorem proving is necessary in just one step of our consistency proof,
the others require only ‘pattern matching’, i.e. finding suitable rules to be applied
to the specification text, and syntactical analysis (to discharge the premises of
these rules). Dealing with a flat specification with about 800 different axioms
just by theorem proving would be nearly impossible. One might argue that an
‘intelligent’ theorem prover would sort out the same ‘core specification’ by some
kind of syntactical analysis as well — but this just illustrates the necessity of

21

spec Set [sort Elem] given Nat = GenerateSet [sort Elem]
then %def

preds isNonEmpty (M : FinSet [Elem]) ⇔ ¬ M = {}
⊆ (M ,N : FinSet [Elem]) ⇔ ∀x : Elem • xεM ⇒ xεN

ops { } (x : Elem) : FinSet [Elem] = {}+ x
+ (x : Elem;M : FinSet [Elem]) : FinSet [Elem] = M + x

then %def
ops ∪ , ∩ , − : FinSet [Elem] ∗ FinSet [Elem] → FinSet [Elem];

− : FinSet [Elem] ∗ Elem → FinSet [Elem];
] : FinSet [Elem] → Nat ;

forall x , y : Elem;M ,N : FinSet [Elem]
• M ∪ {} = M
• M ∪ (N + x) = (M ∪N) + x

• M ∩ {} = {}
• M ∩ (N + x) = M ∩N when ¬xεM else (M ∩N) + x

• M − {} = M
• M − (N + x) = (M −N)− x

• {} − x = {}
• (M + x)− y = M − y when x = y else (M − y) + x

•]{} = 0
•](M + x) =]M when xεM else (]M) + 1

then %def
op symmDiff (M ,N : FinSet [Elem]) : FinSet [Elem] = (M −N) ∪ (N −M)

then %implies
ops ∪ , ∩ : FinSet [Elem] ∗ FinSet [Elem] → FinSet [Elem],

assoc, comm, idem;
end

Fig. 9. The specification Set

22

the strategy pursued here: economical proof organization by replacing parts of
the necessary theorem proving by the application of ‘meta rules’.

spec Char = Nat
then sort Byte = {n : Nat • n ≤ 255}
then free type Char ::= chr(ord : Byte)
then %def

ops ′ \000 ′ : Char = chr(0); . . . ; ′ \255 ′ : Char = chr(255);
then %def

ops ′ ′ : Char =′ \032 ′; . . . ; ′ÿ′ : Char = ′ \255 ′;
then %def

preds isLetter(c : Char) ⇔ ((ord(′A′) ≤ ord(c) ∧ ord(c) ≤ ord(′Z ′)) ∨
(ord(′a ′) ≤ ord(c) ∧ ord(c) ≤ ord(′z ′)));

isDigit(c : Char) ⇔ ord(′0 ′) ≤ ord(c) ∧ ord(c) ≤ ord(′9 ′);
isPrintable(c : Char) ⇔((ord(′ ′) ≤ ord(c) ∧ ord(c) ≤ ord(′∼′)) ∨

(ord(′ ′) ≤ ord(c) ∧ ord(c) ≤ ord(′ÿ′)))
then %def

ops ′ \o000 ′ : Char = ′ \000 ′;. . . ;′ \o377 ′ : Char = ′ \255 ′;
′ \x00 ′ : Char = ′ \000 ′; . . . ;′ \xFF ′ : Char = ′ \255 ′;
NUL : Char = ′ \000 ′; . . .

then %def
ops NL : Char = LF ; . . .

then %def
ops ′ \n ′ : Char = NL; . . . ; ′\?′ : Char =′?′;

end

Fig. 10. The specification Char

4 Conclusions and future work

We have developed a calculus for proving conservativity of specification exten-
sions in Casl, and we have used this calculus to establish the consistency of
substantial portions of the Casl Basic Datatypes [19] (which have a good claim
to being the largest Casl specification presently in existence). Several examples
of such proofs have been presented and discussed. These examples have illus-
trated how the calculus facilitates the exploitation of the specification structure
for the structuring of proofs. In fact, the proofs were ‘automatically’ directed to
the few critical items that required proper theorem proving; by contrast, most
of the proof obligations produced along the way were of an entirely syntactical
nature.

There is no claim that the calculus as presented here is complete (since
the underlying logic of Casl is undecidable, absolute completeness cannot be
expected anyway); however, the case study that has been conducted on the
library of Basic Datatypes, which makes use of all important features of Casl

23

basic and structured specifications, has shown that the calculus is able to deal
with quite substantial specifications. (More precisely, five sublibraries containing
more than 80 specifications of an overall length of roughly 2500 lines have been
checked for consistency.) Summing up, we believe that our calculus is able to
deal with consistency problems that arise in the context of software engineering
projects.

Although no explicit mention was made of the concept of institution [12], the
parts of the calculus that concern the Casl structuring mechanisms are, just as
these mechanisms themselves [8], in fact institution independent. This makes
the calculus easily adaptable with respect to, e.g., extensions of the underlying
logic.

Future directions of research include the development of the second method
of ‘verifying’ specifications mentioned in the introduction, namely, the testing
of intended consequences, as well as the implementation of tool support for
the conservativity calculus; this will possibly involve use of the development
graph [2, 17]. It is expected that a forthcoming tool will allow semiautomatic
consistency proofs, with the syntactical premises discharged automatically —
via syntactic analysis or the more complex algorithms discussed in [15] — and
the ‘hard’ ones output as formal proof obligations.

References

[1] Wolfgang Ahrendt, A basis for model computation in free data types, Proceedings
of the CADE-17 Workshop on Model Computation, 2000.

[2] S. Autexier, D. Hutter, H. Mantel, and A. Schairer, Towards an evolutionary for-
mal software development using Casl, Recent Trends in Algebraic Development
Techniques, LNCS, vol. 1827, Springer, 1999, pp. 73–88.

[3] H. Baumeister, Relations between abstract datatypes modeled as abstract datatypes,
Ph.D. thesis, Universität des Saarlandes, 1998.

[4] M. Bidoit, M. V. Cengarle, and R. Hennicker, Proof systems for structured spec-
ifications and their refinements, Algebraic Foundations of Systems Specification
(E. Astesiano et al., eds.), Springer, 1999, pp. 385–433.

[5] M. Cerioli, A. Haxthausen, B. Krieg-Brückner, and T. Mossakowski, Permissive
subsorted partial logic in Casl, Algebraic Methodology and Software Technology,
LNCS, vol. 1349, Springer, 1997, pp. 91–107.

[6] CoFI, The Common Framework Initiative for algebraic specification and
development, electronic archives, notes and documents accessible from
http://www.brics.dk/Projects/CoFI.

[7] CoFI Language Design Task Group, Casl – The CoFI Algebraic Specification
Language – Summary, version 1.0.1, Documents/CASL/Summary, in [6], March
2001.

[8] CoFI Semantics Task Group, Casl – The CoFI Algebraic Specification Language
– Semantics, Note S-9 (version 0.96), in [6], July 1999.

[9] R. Diaconescu, J. Goguen, and P. Stefaneas, Logical support for modularisation,
Logical Environments, Cambridge, 1993, pp. 83–130.

[10] J. Farrés-Casals, Proving correctness of constructor implementations, Mathemat-
ical Foundations of Computer Science, LNCS, vol. 379, Springer, 1989, pp. 225–
236.

24

[11] J.-Y. Girard, Locus solum, Math. Struct. Comput. Sci., To appear.
[12] J. Goguen and R. Burstall, Institutions: Abstract model theory for specification

and programming, J. ACM 39 (1992), 95–146.
[13] M. J. C. Gordon and T. M. Melham, Introduction to HOL: A theorem proving

environment for higher order logics, Cambridge, 1993.
[14] R. Hennicker and M. Wirsing, Proof systems for structured algebraic specifications:

An overview, Fundamentals of Computation Theory, LNCS, vol. 1279, Springer,
1997, pp. 19–37.

[15] B. Klin, P. Hoffman, A. Tarlecki, L. Schröder, and T. Mossakowski, Check-
ing amalgamability conditions for Casl architectural specifications, Mathematical
Foundations of Computer Science, LNCS, Springer, 2001, to appear.

[16] T. F. Melham, A package for inductive relation definitions in HOL, International
Workshop on the HOL Theorem Proving System and its Applications, IEEE Com-
puter Society Press, 1992, pp. 350–357.

[17] T. Mossakowski, S. Autexier, and D. Hutter, Extending development graphs with
hiding, Fundamental Aspects of Software Engineering, LNCS, vol. 2029, Springer,
2001, pp. 269–283.

[18] W. Reif, G. Schellhorn, and A. Thums, Flaw detection in formal specifications, In-
ternational Joint Conference on Automated Reasoning, LNCS, vol. 2083, Springer,
2001, pp. 642–657.

[19] Markus Roggenbach, Till Mossakowski, and Lutz Schröder, Basic
datatypes in CASL, Note L-12 in [6], current version 0.7 available at
http://www.informatik.uni-bremen.de/cofi/CASL/lib/basic, March 2001.

[20] Markus Roggenbach and Lutz Schröder, Towards trustworthy specifications II:
Testing by proof, work in progress.

[21] L. Schröder, T. Mossakowski, and A. Tarlecki, Amalgamation in Casl via en-
riched signatures, International Colloquium on Automata, Languages and Pro-
gramming, LNCS, vol. 2076, Springer, 2001, pp. 993–1004.

[22] J. R. Shoenfield, Mathematical logic, Addison-Wesley, 1967.

