| __! : | Nat -> Nat; |
| __ ^ __ : | Real × Nat -> Real; |
| -__ , abs: | Real -> Real; |
| trunc : | Real -> Nat; |
| sign : | Real -> Int |
| isNat, | |
| isInt, | |
| nonZero: | Real; |
| __ ! __ : | Sequence × Nat -> Real; |
| constSeq: | Real -> Sequence; |
| N,0,1,2 : | Sequence ; |
| __+__,__-__, __*__: | Sequence × Sequence -> Sequence; |
| __ ^ __ , __/__ , | |
| __div__,__mod__ : | Sequence × Sequence ->? Sequence; |
| -__, trunc, sign : | Sequence -> Sequence; |
| __! : | Sequence ->? Sequence; |
| partialSums : | Sequence -> Sequence; |
| ifnz__theN__elsE__ : | Sequence × Sequence × Sequence -> Sequence; |
| __<__,__ < __, | |
| __>__,__ > __, | |
| __==__ : | Sequence × Sequence -> Sequence |
| def (a div b) <=> | forall k:Nat . |
| isInt(a!k) /\ isInt(b!k) /\ nonZero(b!k) |
| def (a mod b) <=> | forall k:Nat . |
| isInt(a!k) /\ isInt(b!k) /\ nonZero(b!k) |
| (ifnz a theN b elsE c) !n = | b!n when nonZero(a!n) else |
| c!n |
| __ -> __ : | Sequence * Real; |
| converges,isCauchy : | Sequence |
| a->r <=> | forall epsilon:Real . epsilon > 0 => |
| (exists n:Nat . forall m:Nat . | |
| m > n => abs(a!m - r) < epsilon ) |
| isCauchy(a) <=> | forall epsilon:Real . epsilon >0 => |
| ( exists n:Nat . forall m,k:Nat . | |
| m > n /\ k > n => abs(a!m - a!k) < epsilon ) |