
Till Mossakowski

CASL Reference Manual

Part V: Refinement

December 14, 2003

Springer

Berlin Heidelberg NewYork
HongKong London
Milan Paris Tokyo

Contents

1 Introduction . 1
1.1 The Algebraic Development Paradigm . 1
1.2 Constructor Refinement . 2
1.3 Outlook: Behavioural Refinement . 3

2 The Refinement Language . 5
2.1 Refinement Definitions . 5
2.2 Refinements . 5
2.3 Refinement Types . 6
2.4 Refinement Bodies . 7
2.5 Unit Refinements . 7
2.6 Complete refinement trees . 8

3 Semantics . 9
3.1 Refinement Concepts . 9
3.2 Refinement definitions . 10
3.3 Refinements . 11
3.4 Refinement types . 12
3.5 Refinement bodies . 13
3.6 Unit refinements . 16
3.7 Complete refinement trees . 17

4 Calculus . 19
4.1 Refinement definitions . 20
4.2 Refinements . 20
4.3 Refinement types . 21
4.4 Refinement bodies . 21
4.5 Unit refinements . 22

5 Examples . 25

VI Contents

References . 33

Page: VI *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

1

Introduction

In this part of the volume, we introduce a simple refinement language that is
built on top of CASL. The material in this part is more speculative than that
in the other parts. It is meant as a starting point for more complex refinement
notions and development methodologies.

1.1 The Algebraic Development Paradigm

The standard development paradigm of algebraic specification [AKKB99] pos-
tulates that the development begins with a formal requirement specification
(extracted from a software project’s informal requirements) that fixes only ex-
pected properties but ideally says nothing about implementation issues; this
is to be followed by a number of refinement steps that fix more and more
details of the design, so that one finally arrives at what is often termed the
design specification. The last refinement step then results in an actual imple-
mentation in a programming language, see Fig. 1.1.

Requirement specification SP0

 B
BB

SP1

##GG
G

. . .
%%KKK

SPn−1

##G
GG

Design specification SPn

$$JJ
JJ

Program

Fig. 1.1. Stepwise refinement

2 1 Introduction

1.2 Constructor Refinement

CASL includes both structured specifications (allowing for combining spec-
ifications) and architectural specifications (prescribing how implementation
units are linked together). However, the issue of refinement between these
specifications has been deliberately excluded from CASL, leaving room for
several refinement languages built on top of CASL, corresponding to different
methodologies. A refinement calculus for architectural specifications has been
developed in [BST02].

CASL’s views express some aspect of refinement, namely that when re-
fining a specification more and more in the development process, the model
class becomes smaller and smaller by making more and more design decisions
(until a monomorphic design specification or program is reached). However,
CASL’s views are not expressive enough for refinement (they are primarily a
means for naming fitting morphisms for parameterized specifications). This is
because there are more aspects of refinement than just model class inclusion.
One central issue here is so-called constructor refinement [ST88]. Constructor
refinement means that a specification SP1 is refined to a specification SP2

with the help of a construction κ on SP2-models. The refinement condition is
then

κ(Mod(SP2)) ⊆ Mod(SP1)

Constructor refinement arises in two forms. The first form is specific to the
particular specification logic, and includes the basic constructions for writ-
ing implementation units that can be found in programming languages, e.g.
enumeration types, algebraic datatypes (that is, free types) and recursive
definitions of operations. In specification languages, this can be modeled via
derived signature morphisms, that may, for example, map sorts to datatype
definitions and operations to terms. Since the details are institution-specific,
we adopt a simple solution here: an institution-specific constructor is just given
by a unit specification whose result specification is a monomorphic extension
of the argument specifications. Due to monomorphicity, the looseness of the
unit specification is eliminated, and (up to isomorphism) only one unit (para-
metric or not) is specified. In the CASL logic, this covers the usual datatypes
and recursive definitions. It even covers a bit too much (like non-recursive
operations); hence, further restrictions should be developed for particular in-
stitutions. For CASL, the syntactic criteria for monomorphic and definitional
extensions given in Sect. (((log-log-sec:conservativity))) in connection with
the CASL proof calculus provide a starting point.

The second form of constructor refinement is entirely logic independent
and concerns the building of larger implementation units out of smaller ones:
the task of implementing the larger unit can be decomposed into several inde-
pendent subtasks consisting of the implemenation of the smaller units. This
is done using CASL architectural specifications, where the smaller units are
declared with their (ordinary structured) specification, and the larger unit is
constructed with a unit term out of the smaller ones. The declared units can

Page: 2 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

1.3 Outlook: Behavioural Refinement 3

then be refined seperately. Moreover, different units can be refined in different
ways (even if they happed to be declared with the same specification). This
means that the structure of an architectural refinement must match that of
the architectural specification being refined.

1.3 Outlook: Behavioural Refinement

Often, a refined specification does satisfy the initial requirements not literally,
but only up to some sort of behavioural equivalence. For example, if stacks
are implemented as arrays-with-pointer, then two arrays-with-pointer only
differing in their “junk” entries (that is, those beyond the top pointer) exhibit
the same behaviour in terms of the stack operations. Hence, they correspond
to the same abstract stack and should be treated as being the same for the
purpose of the refinement. This can be achieved in several ways. A simple way
is to allow derived signature morphisms to map the equality symbol to any
binary relation (with the semantics that the target unit is quotiented by the
induced congruence relation). This can be expressed in the simple refinement
language presented here by providing a monomorphic unit specification that
specifies the congruence and the quotient explicity. A more elaborate way is
to use observational equivalences between models, which are usually induced
by sets of observable sorts [ST87]. Here, both the congruence and the quotient
need not be given explicitly, but are rather constructed using observational
equivalence.

Page: 3 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

2

The Refinement Language

Allow also for refinements without symbol
maps, leading to a trivial signature
morphism

This section introduces the abstract and concrete syntax of refinements, and
describes their intended interpretation, based on CASL structured and archi-
tectural specifications.

2.1 Refinement Definitions

A refinement definition may be written into a CASL library like a specification
or view definition (although strictly speaking, it does not belong to CASL

proper).

REF-DEFN ::= ref-defn REF-NAME REFINEMENT

LIB-ITEM ::= ... | REF-DEFN

An refinement definition is written:

refinement RN : R
end

where the terminating ‘end’ keyword is optional.
It defines the name RN to refer to the refinement R, extending the global

environment (which must not already include a definition for RN).

REF-NAME ::= SIMPLE-ID

A refinement name REF-NAME is normally displayed in a Small-Caps font,
and input in mixed upper and lower case.

2.2 Refinements

A refinement is either simple, which means that a structured or unit specifi-
cation is being refined, by mapping units to units (where the units are non-
parameterized in the case of structured specifications, and parameterized in

6 2 The Refinement Language

the case of unit specification). The other possibility is an architectural refine-
ment, which means that all the declared units of an architectural specification
are refined (by just refining their specifications).

REFINEMENT ::= simple-refinement REF-TYPE REF-BODY

| arch-refinement ARCH-SPEC UNIT-REFINEMENT*

A simple refinement of REF-TYPE RT , using the construction given by the
REF-BODY RB , is written:

RT = RB

It is well-formed only if the construction associated to RB , when applied
to a unit of the target of RT , delivers a unit of the source of RT .

If the refinement body is empty, the simple refinement is written

RT

An architectural refinement refines the units of an architectural specifica-
tion ASP , using a list UR1 ; . . . ; URn of UNIT-REFINEMENTs (each of the latter
corresponds to a target specification and a refinement body). It is written:

ASP to units UR1 ; . . . ; URn

2.3 Refinement Types

REF-TYPE ::= simple-ref-type SPEC SPEC

| arch-ref-type SPEC ARCH-SPEC

| unit-ref-type UNIT-SPEC UNIT-SPEC

| arch-unit-ref-type UNIT-SPEC ARCH-SPEC

A refinement type REF-TYPE is written

SP1 to SP2

It denotes the type of refinements of units of type SP1 to those of type
SP2 (possibly using a construction taking SP2 -models to SP1 -models). Here,
the model class for SPEC and UNIT-SPEC is the standard one for structured
and unit specifications, whereas the model class of an ARCH-SPEC consists of
all interpretations of unit terms that are possible when assinging models to
the declared units in a way compatible with the declarations.

Source and target type of a refinement type must be compatible in the
sense that both either denote classes of unparameterized units, or both classes
of parameterized units with the same number of parameters.

Page: 6 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

2.5 Unit Refinements 7

2.4 Refinement Bodies

Given a refinement type, a refinement body REF-BODY specifies the way in
which units of the source are constructed out of units of the target. If param-
eterized units are refined, the refinement body links the result specification of
the parameterized units, not their argument specifications — the latter are
required to have identical signatures. Moreover, each sequence of compatible
models in the domain of the source parameterized unit is required to be in the
domain of the target parameterized unit. The construction on the results of
parameterized units is then extended to whole parameterized units by leaving
the argument units just as they are.

REF-BODY ::= simple-mor SYMB-MAP-ITEMS

| named-ref REF-NAME

| named-view VIEW-NAME FIT-ARG*

| compose REF-NAME REF-NAME

A refinement body REF-BODY can either be a signature morphism, given
by a symbol map (SYMB-MAP-ITEMS). In this case the associated construction
is just taking reducts along the signature morphism. (An empty refinement
body corresponds to an empty symbol map.)

Furthermore, a refinement body can also be a reference REF-NAME to
a previously-defined refinement, or a reference VIEW-NAME to a previously-
defined view (where in the case of a parameterized views, appropriate fitting
arguments have to be provided, cf. Sect. ??). Finally, a composition of two
(named) refinements is written

RN1 then RN 2

It corresponds to the composition of the associated constructions.

2.5 Unit Refinements

UNIT-REFINEMENT ::= simple-unit-ref UNIT-NAME SPEC REF-BODY

| arch-unit-ref UNIT-NAME ARCH-SPEC REF-BODY

| unit-unit-ref UNIT-NAME UNIT-SPEC REF-BODY

A unit refinement is written

UN to SP = RB

If the refinement body RB is empty, it is simply written

UN to SP

It declares the unit name UN to be refined to the specification SP , using
the construction associated to the refinement body RB . Let ASP be the ar-
chitectural specification of the enclosing architectural refinement. UN must

Page: 7 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

8 2 The Refinement Language

already have been declared as a (possibly parameterized) unit in ASP . The
number of arguments of this unit must coincide with that of the units that
are models of SP . Moreover, the enclosing architectural refinement is well-
formed only if the construction associated to RB , when applied to a unit of
SP , delivers a unit fulfilling the specification associated to UN in ASP .

2.6 Complete refinement trees

A specification in a library is said to have a textindexcomplete refinement tree,
if it

• either is a unit specification whose result specification is monomorphic over
the argument specifications (specific logics may impose further restrictions
here in order to ensure that such specifications can be directly implemented
in a programming language), or

• it is refined (via a simple of architectural refinement) to specifications
having complete refinement trees.

Page: 8 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

3

Semantics

This chapter provides the semantics of refinements. It is based on the seman-
tics of structured and architectural specifications as given in Part ??.

3.1 Refinement Concepts

Here, we extend the semantic domains from Part ??.

RN ∈ RefName = SIMPLE-ID

RΣ = (UΣs, UΣt) ∈ RefSig = UnitSig ×UnitSig
SRef = (Us,Ut, RF) ∈ SimpleRef = UnitSpec×UnitSpec× (Unit ⇀ Unit)

Rs ∈ StaticRCtx = UnitName fin→ RefSig
AR ∈ ArchRef(Cs, UΣ) = UnitEnv(Cs) ⇀ ArchMod(Cs, UΣ)

ArchRef =
⋃

AΣ∈ArchSig ArchRef
R ∈ StaticRef = RefSig ∪ StaticRCtx
R ∈ Ref = SimpleRef ∪ArchRef

A refinenment signature (to be used for simple refinements) consists of
a source and a target unit signature. The parameter signatures of UΣ1 and
UΣ2 of a refinement signature RΣ are required to be the same. A refinenment
function provides the correspondings model semantics. It consists of two unit
specifications (one for the source and one for the target of the refinement), plus
the actual refinement function. A refinement function SRef = (Us,Ut, RF) is
required to actually go from the target of the refinement to the source, that
is, Dom(RF) = Ut and for all U ∈ Ut, RF (U) ∈ Us.

We now come to the corresponding notions for architectural refinements. A
static refinement context is given by a partial map from unit names (that are
intended to coincide with those of an architectural specfification) to refinement
signatures (stating how the respective unit is to be refined). Given a static

10 3 Semantics

unit context Cs and a unit signature UΣ, an architectural refinement over
Cs and UΣ is a partial map from unit environements over Cs (giving units
for the target specifications of the involved unit specification) to architectural
models of (Cs, UΣ).

A static refinement is either a refinement signature or a static refinement
context, and a refinement is either a simple refinement or an architectural
refinement.

We also need to add a further component to the global environment, cap-
turing refinement signatures and functions. Actually, for architectural refine-
ments we will need sequences of these. A static global environment Γs now is
a five-tuple (Gs,Vs,As, Ts,Rs), where

Ts = RefName fin→ StaticRef

Similarly, a model global environment Γm is now a five-tuple (Gm,Vm,Am, Tm,Rm),
where

Rm = RefName fin→ Ref

3.2 Refinement definitions

REF-DEFN ::= ref-defn REF-NAME REFINEMENT

LIB-ITEM ::= ... | REF-DEFN

REF-NAME ::= SIMPLE-ID

Γs ` REF-DEFN � Γ ′
s

Γs, Γm ` REF-DEFN⇒ Γ ′
m

Let Γs be (Gs,Vs,As, Ts,Rs), then Γ ′
s is (Gs,Vs,As, Ts,R′

s) where G′s is
Rs extended by an association

RN 7→ R

provided that RN is not in the domain of Rs and R ∈ StaticRef .
Let Γm be (Gm,Vm,Am, Tm,Rm), then Γ ′

m is (Gm,Vm,Am, Tm,R′
m),

where R′
m is Rm extended by an association

RN 7→ R

provided that Rm does not already contain an association for RN, R is in Ref
and GS s, and GSm are compatible.

Page: 10 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

3.3 Refinements 11

Γs = (Gs,Vs,As, Ts,Rs)
RN 6∈ Dom(Gs) ∪Dom(Vs) ∪Dom(As) ∪Dom(Ts) ∪Dom(Rs)

Γs ` REFINEMENT � R
R′

s = Rs ∪ {RN 7→ R}
Γs ` ref-defn RN REFINEMENT � (G′s,Vs,As, Ts,Rs)

Γm = (Gm,Vm,Am, Tm,Rm)
RN 6∈ Dom(Gm) ∪Dom(Vm) ∪Dom(Am) ∪Dom(Tm) ∪Dom(Rm)

Γs, Γm ` REFINEMENT⇒ R
R′

m = Rm ∪ {RN 7→ R}
Γs, Γm ` ref-defn RN REFINEMENT⇒ (G′m,Vm,Am, Tm,Rm)

3.3 Refinements

REFINEMENT ::= simple-refinement REF-TYPE REF-BODY

| arch-refinement ARCH-SPEC UNIT-REFINEMENT*

Γs ` REFINEMENT � R Γs, Γm ` REFINEMENT⇒ R

Γs and Γm are compatible global environments. R ∈ StaticRef is a static
refinement, and R ∈ Ref is a refinement.

Γs ` REF-TYPE � RΣ
RΣ, Γs ` REF-BODY � RΣ

Γs ` simple-refinement REF-TYPE REF-BODY � RΣ

Γs, Γm ` REF-TYPE⇒ (Us,Ut)
(Us,Ut), Γs, Γm ` REF-BODY⇒ (Us,Ut, RF)

Γs, Γm ` simple-refinement REF-TYPE REF-BODY⇒ (Us,Ut, RF)

Γs ` ARCH-SPEC � AΣ
AΣ, Γs ` UR1 � (UN1, RΣ1)

. . .
AΣ, Γs ` URn � (UNn, RΣn)

AΣ = (Cs, UΣ)
Dom(Cs) = {UN1, . . . , UNn}

Rs = {UNi 7→ RΣi | i = 1 . . . n}
Γs ` arch-refinement ARCH-SPEC UR1; . . . ; URn � Rs

Page: 11 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

12 3 Semantics

Γs ` ARCH-SPEC � AΣ
AΣ = (Cs, UΣ)

Dom(Cs) = {UN1, . . . , UNn}
Γs, Γm ` ARCH-SPEC⇒ AM

AΣ, Γs, Γm ` UR1 ⇒ (UN1, (U1,U ′1, RF1))
. . .

AΣ, Γs, Γm ` URn ⇒ (UNn, (Un,U ′n, RFn))
Dom(AR) = {E | E(UNi) ∈ U ′i , i = 1 . . . n

and there is (E′, U) ∈ AM with E′(UNi) ∈ RFi(E(UNi)), i = 1 . . . n}
AR(E) = (E′, U) if

E(UNi) ∈ U ′i and E′(UNi) ∈ RFi(E(UNi)), i = 1 . . . n and (E′, U) ∈ AM
Γs, Γm ` arch-refinement ARCH-SPEC UR1; . . . ; URn ⇒ AR

3.4 Refinement types

REF-TYPE ::= simple-ref-type SPEC SPEC

| arch-ref-type SPEC ARCH-SPEC

| unit-ref-type UNIT-SPEC UNIT-SPEC

| arch-unit-ref-type UNIT-SPEC ARCH-SPEC

Γs ` REF-TYPE � RΣ Γs, Γm ` REF-TYPE⇒ (Us,Ut)

Γs and Γm are compatible global environments. RΣ is a refinement signature,
and (Us,Ut) a pair of unit classes.

∅, Γs ` SPEC1 � Σ1

∅, Γs ` SPEC2 � Σ2

Γs ` simple-ref-type SPEC1 SPEC2 � (Σ1, Σ2)

∅,M⊥, Γs, Γm ` SPEC1 ⇒M1

∅,M⊥, Γs, Γm ` SPEC2 ⇒M2

Γs, Γm ` simple-ref-type SPEC1 SPEC2 ⇒ (M1,M2)

∅, Γs ` SPEC � Σ1

Γs ` ARCH-SPEC � (Cs, Σ2)
Σ2 is parameterless

Γs ` arch-ref-type SPEC ARCH-SPEC � (Σ1, Σ2)

∅,M⊥, Γs, Γm ` SPEC⇒M
Γs, Γm ` ARCH-SPEC⇒ AM

Γs, Γm ` arch-ref-type SPEC ARCH-SPEC⇒ (M, {M | (E,M) ∈ AM})

Page: 12 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

3.5 Refinement bodies 13

∅, Γs ` UNIT-SPEC1 � UΣ1

∅, Γs ` UNIT-SPEC2 � UΣ2

UΣ1 and UΣ2 have the same parameter signatures
Γs ` unit-ref-type UNIT-SPEC1 UNIT-SPEC2 � (UΣ1, UΣ2)

∅,M⊥, Γs, Γm ` UNIT-SPEC1 ⇒ U1

∅,M⊥, Γs, Γm ` UNIT-SPEC2 ⇒ U2

Γs, Γm ` unit-ref-type UNIT-SPEC1 UNIT-SPEC2 ⇒ (U1,U2)

∅, Γs ` UNIT-SPEC � UΣ1

∅, Γs ` ARCH-SPEC � (Cs, UΣ2)
UΣ1 and UΣ2 have the same parameter signatures

Γs ` arch-unit-ref-type UNIT-SPEC ARCH-SPEC � (UΣ1, UΣ2)

∅,M⊥, Γs, Γm ` UNIT-SPEC⇒ U
∅,M⊥, Γs, Γm ` ARCH-SPEC⇒ AM

Γs, Γm ` arch-unit-ref-type UNIT-SPEC ARCH-SPEC⇒ (U , {M | (U,M) ∈ AM})

3.5 Refinement bodies

REF-BODY ::= simple-mor SYMB-MAP-ITEMS

| gen-mor SYMB-MAP-ITEMS SPEC

| named-ref REF-NAME

| named-view VIEW-NAME FIT-ARG*

| compose REF-NAME REF-NAME

RΣ, Γs ` REF-BODY � RΣ (Us,Ut), Γs, Γm ` REF-BODY⇒ SRef

Γs and Γm are compatible global environments. RΣ is a refinement signature.
Us and Ut are unit specifications and SRef is a refinement function.

UΣs = Σ1, . . . , Σn → Σs

UΣt = Σ1, . . . , Σn → Σt

` SYMB-MAP-ITEMS � r

σ = r|Σs

Σt

(UΣs, UΣt), Γs ` simple-mor SYMB-MAP-ITEMS � (UΣs, UΣt)

Page: 13 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

14 3 Semantics

` SYMB-MAP-ITEMS � r

σ = r|Σs

Σ

Dom(RF) = Ut

Dom(RF (F)) = Dom(F)
RF (F)(M1, . . . ,Mn) = F (M1, . . . ,Mn)|σ
for (M1, . . . ,Mn) ∈ Dom(RF (F))

RF (F) ∈ Us for F ∈ Ut

(Us,Ut), Γs, Γm ` simple-mor SYMB-MAP-ITEMS⇒ (Us,Ut, RF)

Γs = (Gs,Vs,As, Ts,Rs)
(RN 7→ (UΣs, UΣt)) ∈ Rs

(UΣs, UΣt), Γs ` named-ref RN � (UΣs, UΣt)

Γm = (Gm,Vm,Am, Tm,Rm)
(RN 7→ (Us,Ut, RF) ∈ Rm

(Us,Ut), Γs, Γm ` named-ref RN⇒ (Us,Ut, RF)

Concerning views as refinement bodies, we adapt the rules for the seman-
tics of FIT-VIEWs from Sect. (((sem-sem-sec-FittingViews))). First we studyShould semantics for FIT-VIEWs be split in

order to avoid these repetitions? the situation of a non-generic view.

UΣs = Σ1, . . . , Σn → Σs

UΣt = Σ1, . . . , Σn → Σt

Γs = (Gs,Vs,As, Ts,Rs)
(VN 7→ (Σs, σ, (∅, (), Σt))) ∈ Vs

(UΣs, UΣt), Γs ` named-view VN � (UΣs, UΣt)

Γs = (Gs,Vs,As, Ts,Rs)
(VN 7→ (Σs, σ, (∅, (), Σt))) ∈ Vs

Γm = (Gm,Vm,Am, Tm,Rm)
(VN 7→ (Ms, (M⊥, (),Mt)) ∈ Vm

Dom(RF) = Ut

Dom(RF (F)) = Dom(F)
RF (F)(M1, . . . ,Mn) = |F (M1,...,Mn)σ

for all F ∈ Ut, RF (F) ∈ Us

(Us,Ut), Γs, Γm ` named-view VN⇒ (Us,Ut, RF)

Now we come to the case of generic views.

Page: 14 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

3.5 Refinement bodies 15

UΣs = Σ1, . . . , Σn → Σs

UΣt = Σ1, . . . , Σn → Σt

Γs = (Gs,Vs,As, Ts,Rs)
(VN 7→ (Σs, σ,GS s)) ∈ Vs

GS s = (Σ′
I , (Σ1, . . . , Σn), ΣB)

n ≥ 1
Σ′

I , Σ1, Γs ` FA1 � σ1, Σ
A
1

. . .
Σ′

I , Σn, Γs ` FAn � σn, ΣA
n

(ΣA, σ′f) = GS s((ΣA
1 , σ1), . . . , (ΣA

n , σn)) is defined
ΣA = Σt

(UΣs, UΣt), Γs ` named-view VN FA1 . . . FAn � (UΣs, UΣt)

Γs = (Gs,Vs,As, Ts,Rs)
(VN 7→ (Σs, σ,GS s)) ∈ Vs

GS s = (Σ′
I , (Σ1, . . . , Σn), ΣB)

n ≥ 1
Σ′

I , Σ1, Γs ` FA1 � σ1, Σ
A
1

. . .
Σ′

I , Σn, Γs ` FAn � σn, ΣA
n

Γm = (Gm,Vm,Am, Tm,Rm)
(VN 7→ (Ms,GSm)) ∈ Vm

GSm = (M′
I , (M1, . . . ,Mn),MB)

Σ′
I , Σ1,M′

I ,M1, Γs, Γm ` FA1 ⇒MA
1

. . .
Σ′

I , Σn,M′
I ,Mn, Γs, Γm ` FAn ⇒MA

n

MA = GSm((MA
1 , σ1), . . . , (MA

n , σn))
Dom(RF) = Ut

for all RF ∈ Ut, for all F ∈ Dom(RF) (M1, . . . ,Mn) ∈ Dom(F) .
RF (F)(M1, . . . ,Mn) ∈MA

RF (F)(M1, . . . ,Mn) = F (M1, . . . ,Mn)|σ′
f◦σ

for all F ∈ Ut, RF (F) ∈ Us

(Us,Ut), Γs, Γm ` named-view VN FA1 . . . FAn ⇒ (Us,Ut, RF)

Γs = (Gs,Vs,As, Ts,Rs)
(RN1 7→ (UΣ1, UΣ2)) ∈ Rs

(RN2 7→ (UΣ3, UΣ4)) ∈ Rs

UΣ4 = UΣ1

(UΣ2, UΣ3), Γs ` compose RN1 RN2 � (UΣ2, UΣ3)

Page: 15 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

16 3 Semantics

Γm = (Gm,Vm,Am, Tm,Rm)
(RN1 7→ (U1,U2, RF1) ∈ Rm

(RN2 7→ (U3,U4, RF2)) ∈ Rm

U4 ⊆ U1

RF (F) = RF1(RF2(F))
(U2,U3), Γs, Γm ` compose RN1 RN2 ⇒ (U2,U3, RF)

3.6 Unit refinements

UNIT-REFINEMENT ::= simple-unit-ref UNIT-NAME SPEC REF-BODY

| arch-unit-ref UNIT-NAME ARCH-SPEC REF-BODY

| unit-unit-ref UNIT-NAME UNIT-SPEC REF-BODY

AΣ, Γs ` UNIT-REFINEMENT � (UN,RΣ) AΣ, Γs, Γm ` UNIT-REFINEMENT⇒ (UN,SRef)

Γs and Γm are compatible global environments. AΣ is an architectural sig-
nature. UN is a unit name. RΣ is a refinement signature, and SRef is a
refinement function.

In the model semantics rules below, we are completely liberal about the
source unit specifications of the refinement body. This is outweighed by the
fact that there is a check in the model semantics of refinements above that the
refined units together form a model of the source architectural specification.Better carry the source specs around?

UN ∈ Dom(Cs)
Cs(UN) = Σs

∅, Γs ` SPEC � Σt

(Σs, Σt), Γs ` RB � (Σs, Σt)
(Cs, UΣ), Γs ` simple-unit-ref UN SPEC RB � (UN, (Σs, Σt))

UN ∈ Dom(Cs)
Cs(UN) = Σs

∅,M⊥, Γs, Γm ` SPEC⇒Mt

Ms = Mod(Σ)
(Ms,Mt), Γs, Γm ` RB⇒ (Ms,Mt, RF)

(Cs, UΣ), Γs, Γm ` simple-unit-ref UN SPEC RB⇒ (UN(Ms,Mt, RF,)

UN ∈ Dom(Cs)
Cs(UN) = UΣs

Γs ` ARCH-SPEC � (Cs, UΣt)
(UΣs, UΣt), Γs ` RB � (UΣs, UΣt)

(Cs, UΣ), Γs ` arch-unit-ref UN ARCH-SPEC RB � (UN, (UΣs, UΣt))

Page: 16 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

3.7 Complete refinement trees 17

UN ∈ Dom(Cs)
Cs(UN) = UΣs

Γs, Γm ` ARCH-SPEC⇒ AM
Us = Mod(UΣs)

Ut = {F | (E,F) ∈ AM}
(Us,Ut), Γs, Γm ` RB⇒ (Us,Ut, RF)

(Cs, UΣ), Γs, Γm ` arch-unit-ref UN ARCH-SPEC RB⇒ (UN, (Us,Ut, RF))

UN ∈ Dom(Cs)
Cs(UN) = UΣs

Γs ` UNIT-SPEC � UΣt

(UΣs, Σt), Γs ` RB � (UΣs, UΣt)
(Cs, UΣ), Γs ` unit-unit-ref UN UNIT-SPEC RB � (UN, (UΣs, UΣt))

UN ∈ Dom(Cs)
Cs(UN) = UΣs

Γs, Γm ` UNIT-SPEC⇒ Ut

Us = Mod(UΣs)
(Us,Ut), Γs, Γm ` RB⇒ (Us,Ut, RF)

(Cs, UΣ), Γs, Γm ` unit-unit-ref UN UNIT-SPEC RB⇒ (UN, (UΣs, UΣt))

3.7 Complete refinement trees

Page: 17 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

4

Calculus

This chapter provides a proof calculus for the simple refinement language
presented in the previous chapters. The proof calculus allows to capture the
success of the model-theoretic semantics for refinement with proof rules. With
this, well-formedness of refinements becomes expressible entirely with rules of
the static semantics and the calculus. The proof rules also can be understood
to contribute to the well-formedness of libraries in the sense of Chap. (((log-
log-part-Libraries))).

Strictly speaking, here we do not provide a calculus, but a verification
static semantics based on that structured as well as architectural specifications
as presented in Part ??. The verification semantics generates proof obligations
in form of theorem links in a development graph, and these can be checked
with the calculus for development graphs. The proof obligations express that
models of the target of the refinement specification are mapped to models of
the source specification.

We begin with introducing the verification counterparts of the notions of
refinement signature and static refinement context from Chap. 3. They are
obtained by simply replacing signatures with development graph nodes and
hence unit signatures by verification unit signatures as introduced in (((log-
log-part-Libraries))), while keeping the requirements imposed there (here un-
derstood as requirements of the signatures associated to the nodes):

RΣ = (UΣs, UΣt) ∈ VerRefSig = VerUnitSig ×VerUnitSig
Rs ∈ VerStaticRCtx = UnitName fin→ VerRefSig
R ∈ VerStaticRef = VerRefSig ∪VerStaticRCtx

The verification static global environments from (((log-log-part-Libraries)))
are extended accordingly:

A verification static global environment Γs is a five-tuple (Gs,Vs,As, Ts,Rs),
where

Ts = RefName fin→ VerStaticRef

20 4 Calculus

We now come to the verification static semantics for refinements.

4.1 Refinement definitions

Γs, (S, Th) ` REF-DEFN ��� Γ ′
s, (S ′, Th′)

Γs, (S, Th) is a verification static global environment. (S ′, Th′) is a de-
velopment graph extending (S, Th). Let Γs be (Gs,Vs,As, Ts,Rs), then Γ ′

s is
(Gs,Vs,As, Ts,R′

s) where G′s is Rs extended by an association

RN 7→ R

provided that RN is not in the domain of Rs and R ∈ VerStaticRef .

Γs = (Gs,Vs,As, Ts,Rs)
RN 6∈ Dom(Gs) ∪Dom(Vs) ∪Dom(As) ∪Dom(Ts) ∪Dom(Rs)

Γs, (S, Th) ` REFINEMENT ��� R, (S ′, Th′)
R′

s = Rs ∪ {RN 7→ R}
Γs, (S, Th) ` ref-defn RN REFINEMENT ��� (G′s,Vs,As, Ts,Rs), (S ′, Th′)

4.2 Refinements

Γs, (S, Th) ` REFINEMENT ��� R, (S ′, Th′)

Γs, (S, Th) is a verification static global environment. (S ′, Th′) is a de-
velopment graph extending (S, Th). R ∈ VerStaticRef is a verification static
refinement.

Γs, (S1, Th1) ` REF-TYPE ��� RΣ, (S2, Th2)
RΣ, Γs, (S2, Th2) ` REF-BODY ��� RΣ, (S3, Th3)

Γs, (S1, Th1) ` simple-refinement REF-TYPE REF-BODY ��� RΣ, (S3, Th3)

Γs, (S, Th) ` ARCH-SPEC ��� AΣ, (S ′, Th′)
AΣ, Γs, (S ′, Th′) ` UR1 ��� (UN1, RΣ1), (S1, Th1)

. . .
AΣ, Γs, (Sn−1, Thn−1) ` URn ��� (UNn, RΣn), (Sn, Thn)

AΣ = (Cs, UΣ)
Dom(Cs) = {UN1, . . . , UNn}

Rs = {UNi 7→ RΣi | i = 1 . . . n}
Γs, (S, Th) ` arch-refinement ARCH-SPEC UR1; . . . ; URn ��� Rs, (Sn, Thn)

Page: 20 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

4.4 Refinement bodies 21

4.3 Refinement types

Γs, (S, Th) ` REF-TYPE ��� RΣ, (S ′, Th′)

Γs, (S, Th) is a verification static global environment. (S ′, Th′) is a develop-
ment graph extending (S, Th). RΣ is a verification refinement signature.

∅, Γs, (S1, Th1) ` SPEC1 ��� N1, (S2, Th2)
∅, Γs, (S2, Th2) ` SPEC2 ��� N2, (S3, Th3)

Γs, (S1, Th1) ` simple-ref-type SPEC1 SPEC2 ��� (Σ1, Σ2), (S3, Th3)

∅, Γs, (S1, Th1) ` SPEC ��� N1, (S2, Th2)
Γs, (S2, Th2) ` ARCH-SPEC ��� (Cs, N2), (S3, Th3)

N2 is a node, i.e. parameterless
Γs, (S1, Th1) ` arch-ref-type SPEC ARCH-SPEC ��� (N1, N2), (S3, Th3)

∅, Γs, (S1, Th1) ` UNIT-SPEC1 ��� UΣ1, (S2, Th2)
∅, Γs, (S2, Th2) ` UNIT-SPEC2 ��� UΣ2, (S3, Th3)

UΣ1 = N1, . . . , Nn → N
UΣ2 = N ′

1, . . . , N
′
n → N ′

ΣNi = ΣN ′
i (i = 1, . . . , n)

Th = Th3 ∪ { N ′
i

id +3___ ___ Ni | i = 1, . . . , n}
Γs, (S1, Th1) ` unit-ref-type UNIT-SPEC1 UNIT-SPEC2 ��� (UΣ1, UΣ2), (S3, Th)

∅, Γs, (S1, Th1) ` UNIT-SPEC ��� UΣ1, (S2, Th2)
∅, Γs, (S2, Th)2 ` ARCH-SPEC ��� (Cs, UΣ2), (S3, Th3)

UΣ1 = N1, . . . , Nn → N
UΣ2 = N ′

1, . . . , N
′
n → N ′

ΣNi = ΣN ′
i (i = 1, . . . , n)

Th = Th3 ∪ { N ′
i

id +3___ ___ Ni | i = 1, . . . , n}
Γs, (S1, Th1) ` arch-unit-ref-type UNIT-SPEC ARCH-SPEC ��� (UΣ1, UΣ2), (S3, Th)

4.4 Refinement bodies

RΣ, Γs, (S, Th) ` REF-BODY ��� RΣ, (S ′, Th′)

Γs, (S, Th) is a verification static global environment. (S ′, Th′) is a develop-
ment graph extending (S, Th). RΣ is a verification refinement signature.

Page: 21 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

22 4 Calculus

UΣs = N1, . . . , Nn → Ns

UΣt = N1, . . . , Nn → Nt

` SYMB-MAP-ITEMS ��� r

σ = r|Ns

Nt

Th′ = Th ∪ { Ns
σ +3___ ___ Nt }

(UΣs, UΣt), Γs, (S, Th) ` simple-mor SYMB-MAP-ITEMS ��� (UΣs, UΣt), (S, Th′)

Γs = (Gs,Vs,As, Ts,Rs)
(RN 7→ (UΣs, UΣt)) ∈ Rs

(UΣs, UΣt), Γs, (S, Th) ` named-ref RN ��� (UΣs, UΣt), (S, Th)

Concerning views as refinement bodies, we adapt the rules for the seman-
tics of FIT-VIEWs from Sect. (((sem-sem-sec-FittingViews))). First we studyShould semantics for FIT-VIEWs be split in

order to avoid these repetitions? the situation of a non-generic view.

UΣs = N1, . . . , Nn → Ns

UΣt = N ′
1, . . . , N

′
n → Nt

Γs = (Gs,Vs,As, Ts,Rs)
(VN 7→ (N ′

s, σ, (∅, (), N ′
t))) ∈ Vs

ΣNs = ΣN ′
s

ΣNt = ΣN ′
t

Th′ = Th ∪ { Ns
id +3___ ___ N ′

t ; N ′
t

id +3___ ___ Nt }
(UΣs, UΣt), Γs, (S, Th) ` named-view VN ��� (UΣs, UΣt), (S, Th′)

Now we come to the case of generic views. [Omitted here — let’s first
clarify overall issues.]

Γs = (Gs,Vs,As, Ts,Rs)
(RN1 7→ (UΣ1, UΣ2)) ∈ Rs

(RN2 7→ (UΣ3, UΣ4)) ∈ Rs

UΣ1 = N1
1 , . . . , N1

n → N1

UΣ4 = N4
1 , . . . , N4

n → N4

ΣN1
= ΣN4

ΣN1
i = ΣN4

i (i = 1, . . . , n)

Th′ = Th ∪ { N1 id +3___ ___ N4 } ∪ { N4
i

id +3___ ___ N1
i | i = 1, . . . , n}

(UΣ2, UΣ3), Γs, (S, Th) ` compose RN1 RN2 ��� (UΣ2, UΣ3), (S, Th′)

4.5 Unit refinements

AΣ, Γs, (S, Th) ` UNIT-REFINEMENT ��� (UN,RΣ)

Page: 22 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

4.5 Unit refinements 23

AΣ is an architectural signature. UN is a unit name. RΣ is a verification
refinement signature.

UN ∈ Dom(Cs)
Cs(UN) = Ns

∅, Γs, (S1, Th1) ` SPEC ��� Nt, (S2, Th2)
(Ns, Nt), Γs, (S2, Th2) ` RB ��� (Ns, Nt), (S3, Th3)

(Cs, UΣ), Γs, (S1, Th1) ` simple-unit-ref UN SPEC RB ��� (UN, (Ns, Nt)), (S3, Th3)

UN ∈ Dom(Cs)
Cs(UN) = UΣs

Γs, (S1, Th1) ` ARCH-SPEC ��� (Cs, UΣt), (S2, Th2)
(UΣs, UΣt), Γs, (S2, Th2) ` RB ��� (UΣs, UΣt), (S3, Th3)

(Cs, UΣ), Γs, (S1, Th1) ` arch-unit-ref UN ARCH-SPEC RB ��� (UN, (UΣs, UΣt)), (S3, Th3)

UN ∈ Dom(Cs)
Cs(UN) = UΣs

Γs, (S1, Th1) ` UNIT-SPEC ��� UΣt, (S2, Th2)
(UΣs, Nt), Γs, (S2, Th2) ` RB ��� (UΣs, UΣt), (S3, Th3)

(Cs, UΣ), Γs, (S1, Th1) ` unit-unit-ref UN UNIT-SPEC RB ��� (UN, (UΣs, UΣt)), (S3, Th3)

Page: 23 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

5

Examples

The steam boiler example

We now formalize the refinement steps in the steam-boiler control systemex-
ample of the CASL User Manual [BM03], Chap. 13. We repeat the specifica-
tions showing the architecture of the system given in [BM03, 13.10]. All the
involved structured specifications are omitted here and should be looked up
in [BM03, 13].

[BM03, 13.10] starts with the following rather obvious architecture for the
steam-boiler control system:

arch spec Arch Sbcsname]Arch Sbcs@Arch Sbcs =
units P : Value → Preliminary;

S : Preliminary → Sbcs State;
A : Sbcs State → Sbcs Analysis;
C : Sbcs Analysis → Steam Boiler Control System

result λV : Value • C [A [S [P [V]]]]
end

In a next step, the specification Value→ Preliminary of the component
P is refined into the following architectural specification.

arch spec Arch Preliminaryname]Arch Preliminary@Arch Preliminary
=

units SET : { sort Elem} × Nat → Set [sort Elem];
B : Basics;
MS : Messages Sent given B ;
MR : Value → Messages Received given B ;
CST : Value → Sbcs Constants

result λV : Value • SET [MS fit Elem 7→ S Message] [V]
and SET [MR [V] fit Elem 7→ R Message] [V]
and CST [V]

end

26 5 Examples

unit spec Unit Sbcs Statename]Unit Sbcs State@Unit Sbcs State =
Preliminary → Sbcs State Impl

Summing up, this leads to the following architectural refinement:
refinement R1 : Arch SBCS to
units P to Arch Preliminary;

S to Unit Sbcs State;
A to Arch Analysis;
C to Unit SBCS System

end
Note that S is refined to a monomorphic unit specification — the devel-

opment is finished at this point. A similar remark holds for the component C;
however, the needed unit specification Unit SBCS System is not provided
in [BM03].

The specification Sbcs State → Sbcs Analysis of the component A of
Arch SBCS can be refined into the following architectural specification:

arch spec Arch Analysisname]Arch Analysis@Arch Analysis =
units FD : Sbcs State → Failure Detection;

PR : Failure Detection → PU Prediction;
ME : PU Prediction → Mode Evolution [PU Prediction];
MTS : Mode Evolution [PU Prediction] → Sbcs Analysis

result λS : Sbcs State • MTS [ME [PR [FD [S]]]]
end

The specification of the components ME and MTS are simple enough to
be directly implemented. The specifications of the components FD and PR
can be refined as follows.
arch spec Arch Failure Detectionname]Arch Failure Detection@Arch

Failure Detection =
units MTSF : Sbcs State

→ Message Transmission System Failure;
PF : Sbcs State → Pump Failure;
PCF : Sbcs State → Pump Controller Failure;
SF : Sbcs State → Steam Failure;
LF : Sbcs State → Level Failure;
PU : Message Transmission System Failure

× Pump Failure × Pump Controller Failure
× Steam Failure × Level Failure

→ Failure Detection

result λS : Sbcs State •
PU [MTSF [S]] [PF [S]] [PCF [S]] [SF [S]] [LF [S]]
hide Pump OK , Pump Controller OK , Steam OK , Level OK

end

Page: 26 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

5 Examples 27

Finally the specification Failure Detection → PU Prediction of the
component PR of the architectural specification Arch Analysis is refined
as follows:

arch spec Arch Predictionname]Arch Prediction@Arch Prediction =
units SE : Failure Detection →

Status Evolution [Failure Detection];
SLP : Failure Detection → Steam And Level Prediction;
PP : Status Evolution [Failure Detection]

× Steam And Level Prediction
→ Pump State Prediction;

PCP : Status Evolution [Failure Detection]
× Steam And Level Prediction

→ Pump Controller State Prediction

result λFD : Failure Detection •
local SEFD = SE [FD]; SLPFD = SLP [FD] within
PP [SEFD] [SLPFD] and PCP [SEFD] [SLPFD]

end

This is summed up in the following refinement:
refinement R2 : Arch Analysis to
units FD to Arch Failure Detection;

PR to Arch Prediction;
ME to Unit Mode Evolution;
MTS to Unit Sbcs Analysis

end
In order to reach a complete refinement tree, it now remains to pro-

vide monomorphic unit specifications Unit SBCS System, Unit Mode
Evolution and Unit Sbcs Analysis, and obvious architectural refinements
of Arch Failure Detection and Arch Prediction (and the monomor-
phic unit specifications needed for implementing these).

Page: 27 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

28 5 Examples

Some simple refinements

spec Nat = free type Nat ::= 0 | suc(Nat) end
spec NatBin =

free type NatBin ::= 0 | 0(NatBin) | 1(NatBin)
op suc(n : NatBin) : NatBin = . . .

end
refinement R3 : Nat to NatBin =

Nat 7→ NatBin
end

spec Nat = free type Nat ::= 0 | suc(Nat) end
spec NatByte =

free types Byte ::= 0 | 1 | . . . | 255
NatByte ::= 0 | ::: (Byte; NatByte)

op suc(n : NatByte) : NatByte = . . .

endview v : Nat to NatByte =
Nat 7→ NatByte

refinement R4 : Nat to NatBin = v
end

Composition of refinements

from Basic/StructuredDatatypes get List
spec BinListname]BinList@BinList =

free type Bin ::= 0 | 1
then

List[sort Bin]
then ops add0 (l : List [Bin]) : List [Bin] = 0 :: l ;

add1 (l : List [Bin]) : List [Bin] = 1 :: l
end

refinement R5 : NatBin to BinList =
NatBin 7→ List [Bin], 0 7→ [], 0 7→ add0 , 1 7→ add1

end

refinement R6 : Nat to BinList = R3 then R5
end

An architectural refinement

%{ The following example illustrates the difference between
the structure of specifications and the architectural specification of structure. }%

Page: 28 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

5 Examples 29

spec Numname]Num@Num =
sort Num
ops 0 : Num;

succ : Num → Num
end

spec Num Monoidname]Num Monoid@Num Monoid =
Monoid with Elem 7→ Num,n 7→ 0, ∗ 7→ +

spec Add Numname]Add Num@Add Num =
Num and Num Monoid

then ∀x , y : Num • x + succ(y) = succ(x + y)
end

spec Add Num Efficientlyname]Add Num Efficiently@Add Num Efficiently
=
generated type Bin ::= 0 | 1 | 0(Bin) | 1(Bin)
ops + , ++ : Bin × Bin → Bin

%{ + is binary addition; ++ is binary addition with carry. }%

∀x , y : Bin
• 0 0 = 0 • 0 1 = 1
• x 0 + y 0 = (x + y) 0 • x 0 ++ y 0 = (x + y) 1
• x 0 + y 1 = (x + y) 1 • x 0 ++ y 1 = (x ++ y) 0
• x 1 + y 0 = (x + y) 1 • x 1 ++ y 0 = (x ++ y) 0
• x 1 + y 1 = (x ++ y) 0 • x 1 ++ y 1 = (x ++ y) 1

end
%{ It is more efficient to implement successor in terms of (binary) addition,

while it is easier to specify addition in terms of successor than in terms of
binary addition. Thus, the structure of the implementation differs from
the structure of the specification: }%

arch spec Efficient Add Numname]Efficient Add Num@Efficient Add
Num =

units N : Add Num Efficiently;
M : { op succ(n : Bin) : Bin = n + 1 } given N

result
M hide 1, 0, 1, ++

end

%% We have now that Efficient Add Num is a refinement of Add Num.
refinement R7 : Add Num to Efficient Add Num =

Num 7→ Bin
end

Page: 29 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

30 5 Examples

Refining one specification in two directions

from Basic/StructuredDatatypes get List, Set
arch spec NatListname]NatList@NatList =
units N : Nat;

L : List[Nat] given N
result L
end

arch spec NatSetname]NatSet@NatSet =
units N : Nat;

S : Set[Nat] given N
result S
end

refinement R8 : NatList
units N to NatBin;

L to Elem → List[Elem]
end

refinement R9 : NatList
units N to NatByte;

S to Elem → Set[Elem]
end

The example shows that refinement trees cannot always be built automat-
ically from the specifications in a library.

Perhaps we should also allow partial refinements of architectural speci-
fications that only refine some of the units, while the remaining units are
considered to be determined by their monomorphic unit specifications?

Stacks implemented as arrays with pointer

This famous problem can be solved with simple refinement as follows. (With
behavioural refinement, one would not need to specify th equality on StackAsArray[Elem]
explicitly.)
spec Stackname]Stack@Stack[Elem] =

free type Stack [Elem] ::= empty | push(Elem; Stack [Elem])
op pop : Stack [Elem] →? Stack [Elem]
∀ x : Elem; s : Stack [Elem]
• ¬ def pop(empty)

pop(push(x , s)) = s
end

spec Arrayname]Array@Array[Elem] =

Page: 30 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

5 Examples 31

Nat
then generated type Array [Elem] ::= init | ! = (Array [Elem]; Nat ; Elem)

op ! : Array [Elem]×Nat →? Elem
∀ a : Array [Elem]; x : Elem; m,n : Nat
• ¬ def init !n
• (a!n := x)!n = x
• (a!m := x)!n = a!n if ¬m = n
• a1 = a2 ⇔ (∀n : Nat .a1 !n = a2 !n)

end

spec StackAsArrayname]StackAsArray@StackAsArray[Elem] = %mono
Array[Elem]

then generated type StackAsArray [Elem] ::= @ (Array [Elem]; Nat)
∀ a1 , a2 : Array [Elem]; n1 ,n2 : Nat
• a1@n1 = a2@n2 ⇔

(n1 = n2 ∧ ∀i : Nat • i < n1 ⇒ a1 !i = a2 !i)
ops empty : StackAsArray [Elem];

push : StackAsArray [Elem]× Elem → StackAsArray [Elem];
pop : StackAsArray [Elem] →? StackAsArray [Elem]

∀ a : Array [Elem]; x : Elem; n : Nat
• empty = init@0

push(a@n, x) = a!n := x@succ(n)
¬ def pop(a@0)
pop(a@succ(n)) = a@n

end

unit spec UStackname]UStack@UStack = Elem → Stack [Elem]

unit spec UArrayname]UArray@UArray = Elem → Array [Elem]

arch spec ArchStackAsArrayname]ArchStackAsArray@ArchStackAsArray
=

units A : UArray;
AS : Array [Elem] → StackAsArray [Elem]

result λX : Elem • AS [A [X]]
end

refinement R10 : UStack to ArchStackAsArray =
Stack 7→ StackAsArray

end

Page: 31 *** PRIVATE DRAFT VERSION *** 14-Dec-2003/23:41

References

AKKB99. E. Astesiano, H.-J. Kreowski, and B. Krieg-Brückner. Algebraic Founda-
tions of Systems Specification. Springer, 1999.

BM03. Michel Bidoit and Peter D. Mosses. CASL User Manual. Lecture Notes
in Computer Science. Springer, 2003. To appear.

BST02. Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural
specifications in CASL. Formal Aspects of Computing, 13:252–273, 2002.

CoF. CoFI. The Common Framework Initiative for algebraic specification and
development, electronic archives. Notes and Documents accessible from
http://www.brics.dk/Projects/CoFI/.

ST87. Donald Sannella and Andrzej Tarlecki. On observational equivalence
and algebraic specification. Journal of Computer and System Sciences,
34:150–178, 1987.

ST88. D. Sannella and A. Tarlecki. Toward formal development of programs
from algebraic specifications: implementations revisited. Acta Informat-
ica, 25:233–281, 1988.

http://www.brics.dk/Projects/CoFI/

	Introduction
	The Algebraic Development Paradigm
	Constructor Refinement
	Outlook: Behavioural Refinement

	The Refinement Language
	Refinement Definitions
	Refinements
	Refinement Types
	Refinement Bodies
	Unit Refinements
	Complete refinement trees

	Semantics
	Refinement Concepts
	Refinement definitions
	Refinements
	Refinement types
	Refinement bodies
	Unit refinements
	Complete refinement trees

	Calculus
	Refinement definitions
	Refinements
	Refinement types
	Refinement bodies
	Unit refinements

	Examples
	References

