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1 Introduction 

The GermanTeam participates as a national team in the Sony Legged Robot League. 
It currently consists of students and researchers from five universities: the Humboldt-
Universität zu Berlin, the Universität Bremen, the Technische Universität Darmstadt, 
the Universität Dortmund, and the Freie Universität Berlin. The members of the Ger-
manTeam are allowed to participate as separate teams in national contests such as the 
RoboCup German Open, but will jointly line up at the international RoboCup cham-
pionship as a single team. Obviously, the results of the team would not be very good 
if the members will develop separately until the German Open in the middle of April, 
and then try to integrate their code to a single team in only two months. Therefore, an 
architecture for robot control programs was developed that allows to implement dif-
ferent solutions for the tasks involved in playing robot soccer. The solutions are ex-
changeable, compatible to each other, and they can even be distributed over a varying 
number of concurrent processes. The approach is described in this year’s RoboCup 
book [6]. Other contributions of the GermanTeam to the book are [4] and [5]. The 
team description here will focus on topics not published elsewhere so far, namely vi-
sion and behavior. 

2 Vision 

In the Sony Legged Robot League, a color camera integrated into the 3-DOF head of 
the robots is the most important sensor. All relevant objects on the soccer field are 
color-coded, e.g. the flags (for self-localization), the goals, the ball, the opponents, 
and the teammates. Therefore, image processing is the most basic and time-
consuming skill for robots competing in this league. The GermanTeam implemented 
two different approaches to recognize the different objects on the field: 

RLE-Floodfilling. The first approach is similar to [2]. The image provided by the 
sensor is converted into a color class run length encoded image, the runs of which are 
afterwards grouped to octangular blobs (cf. Fig. 1a). The vertices of the blobs are rep-



resented in angular coordinates, integrating the orientation of the camera. Then, these 
blobs are used to detect the relevant objects using the techniques developed last year 
[1, 3]. 

Grid Image Processing. To increase the speed of the vision system, each image is 
scanned at low resolution to find objects of interest using a roughly perspective-
oriented, horizon-aligned grid. Scan-points are dense around the horizon to find far 
and thus small features, and coarse when close to the camera (cf. Fig. 1b). Whenever 
object candidates are found (by identifying typical patterns of neighboring colors), 
they are examined locally at high resolution using so-called “specialists” . The result 
are horizon-aligned bounding boxes for landmarks, players and goals, a circle for the 
ball and arrays of points for the field lines. The new image processing performs no 
global filtering or segmentation and is not only more accurate, but also fast enough to 
process the full frame rate of the robot, i.e. 25 images per second, while leaving 
enough computing power to other tasks. 

3 Behavior 

The behavior architecture is based on the last year's approach of the GermanTeam. 

Hierarchies of Options. The general idea is that there is a hierarchy of options that 
are organized in an option tree with skills as the leaves (cf. Fig. 2a.). Each option can 
execute a specific behavior independently from its context in the option tree, using the 
options and skills below it. The execution of the option tree always starts from the 
root option. Then, each option activated determines which suboption will be executed 
until an option refers to a skill. In contrast to the last year’s approach, the options are 
not organized in fixed layers but can be combined freely. 

Each option contains an internal state machine. Each state of that state machine 
stands for a skill or a suboption (cf. Fig. 2b). Each state has a decision tree that selects 
between transitions to states (cf. Fig. 3a, b). If an option is executed, the state machine 
is carried out to determine which state is activated next (that can also be the same). 

        a) b) 

          

Fig. 1. Image processing. a) Blob-based. b) Grid-based. 



Then, for the active state, the referred suboption or skill is executed and so on. Due to 
the separation of long term and context dependent tasks into different options on dif-
ferent levels of the option tree, very complex behaviors can be implemented with that 
architecture. 

Formalization of Behavior  – XABSL. In GermanTeam 2001, it turned out that im-
plementing such architecture in C++ is not very comfortable and error prone. The size 
of the source files of the complete implementation exceeded 500 KB and it was com-
plicate to add new options. Therefore, the extensible agent behavior specification lan-
guage (XABSL) was developed, an XML dialect specified with XML Schema. The 
reasons for the use of XML technologies were the big variety and the quality of exist-
ing tools, the possibility of easy transforming from and to other languages as well as 
the general flexibility of data represented in XML languages. 

Behaviors using the architecture described in the previous section can be com-
pletely described in XABSL. There is a class library called XabslEngine that can exe-
cute behaviors written in XABSL using an intermediate code that is generated from 
that language. To be independent from specific software environments and platforms, 
the formalization of the interaction with the software environment is also included in 
XABSL by defining symbols. Interaction means access to input functions and vari-
ables (as, e.g., of the world state), to output functions (e.g. to set the LED of the ro-
bot) and to the skills, which are written in C++. At the start of the engine, a platform 
and application dependent XabslSymbolProvider gives the engine access to variables 
and functions for each symbol. For example, one can introduce the arbitrary numeric 
symbol “ball.distance”  in the XML document. The engine then asks the symbol pro-
vider to return the address of a function or a variable for the symbol “ball.distance” 
without any semantic knowledge about it, and it will later work with that address. 

The execution of the engine is not as fast as a behavior description written in C++, 
but it is fast enough, because the intermediate code is only read once at the startup of 
the robot. For debugging the behavior, the XABSL Behavior Tester was added to the 
RobotControl [6] application, which allows tracing the symbols of the formalized be-
havior as well as the options and states activated. In addition, single options or skills 
can be selected to be tested separately. A detailed documentation can be generated 
from the XML document (Fig. 2  and 3 were taken from that documentation). 
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Fig. 2. a) The option tree of a simplified goalie. Boxes stand for options, ellipses for skills. 
b) The internal state machine of the option “goalie-play” . The double circle is the initial state. 



4 Conclusion 

The GermanTeam has developed architectures on two different levels. On the one 
hand, a national team has the special need for a multi-team architecture, supporting 
multiple solutions for the tasks required to play robot soccer. On the other hand, 
XABSL was established as a powerful tool for fast and comfortable behavior devel-
oping. In addition, methods for fast image processing were implemented, one of 
which only analyses the relevant areas of the camera image.  

Future work will concentrate on the extension of the behavior architecture and the 
language by deliberation and communication as well as on a “more natural”  self-
localization that is based on field lines, goals, and teammates. 
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Fig. 3. a) The decision tree for the state “get-to-ball”. The leaves of the tree are transitions to 
other states. b) Pseudo code of the decision tree for the state “get-to-ball” . 


