
Robot Recognition and Modeling in the
RoboCup Standard Platform League

Alexander Fabisch #1, Tim Laue ∗2, Thomas Röfer ∗3
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Abstract— To achieve a reasonable level of play in the RoboCup
Standard Platform League, a number of basic abilities such as
obstacle avoidance and passing are necessary. Most of these abil-
ities have one thing in common: they rely on information about
other robots. In this paper, we present a vision-based approach
for robot recognition in the RoboCup Standard Platform League
as well as an algorithm to track the recognized robots. Both
approaches were developed considering the limited computing
resources of the Nao to allow an application in actual games.

I. INTRODUCTION

Over the years, the level of play in the RoboCup Standard
Platform League (SPL) has increased significantly. Teams
are able to perform robust obstacle avoidance and to target
shots at uncovered parts of the goals. Higher level skills such
as passing can be expected to become common within the
next few years. All these abilities have to take the positions
of teammates and opponents into account. Given the low
computational resources of the Nao robot, their perception
is a rather difficult task, making the application of state-of-
the-art computer vision approaches such as the Histogram
of Oriented Gradients (HOG) [1] impossible. In addition,
the robot’s sensorial limitations – the robot has only one
active camera with a quite limited field of view – require an
additional sophisticated modeling of the other robots.

A workaround is to use the robot’s built-in ultrasonic
sensors instead. This has been described by the B-Human
team [2] who use a simple occupancy grid [3] for increasing
robustness. However, these sensors are quite imprecise due to
their very low resolution and, among other things, are not able
to detect robots that lie on the ground, making the avoidance
of such robots impossible.

Vision-based solutions that do not require the explicit
detection of robots were presented by [4] and [5]. Their
approaches perceive the floor in the robot’s close environment
and consider significant gaps as obstacles.

For detecting robots in the RoboCup Four-legged League, a
solution based on decision tree learning has been presented [6].
For the same domain, a tracking approach that requires only
basic and unprecise perceptions of robots has been shown by
[7]. A quite different approach that is based on neural networks

has been presented by [8] for detecting solid black robots in
the RoboCup Middle Size League.

This paper presents solutions to reliably detect Nao robots
via vision and to track these detected robots. The tracking
is realized by a Kalman filter-based approach. A preliminary
version has already been presented in [2]. This paper describes
a revised robot detection that is more independent of proper
color segmentation by means of growing the regions provided
by the existing vision system. In addition, more constraints
on the team markers are verified to eliminate false robots
early. The robot tracking algorithm is described more detailed
and has been evaluated in different experiments. This work
has been realized in the context of the B-Human SPL team
and thus uses its software framework and infrastructure as
described in [2].

This paper is organized as follows: in Sect. II, we present
our approach for the visual robot recognition. In the following
Sect. III, we describe the algorithm that is used to track the
detected robots. Finally, we present the results of experiments
to evaluate the quality of both algorithms in Sect. IV.

II. DETECTING OTHER ROBOTS

Since 2010, the robots of the RoboCup Standard Platform
League are mostly white with a few gray spots and wear
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Fig. 1. a) A Nao robot playing in the RoboCup Standard Platform League.
b) The color of the blue team marker and the blue goal differ hardly on the
images taken by the Nao’s camera.



a) b) c) d) e)

Fig. 2. a) The classified image of the robot. The team marker region – marked by a yellow border – is not completely classified as blue. b) More vertical
scanlines (depicted in black) are added to determine the real border of the team marker. Afterwards, the team marker is described as a polygon. The red
dots mark vertices of the polygon and the white lines display the edges. Collinear vertices have already been deleted. c) The blue box denotes the bounding
box of the team marker, the black cross is the center of mass of the team marker’s region and the red line describes the orientation of the team marker as
well as the potential minimal width of the robot. d) Five scanlines verify the robot above and under the marker. The green dots show that the difference of
the reference pixel and the marked pixel is within the boundaries and the red dots show that the difference of the colors is too high. e) The position of the
recognized robot is determined by transforming the pixel marked by the blue dot into the soccer field’s coordinate system.

blue or pink team markers around their waists to indicate
their team (cf. Fig. 1a). The current vision system of the
team B-Human is based on color segmentation and region
building as described in detail in [2]. Hence, it is necessary
to extract information about possible robot perceptions from
the previously generated regions. A particular challenge is the
distinction of blue team markers and blue goal elements (cf.
Fig. 1b).

A. Detecting Team Markers

The current vision of the RoboCup team B-Human is based
on color segmentation [2]. Thus, we already start with blue
and pink regions representing possible team markers. These
are usually not sufficient to reliably estimate the dimensions
of the robot (cf. Fig. 2a). Therefore, we start at the center
of mass of the team marker region and scan horizontally to
determine a more precise width of the team marker. Based on
this scanline, we add vertical scanlines to determine a polygon
that describes the team marker region (cf. Fig. 2b). In contrast
to the previous region building, we use a higher resolution and
another method to determine the end of regions. The scanlines
will end, if

|cb− cb′| ≥ t1 or |cr − cr′| ≥ t2,

where the color of the current pixel is given by (y, cb, cr)
in the YCbCr color space and is compared to the reference
pixel’s color (y′, cb′, cr′). The reference pixel is the center of
mass of the initial region. t1 and t2 are thresholds that depend
on the individual camera settings and are, as well as all the
other parameters mentioned in this paper, only manually tuned.
We do not calculate the combined error of both components
because a slight change of one color component can result in a
completely different color. If we would calculate the combined
distance of the colors, we had to choose a higher threshold to
not discard real team markers but this would allow higher
deviations in one component if the other component did not

change. The y-component is completely omitted because it is
usually prone to variations of the illumination.

The result of these scanlines is a polygon around the team
marker. To reduce the complexity of the description, we
remove collinear vertices.

B. Evaluating Team Markers

Subsequent to their detection, the team marker regions have
to be checked for some constraints.

First of all, the following numerical qualitative features of
the polygon will be calculated and checked: curvature, extent
and extremum. They allow us to verify the team marker’s
shape efficiently and are invariant against scale, translation
and rotation. See [9] for a detailed description and review. All
the features are normalized for polygons, i. e. they are within
the range of [0, 1]. To evaluate the shape, we simply check
whether the features are within a certain interval.

We also check for a minimal and a maximal size of the team
marker’s area. Our approach is able to detect horizontal robots,
i. e. those that are lying on the field, almost as well as standing
robots or robots that are standing up. To determine whether
a robot is standing or not, we compare the length along the
x-axis to the maximal length along the y-axis. Usually, the
width of a team marker exceeds its height. To distinguish
team markers from nearly quadratic blue regions or longish
blue regions such as goal posts, we check if the ratio of the
width and height is within a certain interval. This enables us
to eliminate false robots early and thus to be more efficient.

For the remaining potential robots’ team markers we com-
pute a line that describes the team marker’s orientation as well
as the robots assumed width (cf. Fig. 2c). The orientation is
calculated as the average of the orientations of the vectors
from the first vertex of the polygon’s upper half to the other
vertices of the upper half and the orientation of the first vertex
of the lower half of the polygon and the other vertices of the
lower half.



C. Detecting Robots

After detecting regions that are potential team markers, we
can now scan their environment to determine whether they
belong to a robot or not. The region above and below the
team marker should be white and almost homogenous. Thus,
we can calculate scanlines where the robot’s body should be
(cf. Fig. 2d) based on the previously calculated line of the
team marker by rotating and stretching it.

To check the “whiteness” of the team marker’s environment,
we have to define a reference pixel. We use the first pixel that
is classified as white of every scanline as the reference pixel
for that scanline. The following pixels on the scanline belong
to the robot, if

|cb− cb′|+ |cr − cr′| ≤ t3,

where t3 is another threshold. Since we calculate the combined
error of both color components here, its value has to be chosen
higher than for t1 and t2. After each scanline, we check if the
ratio of white pixels and scanned pixels is tolerable. If this is
not the case, we discard the potential robot.

If a potential robot passed all these tests, we have to find
a point that allows the localization of the robot on the field.
Since it is inaccurate to determine the robot’s position if we
just know the position of the team marker, we search for the
first green area below the robot, so that we can project a pixel
on the field (cf. Fig. 2e).

III. ROBOT TRACKING

To track robots that have been recognized by the vision
system, we use a Kalman filter for each detected robot. The
pseudo code of our robot tracking algorithm is listed as
algorithm 1. Based on the notation of [10], the mean and
covariance after the motion update of the tth iteration are
denoted as µt and Σt, respectively the mean and covariance
after the sensor update are denoted as µt and Σt. The notation
tr.Σt refers to the covariance matrix of the Kalman filter
for the robot tr. We use several noise parameters σab

with
a ∈ {m, s, i, n} and b ∈ {x, y}, where m stands for motion
update, s for sensor update, i for initial and n for no sensor
update, so that σsx denotes the standard deviation of the
distance measurement if the recognized robot is ahead. These
can be constants or can be estimated by considering the head
motion, distance of the robot or other elements.

Actually this is not a real Kalman filter, since we did not
implement a realistic motion model yet. We are currently
assuming that all recognized robots do not move. Instead, we
add a significant noise in each cycle so that we can react faster
to the robot’s movements. Thus, motion is considered as noise,
which is not very inaccurate since most of the robots of the
Standard Platform League usually do not move very fast yet.
The main purpose of the motion update is to apply the motion
of the observing robot by subtracting the odometry offset.

The robots’ environment is partially observable. The chal-
lenging part of the tracking module is to match recognized
robots with tracked robots. The basic idea is to calculate the
Mahalanobis distance of the detected robots and the tracked

Algorithm 1 Robot Tracking Algorithm
Initialization:
T ← list of previously tracked robots (initially empty)
P ← list of currently perceived robots
ut ← translational odometry offset
θ ← rotational odometry offset
Motion Update:
for all tr ∈ T do
At ←

(
cos θ − sin θ
sin θ cos θ

)
Rt ←

(
σ2
mx

0
0 σ2

my

)
tr.µt ← At · µt−1 + ut
tr.Σt ← At · Σt−1 ·AT

t +Rt

end for
Sensor Update:
for all pr ∈ P do
zt ← relative position of pr on the field
α← angle to the measured robot
tr ← argmintr∈T (zt − tr.µt)(tr.Σ

−1
t (zt − tr.µt))

if euclideanDist(tr.µt, zt) ≤ maxAllowedDist then
if tr is not updated yet then
Qt ← Σ(α, σsx , σsy )
Kt ← Σt · (Σt +Qt)

−1

tr.µt ← µt +Kt · (zt − µt)
tr.Σt ← (I −Kt) ·Kt

end if
else
pr.Σt ← Σ(α, σix , σiy )
pr.µt ← zt
Append pr to T

end if
end for
for all tr ∈ T do

if 2π
√
det(tr.Σt) < minProbabilityAtMean then

Remove tr from T
else if tr has not been updated but should be visible then
α← angle to the tracked robot
tr.Σt ← tr.Σt + Σ(α, σnx , σny )

end if
end for

robots and always match those robots with the lowest distance.
This approach would work perfectly for fully observable
environments. The Mahalanobis distance, as developed in [11],
can be calculated as follows:

d(x, y) =
√

(x− y)(Σ−1(x− y)).

This requires a good estimation of the measurement noise.
We are usually quite sure about the angle of the recognized
robot and unsure about the distance. So if the perceived robot
is in front of the observing robot, i. e. the bearing is 0, the
deviation along the x-axis is high and the deviation along the
y-axis is low. If the perceived robot is not in front of the
observer, we have to rotate the covariance of the measurement.
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Fig. 3. a) Simulated camera image before kickoff. The white scan lines mark recognized robots. b) The corresponding debug drawings on the field. The
crosses mark the assumed position of the robots and the slight transparent circles represent the error ellipse calculated from the covariance matrix. c) A
recognized robot on the left side. d) The corresponding error ellipse shows that the uncertainty of the distance is greater than the uncertainty of the angle.

We do this by multiplying the covariance with a rotation matrix
from both sides:

Σ(α, σx, σy) = Rot(α) ·
(
σ2
x 0

0 σ2
y

)
·Rot(α),

where α is the angle of the measurement vector in the robot
coordinate system and

Rot(α) =

(
cosα − sinα
sinα cosα

)
.

σx and σy are parameters that have to be defined. The result of
the rotation is displayed in Figure 3d. See [12] for a detailed
proof.

In fact, it is unlikely that all robots are tracked at the same
time. So it is difficult to find out whether a detected robot
correlates with a robot in the model or is a new robot. To
solve this problem, we introduced the Euclidean distance as
a criterion to determine whether we update an existing robot
or add a new robot to our model. If the Euclidean distance of
the recognized robot exceeds a defined threshold, it will not
update the previously tracked robot.

There are several reasons why a tracked robot will not be
recognized when it should be visible:
• A robot could be hidden by other robots or a referee.
• It could have moved out of the visible area.
• The robot is in the image but it was not recognized.
• The tracked robot was a false positive. This would be

a problem that significantly affects the usability of the
model.

As we lose track of robots if we did not get any sensor updates
for a long time, robots will not be tracked any longer if the
value of the probability density function at the mean falls
below a threshold. So we can solve this case by increasing the
covariance of tracked robots that should be visible but have
not been detected on the camera image, i. e. we do a special
sensor update for these robots. Thus, false positives will be
removed from the model very fast.

IV. EVALUATION

To evaluate the robot detection and modeling, we conducted
four experiments, including a standing as well as a moving
observer. During each experiment, there were three sitting
robots with a pink team marker on the positions (180 cm,

-137 cm), (265 cm, 0 cm) and (120 cm, 70 cm) in the global
coordinate system as defined in [2]. The robot always starts at
the center of the field with the coordinates (0 cm, 0 cm). The
robot cannot see all of the other robots at once, hence it has
to look around and the image will be distorted and slightly
blurred. We used the SSL-Vision application [13] to track the
robot’s pose to eliminate any self localization errors during
the experiment in which the robot was walking. To reduce
rotational errors of the localization due to asynchronism and
delays, we used a special construct to attach the SSL patterns
to the robot that is independent of the head motions (cf. Fig.
4). The results of the experiments are shown in Fig. 6.

In the first experiment we just let the robot stand on the
center and look around. The robot’s model of the world is
pictured in Fig. 5. As you can see in Fig. 6a, the average
localization error of all three robots is around 20 cm and
about half of the time we have one false positive. The false
positive is caused by cardboard boxes (cf. Fig. 4) that are
partially classified as pink and partially classified as white.
As the position is correctly estimated outside the field, such
false positives would not affect any of the robot’s decisions.
During the whole experiment, all three real robots have been
recognized. In the following experiments, almost no false
positives occured.

For the second experiment, the robot moves its head left

Fig. 4. The general setup of the experiments. Three robots are on fixed
positions on the field. The observing robot is provided with ground truth pose
information from the SSL-Vision system. For this purpose, it has a pattern
attached to its head that is tracked by a camera.



Fig. 5. The robot’s model of the world during the first experiment.

and right and walks on the center of the field without any
translation or rotation. The result is shown in figure 6b. In this
experiment, the goalie has not been perceived continuously.
The localization error for the goalie is the largest, since the
distance to the goalie is the greatest and there is a white line
in front of the robot, hence sometimes the first green area
below the team marker could be in front of this white line.
This results in an estimated position that is displaced by 30
cm. Thus, the average localization error decreases when the
goalie is not recognized.

During the last experiments, we controlled the robot via
joystick. The robot’s paths are displayed in Fig. 6e and f.
Especially in the third experiment, the localization error oscil-
lated significantly. The path of the robot is very curvaceous.
So imprecise rotational odometry data have a greater impact
on the localization error. Since we measured the localization
error relative to the distance between the observing and the
observed robot, the percentual localization error is huge, when
the observed robot is near the observed robots. This the reason
for the peak at the end of the experiment. For comparison,
we conducted an experiment with a walking robot, that did
almost not rotate. The result is displayed in Fig. 6d. The error
is smaller and less oscillating.

V. CONCLUSIONS

The experiments show that robustly recognizing robots that
are more than 2.6 m away is hardly possible, but robots that are
2.2 m away can be reliably detected. The tracking algorithm
depends on accurate information about the observing robot’s
rotation and needs frequent updates about the observed robot’s
position. So we have to optimize the head motions to follow
the ball, lines and goals and, additionally, other robots. The
average localization error was always less than 25 cm, if the
observing robot did not walk. Further tests have to be done
with moving opponents and other more realistic situations such
as real game situations.

The future applications for a reliable model of the other
robots will be numerous. Passing and aiming at the largest free
part of the opponent goal are only the simplest improvements.
But those are the situations we consider as good test cases to

improve our approach. Our goal is to implement both reliably
until RoboCup 2011.
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Fig. 6. a) The result of the first experiment. The x-axis displays how many cognition frames have passed since the last measurement, hence the values
are decreasing from left to right. The localization error displayed at the y-axis is the average distance of every perceived robot to the real position of that
robot. b) The same diagram for the second experiment. Here the error seems to be less. This is the case because the placement of the robots was not exactly
the same. The average displacement is about 10 cm. The localization error is decreased by this value because we placed the robots with their tiptoes on the
positions instead of with their centers. Another reason for this offset is, that the robot in front of the goal which has the greatest localization error, is not
recognized all the time. c) The result of the third experiment. In this case, we displayed the average percentual localization error, which is the ratio of the
absolute localization error and the distance between the observing and the observed robot. d) The result of the fourth experiment. e) The robot’s path during
the third experiment is marked by the white line. The black crosses show the position of the other robots. f) The robot’s path during the fourth experiment.
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