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Abstract. The perception and modeling of other robots has been a
topic of minor regard in the Four-Legged League, because of the limited
processing und sensing capabilities of the AIBO platform. Even the cur-
rent world champion, the GermanTeam, abandoned the usage of a robot
recognition. Nevertheless, accurate position estimates of other players
will be needed in the future to accomplish tasks such as passing or ap-
plying adaptive tactics. This paper describes an approach for localizing
other players in a robot’s local environment by integrating different un-
reliable perceptions of robots and obstacles, which may be computed in a
reasonable way. The approach is based on Gaussian distributions describ-
ing the models of the robots as well as the perceptions. The integration
of information is realized by using Kalman filtering.

1 Introduction

The Four-Legged Robot League is one of the official leagues in RoboCup, in
which a standardized robot platform is used, namely the Sony AIBO, which has
quite limited perceptual capabilities. The main sensor of the Sony AIBO is a
camera located in its head. The head can be turned around three axes, and the
camera has a field of view of approximately 57◦ by 42◦. As the main sensor of the
robot is a camera, all objects on the RoboCup field are color coded. For robots,
this leads to two different tricot colors, i. e. red and blue, which are applied to
the robots as patches (Fig. 1).

During actual RoboCup games, robots are hard to perceive. Especially the
blue tricots are often indistinguishable from black or dark grey. The relatively
large distances on the field as well as the limited field of view—compared to
robots in other leagues that are allowed using omni-directional sensors—make it
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Fig. 1. Detection of robots by using a grid of scan lines.

almost impossible for a single robot to compute accurate estimates of all players
on a field based on its own perceptions.

Despite of the existence of robot detection algorithms [1–4], often only simple
obstacle information [5, 6] is used for navigation. Nevertheless, a localization for
robots is needed, if techniques such as passing towards teammates or tactics
which are adapting to the opponent’s positions should be applied. Because of
the limited field of view, and the unreliability of the available robot perceptions,
sophisticated techniques for modeling are needed.

The approach presented in this paper aims at computing accurate estimates
of player positions in the robot’s local environment by using probabilistic mod-
eling techniques. It does not incorporate communication with other robots and
depends therefore on visual perceptions. To improve estimates, information dif-
ferent from explicit robot perceptions is additionally integrated, i. e. occupied
spaces as well as free spaces on the field.

In the Four-Legged League domain, player position estimation has been a
topic of minor regard, so far. Nevertheless, several similar works about modeling
position and velocity of the ball using Kalman filters [3] or Rao-blackwellized
particle filters [7] have been published. Also the integration of different percep-
tions for improving estimates of the ball position has been described by [2].

This paper is organized as follows: Section 2 presents the perceptions which
are used for computing estimates. The estimation approach is described in Sect.
3. Experimental results are presented in Sect. 4. The paper ends with a conclusion
and an outlook on future work in Sect. 5.

2 Perceptions

The work described in this paper is based on the software of the GermanTeam
2005 [4] and therefore uses its vision system. This system processes images of a
resolution of 208 × 160 pixels, but actually considers only a horizon-aligned grid
of less pixels [8] (see Fig. 1). Each grid line is scanned pixel by pixel. During
the scan, each pixel is classified by color. A characteristic series of colors or a
pattern of colors is an indication of an object of interest.
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Fig. 2. Detection of obstacles. a) Lines scanning for unoccupied space. The bright dots
indicate the end of the free field. b) A similar situation represented in the robot’s world
model. The short lines indicate the free space among the robot and another robot. The
sectors surrounded by black lines are regions which are considered to be unoccupied.

Robot Detection. To find the indications for other robots, the scan lines are
searched for the colors of the tricots of the robots. The scan lines are followed
until the green of the field appears (cf. Fig. 1a). Thus the foot points of the
robot are detected. From these foot points, the distance to the robot can
be determined. A refinement for determining the position of the robot is
the extraction of the position of a front foot from the image [4] (cf. Fig.
1b). Using this simple approach, a recognition of a robot’s rotation is not
possible. The only information is the relative position of a robot. The small
tricot elements cause a detection of robots at a distance of more than 1.5m
to be highly unlikely. The precision of these percepts is shown in Sect. 4,
their integration into a robot position estimation is described in Sect. 3.2.

Obstacles and Free Space. A concept different from the recognition of robots
is the detection of obstacles [6, 5]. Instead of searching robot features in an
image, the unoccupied regions, i. e. the green field including the white lines,
are determined (cf. Fig. 2a). Thus, areas not classified as free space have
to be considered to be obstacles. Though obstacles don’t necessarily need
to be robots (e. g. beacons, goals, and the feet of a referee would also be
classified as obstacles), they can be used for improving the estimation of a
robot position (cf. Sect. 3.2). In contrast to this positive information, this
perception additionally bears negative information about regions in which
no robots are located. The usage of this perception is described in Sect. 3.3.

Collisions. A completely proprioceptive kind of percept is information about
the current physical state of the robot, i. e. the correctness of the calculated
camera position or the odometry. Both information may be disturbed by
collisions with other robots and hence lead to disturbed perceptions. For
instance in [9], it has been shown that it is possible to compute reliable
information about collisions occurring to a moving AIBO robot. The use of
this information is described in Sect. 3.1.



3 Robot Models

Since the number of players that could be observed from a robot’s position varies,
a set3 of actual estimations—in the following termed as hypotheses—has to be
kept and updated. A robot hypothesis H is modeled as a Gaussian distribution.
Therefore it is a tuple consisting of a mean µh which describes the position of
the robot and a covariance Σh which models the uncertainty of the position.
Since the image processing algorithms used for this work are not capable of
recognizing a robot’s relative rotation, two-dimensional distributions are used.
All hypotheses are kept relative to the observing robot in polar coordinates which
consist of a distance d and an angle α.

µh =
(

d
α

)
, Σh =

(
var(d) cov(α, d)

cov(d, α) var(α)

)
(1)

New hypotheses may be created from perceptions of robots (cf. Sect. 3.2)
whilst existing hypotheses are maintained by a Kalman Filter [10, 11] which
incorporates the robot’s motion (cf. Sect. 3.1) and integrates different percep-
tions (cf. Sect. 3.2–3.3) to improve the estimation of player’s positions. Every
hypothesis is considered to be a single robot that is tracked. Nevertheless, it is
possible that noisy perceptions lead to different hypotheses describing the same
robot. These effects are addressed by the mechanisms described in Sect. 3.4. The
general approach—the structure of which is similar to [12]—is depicted in Fig.
3.

3.1 Motion Update

On every execution of the modeling module, all existing hypotheses have to be
updated according to the motion (∆x,∆y,∆α) of the observing robot since the
last execution. This information is gained from the robot’s odometry. The update
also includes noise depending on the quantity of the motion. The mean of the
hypothesis is updated by

α+ = atan2(sin(α−)d− −∆y, cos(α−)d− −∆x)−∆α (2)

d+ =
√

(sin(α−)d− −∆y)2 + (cos(α−)d− −∆x)2. (3)

The uncertainty caused by the robot’s motion is added to the hypothesis’ co-
variance matrix Σ by

Σ+ = J1Σ
−J1

T + J2(1 + ec)Σ∆J2
T + ΣN (4)

where two Jacobian matrices J1 and J2 are defined as

J1 =
∂

(
α+

d+

)
∂

(
α−

d−

) , J2 =
∂

(
α+

d+

)

∂

 ∆x
∆y
∆α

 . (5)

3 Actually, the implementation keeps red and blue robots in two different sets, but
this detail is not addressed in this general description of the approach.



RobotModeling (Hypotheses, RobotPerceptions, Obstacles, Odometry)
for each Hypothesis H:

MotionUpdate (H, Odometry)
for each RobotPerception P:

if IntegrationPossible(Hypotheses, P)
Integrate(P, BestMatch(Hypotheses, P))

else
Hypotheses add P

for each Hypothesis H:
UpdateByPositiveObstacles (H, Obstacles)
UpdateByNegativeObstacles (H, Obstacles)
if LowQuality(H)

Hypotheses remove H
else if (H∗| MergingPossible(H∗, H)) exists

Merge(H, H∗)
end

Fig. 3. The general operation of the robot modeling.

The matrix Σ∆ contains information about the uncertainty of the robot’s motion
and is provided by the odometry model. Additionally, collisions may be taken
into account by multiplying the matrix with a factor ec. This factor is zero,
if no collisions occur. In case of a collision, a positive value reflects the higher
uncertainty of odometry. Through the matrix ΣN , constant white noise is added
reflecting the uncertain motion of the observed robots. This causes the variance
to grow constantly in absence of any measurements. Adequate values for Σ∆,
ΣN and ec have to be determined empirically.

3.2 Robot Percepts and Positive Obstacle Information

Before adding new hypotheses to the list, all measurements are tried to be in-
tegrated with existing estimations. In a first step, a percept is converted to a
hypothesis Hm. Its mean µm is the position of the measurement. A correspond-
ing covariance matrix Σm has to be precomputed from a set of measurements (as
those made for Fig. 4a). This can be refined by providing matrices for different
distances and angles and using interpolations of these for new measurements.

The new hypothesis has now to be associated to an already existing robot
hypothesis Hr. The Mahalanobis distance

dM (Hr,Hm) = (µr − µm)T (Σr + Σm)−1(µr − µm) (6)

provides a distance measure that describes the compatibility of two hypothe-
ses, indicating whether both could refer to the same robot. After the closest
hypothesis Hr has been found and dM (Hr,Hm) is below a maximum acceptable



a) b) c) d)

Fig. 4. A robot standing at a distance of 80cm is perceived and its position is estimated.
Every dot indicates an estimate, the black circle surrounds the ground truth position.
a) The plain perception from the vision system. b) Plain obstacle positions as used by
3.2. c) The modeled position using robot perceptions only. d) The modeled position
using robot and obstacle perceptions.

distance, Hm is integrated:

µ+
h = µ−h + Σ−

h (Σ−
h + Σm)−1(µm − µ−h ) (7)

Σ+
h = Σ−

h −Σ−
h (Σ−

h + Σm)−1Σ−
h (8)

Otherwise, the measurement will be added to the list as a new hypothesis.
In general, perceived obstacles are treated similar to robot percepts, solely

the usage of a lower threshold κo for hypothesis association is needed and the
possibility of adding new hypotheses to the list does not exist. The mean µo is
computed from a set of adjacent obstacle segments (cf. Fig. 2a). Of course, the
values for the covariance matrix Σo have also to be determined empirically, since
they differ strongly from the robot percept values (cf. Fig. 4b).

3.3 Negative Obstacle Information

In opposite to the previous two perceptions, which denote the presence of ro-
bots, the negative obstacle information, i. e. empty regions of the field, denotes
absence of any robots. This information is quite useful for the elimination of
false positives as well as for a quick update of the world model in case of a robot
kidnapping (which have e. g. been picked up by a referee). The incorporation
of this information is done via checking the inclusion of every hypothesis’ mean
µh inside every sector recognized as being empty (cf. Fig. 2). In case of such an
inclusion, white noise is added to the corresponding covariance matrix.



3.4 Maintenance of Hypotheses

While maintaining a list of hypotheses, it has not only to be taken care of
removing elements, e. g. those with an uncertainty above a given threshold. The
possibility of having two hypotheses describing the same robot must also be
considered. This effect is detected by using a heuristic derived from the limits of
the used image processing approaches: Two hypotheses H1 and H2 whose means
µ1 and µ2 are located very close to each other can not be distinguished anymore
by robot percepts in a reasonable way. These two hypotheses become merged,
i. e. they are viewed as a sum-of-two-Gaussians distribution and replaced by a
single Gaussian with the same mean and covariance. This is accomplished by

µn = w1µ1 + w2µ2 (9)
Σn = w1Σ1 + w2Σ2 + w1w2(µ1 − µ2)(µ1 − µ2)T (10)

where the relative weight of the two hypotheses is controlled by

w1 =
PH1(µH1)

PH1(µH1) + PH2(µH2)
, w2 =

PH2(µH1)
PH1(µH1) + PH2(µH2)

. (11)

4 Experimental Results

The approach described in this paper has been implemented using the framework
of the GermanTeam. Several experiments using an AIBO on an original Four-
Legged League field have been conducted. To demonstrate the improvement
of player position estimates by using the proposed modeling techniques, the
quality of hypotheses while sensing different robots at different distances has
been measured. One example is depicted in Fig. 4.

To demonstrate the capability to model several robots simultaneously as
well as assigning measurements to different robots of the same color, different
settings including a number of robots have been investigated (cf. Fig. 5). These
experiments included only standing robots due to a lack of adequate ground
truth data for moving robots.

The implementation of this approach has already been applied to a dynamic
scenario by the Bremen Byters team which built some tactical behaviors upon
the computed robot estimations and used these in a RoboCup competition.

5 Conclusion and Future Works

In this paper, the authors have shown that it is possible to compute accurate
position estimations of robots in the Four-Legged League. The low quality of
information that is caused by the low perceptual capabilities of the AIBO robot
may be compensated by applying sophisticated estimation techniques. The next
step will be to create a complete world model that includes the positions of all
robots on the field. Due to the limitations of a single robot, this has to be done
by communicating information among the robots in a team. The local models
described in this paper will be used as a foundation for such a global model.
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Fig. 5. An example with several robots. The large dots indicate the positions of the
hypotheses. The lines through the dots illustrate the uncertainty of the estimations
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4. Röfer, T., Laue, T., Weber, M., Burkhard, H.D., Jüngel, M., Göhring, D., Hoff-
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