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Abstract. Fall detection and fall prevention are crucial for humanoid
robots when operating in natural environments. Early fall detection is
important to have sufficient time for making a stabilizing movement. Ex-
isting approaches mostly analyze the sensor data to detect an ongoing
fall. In this paper, we use a physical model of the robot to detect whether
the measured sensor data indicates a fall in the near future. A trajec-
tory for the foot is calculated to compensate the rotational velocity and
acceleration of the fall. In an evaluation with the humanoid robot NAO,
we demonstrate that falls can be detected significantly earlier than with
traditional sensor classification with little false-positive detections during
staggering. Falls due to small to medium impacts can be prevented.

Fig. 1: Stepping motion to prevent a fall using the SSIP model.

1 Introduction

Humanoid robots are inherently unstable due to their small footprint compared
to the height of their center of mass (CoM) [24]. This is a problem widely en-
countered in locomotion generation for robots such as humanoid walking and
kicking. Even though there are many improvements in fall prevention and con-
trolled walking [7,26] robots are still at risk to fall due to obstacles, impacts, or
uneven/soft ground.



In order to prevent a humanoid robot from falling, two steps are necessary:
First, the fall has to be detected. Fall detection must be fast in order to have
sufficient time left to perform a counter-action. Furthermore it has to be robust
to false-positive detections to prevent the robot from initiating a counter action
when it is not necessary. To this time, fall detection is mostly achieved using a
form of sensor classification. In contrast to other existing methods, the approach
presented in this paper does not only classify sensor data to detect an ongoing
fall, but it rather determines whether the sensor data can lead to a fall in the
near future. A physical model is used to simulate the effect of the forces acting
on the robot. The model can be used to calculate whether the robot will be in
a stable or an unstable state. In case of an unstable state, the model calculates
how the robot will fall. This can be used to prevent the robot from falling over.

The main contribution of this paper is the development of a physical model
for a humanoid robot capable of describing the robot during a fall. We extend the
commonly used inverted pendulum model by a stand space and body dynamics
of the robot. Analyzing the common approach to use linearization for the non-
linear inverted pendulum shows that it is not feasible to describe a falling motion.
Therefore, we use an iterative model to simulate the dynamics of the robot.
This model is used to detect imminent falls and perform a counter motion. We
demonstrate that a fall can be detected significantly earlier in comparison to
traditional sensor classification methods. Falls due to small to medium impacts
to the robot can mostly be prevented using a lunge.

The paper is organized as follows: In Sect. 2, we analyze related work, followed
by the development of the physical model and functions in order to detect and
prevent a fall in Sect. 3. In Sect. 4, the evaluation of the developed approach is
described. A comprehensive discussion of the results is given in Sect. 5, followed
by the conclusion in Sect. 6.

2 Related Work

Fall detection is reliant on sensors such as inertia sensors and pressure sensors.
A classification of the sensor data into stable states and unstable states is a
common approach used in several works [17,18]. Such approaches are very robust
but detect falls rather late. A related approach by Höhn et al. uses pattern
recognition on the sensor data to detect specific patterns only present during a
fall [8]. Other approaches use a model to predict the expected sensor values. The
deviation between the expected sensor values and the real sensor values is used
for fall detection. Renner and Behnke model the expected sensor data using
sinusoidal functions [15]. In order to detect falls during layered motions, Tay
et al. [20] use interpolated sensor models based on body angles. Also machine
learning can be utilized for training a sensor model [10]. Latest approaches use
two-level classification neural networks in combination with regression to achieve
high levels of accuracy in fall detection and posture monitoring [1].

A general concept to evaluate the stability of humanoid robots is the Zero-
Moment-Point (ZMP) [21]. The ZMP is widely used to stabilize humanoid walk-



ing [7] and kicking [22]. However, Renner and Behnke [15] as well as Höhn et
al. [8] evaluated the ZMP as not being suited for fall detection. Also, the Foot-
Rotation Indicator (FRI) [6], was not applied to fall detection yet.

A common approach for the fall prevention is the integration into the gen-
eration of the walking motion [2,7]. Dynamic adaptations of the gait phases
leading to different step sizes and step durations are able to compensate small
impacts and irregularities such as an uneven floor. An extension to this approach
is the calculation of a specific point for the foot placement. The Capture Point
(CP) [14] and the Foot-Placement-Estimator (FPE) [23] both rely on this ap-
proach. Most of these approaches use an inverted pendulum model as a basis.
Zhao et al. [27] argue that this model does not model important dynamics of
the hip and the ankle as well as the ground reaction force. They developed a
hip-ankle and bent-knee strategy to deal with instabilities [11]. A combination
of both strategies with machine-learned weights is used by Yi et al. [25].

Mao et al. argue that the Capture Point approach is not feasible for practical
use. They developed a continuous step controller [13] that counters the instability
with a series of steps. In order to deal with uneven ground, Lee and Goswami [12]
developed a moment-based controller that uses the ground reaction force and the
center of pressure minimizing the torque on the foot. An extension is the reactive
stepping controller [26] modeling the robot as a turning wheel. In contrast to
the CP and FPE, a specific target point for the foot can be calculated and it is
not necessary to continuously update the target point to a position further away
from the origin. This is especially helpful performing a controlled motion on a
pre-calculated trajectory.

3 Approach

In order to prevent a humanoid robot from falling, a fall detection method is
required, capable of robustly detecting a fall as early as possible. This is necessary
to have enough time left to perform a counter-motion. All related work uses
some kind of classification of sensor data in order to detect specific patterns
only present during a fall. These approaches only detect a fall when it is already
in progress. Analyzing a falling motion of a humanoid robot, multiple stages
can be identified. An event that brings the robot into instability accelerates the
upper body of the robot. The stand space (convex hull of the foot/feet on the
ground) generates a counteracting force reducing the acceleration of the upper
body. In this first stage, it is not clear whether the robot will only stagger or fall
down. If the upper body acceleration is too strong, the robot will fall. Otherwise
it will only stagger, which should not be detected as a fall. Therefore, all other
approaches do not classify this stage as falling, because it is not clear yet whether
a fall will happen or not.

To detect a fall as early as possible, it is already necessary to evaluate whether
a fall will happen later on in this first stage. In order to make a statement whether
the measured sensor data will lead to a fall in the future, it is necessary to
calculate how they will effect the robot. This task is done using a physical model
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Fig. 2: Schematics for the inverted pendulum model (left) and the extended Stand
Space Inverted Pendulum Model (right).

of the robot applying the measured accelerations and velocities. The Linear
Inverted Pendulum model (LIP) models the movement of the robot’s CoM as a
3-dimensional linear inverted pendulum [9], see Fig. 2. An inverted pendulum is
suited to describe a falling robot as falling is a rotational motion around the edge
of the foot. However, the simplified LIP model is not suited to model the robot
during a fall for two reasons: First, the stand space of the foot, which generates a
counteracting force to the fall, is not considered. In addition, all forces generated
by the joints of the robot are also not integrated into this model. Second, the
non-linear pendulum equations cannot be calculated directly. Therefore, they
are linearized in this model. Linearization is done by the assumption that either
sin(α) ≈ α for small values of α or the height of the pendulum mass from the
ground is constant [7]. When generating upright motions such as walking, these
assumptions can be made. In the case of modeling a fall however, they are not
valid. As linearization is not an option and precise modeling is necessary, we
develop an iterative model using a numerical approximation of the non-linear
differential equation with the Euler integration.

3.1 Stand Space Inverted Pendulum Model (SSIP)

In order to design an iterative inverted pendulum model, we develop a function
for the angular acceleration θ̈ ∈ R3 of the CoM. Such a function can be defined
using the torque τ ∈ R3 acting on the base of the pendulum. It uses the vector
r ∈ R3 of the lever arm of force, the linear force F ∈ R3 produced by the mass



m, and the gravity g ∈ R3 as well as the inertia tensor I ∈ R3x3.

τ = r × F (1)

τ = I θ̈ (2)

I θ̈ = r × (m g sin(θ)) (3)

θ̈ = (r × (m g sin(θ))) · I−1 (4)

Only the tangential part of the gravity is acting to rotate the mass, which is
dependent on the deflection θ ∈ R3 of the pendulum, see Fig. 2. An iterative
term for the angular velocity θ̇ ∈ R3 and the deflection can be defined using
Euler integration.

θ̇n+1 = θ̇n +4t · (r × (m g sin(θ))) · I−1 (5)

θn+1 = θn +4t · θ̇n+1 (6)

Iterating Equations 5 and 6 with a small 4t give a precise approximation of the
rotational motion of the pendulum. However, this model cannot assert whether
the robot will fall anyway. Therefore, we integrate the stand space of the robot
given by its feet. The pendulum has a plate attached to the bottom and the
point of rotation moves to the edge of this plate, see Fig. 2. The plate generates
a stabilizing torque counteracting the tangential part of the gravity which is
responsible for the angular motion of the pendulum and the respective fall of
the robot. We can define this counteracting torque τstand using the vector from
the origin of the foot to the point of rotation on the edge of the foot l ∈ R3 and
the gravity. But the lever arm of force l is dependent on the deflection of the
pendulum.

τstand = (lG − l1)× g (7)

τnet =
∑
i

τi (8)

θ̈ = (τfall + τstand) · I−1 (9)

The length between the projection of the gravitational force into the stand space
and the edge of the stand space defines the acting part of the the stabilizing
torque’s lever arm of force, l2. Using the length r and the deflection of the
pendulum, we can calculate the inactive part l1. By subtracting l1 from the
whole length of the stand space in the direction of the fall, we can obtain the
acting part l2, see Eq. 7.

Utilizing the fact that the net torque can be defined as the sum of all indi-
vidual torques acting around an axis, see Eq. 8, we can sum up the stabilizing
torque and the one responsible for the fall and integrate them into Eq. 9.

This extended model could already give an indication whether the robot
will fall, when initialized with the measured sensor data and then iterated. But
the robot might perform a motion while getting into instability. Such motion
generates an additional torque that can amplify or counteract the falling motion.



Therefore the torque generated by the motion of all joints of the robot in respect
to the rotation point at the edge of the foot has to be calculated.

The inverse rigid body dynamics [5] describes the problem of calculating the
torques based on the kinematics (motion) of a body and the body’s inertial
properties. A model of the robot’s rigid body given by the mass and moment of
inertia of all body parts and how they are connected is needed. In addition with
the generalized angular positions (q), velocities (q̇), and accelerations (q̈) of all
joints, the inverse dynamics can be defined as τ = ID(model, q, q̇, q̈). In order
to calculate the inverse dynamics, the recursive Newton-Euler algorithm is used
in this work.

θ̈ = (τfall + τstand +
∑
i∈N

τi) · I−1 (10)

θ̇n+1 = θ̇n +4t · (τfall + τstand +
∑
i∈N

τi) · I−1 (11)

The obtained torques for each joint i around the axis orthogonal to the fall
direction can be summed up and added to Eq. 9, resulting in Eq. 10. The sum
of torques around the fall axis can be used to calculate the complete rotational
acceleration acting on the robot. This can be used to form the final iterative
model (Eq. 11) using Eq. 5 and 6.

Initializing this model with the measured angle and angular velocity of the
robot and iterating it will either provide an upright stabilizing pendulum mo-
tion or a rotational pendulum motion. We can decide whether the robot will
fall directly based on this simulation. When the Stand Space Inverted Pendu-
lum model will fall, also the robot will fall down approximately following the
simulated motion.

3.2 Fall Prevention

In order to prevent the robot from falling, one or more steps are necessary [19].
Orienting towards a human model, a dedicated long-range step is most promis-
ing. Performing such a step requires one foot to keep contact to the ground, and
one to perform the stepping motion. Deciding which foot performs which task
is dependent on the direction of the fall and the current position of the feet. If
one foot is already in mid-air, it is used to perform the step. If both feet are on
or close to the ground, the foot in the direction of the fall has to keep contact
with the ground as the point of rotation is at its edge.

Such a step should meet two requirements in order to prevent the fall. The
rotational acceleration as well as the rotational velocity have to be compensated
to stop the rotational motion of the fall. Regarding the first requirement, we can
refer to the inverted pendulum model, see Fig. 2. The rotational acceleration is
caused by the tangential part of gravity, which depends on the deflection of the
pendulum. It is no longer accelerated if the base is positioned directly under the
CoM. This can be achieved by placing the stepping foot directly under the CoM,
which will then become the base of the pendulum.



Calculating the target position for the foot can be done using the motion
of the robot’s CoM over time calculated by the model. For convenience, we can
define the iterative SSIP model as a closed function θt = SSIP (θ0, θ̇0, t). This
can be used to calculate the position of the CoM P at time t using the Rodrigues
formula Rot() [3] and the CoM in upright position CoM0, see Eq. 12.

P(t) = Rot(SSIP (θ0, θ̇0, t)) · CoM0 (12)

T (t) = TPOR→Robot ·

 P(t)x
P(t)y

footheight

 (13)

Equation 12 gives us the position of the CoM at time t with respect to the point
of rotation (POR). As we know the point of rotation at the edge of the foot, we
can transform the function into the robot coordinate system in order to actuate
the joints using inverse kinematics [17]. As the foot should be positioned on the
ground with its sole, the height of the last joint from the sole footheight is used
as the z-coordinate.

In addition to the rotational acceleration, the rotational velocity has to be
compensated as well. We could actuate a joint in the opposite direction using the
acceleration to compensate the velocity. But as motors often cannot be actuated
precisely, this could cause another instability. Therefore we propose a different
strategy: If the CoM has a deflection in the opposite direction of the fall when
the stepping foot makes contact with the ground, the acceleration caused by the
deflected pendulum and the rotational velocity of the fall can cancel each other
out. This leaves the question of how much the pendulum has to be deflected in
order to compensate the rotational velocity completely and coming to a stop in
the upright position.

Making the simplifying assumption that the falling motion started in an al-
most upright position of the CoM, we already know which deflection is necessary
to compensate the velocity. It is the current state of the pendulum in the op-
posing direction. Such a deflection could be achieved by doubling the distance
of the target position of the foot from the POR. But when the stepping foot
makes contact with the ground, its stand space will also compensate a part of
the velocity. We do not have to calculate how much rotational velocity it will
compensate, but rather how much we can reduce the deflection while still being
in a stable state. As the projection of the gravitational force acting on the CoM
has to be within the stand space, see Sect. 3.1 and Fig. 2, in order to still be
stable, we can calculate the deflection using tan−1 lG

r .

D(t) = Rot(SSIP (θ0, θ̇0, t)− tan−1
lG
r

) · CoM0 (14)

T (t) = TPOR→Robot ·

D(t)x + P(t)x
D(t)y + P(t)y
footheight

 (15)

Instead of doubling the distance between the POR and the target position, we
can define a second function for the target position integrating the deflection



Fig. 3: Experimental setup

that will be compensated by the stand space, see Eq. 14. By adding up both
target positions before transforming them into the robot’s coordinate system,
we can achieve a taget position for the foot that will compensate both rotational
acceleration and velocity, see Eq. 15.

A trajectory for the stepping foot can be computed using the function T (t)
from Eq. 15. Figure 1 visualizes the trajectory with the reachable poses in green
and non-reachable parts in red. In order to keep the robot stable on the foot after
the step, an additional closed-loop PID controller for the hip and knee joints is
used. A controlled transition into the stand is used to bring the robot back into
a standard operation state.

4 Evaluation

A series of experiments was performed to evaluate the method developed. The
algorithms described were implemented for the humanoid robot NAO [16] using
the B-Human code release [17]. All experiments used this robot and shared the
same setup (cf. Fig. 3). A controlled impact to the upper body of the robot was
generated using a padded weight of 800g attached to a cord of 1m, which was
fixated above the robot. The weight was deflected to different angles to produce
impacts with varying strength. For each deflection set, impacts from four sides
(left, right, front, and back side of the robot) were tested with five repetitions
each. For the evaluation of the fall detection, two types of experiments were
performed: A general functionality test (a) evaluating the correct detection of
the state the robot is in. The second experiment (b) compared a traditional
sensor classification method used by the team B-Human [17] with the method

Table 1: Results of the fall detection functionality experiment (5 trials each).
impact walking (trivial) small, no fall medium, no fall strong, fall very strong, fall

impact direction f b l r f b l r f b l r f b l r f b l r

detection rate in % 100 100 100 100 100 100 100 100 0 20 60 40 100 100 100 100 100 100 100 100



Table 2: Results of the fall detection comparative experiment (5 trials each)
impact 45◦ (strong impact, fall) 60◦ (very strong impact, fall)

impact direction f b l r f b l r

traditional sensor classification (ø±σ in ms) 625.2 ± 11.1 729.2 ± 15.5 639.2 ± 8.1 636.2 ± 5.4 667.2 ± 8.7 355.0 ± 17.6 349.0 ± 12.3 338.3 ± 12.4

model-based fall detection (ø±σ in ms) 153.0 ± 5.9 201.4 ± 7.0 226.8 ± 6.7 228.6 ± 4.9 100.8 ± 4.9 104.6 ± 4.7 126.0 ± 5.8 111.8 ± 5.7

mean difference in ms 472.2 527.8 412.4 408.0 266.4 248.4 223.0 226.5

presented in this paper. For the fall prevention, an additional functionality test
(c) was done. The results of all experiments can be reviewed in Tab. 1–3. All
experiments were performed with an impact of different strength indicated by
the displacement of the pendulum and from the different directions front (f),
back (b), left (l), and right (r).

For the functionality test of the fall detection (cf. Tab. 1), four different
impacts with increasing strength (two led to staggering, two led to a fall) were
tested in addition to the trivial case of normal walk without an impact. 80 passes
were performed in total. In the cases of trivial walking and staggering due to
small impacts, the state was correctly classified as stable. Also the cases that led
to a fall due to strong and very strong impacts were correctly classified as a fall.
Only in the case of strong staggering due to a medium impact, the detection
rate dropped to a value between 60% and 0%.

The comparative experiment for the fall detection was performed with two
types of impacts (45◦ and 60◦ weight deflection), both led to a fall. The time
between the impact and the detection of a fall was measured. The results are
presented in Tab. 2. For all eight types of impacts (four sides times two different
strengths, 40 passes in total), the method presented in this paper was able to
detect the fall significantly earlier (t-Test with p < 0.001). This resulted in earlier
detection between 408ms to 527ms for the strong impacts and between 223ms
to 266ms for very strong impacts.

The evaluation of the fall prevention was performed with three different
strengths of impact (45◦, 55◦ and 65◦ weight deflection). All impacts would
have led to a fall without a counter-motion. Table 3 shows the results for all 60
passes of the experiment with the rate of successfully achieved fall preventions.
For a weight deflection of 45◦, the fall could be prevented for almost all passes
(18 of 20). With increasing strength of impacts, the successful fall preventions
dropped to 7 of 20 for the deflection of 55◦ and to 3 of 20 for the deflection
of 65◦. It is to note that impacts from the front, which led to a backwards fall
of the robot, could be generally prevented much less than from the other sides
whereas impacts from the sides could be prevented better.

Table 3: Results of the fall prevention functionality experiment (5 trials each)
impact 45◦ 55◦ 65◦

impact direction f b l r f b l r f b l r

fall prevention rate in % 60 100 100 100 0 20 60 60 0 0 40 20



5 Discussion

The approach developed in this paper uses a physical model of the humanoid
robot in order to calculate the effects of sensor data towards the future motion
of the robot and if this motion represents a fall. We argued that this approach
should be able to detect a fall earlier than traditional classification of sensor data.
The results of the comparative study (b) confirm this assumption, detecting a
fall between a quarter to half a second earlier than the method used by the
team B-Human in the RoboCup. It is to note that this is a comparison to a
single specific approach and the findings cannot be generalized without further
evaluation. However, Renner and Behnke [15] define the forewarning time as a
criterion in their evaluation. The forewarning time is the duration between fall
detection and the robot’s body reaching 25◦ deviation from the upright posture.
This deviation is also the criterion detecting forward and backward falling in
the B-Human system. Therefore, the mean difference values from Tab. 2 are
comparable to the forewarning times reported by Renner and Behnke. The times
their method achieved is 500–600ms, but under the assumption that the robot
is executing a regular walk movement, which is exploited by their approach. In
addition, most of their attempts would not have brought the robot to a fall even
without a fall prevention, so they were definitely not comparable to the very
strong impact category here, where the advantage of the new approach over the
old one is smaller.

The functionality evaluation (a) revealed that when the NAO is heavily stag-
gering (medium impact) but not falling, this approach falsely detects a fall. These
false positive detections most likely originate from deviations between the model
and the NAO robot. Hardware limitations of the NAO such as imprecise inertia
and joint angle sensors and strong joint play in the leg joints are likely to produce
a deviation from the model. Furthermore, the NAO does only provide joint angle
measurements, but not the joint velocities and accelerations needed to calculate
the inverse dynamics used in our model. Joint velocities and accelerations are
therefore calculated by a motor model [4] and only give approximated values.
These reasons indicate why false-positive measurements are likely.

The results from the evaluation of the fall prevention (c) show a distinct drop
in the rate of successful fall preventions between 45◦ and 55◦ weight deflection.
In the first case almost all falls could be prevented whereas in the latter less than
half of of all passes were successful. This can be explained by the fact that the
leg motors of the NAO are too slow to reach the position necessary to prevent
the fall. During the experiments, we observed that the leg which should be at
least positioned under the CoM was not able to reach this position before the fall
was no longer preventable. We argue that the rate of successful fall prevention
could be improved for strong pushes using a hardware platform with superior
motors for the leg joints. In general, pushes from the front could be prevented
worse than others. This relates to the fact that the actuation limits of the NAO’s
legs are more restricted to the back than to the front. Overall, falls to the side
could be prevented better, which affiliates to the moment of inertia of the robot.
Rotation to the front and back are more accelerated than to the sides.



Concluding our findings, the presented approach is capable of detecting fall
earlier than the method we compared to and prevent falls in limitation to the
capabilities of the hardware. The main limiting factor is the hardware of the NAO
that was used for the evaluation. In future work, we would like to generalize our
findings using a superior hardware platform. In addition, we could model the
robot in more detail if sufficient computation power is accessible to iterate the
model, potentially further improving the results.

6 Conclusion

This paper presents a novel approach for fall detection and prevention for hu-
manoid robots. We developed an iterative model based on the inverted pendulum
and extended it with a stand space and the body dynamics of the robot. The
model is used to simulate the effects of acting forces on the robot measured by
sensors. If the simulated motion represents a fall, a counter-motion is performed.
The trajectory for this motion is also based on the future states of the robot’s
CoM calculated by the model. We demonstrate that this method can detect a fall
significantly earlier than traditional methods. The practical use is limited by the
hardware of the robot, but this approach is promising for robots with accurate
sensors and precise joints. With improved computational power, a more precise
model can be used to potentially obtain even better results.
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