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Abstract. In this paper we introduce an online object manipulation
system for the NAO robot that is able to detect and grasp an object
out of a human hand and then give it back in real-time. Known objects
are rendered from 3D models and detected stereo contour-based by us-
ing a new stereo vision head for NAO. In order to grasp objects, motion
trajectories are generated by an A* planner while avoiding obstacles. In
order to safely release objects back into a human hand, a combination
of tactile and force sensors of the carrying arm is used to detect whether
someone touched the grasped object. We performed quantitative experi-
ments in order to evaluate the quality of the detector, the time to grasp
an object, as well as the number of successful grasps. We demonstrated
the whole system on the real robot.

Keywords: stereo vision object detection, online grasp motion
planning.

1 Introduction

The aim of the GRASPY project is to make a small move towards the integration
of humanoid robots in our everyday life. In a visionary scenario a small humanoid
robot could be a personal assistant that not only is able to organize contacts
and emails but also could support a person physically by getting objects for him.
This would be especially interesting if a person is not able to get the object for
himself. In the scope of this project we wanted to investigate what is necessary
to allow the humanoid robot NAO [1] to have this functionality.

In this paper we present an online object manipulation system that is an
extension of our previous work [2]. It not only combines a new stereo vision
head for NAO with an object detector and an updated version of our grasping
function, but also includes the releasing of the object. The objects to grasp are
ones that can be completely clasped by the robot’s fingers and palm. We focus
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on small objects or objects with a handle, for instance a light standard-sized
coffee cup or a pencil.

The first step of the general procedure is to detect the object. Thereby edge de-
tection is performed on the left and right stereo images by computing a contrast-
normalized Sobel (cns) image instead of using color segmentation as in the work
of Azad et al. [3]. Afterwards the contrast images are used to recognize the ob-
ject by evaluating a range of possible object poses. The detected object is given
to the grasp planner as a 6D pose.

The next step of the procedure is to decide whether an object can be grasped.
By doing so, possible grasp hand poses as well as possible body positions are
evaluated by using a pre-calculated workspace. Once a possible hand grasp pose
is found, a motion path from the current hand position is planned using an
A*-based algorithm. In contrast to the work of Cotugno and Mellmann [4], who
use both arms to emulate a big two-finger gripper, but do not use NAO’s real
fingers, the grasping function proposed in this paper plans and executes actual
single-handed grasps. At last, the resulting path is approximated by a Bezier
curve and then executed by a trajectory based motion engine.

Because our system uses speech recognition, which is a part of NAO’s standard
software package, the robot is able to react to spoken commands. Therefore the
robot is able to wait and hold a grasped object until someone asks him to release
it. The releasing itself is the last part of our procedure. Thereby the robot uses a
combination of tactile and force sensors of the carrying arm and detects whether
someone touched the grasped object in order to start a safe object handover.

2 Related Work

A vast number of online manipulation systems can be found in the RoboCup
@Home League [5] where robots — among other assignments — have to manage
different grasp and detection tasks. One participating team is the German b-it-
bots with their robot Jenny [6] from the Bonn-Rheine-Sieg University of Applied
Sciences. Jenny is equipped with a 7 DOF arm and a three finger hand with at
least one motor per finger. The robot categorizes objects with a so-called Bag of
Features [7] approach that relies on the extraction of locally invariant features.
In 2012, the robot Jenny demonstrated its ability to clean a room. In particular
the robot was able to pick up bottles in order to insert them into a stash as well
as it was able to wipe tables.

Another online manipulation system can be found in the work of Stiickler
et al. [8], where the robot Cosero from the University of Bonn uses a RGB-D
camera to recognize and track objects on a table in real-time. Thereby the main
horizontal support plane, i.e. the table, is distinguished from object candidates
by the RANSAC [9] algorithm that is applied to a 3D point cloud similar to the
work of Rusu et al. [10]. Feasible collision-free grasps are derived based on the
work of Hsiao et al. [11] from the point cloud. The robot Cosero is equipped with
two two-finger hands (2 DOF), two 7 DOF arms and an Intel I7 processor, which
provides a much higher performance than NAQO’s Intel Atom processor. At the
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RoboCup 2011 the robot demonstrated its ability to carry a table together with
a human [12] as well as its ability to cook an omelet in a real pan.

In the work of Kuffner et al. [13], a full body motion planner plans a dynam-
ically stable motion in the configuration space using rapidly-exploring random
trees. It enables a robot to collision-free pick up a bottle that is placed under a
table. Based on that approach Burget et al. [14] are using an external computer
to plan full body grasp motions that enables NAO to open a drawer door. Since
this solution requires a long calculation time before a motion is executed, it does
not appear to be suitable for grasping objects out of a human hand.

In general most motion planners are operating either in Cartesian or in con-
figuration space. While motion planners in configuration space as in the works of
Kavraki et al. [15] and Harada et al. [16] are able to guarantee a solution given
there is one, planners in Cartesian space as in the approach of Vahrenkamp et al.
[17] are incomplete and difficult due to redundant kinematics. However, the in-
tegration of obstacle avoidance into a path planner operating in Cartesian space
is simpler than in configuration space.

Furthermore, motion path planning in Cartesian space can be a very expensive
process particularly when the grasping hand is attached to a humanoid robot,
which can move in order to reach certain objects. Thus, the reachability needs
to be checked by inverse kinematics for many points in order to select a suitable
grasp and to validate the reachability along the path. This process can be speed
up best by a pre-calculated table as the capability map of Zacharias et al. [18,19].
In our work we use the predefined workspace to solve redundant kinematics as
well as the reachability along the motion path, which enables our motion path
planner to quickly operate in Cartesian space.

Stereo vision based object detection as well as online grasping with NAO
constitute as particular problems due to the limited processing power and the
under-actuated hand design [20]. While more sophisticated robots have fingers
that are controlled by at least one motor per finger, NAO’s three flexible fingers
per hand are controlled together by a single motor (1DOF). Additionally only
if the hand is completely closed the fingers are really stiff. Because of that the
hand can realistically only be in the states open or closed. Hence, experiments
showed that solid objects such as coffee cups are only graspable if the grasp
is form-closure [21]. Furthermore, it seems that performing force-closure single-
handed grasps are not possible with NAQ, since it is not able to move its fingers
individually [22].

3 Stereo Head

The original head of NAO is equipped with two cameras: one in its forehead
and one in its chin. This configuration results from the requirement of having a
camera oriented upwards to detect people around NAO and another one oriented
downwards to detect objects such as a soccer ball on the ground. Because the
fields of view of the cameras in the original head design do not overlap each other,
stereo vision is impossible with that approach. For the needs of the GRASPY
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Fig. 1. New positions of the cameras for the stereo head

project, Aldebaran developed a new head with a more natural configuration: the
two cameras are positioned in the eyes (Fig. 1). Thereby we selected a different
camera model (Aptina MT9M114 [23]) with a higher resolution (1,3 MPixels),
a wider field of view (72°) and a better sensitivity (2,24 Lux/(V.sec)) than the
previous sensor used in NAO. This new positioning of the cameras in the eyes
of NAO required us to suppress the colored LEDS in the eyes. We have to see
how we can regain this important feature for man robot interaction in future
versions of the stereo head.

The wide overlap (Fig. 2) of the two cameras offers the ability to perform
stereo vision in front of the robot. The other major improvement required for
stereo vision was the possibility to allow the synchronous acquisition of the two
camera images. With the original head design, the application has to select
between using the picture from the upper or from the lower camera. This hard-
ware switch is necessary because there is only one video input on the embedded
GEODE CPU. With two video inputs, switching between them would require
more than 500 ms. As soon as the robot or the environment moves, this delay is
generally too big to have a comparison of the two images usable for stereo vision
computation.

In the new architecture of NAO’s head, we have implemented an FPGA com-
ponent that makes the acquisition of the two video streams and sends them via
an I2C bus to the ATOM CPU. The delay between two acquired images is less
than 33 ms. We are currently working on a hardware synchronization of the two
cameras to reduce this delay below 1 ms, but for the GRASPY project we had
a delay of up to 33ms. This was reasonable considering the speed of the object
to grasp.
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Fig. 2. Overlap of the fields of view with the stereo head

4 Stereo Contour-Based Object Detection

In computer vision there is the general insight that taking hard decisions early
impairs robustness. Examples for that are pixel-wise color segmentation or Canny
edge detection followed by line segment extraction followed by object detection.
Instead, one should take a decision only after considering all relevant input data,
in our case the whole stereo image, assessing which interpretation is overall most
supported by the data. Compared to mono, stereo gives a better depth percep-
tion, and following the above paradigm we do a combined search in both images,
not separately.

The first step of our detection is rasterization, i.e. rendering the object in a
given hypothetical pose from the perspectives of the left and right cameras. The
result is a 2D contour, i.e. a function [0...1] — R2. The second step is contour
evaluation, i.e. computing a response how much the contour is supported by
the image. Its definition has already been described in detail in our previous
work [2]. Based on this goal function, an optimizer searches through the space
of possible poses, finding the cup pose with the largest response.

4.1 3D Object Search Process

Rasterization. The rasterization (Fig. 3) takes a triangle mesh as 3D object
model, a camera calibration, and a hypothetical object pose as input and renders
the contour of the object at the given pose as viewed from the camera. The first
step is to determine which edges of the model form the contour. At the moment,
we go through all edges and select those where one adjacent face is viewed from
the front and one from the back. This does not consider global occlusion, an
extension that could be implemented in the future. As a special rule, faces can
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Fig. 3. Dataflow overview of our stereo contour-based object detector
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be marked by a color label and edges between visible faces of different labels are
also added.

Next, the vertices involved are perspectively projected into the image in an
SSE implementation. The projection ignores distortion, which is ~ 1 pixel only
for NAO. The precomputed edge list is sorted such that projected vertices can
be used twice.

Global Search Heuristic. The textbook solution for global object search
would be to find the maximum response of all poses within the grasping space
(6DOF). However, this is computationally beyond scope. Instead, we use an
application-specific heuristic. We search only for a single cup orientation by as-
suming it is roughly vertically aligned and by removing the handle, making it
rotationally symmetric. This orientation is obtained from the robot’s forward
kinematic.

For the position, we go through the image in patches of 64 x 48 pixels and ras-
terize the cup at several positions along the center pixel’s ray. For each contour,
64 x 48 responses are computed and the largest overall response is refined.

Then, the cup rotation is determined by evaluating the response of several ro-
tated cups with handle. Finally, the full model is refined. If the response exceeds
a threshold (0.65), we switch to tracking mode. If the response in tracking mode
falls below 0.5 for 15 frames, we switch back to the global search.

The global search takes =~ 320ms, so we spread it over several frames, evalu-
ating only between one and two 64 x48 blocks in each frame (13-26ms).

Local Search (Refinement and Tracking). During local search, the opti-
mizer (Fig. 3) changes the pose towards growing responses. This procedure is
used for tracking as well as to refine a coarse initial pose obtained by our global
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search heuristic. We use the simple approach to optimize DOFs round-robin one
at a time, although there are of course more sophisticated optimization algo-
rithms. However, we exploit that the response computation provides an array of
8 x 8 respounses for shifted contours (2D translation).

So, to refine one DOF, we compute 8 x 8 responses around the original pose,
around a pose changed on step in the considered DOF, and around the inversely
changed pose. The subpixel-refined maximum of these 3 x 8 x 8 responses defines
the new pose. Therefore the image translation must be converted into a change
of pose. This is approximated by a rotation of the object around the camera
which moves the object’s center in the image according to the obtained image
translation.

As image translation is already covered, the 4 remaining DOFs are translation
in viewing direction and object rotation around X, Y, and Z (skipped in case of
symmetry). The step size is roughly determined to create 3 pixel changes in the
image based on object size and distance.

We noticed that the convergence is fairly robust (Sec. 6.3). This motivates to
use only one orientation in the global search.

5 Object Manipulation

On the motion side there are two tasks to solve: grasp an object from a human
hand and give it back if the human asks for it. In order to grasp an object, we
need to calculate a valid motion path from the hand position to the target and
avoid obstacles such as the object itself or body parts that may be in the direct
path. By doing so we were using the grasp planner of our previous work [2].
Because we had problems with the overlap of detection and grasp space, we
modified our old planner to calculate possible body positions online so that the
grasp space can be increased without increasing the calculation time. We also
added a least-square Bezier fit algorithm in order to smooth the planned way
points and increase the execution speed.

The releasing task is to transfer an object to the human hand once a human
asks for the object. Thereby, we are using a sensor feedback solution in order to
detect whether it is safe to release the object.

5.1 Object Grasping

As described in more detail by Miiller et al. [2] our grasp motion planning ap-
proach is based on a predefined reachability map. This reachability map is a
discretization of the workspace with a cube that is divided into equally sized
smaller cubes. Each sub cube serves as a region in the workspace. Each region
stores a set of reachable lower arm directions for that position (1 DOF).
Thereby we use 4 of the 5 DOF of NAO’s arms to define a certain hand
pose, and handle the wrist-DOF later. This leaves only one DOF of four for the
lower arm direction while a fixed hand position is commanded, less than the
two possible DOF. The fifth DOF represents the wrist angle and has only minor
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. /
(a) Reachability Map (b) Grasp Path

Fig. 4. (a) The best reachable regions are marked in red, less well-reachable regions
are marked in blue, and badly reachable regions are marked in green (b) The linear
interpolated motion path of the hand and the elbow with obstacles present

influence on the planning. Because the wrist rotation can be calculated later
from the lower arm direction and the joint limits, we only need to store a set of
possible lower arm directions per region instead of a set of full hand orientations.
Figure 4(a) pictures the reachability map used, where only reachable directions
per region are marked.

According to that, the reachability of NAO’s hand is clearly very limited and
the lower arm direction depends on the hand position. For that reason it is
necessary to check for each grasp pose and each point on a motion path whether
it can be reached. This leads to the problem that a large number of reachability
checks are necessary for motion planning. This can be sped up best by predefining
the workspace in a reachability map.

The origin of the reachability map is located in the shoulder of the robot.
Thus, it is possible to test with different shoulder positions whether a certain
hand position is reachable without the use of inverse kinematics.

Grasp Motion Planning. The first step of the grasp planning is to evaluate a
range of grasp poses by using the map. Once a reachable grasp pose is found, the
grasp planner plans a path through the grid cells of the map. The reachability
map provides the planner with 6D information on the possible hand positions
and lower arm directions. Since planning in 6D is very expensive, our A*-based
planning algorithm initially only uses the 3D area grid and considers the lower
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Fig. 5. Each object has its own grasp map, which is generated from a set of predefined
grasp rules. Each rule connects a range of lower arm directions to a grasp position
(blue). The reachability map (red) is matched to the object’s grasp map. Matches are
marked yellow.

arm direction only via the cost and heuristic function. Thereby, to be evaluated,
nodes are checked for reachability and obstacle collision in order to calculate
the heuristics only for verified nodes. In this process, nodes with more suitable
lower arm directions are rated better than nodes with greater deviations from
the lower arm goal direction. Also the distance between the node evaluated and
the goal node in 3D are taken into account.

The output from the planning algorithm is a list of waypoints through the
reachability map, which are represented as red dots in Fig 4(b). Since there is
a dependence between the hand positions and the directions of the lower arm,
a waypoint also includes a direction. Each direction defines the elbow position
corresponding to the waypoint and is marked by red lines in Fig 4(b). The final
hand orientation is defined by the grasp selection rules as described in the next
section and is calculated from the lower arm direction, forward kinematics, and
the object pose.

Grasp Selection. In our previous work we selected grasps by testing with a
certain amount of predefined body poses, i.e. shoulder positions, whether the
resulting reachability map matches with a set of predefined grasp rules. Those
grasp rules indicate how an object can be grasped in order to find a suitable
grasp point on the object. Each rule is defined by a grasping point and a range
of lower arm directions and final hand rotations relative to the object. In Fig. 5,
grasp rules are marked with blue triangles. The green dots constitute the position
where to grasp and the triangle defines a range of lower arm directions.

In order to select a grasp, the grasp rules are matched with the reachability
map. In this process, areas that include a grasping point are examined further



186 J. Miiller et al.

Fig. 6. Schematic depiction of the body pose calculation, M represents the reachability
map, O the map origin, R; the region of similar cells of the map, C1 the summed center
of a region and d is the translational offset between current and target position G

in order to check whether the corresponding possible lower arm directions are
qualified for the grasp. In this process, the possible lower arm directions of the
grasp areas are compared to the angle ranges from the grasp rules. The best
match is selected.

In our previous approach the search space increases with the amount of pre-
defined body poses and can slow down the planning process. For that reason we
investigated — similar to Zacharias et al. [19] — each region in the reachability
map in detail.

Since the DOF of NAQ’s arms are very limited, we discovered that we have
certain ranges of regions that are very similar to one another, mostly cone-
like. So in our new approach, we calculated a fixed amount of center points of
similar regions. These center points are used to calculate the body offset between
the grasp points defined by the grasp rules and the current body position as
it is demonstrated in Fig. 6. The body poses are calculated online by inverse
kinematics for a fixed amount of positions. In doing so, we were able to keep the
calculation time constant but could increase the grasp space heavily — especially
for the highly reachable regions.

Since the robot has two arms, each body offset is calculated for each arm
respectively. Thereby body positions, which lead to shorter distances between
hand and grasp pose, are rated inferior.
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Motion Path Execution. In order to smoothly execute a motion path, it is
necessary to minimize the velocity discontinuities at the way points. This can be
done by approximating the way points with cubic Bezier curves instead of lines.

In our previous work, we were converting a found grasp plan into a Bezier
spline by using the method by DeRose et al. [24] in order to generate a trajectory
for our motion engine based on the work of Miiller et al. [25]. In that approach
we connected each way point to the next with a cubic Bezier curve using a fixed
duration for each sub curve. Although the smoothed path was free of velocity
discontinuities, we discovered the problem that sub curves that were short in
distance led to a slower movement than sub curves that were longer in distance.
As a result the hand accelerates and decelerates unnecessarily.

In order to overcome this problem, we added a least square Bezier fit method
as described by Itoh et al. [26] and Herold [27] in order to initially approximate all
waypoints with a single cubic Bezier spline. This method is using the percentage
of the length between each adjacent point of the path with equation

|di — di—1]
> ldj — dj-a]

to synchronize the points with the cubic Bezier curve function

t; =

(1)

B(t,C) = co(1 —t)® 4+ 3c1t(1 — £)? + 3eat*(1 — t) + c3t® (2)

with C' = [co, ¢1, c2, ¢c3]. The distance d; to the i-th point is defined by equation

di:Z|Pj_Pj*1| (3)
j=1

with do =0.
We used the residual sum of squares to calculate the error fit. In doing so, in
equation

n

E(C) =Y (i — B(t:,0))? (4)

i=1

we are summing the squared distance of each waypoint p; to its Bezier curve
approximation defined by the control points ¢q .. . cs.

By setting the derivative of Equation (4) equal to zero, the control points
C = [c, 1, C2, c3] with minimum error [28] can be found. With Equation (2) the
best fitting Bezier curve is defined.

Since the plan is recalculated in each frame, we need to consider that the path
changes even if parts of the old plan already had been executed. It is not possible
to change a Bezier curve B(t,C) after a certain t* without changing the whole
curve. For that reason we need to split the path at the next point that is to be
executed before a replanning is done. Hence we are splitting the path at t* by
using De Casteljau’s algorithm in two curves: already executed (ae(t) in Fig. 7)
and to be executed (be(t) in Fig. 7).
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Fig. 7. Schematic depiction of the curve splitting at ¢* during the path recalculation;
the initial curve from ag to G is splitted at the next position to be executed. The new
plan is approximated by *be(t) and connected with the already executed curve ae(t).

The last control point of ae(t) is used as new start point to replan the path to
the current goal point. The resulting way points are converted to a new Bezier
curve (*be(t) in Fig. 7) with the condition that the first two control points are
fixed in order to keep continuous velocities in the connection point.

Since a plan can be longer or shorter after the replanning, a duration update
is also necessary. In doing so, we calculate in each frame ¢ with equation

dpe(1)|
0 = 0j_1————— 5
Hdy)| )

the change of the path length. Thereby we multiply the previous remaining
duration 0;—1 with the ratio between the path length of the previous sub curve
be(t) (with path length dp.(1y) and the updated curve *be(t) (with path length

d*be(l))'

5.2 Object Releasing

The aim of the release function is to transmit the grasped object to the human
in a safe way. The safety mainly concerns the manipulated object that can break
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if it falls down during the transmission. But it can also concern the safety of the
human user: an elderly or immobile person, whom the balance can be unstable
or destabilized if the object he should get from the robot falls down during the
transmission. We wanted to make sure that the robot opens its hand when the
object is correctly caught by the human partner.

The main idea is to detect that the object is pulled from the hand of the robot
before releasing it. Because NAOs fingers are not equipped with force sensors,
it is not possible to detect the traction force applied by the user pulling the
object directly with the fingers. But the traction force is transmitted to the arm,
through the rigidity of the wrist. By reducing the stiffness of the arm joints, it is
possible to detect the traction force by an unexpected motion of the arm joints.
When the robot wants to give its object back, it monitors the position of the
arm carrying the object. As soon as this arm moves the robot detects that a
traction force is applied on the object and opens its hand.

Of course reacting to an unexpected force with letting go of the object is a
dangerous behavior. So we require the user to say “give it to me“ to put NAO
into object return mode and also NAO needs to detect the users hand. This
detection is made by one of the two modalities: tactile or vision. The robot
expects to see the hand of the user close to its own hand or detects with the
tactile sensor on the back of its hand that the user touches its hand. If one
of these conditions is fulfilled, the robot can safely open its hand to release
its object. To safely release an object in an intuitive way it appears that the
robot needs to combine four modalities of perception: audio (give it to me),
kinesthetic (unexpected motion of the arm), vision (detection of the hand) and
tactile (contact of the back of NAO’s hand).

When the robot is walking with the object in its hand to bring it to its user, it
may happen that the object slips from the fingers and falls. NAO is able to detect
this event as well thanks to its proprioceptive sensors. To grasp an object, NAO
tries to close its hand to its maximum closed position. Because the object does
not allow the complete closing the goal position of the finger is not reached. The
difference between the expected finger position and the actual finger position
indicates if the object has been grasped or not. If the robot, supposed to be
carrying an object, detects that its finger are in the maximum required closed
position, it means that the object is no more in its hand.

6 Experiments

The GRASPY experiment concerns the exchange of objects between NAO and
a human. The objects to grasp are cylinder-like objects such as a pen or a cup
with handles. The places where the robot should grasp them from should be
from a human hand or from a table.

The man machine interface is a simple dialog, in which the human tells NAO
to grasp a certain object. In case the object is reachable by the robot, NAO
confirms this and grasps it. If the robot has the object in its hand, the human
may tell it to give it back. Only if the robot has an object in one of its hands
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Fig. 8. (a) Depiction of grasp space when using only four fixed positions (b) Depiction
of grasp space when body position is calculated online

it offers it by speech and gesture to the human. Once the human touches the
object it will be released by the robot.

The evaluation criteria are the time to grasp an object, the number of wrongly
detected objects, and the number of successfully grasped objects. All experiments
were made on a Nao robot using its Intel Atom (1,6 GHz) processor with 1 GB
SDRAM.

6.1 Planning

We evaluated the planning algorithm with the new grasp selection function and
compared the results to the results of our previous work. In previous last work
we reached a calculation time of 20 ms per frame by using a heuristic and cost
function that combined the translation distance between the nodes and the goal
with the differences in the lower arm directions per node.

In our new experiment we used the same parameters and the same planner
with the extension that the body pose is calculated online. We calculated four
possible body positions per arm per frame and tested whether the object can
be reached. The average calculation time per frame is 21 ms, which is almost
the same as in our previous experiments but the amount of good regions in the
overall grasp space could be heavily increased as it can be seen in Fig. 8(a) and
Fig. 8(b).

6.2 Motion Path Execution

We also compared the execution of the smoothed paths. Thereby we recorded
the commanded hand position (c¢X,cY,cZ) and the measured hand position
(mX,mY, mZ) per frame.
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Fig.9. (a) Comparision of commanded and measured hand motion using our old
smoothing method and (b) using the presented least square Bezier fit method

Figure 9(a) depicts a motion path produced by the planner with the smoothing
method of our previous work. Although that path was converted into a Bezier
path there are a lot of passages where the commanded direction changes a lot.

Figure 9(b) depicts the commanded and measured hand motion of a similar
but slightly shorter motion path smoothed by our new method. The commanded
path is clearly straighter and the error between commanded and measured hand
position on the y-axis is smaller. The deviation on the x- and z-axis results from
the backlash of approximately +3° of NAO’s arm motors in combination with
the weight of the arm.

Due to the much straighter motion paths, we also increased the execution
speed. This reduces the duration of the whole grasp.
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Fig. 10. (a) Precision over recall for the stereo image based cup detector (b) Probability
of the local refinement to converge into the true pose as a function of the angular and
translational distance between starting and final pose. The probability is computed
with 100 tries in each image. The cup is 95 x 75mm large, so nearly half a cup-diameter
in the initial guess leads to a good final pose.

6.3 Stereo Contour-Based Object Response

We evaluated the contour-based stereo detector on a set of 53 images taken in
a cluttered office environment. Figure 10(a) shows a roc-curve of the detector.
In our opinion the performance is good given the highly cluttered scenes and
the fact that often the cup is only partially visible in the image and partially
occluded by the hand. Figure 10(b) shows that the detector has a rather large
range of convergence, which allowed us to perform the global search efficiently
with a rather coarse grid and only a single orientation.

Computation time of the detector is 2 x 1.2ms for the cns computation, 28us
for rasterization of one pose in one camera and lus for response evaluation of
one contour, when always blocks of 8 x 8 contours are evaluated.

6.4 System Level Experiments

Since we could decrease the time to execute a grasping motion, we repeated the
system level experiment. In our previous work we did 30 experiments and tested
whether a cup could be grasped and how long it took. In doing so, we recorded
the time between the first detection and the successful grasp in a normally
illuminated simple office environment. We discovered that the average grasping
time is now 7.11s instead of 10.026s. In addition, each try was successful.

During the trials we also measured the timings of the object detector. Both
cns images are calculated with an average time of 2.5ms per frame, the global
search with 21.6ms per frame and the refinement in 1.8ms per frame.

7 Conclusion

We successfully improved our grasp planner by increasing the grasp space but
kept the calculation time constant. The whole system operates at 30Hz. We also
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were able to improve the motion execution by decreasing the duration of the
full execution and achieving a smoother movement. In addition, we introduced
a releasing function, which completes the whole system and converts it into a
prototypical application.

In future work we are planning to include the possibility to grasp an object
two-handed. The variety of graspable objects would increase instead of being
limited to objects with a handle, because this would enable the robot to perform
force-closure grasps. Another point we are planning to investigate is to measure
the weight of grasped objects and the impact on the robot’s walk. The goal
will be that NAO carries an object around in order to bring it to someone or
somewhere.
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