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Preface

About two years ago, the accumulated number of industrial robots sold world-
wide broke through the mystical one million units boundary. Industrial robots are
able to perform well-defined tasks with a very high speed and precision twenty-
four hours a day and seven days a week. Despite the tremendous success of these
devices, both academic and commercial research has been focusing on the devel-
opment of a new generation of robots in recent years: service robots.

The IEEE and IPA-FhG database on service robotics provides us with a descriptive
definition of the notion “service robot”:
“Service robots refill vehicles, reconstruct nuclear power plants, take care of the
elderly, observe museums, explore other planets or clean aircraft. So what are
service robots? Service robots form an intermediate stage in the evolution from
the industrial robot to the personal robot, which might be an important part of our
lives in 20 years. Service robots are mobile, manipulative, interact with human
beings, or perform tasks autonomously that relieve the human being.”

According to a market analysis published by the United Nations Economic Com-
mission for Europe (UN/ECE) and the International Federation of Robotics (IFR)
in October 1999, the total number of service robots installed worldwide will have
almost quintupled within the next three years. This forecast does not cover toy
robots and vacuum cleaning robots. It is estimated that an addition 450000 of
these will have been sold by 2002.

The workshop not only intends to present recent work in this rapidly developing
field, but also to sharpen the discussion on the relevant topics that have to be
tackled in order to ensure a prosperous future of the service robotics domain:
navigation, human-machine interaction, safety and reliability.

Thomas Röfer, Axel Lankenau, Reinhard Moratz
Berlin, August 2000
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A. Lankenau, T. Röfer (Univ. of Bremen, Germany)
27

12
00

Lunch Break

14
00

Human-Machine Interaction: (Chair: Thomas Röfer)
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A Probabilistic Method for Planning Collision-free
Trajectories of Multiple Mobile Robots

Maren Bennewitz Wolfram Burgard

Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany

Abstract. This paper considers the problem of path planning for
teams of mobile robots. It presents a decoupled and prioritized ap-
proach to coordinate the movements of the mobile robots in their
environment. Our algorithm computes the paths for the individual
robots in the configuration-time space. Thereby it trades off the dis-
tance to both static objects as well as other robots and the length of
the path to be traveled. To estimate the risk of colliding with other
robots it uses a probabilistic model of the robots motions. The ap-
proach has been implemented and tested on real robots as well as in
extensive simulation runs. In different experiments we demonstrate
that our approach is well suited to control the motions of a team of
robots in a typical office environment and illustrate its advantages
over other techniques developed so far.

1 Introduction

Path planning is one of the fundamental problems in mobile robotics.
As mentioned by Latombe [8], the capability of effectively planning
its motions is “eminently necessary since, by definition, a robot ac-
complishes tasks by moving in the real world.” Especially in the con-
text of autonomous mobile robots, path planning techniques have to
simultaneously solve two complementary tasks. On one hand, their
task is to minimize the length of the trajectory from the starting po-
sition to the target location, and on the other hand they should maxi-
mize the distance to obstacles in order to minimize the risk of collid-
ing with an object.

In this paper we consider the problem of motion planning for mul-
tiple mobile robots. This problem is significantly harder than the path
planning problem for single robot systems, since the size of the joint
state space of the robots grows exponentially in the number of robots.
Therefore, the solutions known for single robot systems cannot di-
rectly be transferred to multi-robot systems.

The existing methods for solving the problem of motion planning
for multiple robots can be divided into two categories [8]. In the cen-
tralized approach the configuration spaces of the individual robots
are combined into one composite configuration space which is then
searched for a path for the whole composite system. In contrast to
that, the decoupled approach first computes separate paths for the
individual robots and then tries to resolve possible conflicts of the
generated paths.

While centralized approaches (at least theoretically) are able to
find the optimal solution to any planning problem for which a solu-
tion exists, their time complexity is exponential in the dimension of
the composite configuration space. In practice one is therefore forced
to use heuristics for the exploration of the huge joint state space.
Many methods use potential field techniques [1, 2, 15] to guide the

search. These techniques apply different approaches to deal with the
problem of local minima in the potential function.

Other methods restrict the motions of the robot to reduce the size
of the search space. For example, [7, 9] restrict the trajectories of the
robots to lie on independent road-maps. The coordination is achieved
by searching the Cartesian product of the separate road-maps.

Decoupled planners determine the paths of the individual robots
independently and then employ different strategies to resolve pos-
sible conflicts. According to that, decoupled techniques are incom-
plete, i.e. they may fail to find a solution even if there is one. [4]
consider coarse two-dimensional slices to represent the configura-
tion time-space. [17] applies potential field techniques in the config-
uration time-space to resolve conflicts. All these techniques assign
priorities to the individual robots and compute the paths in decreas-
ing order starting with the robot with highest priority. Whenever a
path is planned, these approaches try to resolve the conflicts with the
previously determined paths. In this context, an important question is
how to assign the priorities to the individual robots. In the approach
presented in [3] higher priority is assigned to robots which can move
on a straight line from the starting point to its target location. The ap-
proach described in [5] does not apply a priority scheme. Instead, it
uses sets of alternative paths for the individual robots and determines
a solution by applying heuristics to pick appropriate paths from the
different sets.

An alternative approach to decoupled planning is the path coordi-
nation method which was first introduced in [13]. This method com-
putes the paths of the individual robots independently and then ap-
plies scheduling techniques to deal with possible conflicts. The key
idea of this technique is to keep the robots on their individual paths
and let the robots stop, move forward, or even move backward on
their trajectories in order to avoid collisions. Although the coordina-
tion method was initially designed for two robots only, [10] recently
extended this idea to coordinate more than two robots.

[11] presented a reactive approach for decentralized real-time mo-
tion planning. Each robot plans its path towards its target dynami-
cally based on its current position and sensory feedback. Since this
method is similar to potential field approaches, it suffers from local
minima and may also result in oscillations. Finally there are differ-
ent techniques based on heuristics like traffic rules to resolve arising
conflicts [6, 16].

A general assumption of the planning techniques described above
is that the environment is completely known and that it does not
change during the operation of the robots. Furthermore, the execu-
tion of the navigation plans is generally assumed to be determinis-
tic, i.e. the robots perform all actions with certainty. Especially in
real and populated environments these assumptions are generally vi-



olated, since the robots have to use their sensors to react to possible
changes of the environment and to unforeseen obstacles. Therefore,
the robots often deviate from their previously planned paths.

The method described in this paper is a decoupled and prioritized
approach to coordinated path-planning for multiple robots. It incor-
porates different types of uncertainty into the planning process. First,
it computes the path of a robot by trading off the length of the tra-
jectory and the distance to obstacles. Furthermore, the actions of the
robots are regarded to be non-deterministic. During planning, our
approach therefore considers the possible deviations of other robots
from their planned paths to determine the path of a robot in the con-
figuration time-space. The parameters of the deviation-model have
been learned in several experiments. Our approach has been imple-
mented and tested on real robots and in extensive simulation runs.
The experiments carried out in typical office environments illustrate
that our technique is well suited to coordinate teams of mobile robots.
They furthermore demonstrate that our technique outperforms the co-
ordination approach described in [10, 13].

2 Probabilistic Path Planning for Multiple Robots

The goal of path planning is to determine a trajectory with the opti-
mal trade-off between the overall length and the distance to obstacles
in the environment. To effectively plan the path of a mobile robot,
path planning systems need a model of the environment. In our case,
the map of the environment is given by an occupancy grid map [12].
The key idea of occupancy maps is to separate the environment into
a grid of equally spaced cells. Each cell of such a grid contains the
probability that this cell is occupied.

Given such a map our approach uses the well-known A� procedure
to determine the path from the current location to the target point. For
each location hx; yi the A� procedure simultaneously takes into ac-
count the cost of reaching hx; yi from the starting position as well
as the estimated cost of reaching the target location hx�; y�i from
hx; yi. In our approach the cost for traversing a cell hx; yi is pro-
portional to its occupancy probability P (occx;y). The estimated cost
for reaching the target location is approximated by the straight-line
distance jj hx; yi� hx�; y�i jj between hx; yi and hx�; y�i. Accord-
ingly, the minimum-cost path is computed using the following two
steps.

1. Initialization. The grid cell that contains the robot location is ini-
tialized with 0, all others with1:

Vx;y  �

�
0; if hx; yi is the robot position
1; otherwise

2. Update loop. While the target location has not been reached do:

hx; yi  � argmin
hx0;y0i

�
Vx0;y0

+ c � jj hx0; y0i � hx�; y�i jj
	

For each neighbor hx0; y0i of hx; yi do

Vx0;y0  � min
�
Vx0;y0 ; Vx;y

+ jj hx0; y0i � hx; yi jj �P (occx0;y0)
	

In our approach, the constant c is chosen as the minimum occupancy
probability P (occx;y), i.e.,

c = min
hx;yi

P (occx;y):

Figure 1. Result of a path planing process for a single robot using A�. The
accumulated costs of the cells considered during the search are indicated in

grey (the darker the cell the higher the costs).

This choice of c is necessary to ensure that A� determines the cost-
optimal path from the starting position to the target location. Figure 1
shows a typical space explored by A�. In this situation the robot starts
in the corridor of our environment. Its target location is in the third
room to the south. The figure also shows the accumulated costs of
the states considered by the planning process. As can be seen A�

only expands a small fraction of the overall state space and therefore
is highly efficient. The disadvantage of the A� procedure lies in the
assumption that all actions are carried out with absolute certainty.
To deal with the uncertainty in the robot’s actions one in principle
would have to use value iteration which generally is less efficient
than A�. To incorporate the uncertainty of the robots motions into
the A� approach, we convolve the grid map using a Gaussian ker-
nel. This has a similar effect as generally observed when considering
non-deterministic motions: It introduces a penalty for traversing nar-
row passages or staying close to obstacles. As a result, our robots
generally prefer trajectories which stay away from obstacles.
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Figure 2. Average deviation of a robot from the originally planned path
during plan execution.

As already mentioned above, our approach plans the trajectories of
the robots in a decoupled fashion. First we compute for each robot the
cost-optimal path using the A� procedure mentioned above. We then
check for possible conflicts in the trajectories of the robots. When-
ever a conflict between robots is detected, we use a priority scheme



and determine new paths for the robots with lower priority. More pre-
cisely, suppose the k-th robot has a conflict with one or several of the
1; : : : ; k � 1 robots with higher priority. In this case we use A� to
re-plan the trajectory of this robot in its configuration time-space af-
ter including the constraints imposed by the k� 1 robots with higher
priority.

While planning in the configuration time-space we take into ac-
count possible deviations of the individual robots from their planned
paths. For this purpose we use a probabilistic model which allows
us to derive the probability that a robot will be at location hx; yi at
time t given it is planned to be at location hx0; y0i at that time. To
estimate the parameters of this model we performed a series of 28
experiments with two robots in which we recorded the deviations of
the robots from their pre-planned paths. In each run we constantly es-
timated for one robot the closest point on its planned trajectory and
determined the distance of the second robot from the corresponding
position of its path at the same point in time. As a result we obtained
for a discrete set of distance ranges the number of times the second
robot deviated from its originally planned path by that distance. The
resulting probabilities are depicted in Figure 2. In our current imple-
mentation this histogram is approximated by a set of linear functions
in order to avoid over-fitting. Given these data, we can easily deter-
mine the probability P i

t (x; y) that robot i is at a location hx; yi at
time t. This probability is then used to define a cost function which
allows us to determine the cost for robot k of traversing cell hx; yi at
time t:

C
k

t (x; y) = P (occx;y) +

k�1X
i=1

P
i

t (x; y)

Figure 3. Conflict situation for two robots.

A typical application example of our planning technique is illus-
trated in Figure 3. In this case, the robot depicted in light grey is
supposed to move to the fourth room in the north. The second robot
depicted in black starts in the corridor and has its target location close
to the starting point of the first robot. Since both paths are planned
independently, they impose a conflict between the two robots. After
applying the A� procedure in the configuration time-space for the
second robot, the conflict is resolved. The planner decides that the
black robot has to avoid the conflict with the grey robot by moving
to the north just at the door where the first robot enters the corridor.
After this collision avoidance action, the path through the next door-
way appears to have less costs, so that it takes a completely different
trajectory. The resulting trajectories are depicted in Figure 4.

Figure 4. Resolved conflict by choosing a detour for the second robot.

Figure 5. The robots Albert and Ludwig used for the experiments.



3 Experimental Results

The approach described above has been implemented and evaluated
on real robots as well as in simulation runs. The current implementa-
tion is quite efficient, although there still is a potential for improve-
ments. For the 19�15 m2 large environment in which we carried out
the experiments described here, our system is able to plan a collision-
free path in the configuration time-space in less than 6 seconds. The
time needed for single robot path planning in the two-dimensional
configuration space is generally less than 0.01 seconds. These perfor-
mance measures were taken on a 500MHz Intel Pentium III running
Linux and using a spatial resolution of 20�20 cm2 for the grid map.

wait

Figure 6. Ludwig moves away in order to let Albert pass by.

3.1 Application Example with Real Robots

The system has been evaluated using our robots Albert and Ludwig
which are depicted in Figure 5. Whereas Albert is an RWI B21 robot,
Ludwig is a Pioneer I system. Both robots are equipped with a laser-
range finder to reactively avoid obstacles. Figure 6 shows one situ-
ation, in which both robots have a conflict. While Ludwig starts at
the left end of the corridor of our lab and has to move to right end,
Albert has to traverse the corridor in the opposite direction. Because
of the uncertainty of Albert’s actions, Ludwig decides to move into
a doorway in order to let Albert pass by. The trajectory of Ludwig
is depicted by a dashed line, and Albert’s trajectory is indicated by a
solid line. The position where Ludwig waited for Albert is indicated
by the label “wait”.

3.2 Competitive Ratio to the Optimal Strategy

In addition to the experiments using Albert and Ludwig, we per-
formed a series of simulation runs in order to evaluate the applicabil-
ity of the overall approach. An additional goal of these experiments
is to demonstrate that our planner outperforms a prioritized variant of
the coordination technique described in [13, 10]. Our current system
uses a prioritized version because the joint state space grows expo-
nentially in the number of robots which makes the search intractable
for reasonable numbers of robots. The coordination technique de-
scribed in [10] partitions the overall problem into a set of smaller
problems one for each group of robots which have intersecting tra-
jectories and thus is able to consider even huge numbers of robots. In
general, however, it cannot be assumed that the resulting groups are
small so that a prioritized planning is absolutely necessary. For the

Figure 7. Simulation run with the resulting trajectories for the planned
paths shown in Figure 4.

wait

Figure 8. Trajectories obtained using the coordination technique.

Figure 9. Solution generated by our probabilistic planning technique in a
situation in which the coordination method does not find a solution.



following experiments we used the B21 simulator [14] which per-
forms real-time simulations of the robot’s actions and of its sensors.
To get close to the behavior of a real robot, it adds noise to the simu-
lated sensor information.

Figure 7 shows the trajectories carried out by two robots in the sit-
uation depicted in Figure 4. As can bee seen in the Figure, the result-
ing trajectories in this example are quite close to the planned paths.
Figure 8 shows the corresponding paths obtained with the coordina-
tion diagram technique. Please note that in this situation our tech-
nique is significantly better than the coordination technique. Since
the coordination technique does not change the trajectories and re-
stricts the robots to stay on their pre-planned paths, the robot starting
in the corridor has to wait until the other robot passed by. Therefore,
the time to arrive at its target location is almost twice as long as it
would be without any conflict. In contrast to that, the two robots ar-
rive almost at the same time using our technique.

Since the coordination method restricts the robots to stay on their
independently planned paths, it does not find a solution in situations
in which our technique is able to determine collision-free trajectories.
A typical example is shown in Figure 9. Here two robots have to pass
each other in a corridor. Whereas the coordination method cannot
resolve this conflict, our planner directs one robot to leave its optimal
trajectory and to enter a doorway in order to let the other robot pass
by.
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Figure 10. Performance comparison to the optimal solution and to the
coordination technique.

To get a quantitative assessment of the performance of our method
compared to the optimal strategy and compared to the coordination
technique we performed extensive experiments with our simulator.

The first series is designed to compare our probabilistic planning
technique to the optimal solution and to the coordination technique.
We performed 10 different simulation runs using the environment
shown in Figure 3. In each experiment we started two robots at dif-
ferent places and defined target locations for which there is a con-
flict which can be resolved by the coordination technique. Since our
approach is more general than the coordination technique, all three
methods were able to compute a solution in these situations. For each
solution provided by the individual planners we recorded the sum of
the lengths of the two paths, i.e. the number of cells traversed in the
map plus the number of time steps each robot waited. In order to be
able to compute the optimal solution we had to reduce the resolution
of the grid maps to 60 � 60 cm2. Figure 10 shows the resulting path
lengths for the different runs and the individual planning techniques.

Whereas the comparative ratio of our technique relative to the op-
timal solution was 1.02, the coordination technique needed 1.24 as
many steps as the optimal solution. On the 95% confidence level our
approach performed significantly better than the coordination tech-
nique. On average, the paths generated by the coordination method
were 20% longer than the trajectories generated by our method.

Figure 11. Two different environments used for simulation runs.

3.3 Comparisons for Larger Numbers of Robots

Additionally we performed extensive experiments in two different
environments and compared the performance of our probabilistic ap-
proach to the performance of the coordination technique for different
numbers of robots. Figure 11 depicts the two environments used in
the experiments. The first environment shown on the left side of Fig-
ure 11 is a typical office environment. The second situation is a rather
unstructured environment (see right image of Figure 11) which of-
fers many possibilities for the robots to change their routes. In 9000
experiments we evaluated the path planning techniques for 2 to 6
robots in both environments. The corresponding start and goal posi-
tions were randomly chosen from a set of predefined positions.

Figure 12 shows for both environments the average number of con-
flicts each robot is involved in. Please note that we only evaluated
situations in which there was at least one conflict between the robots.
As can be seen this number is significantly higher in the office envi-
ronment than in the unstructured environment because all robots have
to travel along the corridor whereas they have a lot more possibilities
to choose alternative routes in the unstructured world.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1 2 3 4 5 6 7

nu
m

be
r 

of
 c

on
fli

ct
s 

pe
r 

ro
bo

t

number of robots

unstructured
corridor

Figure 12. Average number of conflicts.

For each number of robots we evaluated 50 experiments in the
structured and 100 experiments in the unstructured environment in



Figure 13. Typical experimental setup with four robots including their
independently planned and optimal trajectories.
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Figure 14. Priorities of the robots and paths computed by our probabilistic
technique.
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Figure 15. Comparison of the relative increase of move costs of the
probabilistic technique and coordination technique.

which there was a conflict between the robots and in which both tech-
niques were able to compute a solution. The priority scheme was to
sort the robots according to the optimal move costs between their
initial and their goal position. A typical example with four robots
is shown in Figure 13. The priorities of the robots and the trajecto-
ries computed with our probabilistic planning technique are shown
in Figure 14.

In each experiment we measured the sum of the move costs gen-
erated by our probabilistic technique and computed by the coordi-
nation technique. Since the optimal solutions were not known (and
cannot be computed in a reasonable amount of time for more than
two robots) we compared the results of the planning techniques with
the sum of the optimal move costs for the individual robots if the
paths are computed independently, i.e. in independent single robot
problems. Thus, in the experiment described above we compared the
resulting move costs of the robots (shown in Figure 14) with the cor-
responding costs obtained with the coordination technique both rela-
tive to the move costs of the paths in Figure 13.

As can be seen in Figure 15 our method significantly outperforms
the coordination technique in both environments. Especially in the
office environment the coordination technique frequently forces the
robots to wait in a room for longer periods of time until another
robot passed by. Since our probabilistic planning technique allows
to robots to choose detours in the corridor, the reduction in the aver-
age move costs obtained with our probabilistic planning technique is
much higher.

As already mentioned in the experiments described above we used
the move costs to determine the priority of the individual robots. To
evaluate an alternative priority schemes we performed the same ex-
periments using the number of conflicts each robot was involved in to
determine the priority of the robots. It turned out that the results ob-
tained with this heuristic do not differ significantly to those obtained
when the robots are sorted according to their move costs.
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Figure 16. Number of cases in percent where a solution could be found in
the unstructured environment.

Another interesting aspect is the number of situations in which
the different approaches were able to generate a solution. Figure 16
shows for both methods the number of cases in percent in which a
solution could be found in the unstructured environment. Obviously,
the coordination technique quite often cannot find a solution as the
number of robots rises. For example, for 6 robots only 55% of the
planning problems could be solved by the coordination technique
whereas our probabilistic technique was able to find a solution in
99.3% of the problems.



Figure 17 depicts one of the two planning problems with 6 robots
for which our prioritized planning method is not able to find a solu-
tion. Since robots 0 and 2 have higher priority their paths are com-
puted first. As a result, robot 4 cannot “escape” so that no path can
be found for this robot. Thus, given the fixed priority scheme there is
no way to find a path for robot 4.

1
0

2 4

3

5

Figure 17. No solution can be found for robot 4.

4 Conclusions

In this paper we presented an approach to decoupled and prioritized
path planning for groups of mobile robots. Our approach plans the
paths for the individual robots independently. If a conflict between
the paths of two robots is detected it uses a priority scheme to re-plan
the path of the robot with lower priority in its configuration time-
space. Thereby it considers the constraints imposed by the robots
with higher priority. Our approach uses occupancy grid maps to plan
the motions of the robots using A�. Simultaneously it trades off the
length of the trajectory and the distance to objects in the environ-
ment. It furthermore uses a probabilistic model to integrate possible
deviations of the robots from their planned paths into the planning
process. Therefore, the resulting trajectories are robust even in situ-
ations in which the actual trajectories of the robots differ from the
pre-planned paths.

Our method has been implemented and tested on real robots. The
independent planning of the paths for the individual robots is highly
efficient and requires not more than 0.01 seconds. Additionally, the
system can rather quickly resolve conflicts. For the examples in the
map of our department the computation of a collision-free path in
the configuration time-space generally requires less than 6 seconds
using a spatial resolution of 20 � 20 cm2 and less than 1.5 seconds
for a cell size of 40 � 40 cm2. Please note that this computation
time will not significantly increase in the number of robots, since
our approach uses lookup-tables to store the costs introduced by the
previously planned robots.

In all experiments our approach showed a robust behavior. Ad-
ditionally, we performed a series of experiments to compare our
technique to the coordination method. These experiments demon-
strate that our approach produces navigation plans which are by 17%
shorter than those generated by the coordination method. Compared
to the optimal strategy in the joint configuration time-space our tech-
nique produces paths which are by 2% longer than the shortest paths.

Apart from these promising results, there are different aspects for
future research. Our approach currently uses a fixed priority scheme.
More flexible assignments of priorities to the individual robots will

with high likelihood result in more efficient solutions. Furthermore,
our system currently does not react to larger differences during the
plan execution and assumes equal constant velocities of the robots.
For example, if one robot is delayed because unforeseen objects
block its path, alternative plans for the other robots might be more
efficient. In such situations it would be important to have means for
detecting such opportunities and to re-plan dynamically. On the other
hand, the delay of a single robot may result in a dead-lock during the
plan execution. In this context, the system requires techniques for de-
tecting dead-locks while the robots are moving and to resolve them
appropriately.
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Diagrammatic Instruction Maps for
Human-Robot Interaction

Reinhard Moratz 1 and Thomas Barkowsky and Christian Freksa

1 Introduction

Many tasks posed in the field of service robotics can profit from a
scenario in which a human instructor gives a robot tasks in a natural
way. Natural interfaces typically refer to human communication as
their blueprint. We focus on the task of giving a mobile robot a desti-
nation that it has to reach. A natural way is to communicate destina-
tions verbally to a robot (cf. [2]). Another strategy is to show sample
routes (cf. [5]). We use simple maps as means of communication
here. Humans like to communicate routes and destinations by draw-
ing the route as a sketch map. Therefore, we will look at schematic
maps used by humans (see [1] for details on schematic maps). These
maps only preserve qualitative spatial relations of the relevant ob-
jects, as opposed to true geographical maps which are metrically
veridical depictions of a given environment. Also, the representation
is reduced to the detail that is relevant for the route instruction.

A human instructor typically can draw a schematic map of a
known environment with little effort from memory. The difficulty for
the robot comes from the need to establish a mapping from the ab-
stact and coarse map to the more detailed world (or simulated world).
We build an experimental system that uses a simulated robot to in-
terpret qualitative instruction maps. The task for the robot is then to
reach a target defined on the map in the simulated world.

2 Instruction Maps

In Figure 1 we give a simple example of a qualitative instruction map
of an indoor office environment that may be provided by a human
instructor to an autonomous robot. It consists of two rooms and a
hallway connecting the rooms. The robot that is located in one of the
rooms. The adaptation to a robotic communication partner requires
certain iconic expressions to make the instruction maps reliably inter-
pretable by algorithmic means. To this end, we allow lines ending in
an arrow. The arrow indicates that the respective linear object extends
beyond the depicted range in the represented world. This symbol is
necessary to make interpretation of the sketch unambiguous.

The schematic map depicts approximate global survey knowledge
of the environment. In addition to the robot environment, the map
indicates position and orientation of the robot and the location of the
goal.

The simulated world in which the robot acts represents our real
office environment (see figure 3), with all furniture omitted. A com-
parison of instruction map and world simulation shows that the di-
mensions of the rooms are shown only qualitatively. Furthermore,
the hallway contains a number of built-in cupboards that were omit-
ted on the schematic instruction map. In the next section we show

1 University of Hamburg, Department for Informatics, Vogt-Kölln-Str. 30,
22527 Hamburg, moratz, barkowsky, freksa@informatik.uni-hamburg.de

Figure 1. Instruction Map

how an instruction map of this kind is used to give a simulated robot
motion instructions.

3 Path Planning

The robot has survey knowledge that refers to the instruction map
and it has only local knowledge in the simulated world. Therefore
the robot first uses the survey knowledge supplied by the map to find
a path to the target on the map. In the next step for local pieces of the
path on the map corresponding entities have to be found in the simu-
lated world. A qualitative description of the path enables the robot to
establish a discrete mapping between map and environment. A qual-
itative path is specified only in terms of the route to be taken, not
in terms of metrically specified locations. The basis are landmarks
which are salient places which can be identified from different per-
spectives (cf. [4]).

Our first prototype uses room corners as landmarks during naviga-
tion. So the robot matches room corners in the instruction map and
in the simulated world. The room corners are easy to detect using
a laser range finder. The simulated robot uses two laser range find-
ers for sensors, each covering a field of 180 degrees. Together, these
sensors yield a surround view of 360 degrees.

The path in the schematic map from its initial location (according
to the instruction map) to the destination is found by a cell decom-



position algorithm ([3]). The first step is to partition the instruction
map. The landmarks (room corners) are the end points of connecting
lines which segment the free space into convex cells (see figure 2).

Figure 2. Partitioning

Now a path graph can be constructed. In the path graph all cells are
represented as vertices and edges connect vertices if the correspond-
ing cells are neighboured. The robot can use a simple graph search
to find a qualitative path from the initial cell to the target cell.

Figure 3. Robot Simulation

To actually traverse this path, the path in the map is now trans-
lated into a sequence of pairs of room corners. The midpoint of the

connecting line between the landmark pair is then the intermediate
destination that the simulated robot can directly attain.

This sequence is another representation of the route, and the or-
der information contained in it enables the robot to obtain pairs of
room corners in the simulated world. The qualitative spatial relations
used for the correspondence between map landmarks and world land-
marks consist of order relations of the visible landmarks (see [6]).
Then a local panorama view on the map is matched with a local
panorama view in the simulation. Also the collinearity of landmarks
is used to perform the mapping. Since not every corner in the simu-
lated world has a counterpart on the coarser map we use an optimiz-
ing strategy to account for partial mapping situations.

Crossing a connecting line as intermediate destinations brings the
robot one step closer to the destination. With this recursive proce-
dure, the destination area in the simulated environment – which cor-
responds to the destination marked in the schematic map – is reached.

4 Conlcusion and perspective

We propose the use of schematic maps for human-robot interaction.
To explore the scenario we investigate the task of instructing a mobile
robot using a qualitative map. Our approach relies on the assump-
tion that schematic maps preserve important ordering information for
identifying spatial configurations. Then we can use the order of land-
marks to find correspondences between the map and the simulated
world.

The presented example is intended to be generalized to a funda-
mental approach of communicating routes to mobile robots by means
of schematic maps. In the future we will also use maps constructed
by the robot during an exploration (cf. [7]) for human-robot interac-
tion.
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Shared-Control Architecture: concepts and experiments
Urbano Nunes1, Rui Cortesão, J. Luis Cruz and Paulo Coelho

Abstract. An hybrid control architecture with reactive, delibera-
tive, and cognitive components appropriate to human-oriented mo-
bile robots is presented. The paper presents globally our control ar-
chitecture and describes some of its modules in detail: local map-
building module, reactive control module and wheel´s velocity con-
troller. Some discussion is made concerning trajectory planning and
path-tracking control. The architecture is under development and part
of it has been tested in a motorized wheechair equipped with several
sensors and a multimodal HMI (Human-Machine Interface). A joy-
stick and a voice unit interface (VUI) are used to steer the wheelchair,
giving accessibility to handicaped persons. In its actual stage, the
wheelchair navigates autonomously, by means of simple voice com-
mands (or commands issued by the joystick), avoiding static and
moving obstacles (like humans moving around).

1 INTRODUCTION

Usually the human is forced to adapt him or herself to the machines
in present day manufacturing and process industries. An advanced
class of robots and intelligent machines that adapt, extend, and work
in a symbiotic way with humans, is required and is under research in
University and Industry laboratories. These robots do not only work
for humans, but also they work with or assist humans, and share with
the users the same environment. Human-oriented robots and intelli-
gent machines are required and are under research. Its development
poses many difficult problems, namely concerning HMI, safety and
man-machine shared control [10].

In the Intelligent Control and Robotics laboratory (IC&R) at the
Institute for Systems and Robotics (ISR-Coimbra), research is being
carried out towards the development of an intelligent control system
for human-oriented mobile robots (HOMR). We are pursuing an hy-
brid paradigm composed by a reactive control level and a decision
making level supported by a knowledge-based perceptual system, as
depicted in figure 1a). The paper presents globally our control archi-
tecture and describes some of its modules in detail. The purpose is to
achieve an architecture appropriate to integrate different components
necessary to a HOMR. For example we can enumerate some research
problems faced in this development:

� For a behaviour-based reactive level, what type of behaviours will
be necessary? What methods to use for integration/fusion and ar-
bitration of different behaviours? What learning methods can be
considered for performing behaviour integration? How to estab-
lish the human interaction in this architecture?

� One of the challenges of human-oriented robotics is that robots
have to work closely with humans. Can we be inspired by biolog-
ical behaviours to make robots more friendly and more familiar to
humans?

1 Institute for Systems and Robotics, University of Coimbra, - Polo II, 3030
Coimbra - PORTUGAL, email: urbano@isr.uc.pt

� Besides the interaction capabilities with humans, the robot should
integrate and acquire knowledge concerning its own state and en-
vironment state. This means it should have other capabilities, such
as self-localization, map building and path-planning and task-
planning.

2 CONTROL ARCHITECTURE

Figure 1a) presents the major components of the control architec-
ture under development. Parts of it have been tested in a motorized
semi-autonomous wheelchair prototype being developed under the
RobChair project running in ISR [9].

The main goal of the control system is to overcome user’s phys-
ical limitations, minimizing his effort. This is achieved sharing the
control between the user and the actions provided by the cognitive
and sensory systems. A joystick and a VUI (voice unit interface) [7]
are used to steer the wheelchair. The VUI is based on a set of voice
recognition libraries included in a package that performs the recog-
nition of spoken words (Dragon Voice Tools).

2.1 Conceptual architecture

RobChair architecture is organized as an hybrid architecture combin-
ing deliberative reasoning with low-level reactive behaviours. Delib-
erative reasoning provides the system with the ability to reach pro-
posed goals. Reactive behaviours are indispensable to ensure a safe
navigation, enabling the vehicle to react in real time to environment
emergent situations. In most robotics applications, a purposeful navi-
gation depends on the integration and interaction of these two control
levels. However, there are others where a unique deliberative or reac-
tive architecture ensures a purposeful navigation. The first, delibera-
tive reasoning, can be used in fully deterministic and static environ-
ments. However, this doesn’t meet the requirements of most real en-
vironments. The second, reactive reasoning, usually lacks purposeful
goals. The lack of a priori information to plan strategies and trajec-
tories can lead to navigation failure. This can be compensated if the
goals are always visible. For example, if the goal is a light always de-
tectable, a cue in the floor, or a surface to contour, it will be possible
to reach purposeful goals.

RobChair is a specific system integrating closely the human and
the machine. The human is a cognitive entity that substitutes parts of
the deliberative layer. Presently, without having global environment
information, RobChair system is unable of a purposeful navigation
without user intervention, so the reason we call it a semi-autonomous
system.

The proposed architecture is a four layer distributed architecture: a
reactive layer embodying reactive behaviours; a local-action layer for
execution of specific tasks dependent of local environment; a deliber-
ative reasoning layer responsible for high-level planning; and finally
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a mission layer where goals are defined. The wheelchair user is part
of this layer and he intervenes in the cognitive state. By this way,
he can define goals for the deliberative reasoning layer, as well as,
depending of system state, goals for reactive control layer guidance.
The main modules of the conceptual control architecture and their
inter-connections are illustrated in figure 1a):

� Mission Layer - In this layer a set of static or dynamic goals are
defined by the user or by other human operator. Examples of de-
liberative goals might be go to room B.

� Deliberative Reasoning Layer - It is usually based on a priori
knowledge of the world. This knowledge takes the form of topo-
logical and geometric maps giving, for instance, information of
how to go from A to B, or giving the position of objects and
landmarks. Based on this information, global path and task plan-
ning and execution can be undertaken. This layer relies on long-
term memory information, and basically, performs global path-
planning providing bottom layers with a set of points defining the
path to accomplish the tasks. To perform path-planning it may be
required other cognitive capabilities relying on global map updat-
ing, integrating over time local maps into the global map, self lo-
calisation, etc.

� Local-Action Layer - This is an intermediate, short-term memory
layer. The plans relies essentially on short-term memory, which
integrates sensory information, in terms of a local map, and guid-
ance information from the upper control layers. Two local-action
tasks are being implemented: a door-passage and a table/writing
desk approaching.

� Reactive Layer - This layer is fully implemented [9]. As depicted
in figure 1b), this layer embodies three behaviours: collision detec-
tion, obstacle avoidance, and contour following. These behaviours
rely upon actual sensory information without resorting to environ-
ment models. The behaviours are simple, directly coupling per-
ception to action. This layer receives guidance from upper layers.
It consists basically on system state information and commands of
linear velocity and angular velocity (v; w). An integration/fusion
of the guidance variables and data from each behaviour is carried
out in this layer.

3 LOCAL MAPPING

A local environment model is acquired iteratively and on-line. Our
work is inspired in Thrun’s approach [12] in which it is proposed the
use of a Neural Network (NN) to interpret sensors readings. Their
good results, motivate us to investigate this technique in building lo-
cal maps. In Thrun’s approach the local grid is used to build global
geometric maps. In our work the local map is used in planning lo-
cal trajectories, in triggering and guiding safety mechanisms and as
a source of information to a cognitive module in charge of obtain-
ing a cognitive state of the overall human-oriented robot system. The
Bayes rule is used to update the local grid map, integrating over time
new sensor readings, iteratively and on-line. The local occupancy
grid, which consists of n�n cells, is a local view that moves with the
robot. In the next Sections we describe the local map-building pro-
cess in general terms. A property of this method consists in the pos-
sibility of integrating/fusing proximity and distance data from differ-
ent sensors. This map-building method has given good results when
using sonars alone or sonars plus optoelectronic proximity/distance
sensors.

3.1 Local map-building process

Figure 2 shows our map-building architecture. In order to update the
map cells, the Sector Selector and the Sensors Selector work in a
coordinated way. The Sector Selector provides NN with information
of the polar coordinates of the cell (x; y), while the Sensors Selector
choose the two adequate sensor’s readings and provides them to the
NN. The function of the NN (see figures 2 and 3) is to provide the
conditional probability P (Cxyjo) given actual sensory observation
o, to the Bayes’ update formula. After applying this formula the cell
is finally updated.

Figure 3 shows the NN that performs the mapping from two sensor
readings to the conditional probability of cell occupancy. For a given
cell (x; y), the input layer of NN consists of:

� The observation o = (ss1; ss2) of the two sensors, from the set
of sensors, oriented in direction of cell (x; y);
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represent the polar coordinates of the cell (x; y), to be updated, in relation to
the robot coordinates system

� The polar coordinates R and �, of the center of the cell (x; y) with
respect to the robot frame (as illustrated in the example of figure
5 for a circular robot).

The output layer has only one node. This node produces a
P (Cxyjo), that measures the probability of the cell (x; y) to be oc-
cupied given the actual sensory observation o = (ss1; ss2).

The network was trained off-line with a back-propagation algo-
rithm [11]. After training, the network gives values in range [0; 1]
that can be interpreted as probability of occupancy. Since the NN is
trained based on examples, it can easily be adapted to new situations.
Another advantage is the capacity to interpret two sensor readings si-
multaneously (can be more). Interpreting sensor readings in context
of their neighbours generally yields more accurate results [12].

3.2 Sensors selector and sector selector

The Sensors selector and Sector selector work in a coordinated way.
The selection of the areas to map with more intensity can be guided
heuristically or purposefully. In the last case, a minimum cost func-
tion, an objective function or task purposes can drive the selection.
For instance, in local navigation more attention might be paid to the
areas for which the robot is moving to.

3.3 Bayesian-based cells updating

The local mapping consists to estimate the occupancy of a specific
area around the robot that moves with it. Let Cxy denotes ”cell (x; y)
occupied”. So Cxy denotes a discrete random variable defined in the
universe f0; 1g, i.e Cxy = 1 stands for cell occupied, and Cxy =
0 stands for cell free. The mapping can be seen as the problem to
estimate the conditional probability

P (Cxyjo
(1)
; :::; o

(N)) (1)

where o(1), denotes the first (in time) observation and o
(N) the last

observation. Based on the Bayes theorem, and after some mathemat-
ical manipulation we can express the conditional probability of cell
(x; y) to be occupied, given a sequence of observations, as follows
[2]:

Input
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Hidden
Layer

Output
Layer

Normalization

ss1 ss2 R Θ
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Figure 3. Feedforward neural network
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In equations (2) and (3) P (Cxyjo
(N)) is given by the NN, P (Cxy)

is the initial probability of occupancy of cell (x; y), (equal to 0:5),
and P (Cxyjo

(1)
; :::::; o

(N�1)) represents the probability before the
actual update. Using equation (2) we can evaluate iteratively the
probability of occupancy of each cell, which means that only one
value per cell needs to be stored in the local map.

The value of the map cell (x; y) represents the probability of the
corresponding space to be occupied (near 1) or free (near 0). Ini-
tially all cell values are set to 0:5, i.e unknown case. Every time a
cell seems to be occupied, its value increases, on the contrary, its
values decreases. Due to the mathematical characteristics of the up-
dating equation (3), if the cell value is 1 or zero, in the following
iterations, the result remains always 1 or zero respectively, indepen-
dently of P (Cxyjo

(N)). Thus, the value of the cells is in the range
]0; 1[. In the experiments described in Section 3.5, it was used the
range [0:01; 0:99].

3.4 Cell update algorithm

1. Initialization: P (Cxy) = 0:5
2. For each cell (x; y) and for each new observation o

(N) (selected
for this cell) the NN gives as output P (Cxyjo

(N))
3. Cell’s value update:

P (Cxy)[k] = 1�

�
1 +

P (Cxyjo
(N))

1� P (Cxyjo(N))
�

P (Cxy)[k � 1]

1� P (Cxy)[k � 1]

�
�1

(4)



Figure 4. Left image: Grid map seen by the robot in the initial location. Center image: Simulation environment. Right image:Grid map seen by the robot in
the final location.
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where P (Cxy)[k] denotes the actual cell’s value, that is
P (Cxy)[k] = P (Cxyjo

(1)
; :::o

(N)).
Equation (4) is equation (3) after the following operation. Since
in equation (3) P (Cxy) denotes the cell’s initial value that is 0:5
(unknown case), then 1�P (Cxy)

P (Cxy)
= 1.

3.5 Example of local grid maps

Figure 4 shows an example of two local grids built by using our map-
ping process shown in the schematic of figure 2. These experimental
results were obtained using the ”Nomad 200 Simulator” and its 32
proximity/distance sensors: 16 sonars and 16 infrared proximity sen-
sors. The sensors are disposed around the Nomad as described in
figure 5 (top view of the robot). The sonars and the infrared sensors
have the same orientation, which means that in figure 5, each Si rep-
resents a pair of sensors (1 sonar plus 1 proximity infrared sensor).

In the simulation reported in figure 4, for each Si pair it was used
a simple heuristic rule to choose between the readings from the sonar
and the infrared proximity sensor. In the short-range, preponderance

is given to the infrared data. Good results were achieved, and the
inclusion of the infrared sensors improved substantially the results.

In Robchair we are integrating sonars, proximity infrared sensors
and infrared triangulation-based distance sensors (Sharp GP2D12)
whose disposition around the wheelchair is not regular as in the case
of Nomad. The map-building architecture (figure 2) is applied with-
out changes. Only the strategy of choosing or preprocessing the read-
ings of a sector can be different, in order to get the desired inputs to
the NN.

Let us to interpret the results reported in figure 4. In the center is
shown the simulation environment where the robot navigates corre-
sponding to an area of 6 � 6 m2. Left and right images show grid
maps. To each map corresponds an area of 3� 3 m2 divided in cells
of 5� 5 cm, giving a total number of cells per map of 3600.

In the central image the frames around the robot (the robot is rep-
resented by a circle and it is shown in two different locations), sym-
bolize the space of the environment that is mapped in the grid maps
of the adjacent images.

The simulation consisted in the following: the robot made a
straight movement from the left position, along the corridor, and next
described a curve to the final position, as shown in figure 4 (central
image). The left image shows the first map built by the robot located
in the initial position (with only one update). The right image shows
the local map built by the robot after successive updates made dur-
ing the trajectory execution accomplished by the robot to the final
position. As can be seen the local maps are very good.

4 PATH AND TRAJECTORY PLANNING

Finding a path from a start position to a goal position, avoiding col-
lisions, is the purpose of a robot path planner.

The path-planning problem’s complexity depends not only on the
assumptions on the environment (a priori knowledge, static or mo-
bile obstacles,...) but also on the robot models used to represent the
robot motion. Kinematics and dynamic constraints on the robot mo-
tion should be taken into account.

4.1 Control architecture

The control architecture that is under development in the IC&R lab-
oratory at ISR-Coimbra, namely being tested in the Robchair, aims
to fulfill three scenarios:
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1. In the first scenario, there is the possibility to navigate the
Robchair with commands or instructions, given by voice or user’s
joystick. This navigation is supported by a reactive control layer
that receives sensory information from the surrounding environ-
ment. This layer enables collision avoidance. However, in this sce-
nario the navigation is far from being optimal, and does not solve
the purpose of navigation on several situations. For instance, to
pass through a door it may be necessary to give a big number of
instructions, by joystick or by voice, which is quite inconvenient
for the user, and it is only possible for users with dexterity. This
reactive layer is already working [9].

2. The second scenario includes not only the first scenario but it car-
ries out additional local map information (referred in Section 3) in
order to plan local target points (sub-goals). It should be stressed
that such planning happens only if the system is in certain states,
activating a ”local goal window”. For instance to pass through a
door overcoming the drawbacks of the first scenario. This scenario
has a collision avoidance processing mode with a higher degree of
intelligence. An interesting approach is presented in [5], where it
is used the ”Dynamic Window Method” that computes the veloc-
ity values to achieve in a certain time interval. These velocities
produce a trajectory in which the robot is able to stop safely, i.e
it reduces the search space to a dynamic window. This method is
valid for synchronous robots incorporating its dynamics. More-
over, it enables to know in the dynamic window: the robot local-
ization related to a certain target; the trajectory velocity; and the
distance to the nearest trajectory goal.

3. In the third scenario the goals are global (e.g. go from room A to
room B). Thus there is a need of a global planner that calculates
the global route (goal points in a global perspective), using local
map and sensory information. The global path planner implements
the algorithm that finds the optimal obstacle free route. Methods
of this type include the well-Known road-map, cell decomposi-
tion and potential fields (see [6] for an overview and further refer-
ences). The global path planner must build an obstacle-free path,
and conduct the robot to visit each of the sub-goals defined by the
mission. This global path, is an approach of the final trajectory
followed by the robot and does not take into account the details
of the vehicle’s local environment. When an obstruction on the
global path occurs, the local planner comes into action to calcu-
late, function of the robot’s local environment, the trajectory to be
followed. Usually, the global path can be calculated off-line, but
the local planning is required to run on-line.

Figure 6 shows the proposed path and trajectory planning module
that observes the three scenarios. Presently, our objective is to ana-
lyze the performance of the different solutions (working alone) and

to design the final planning module optimized to navigate the robot,
namely in the three scenarios above defined.

As concerns the trajectory and path planning problem an interest-
ing approach has been developed by Muñoz et al. [8]. The path is
defined by a sequence of points (wi) that correspond to locations to
be visited by the robot in a given order. Let W = fwig; i = 1; :::N
define a set of N sparse locations computed by the path planner,
defining a path between locations A and B. In the Muñoz approach
a path generation method, to join the intermediate points satisfying
certain continuity conditions (in heading, curvature,...), is proposed
based on cubic �-Spline curves. �-Splines where chosen due to their
properties for fast computation. Finally the navigation system must
include a path-tracking module (see figure 6). The path tracker gener-
ates the vehicle’s steering commands to track the path. These steering
commands, as well as the speed command, are sent to the low-level
controllers of the wheels.

5 WHEEL’S VELOCITY CONTROL

A new velocity controller is applied in the RobChair. Each wheel
has an independent velocity input, enabling the RobChair to have the
desired angular or linear velocities. The wheel actuator (DC motor)
model is of the type

Gp(s) =
1

1 + Tps
e
�sTd ; (5)

where the time delay Td is the deadtime and has a key role in the
discrete state dimension. Tp is the velocity response time constant.
Its equivalent temporal representation is given by:

_y(t) = �
1

Tp
y(t) + u(t� Td); (6)

which is of the form

_x = Ax(t) +Bu(t� td): (7)

Discretizing the system of equation (7) using the new concept of
Active Observers [3], with sampling time h and dead-time td = (d�
1)h + �

0, with 0 < �
0

� h, the equivalent discrete time system of
equation (8) is obtained,2
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�, �0, �1 are given by equations (9) to (11) respectively [1], and �k
is a noisy vector with properly chosen statistics [3].
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xk is the output velocity, uk the command input and p̂k the active
state. Figure 7 depicts a block diagram of the discrete state-space
based controller applied in each wheel. The reference input rk is
limited to the maximum velocity slop that the wheel can handle. The
active state performs a feedforward compensation of all the distur-
bances, estimating the error ek referred to the system input, permit-
ting it to have the ideal behavior. Thus, it enables the RobChair to
have always the same dynamic behavior, specified by the designed
closed loop poles, regardless environment conditions as ramps to
rise, different user weights, and even dropping or carrying objects
during the process. Moreover, it can also give useful information if
the RobChair crashes with “invisible” obstacles (e.g. a stone in the
floor), warning the end-user about it. A Kalman Active Observer was
designed as a Stochastic Active Observer example [4] . The robust-
ness of the system is accomplished through optimal noise processing
embedded in the control strategy.
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Figure 7. State-space based controller applied in each wheel, using the
active observer architecture. The wheel’s actuator model was obtained in a
“free space” environment, i.e., the wheels’ experiments were done without

floor contact.

6 CONCLUSIONS AND FUTURE WORK

In this paper it is presented an hybrid architecture suited for Human-
Oriented Mobile Robots. Currently the Robchair can navigate in dy-
namic environments in the presence of humans, commanded by sim-
ple voice or joystick instructions. The navigation is currently sup-
ported by a pure reactive layer enabling the obstacle avoidance and
the contour-following. An efficient map-building method was de-
scribed to extend potentialities of higher level reasoning capabilities.
At the low-level control the Robchair is equipped with an indepen-
dent wheel controller based on a state-space approach embedding a
stochastic active-observer. This controller is robust to external distur-
bances very common in Robchair activities.

As future work new algorithms are being developed to accomplish
path and trajectory planning. Learning techniques are to be explored
in order to give progressive autonomy in the execution of ”similar”
tasks (e.g. learning to pass a door and then generalize it to different
doors in different environments).
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The Role of Shared-Control in Service Robots
The Bremen Autonomous Wheelchair as an Example

Axel Lankenau, Thomas Röfer1

Abstract. This paper intends to emphasize the importance of tak-
ing into account potential shared control problems when designing a
service robot application. A brief overview of shared control and the
resulting mode confusion problems is given. So far, the subject is pri-
marily discussed in the avionics domain. This paper motivates how to
transfer these experiences into the service robotics community. Two
recently developed specification techniques are introduced. Finally, a
concrete example is presented: How to avoid mode confusion in the
Bremen Autonomous Wheelchair “Rolland”.

1 INTRODUCTION

The Bremen Autonomous Wheelchair “Rolland” is a rehabilitation
service robot, that realizes intelligent and safe transport for handi-
capped and elderly people. The system consists of dedicated mod-
ules each of which adds certain skills to the platform. The vehicle is
a commercially available power wheelchair Genius 1.522 manufac-
tured by the German company Meyra. For the work described here,
it has been equipped with a control PC and a ring of sonar proximity
sensors (see Fig. 1).

Since such an assistive device does not only operate in the direct
vicinity of people but also carries a person, who is often entirely
dependent on the correct behavior of the system, demanding safety
requirements have to be satisfied. Service robots in general and the
wheelchair Rolland in particular have to be considered as safety-
critical systems according to [12]. Therefore, during the development
of Rolland, much attention has been paid to the dependability of the
software, among other things by using formal methods to prove cer-
tain properties of the wheelchair’s braking behavior.

In contrast to other (autonomous) service robots, Rolland is jointly
controlled by its human operator and by a so-called safety module.
Depending on the active operation mode, either the user or the au-
tomation is in charge of driving the wheelchair. Conflict situations
arise if the commands issued by the two control instances contradict
each other. How to detect and subsequently avoid such shared control
conflicts is the subject of this paper.

2 SAFETY-CRITICAL SYSTEMS AND
SHARED-CONTROL

A common approach in developing safety-critical systems is to intro-
duce a controller into the system that interacts with the environment
and the so-called equipment under control (EUC) via sensor and ac-
tuator channels, respectively (see Fig. 2). The EUC comprises the ba-
sic version of the technical system, i.e., a naive implementation that

1 Bremen Institute of Safe Systems, University of Bremen, P.O.-Box 330440,
28334 Bremen, Germany, falone,roeferg@tzi.de

Figure 1. The Bremen Autonomous Wheelchair Rolland: A control PC
and a ring of sonar sensors for obstacle detection are mounted on a

commercially available power wheelchair

does not pay attention to the safety requirements. The behavior of
the EUC in the absence of any controller is specified in the physical
model which comprises the physical laws, parameters of the system,
etc. The physical model is fundamental in the verification and valida-
tion process in that it provides the reference document that describes
the reactive behavior of the system. If there are modeling errors in
the representation of the EUC, the meaning of a future verification is
rather limited.

Considering Rolland for instance, the EUC consists of the ba-
sic power wheelchair without any sensors or computer. The phys-
ical model describes the braking and accelerating behavior of the
wheelchair, the character of the environment, etc. The controller is a
computer program that processes the data it receives from the sonar
sensors as well as from the wheelchair itself (current speed and steer-
ing angle).

If the EUC is not a purely technical system but one that involves
a human operator, the physical model is insufficient to adequately
describe the system’s behavior. This is because there are no physical
laws prescribing which command the human operator will issue in
a certain situation; in the worst case his or her decisions are com-
pletely nondeterministic. Figure 3 shows the human operator as an
unpredictable additional “environment”. There is no direct interface
between the user and the controller. Instead, potential warnings or
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Figure 2. Basic idea of a safety controller in a common embedded system

status reports about the system state are communicated via the stan-
dard interface which is part of the EUC. Employing these means, the
human operator must be enabled to track the system’s state in order
to have at least a chance to choose the commands in accordance to
the specific situation.

However, in complex embedded systems which offer a huge vari-
ety of operation modes, problems often occur due to the fact that the
technical system is in a different mode to that the human operator ex-
pects it to be in. In addition to the engineering task to be solved when
designing a shared-control safety-critical system, the mode confusion
potential has to be given careful consideration.
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Figure 3. Problem of a shared control embedded system

In order to find and to eliminate neuralgic points in the system as
early as possible during the design process, the approaches presented
later have to cover various kinds of conflict situations, most of which
result from mode confusions.

3 MODE CONFUSION

In recent publications (e.g., [5, 11]), a variety of causes of problems
in shared-control systems has been described. These problems occur
if the (controlling) human operator and the (potentially also control-
ling) technical system have divergent assumptions about the actual
system state. Such situations arise, if the mental model of the op-
erator does not match the model of the technical system about the
behavior of the whole system.

The following list intends to introduce the important items that are
especially relevant to the wheelchair application presented later.

Interface interpretation errors occur if the human operator takes
an inappropriate action because he or she misinterprets the ac-
tual system output, often due to bad interface design. As an ex-
ample consider the modes for inserting and overwriting text in a

word processor. When changing between these modes, often only
a small detail of the word processor’s user interface is changed.

Inconsistent behavior of the automation causes problems be-
cause the system does not work as expected. A basic requirement
is that the automation must work deterministically so that the
same input command from the operator in the same state results
in the same output.

Indirect mode changes happen if the automation changes modes
autonomously (without previous operator instruction). In such sit-
uations, the operator’s mental model is prone to lose track of the
real state of the system.

Operator authority limit. If the automation is authorized to over-
ride operator commands under certain conditions, the human op-
erator may suffer from this limitation in unforeseen situations. The
standard example is the “escape-from-fire” scenario: if the prox-
imity sensors of a wheelchair robot misinterpret dense smoke as
obstacles, the automation might hinder the human operator’s es-
cape.

Lack of appropriate feedback. The automation should indicate
any important mode transitions that it performs. It is very difficult
to define exactly which mode transitions are “important”; indicat-
ing too many transitions probably results in a careless operator af-
ter a while, whereas confining the indication of mode transitions to
the really important ones may cause the operator’s mental model
to diverge from the actual system behavior sooner or later.

4 TACKLING SHARED-CONTROL PROBLEMS
BY USING FORMAL METHODS

Recent research aims at finding solutions to the shared-control prob-
lem with the help of formal methods (e.g. [2]). The basic idea is to
check the (formal) specification of the system (including the inter-
action with the user) for potential conflict situations. The challeng-
ing part is to model and to formally specify the behavior of the hu-
man operator correctly. As a number of plane crashes were caused
by mode confusion problems that occurred between the pilot and the
automation, there is a huge industrial interest in these techniques.

Two prominent approaches will be briefly sketched here: The
specification language SpecTRM-RL by Nancy Leveson [5] and a
model checking method proposed by John Rushby [10].

4.1 Detecting Mode Confusion Potential with
SpecTRM-ML

In [5] the authors present a method to detect potential mode con-
fusions in system specifications. They employ the formal language
SpecTRM-RL (Specification Tools and Requirements Methodology
Requirements Language) to describe the technical system as well as
the human operator. SpecTRM-RL is based on state machine seman-
tics. It has the advantage that it is formally analyzable as well as
readable by humans.

The approach works as follows: first, Leveson and colleagues
identify a list of errors that are typically made by humans in shared-
control systems. Afterwards, the black-box behavior of the automa-
tion is analyzed in order to find out which situations are error-prone.
Finally, suggestions can be made as to how to improve the system
design to avoid the mode confusions. Even though the specification
language is automatically processable, the authors are convinced that
human experts should do the analysis.



4.2 Model Checking for the Detection of Mode
Confusions

In [10] the authors make use of the generally accepted assumption
that the user of a technical system develops an individual mental
model which describes the behavior of the technical system. Being
a kind of internal representation of the behavior of the automation,
such a mental model is the basis for decisions about interaction with
the system. Today, it is rather well-known how to formally model a
technical system. There are graphical techniques such as Petri Nets,
Statecharts etc., and there is a large variety of formal specification
languages such as the Duration Calculus, CSP, etc. If one could
model the behavior of the human operator, i.e., if one could formally
specify the mental model of the user with the same description tech-
nique, both specifications should be comparable. It would be rather
straightforward to check whether the human’s mental model can lose
track of the system behavior. If so, a mode confusion situation would
have been detected.

In order to find out whether the design of the technical system as
specified has potential mode confusions, the model of the automation
is not compared to the mental model of an individual but to a gen-
eral one. Such generally applicable mental models can be derived
from operator instruction material. Rushby and colleagues use (fi-
nite) state machines to specify the operators mental model as well as
to describe the technical system. In a subsequent step, they are able to
employ a standard model checking tool to search for potential mode
confusions.

The results presented in [10] are encouraging in that the approach
ensures that any mode confusion potential will be detected automat-
ically, provided that both the technical system and the user’s mental
model were correctly specified.

5 SHARED-CONTROL IN SERVICE-ROBOTS

Both papers that were discussed in the previous section draw their
“benchmark” scenario from avionics: a human pilot has to cope with
the automation of an aircraft — and vice versa. Even though these
systems are much more complex than most service robots, the prin-
ciples remain the same in both application areas.

In order to illustrate the role of shared-control in service robots
such as the wheelchair Rolland, its operation modes and the resulting
confusion potential are discussed in the following subsections.

5.1 Operation Modes of the Bremen Autonomous
Wheelchair

The user controls the commercial version (no control PC, no sen-
sors) of this power wheelchair with a joystick. The command issued
via the joystick determines the speed and the steering angle of the
wheelchair. In the current state of development of Rolland, the joy-
stick is the only interface between the technical system and its human
operator. So far, there is no means to indicate mode changes to the
user. Thus, most of the potential interface related errors listed in sec-
tion 3 had to be considered during the development process. In the
future, a speech recognition and a voice output system will serve as
additional means of communication.

The idea of Rolland’s safety layer (cf., [4, 6]) is to wiretap the
control line from the joystick to the motor. Only those commands
that won’t do any harm to the wheelchair and its operator are passed
unchanged. If a command turns out to be dangerous (e.g., approach-
ing too close to a wall), the safety layer intervenes and decelerates

the vehicle. Thus, this fundamental module ensures safe traveling in
that it guarantees that the wheelchair will never actively collide with
an obstacle.

The specification of the safety layer was deduced with the help
of a fault-tree based hazard analysis [3]. A stepwise refinement of
the threat Collision with an Obstacle leads to a set of safety require-
ments that must hold to ensure that the wheelchair never collides
with an object in its surroundings. For instance, it can be derived that
the safety module must never overestimate the distance to an obsta-
cle the wheelchair is approaching. As collision avoidance is the only
task of this module, it makes a binary decision: either the command
issued by the human operator with the joystick is safe inasmuch as an
emergency brake is not necessary at the current point in time, or the
wheelchair would inevitably collide with an obstacle if the command
of the user were executed, so an emergency brake is required imme-
diately. Parts of the safety module have been proven to be correct
with the help of the model checking tool FDR [3].

Above the safety module, higher-level skills provide additional
functionality: obstacle avoidance (i.e., smoothly detouring around
objects in the path of the wheelchair), assistance for passing the door-
way, behavior-based traveling (wall following, turning on the spot,
etc.) and others. These modules have been combined to the driving
assistant (cf., [7, 8]). It provides the driver with various levels of sup-
port for speed control and for steering. Since this module averts colli-
sions with obstacles and facilitates difficult maneuvers such as door-
way passage, it is useful for most people confined to a wheelchair.
Depending on the need of the individual user, the driving assistant
could only realize a kind of emergency brake if the human operator
overlooked an obstacle. This happens rather often, especially in the
back of the vehicle which heavily swings out in curves. In an alter-
native scenario, the driving assistant takes a rough indication of the
travel direction desired by the driver and converts it into a safe motor
command. As a consequence, the human operator remains in control
of the “large-scale navigation”, and controls the wheelchair as he or
she used to, e.g., via the joystick.

Depending upon the amount of control left to the human oper-
ator, Rolland’s operation modes can be classified in a hierarchy as
displayed in Fig. 4.

Operator-Control Mode

Obstacle-Avoidance Mode

Stop-In-Time Mode

Basic-Behavior Mode

Explicit
mode transition

Implicit
mode transition

Figure 4. Hierarchy of operation modes of the Bremen Autonomous
Wheelchair

The following paragraphs focus on the functionality of these
modes and potential mode confusion scenarios.

5.1.1 Operator-Control Mode

In the operator-control mode, the wheelchair only monitors the com-
mands issued by the human operator via the joystick. If there is no



obstacle close to the wheelchair, the safety module does not alter
these commands. If there is an obstacle dangerously close to the
wheelchair, the automation performs a transition into the stop-in-time
mode. The notion “dangerously” refers to a situation in which there
is an object in the surroundings of the wheelchair that would be hit,
if the vehicle was not decelerated to a standstill immediately.

5.1.2 Stop-In-Time Mode

In the stop-in-time mode, the safety module overrules every com-
mand given by the user and sets the target speed to zero. In addition,
it freezes the steering angle to the current value at the moment the
stop-in-time mode was invoked. The underlying idea is the fact that
you can travel faster in cluttered environments if you ensure that the
steering angle remains constant during an emergency brake. Note
that in this mode the human operator cannot control the wheelchair
in any kind of way. As the driving comfort significantly suffers from
frequent activations of the stop-in-time mode, it is basically enclosed
within the so-called obstacle-avoidance mode.

5.1.3 Obstacle-Avoidance Mode

The obstacle-avoidance mode ensures that emergency braking ma-
neuvers are avoided whenever possible. If in this mode, the
wheelchair smoothly decelerates the velocity when approaching an
obstacle. During this deceleration, the user is still in control of the
steering angle. If the automation realizes that the projected path of
the vehicle is free again, it again accelerates up to the speed in-
dicated by the human operator via the joystick. In addition to the
smooth speed control, this mode causes the wheelchair to detour
around obstacles in its projected path: If there is an object close to
the wheelchair and the user indicates a travel direction that points to
the left or to the right of the object, the automation reduces the speed
and changes the steering angle accordingly.

Whereas the transitions between the modes presented so far are
implicit (i.e., the technical system autonomously changes operation
modes without any indication to or feedback from the user, there is
an additional basic-behavior mode that has explicitly to be chosen
by the driver.

5.1.4 Basic-Behavior Mode

If the system carries out a basic behavior, such as wall following or
turning on the spot, it ignores the position of the joystick completely.
The only way of intervening during the execution of the autonomous
behaviors is to interrupt the behavior with a certain joystick move-
ment. After the automation successfully carried out such a behavior,
the user regains control within the operator-control mode.

5.2 Solving a Shared-Control Problem: Obstacle
Avoidance

When analyzing the problems of both experienced and unexperi-
enced users of the wheelchair, we found out that a profound knowl-
edge of the automation is indispensable in order to decide which ac-
tion is best (i.e., in terms of matching the operator’s intention) in a
certain situation. However, training of the operator cannot be the only
means to reduce the mode confusion potential. Instead, the automa-
tion itself has to be adapted to the human understanding of driving a
power wheelchair.

As an example of such an adaptation, the history of the implemen-
tation of the obstacle avoidance mode of the Bremen Autonomous
Wheelchair is briefly discussed here.

Similar to the Vector Field Histogram (VFH) method described
in [1], the first obstacle-avoidance approach [4, 9] used for Rolland
tried to figure out which steering angle would be the most promising
in a given situation. Therefore, for each steering angle the projected
path for a certain distance was checked for potential obstacles. If it
turned out that the current steering angle was inferior, the automa-
tion took control and set the steering angle to that with the longest
possible travel distance. The major drawback of this method is that
the human operator has no chance to directly approach an obstacle.
If a certain distance to the object was reached, the algorithm would
have steered to the left or to the right. As the mode transition to
the obstacle-avoidance mode is not indicated via any interface to the
driver, he or she might get confused if the wheelchair behaves contra-
intuitively. For instance, consider a situation in which the user wants
to approach a wall in a narrow corridor in order to turn round. The
obstacle-avoidance algorithm would try to “detour” around the wall.
As a result, the user would not be allowed to drive close enough to
the wall to make use of the whole shunting space that is required to
be able to turn in the narrow corridor.

As a consequence, a new obstacle avoidance method was devel-
oped [7]. It realizes an intelligent shared-control behavior by pro-
jecting the anticipated path of the wheelchair into a local obstacle
occupancy grid map. Depending on the side on which the projected
path indicated with the joystick passes the obstacle, the algorithm de-
cides how to change the steering angle in order to best serve the user.
If instead, the driver directly steers toward an obstacle, the algorithm
infers that the he or she wants to approach the object and does not
alter the steering angle. As a result, both requirements are fulfilled:
obstacles are smoothly detoured if desired, but they can be directly
approached if need be.

As depicted in Fig. 4, the transition to the obstacle-avoidance
mode is an implicit one, i.e., the mode is not invoked by the user
by purpose. The resulting fact is that the driver does not adapt to
the new situation after an obstacle has been detoured, because he or
she did not notice that the operation mode changed from operator-
control to obstacle-avoidance. It is very likely that the user would
not react immediately after the avoidance maneuver and steer back
to the original path. Instead, he or she would probably not change the
joystick commando. As a consequence, the wheelchair would follow
the wrong track.

This mode confusion problem motivates an additional feature of
the new obstacle-avoidance algorithm of Rolland: It is able to steer
back to the projection of the original path after the obstacle was
passed. If the user does not adapt to the new situation, i.e., he or
she does not change the joystick position after a detouring maneuver,
the algorithm does interpret the command in the frame of reference
that was actual when the maneuver began. As a consequence, it is
able to navigate through a corridor full of people or static obstacles
by simply pointing forward with the joystick. If there is an object that
has to be detoured, the user keeps the joystick in an unchanged po-
sition and thereby enables the obstacle-avoidance algorithm to steer
back to the projection of the original path.

6 FUTURE WORK

In the future, the human-machine interface will be improved. By
means of a speech module, the wheelchair will indicate mode
changes. As a consequence, confusing situations in which, for in-



stance, the driving assistant tries to circumvent an obstacle that can-
not be seen by the human operator will occur less often. In such a
scenario, it is likely that the operator will issue commands that con-
tradict those set by the driving assistant.

In addition, a formal approach, similar to the model checking
technique shown in section 4.2, will be used to guarantee the non-
existence of mode confusion potential and thereby ensuring the
safety of the shared-control service robot Rolland.
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Abstract
It is argued in this paper that designing and building
intelligent robots can be seen as the problem of
integrating four main dimensions: human-robot
communication, sensory-motor skills and perception,
decision-making capabilities and learning. Some of these
dimensions have been thoroughly studied in the past.
However, their integration has seldom been attempted in a
systematic way. This integration is crucial for Service
Robotics: it will allow the development of robots that,
instead of being programmed in the classical way, will
accept, via a friendly interface (preferably by speech
communication), instructions in terms of the concepts
familiar to the user. The integrated intelligence issue is
the subject of the CARL project, described in this paper.
The project addresses the integration challenge paying
particular attention to symbol grounding. As applications,
the project is envisioning a "tour guide" and a "mobile
manipulator".

1. Introduction
The development of systems that don’t have to be
programmed in the classical way and, instead, can accept
instructions at the level of concepts of the human user
will be a major breakthrough.
   In manufacturing, flexibility implies a significant
degree of reconfigurability and reprogrammability of the
production resources. In order to implement
reconfigurability, the modularity of the manufacturing
hardware must be enhanced, such that, by combining
resources in different ways, different operations can be
performed. One of the few examples of this philosophy,
already implemented in industrial practice, is the
possibility of a robot changing the end-effector.
Eventually, modular design will be commonly applied to
other categories of resources, including fixtures and even
arms. When the structuration constraints are reduced, the
reprogrammability requirement can only be addressed by
enhancing the autonomy of the manufacturing system.
   An analogy can be established between service robots
and flexible industrial robots. In fact, if a flexible
manufacturing system is supposed to produce a variety of
products and in small quantities, then industrial robots

will tend to play the role of craftsmen. Therefore, both
service robots and industrial robots will need to use
sensors extensively in order to develop a high level
understanding of their tasks.
   Robot decision-making at the task level is, therefore, a
central problem in the development of the next generation
of robots. In manufacturing, as the modularity and
reconfigurability of the hardware are enhanced, the
number of action alternatives at the task-level increases
significantly, which makes autonomous decision-making
even more necessary.
   The development of task-level robot systems has long
been a goal of robotics research. It is of crucial
importance if robots are to become consumer products.
The use of the expression task-level is due to Lozano-
Perez et al. (1989). The idea, that was already present in
automatic robot programming languages, such as
AUTOPASS and LAMA, developed in the 1970's, has
been taken up in recent years by other researchers (Haigh
and Veloso, 1996; Seabra Lopes, 1997).
   The authors of the present paper are currently involved
in CARL (= “Communication, Action, Reasoning and
Learning in robotics”), a project aimed at contributing to
the development of task-level robot systems. This paper
outlines the adopted approach and planned demonstration.
   To a large extent, the approach followed in CARL is
based on the hypothesis that it is possible to build an
intelligent robot by designing at least the general structure
and organisation of the needed representations of the
world as well as of the execution modules, from low-level
control to high level decision-making. In such
architecture, symbols play an important role. The problem
of defining symbol meanings is the classical robot
programming problem. The incorporation of learning
mechanisms in robot architectures will be explored in
order to simplify the programming problem. While most
of the research on robot learning has been centred on
control tasks using sub-symbolic learning techniques,
CARL also addresses robot learning at the task level.

2. Robot Programming Paradigms
The economical viability of a robot system is often
determined by the time required to program the robot to
perform the desired tasks. Programming time is a function
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of the features supported by the programming system, the
ease in specifying the tasks and the support for program
development and debugging. In some approaches, the
planning phase, is significantly automated. In other cases,
detailed planning is manual and the executable plan must
be hand-coded step by step. On the other hand, depending
on the execution skills of the robot controller, detailed
planning of each operation may be simplified, or may
require extensive mathematical treatment.
   In which concerns robot programming, the main
approaches that have been pursued until now are the
following:

Industrial Practice — The most common programming
method in industrial practice is a combination of robot
guiding and textual programming. Most commercially
available robots require position variables to be
initialised by human guidance, with help of a teach
pendant. The flow of execution is then specified by
means of a robot-level programming language.

Automatic Programming — As task planning techniques
become available, they are slowly being integrated in
robot languages, leading to the automatic programming
paradigm, which meets the industrial need for more
flexible and powerful programming systems. The
general goal is to allow the user to program in his/her
domain of concepts. Usually, the language is a
formalism for describing the task in terms of abstract
operations and the underlying model supplies a method
for handling the details.

Programming by Human Demonstration — This
paradigm has been attracting increasing attention of
robotics researchers. Applications range from low-level
skill acquisition  to task-level planning (Asada and
Asari, 1988; Kang and Ikeuchi, 1995; Kuniyoshi, et al.,
1994; Morik et al., 1999). Human demonstrations can
be performed in a virtual environment or in the physical
setup.

   The combination of guiding with robot-level
programming languages, that is common in industrial
practice, has many limitations. In fact, as the robot
working environments become less structured, the variety
of tasks increases and the robot users (either in
manufacturing or in the service sector) become less aware
of the technical details (their focus of attention is on the
tasks), the traditional methods will no longer be
practicable. Automatic programming and programming
by demonstration are, currently, the main alternative
approaches being investigated. In addition, for the same
reason that we would like robot users to be able to
describe tasks in their own domain of concepts (at the
task level) it would also be desirable to solve the whole
programming problem by considering also human
explanations. This is especially important in which
concerns the handling of unexpected situations.
   Robot programming in the next generation of robots
must, therefore, combine high-level task specifications,
demonstrations in physical or virtual environments and
human explanations. Of course, as will be pointed out

next, in order to make full use of all these categories of
feedback from the user, the robot must also be able to
make decisions concerning actions and, very important, to
learn upon experience.

3. Robot Autonomy and Intelligence
As the degree of structuredness and predictability of the
environment decreases and the interaction with non expert
humans becomes more intense, robots will need a deeper
understanding of what is going on around them. In some
way, they will have to be intelligent.
   The nature of intelligence has been studied by
philosophers since ancient times. In our days, researchers
from other fields, including psychology, cognitive science
and artificial intelligence, joined the debate.
Unfortunately, while some abilities related to intelligence,
such as learning or reasoning, can be defined precisely,
the word intelligence seems to have different meanings
for different people. Humans are intelligent, everybody
seems to agree. But, are animals intelligent? Is a computer
running a medical expert system intelligent?
   Artificial intelligence researchers have been
characterizing intelligence along two dimensions:
thinking and acting (Russell and Norvig, 1995). In either
case, success can be measured by comparison to human
performance or to an ideal concept of intelligence, that
may be called rationality (a system is considered rational
if it does things in the best way).
   The traditional viewpoint in artificial intelligence
research used to be to evaluate an agent's intelligence by
comparing it's thinking to human-level thinking. In 1950,
Turing proposed a test to provide an operational
definition of intelligent behavior: an agent would pass the
test if it could be taken as a human during a dialogue with
another human. This would involve natural language
understanding, knowledge representation, reasoning and
learning.
   Even if emulation of human intelligence is not a
priority, and emphasis is placed on rational action, these
capabilities will be necessary for agents whose goals are
defined at a high-level of abstraction. In recent years,
human-level intelligence has been attracting increasing
attention in the robotics community. For instance, Fukuda
and Arai (1995) consider that an intelligent robot should
have three main abilities: (1) reasoning ability;
(2) learning ability; and (3) adaptation ability. In parallel,
the development of humanoid robots is gaining
momentum (Kanehiro et al., 1996; Brooks,1996).
   A characterisation of intelligent systems in terms of
acting is more interesting for robotics. The system is, in
this case an agent, i.e. something that perceives and acts.
One possibility is to characterise an intelligent agent as
one that acts rationally, meaning that, given its perception
of the world, it achieves its goals in the best way. Rational
thinking (deductive reasoning) is not enough for acting
rationally, because sometimes there isn't a way or the time
to prove what is the best action to take and still something
must be done. Acting rationally therefore needs things
like empirical reasoning and reactivity.



   In the late 1960’s, the first robots showing some degree
of intelligence and autonomy were presented. The mobile
robot Shakey, developed by this time at the Stanford
Research Institute, is generally considered as a milestone
in autonomous systems. Shakey could already perform
some of the functions that are considered, still today, as
fundamental for autonomous systems, namely perception,
representation, planning, execution monitoring, learning
and failure recovery. By the same time, Winograd (1972)
presented SHRDLU, a natural language understanding
system for a physically embedded agent, a robot
manipulating blocks.
   Unfortunately, AI techniques and representations,
traditionally tested only in toy problems like the blocks
world, did not extend easily to complex dynamic
environments (Brooks,1986; 1991; 1996; Maes, 1993;
Arkin, 1998). It was found difficult to maintain world
models and to connect the symbols in these models to
numerical variables of the outside world. Furthermore, AI
systems tended to be very slow, due to the sequential
processing of information and to the cost of maintaining
the world model. They had difficulty in reacting to
sudden changes in the environment. This is partially
related to the combinatorial explosion problem in
planning, which also limited the decision-making
capabilities of the system. Finally, AI systems were
brittle, in the sense that they failed in situations only
slightly different from those they were programmed for.
   The realisation of these problems motivated
substantially new approaches, for instance reactive
reasoning and planning, multi-agent systems and
distributed AI, as well as a revival of the connectionist
paradigm. The integration of learning mechanisms in
robot architectures was considered important in order to
reduce the programming effort.
   Finally, in the 1990’s optimism seems to have returned
to those who are developing intelligent robots and
systems. Reactivity, reasoning and symbol grounding are
major issues, that will now be briefly analysed.

3.1. Reactivity and Emergent Functionality
In the tradition of STRIPS, classical AI planners [Tate et
al., 1990] rely on problem-solving techniques. A set of
operator schemata characterise the specific application
domain, and the problem is usually to determine a
sequence of operator instances that transform a given
initial state of the world into a given goal state. Being
purely deliberative, classical planning is adequate for
strategic planning problems.
   In real applications, however, executing a plan also
requires some ability for improvisation. The plan
executive will need to make short-term decisions
continuously, in order to adapt to a dynamic and uncertain
environment. This is especially true in robotics. Working
at a symbolic level, classical planning systems typically
have difficulty in reasoning about sensing and coping
with uncertain information. On the other hand,
combinatorial explosion in problem solving slows down
the mapping of sensing to action. This led to the
development of purely reactive systems.

   The decomposition in functional modules, common in
classical AI approaches, did not exclude a hierarchical
organisation between them. Even in reactive planning
systems, hierarchies have been used. For robotics
applications, where many levels of abstraction can be
identified, several architectures were proposed in which a
hierarchical or layered organisation is emphasised. The
most famous and influential of these proposals is
probably the subsumption architecture (Brooks, 1986):
organised in various layers, it supports levels of
competence which go from basic reflexes (reactions) to
reasoning and planning. The more abstract control layers
use the functionality implemented by the lower layers, but
can also use directly sensor data as well as send
commands to actuators. Each layer is implemented by a
set of modules which run in parallel, without any kind of
centralised control.
   The main goal of Brooks was to build robots that can
survive for long periods in dynamic environments without
human assistance. In more recent work, Brooks has taken
this "decentralisation" even further by completely
removing explicit internal representation and reasoning
from robot control architectures: intelligence without
reason (Brooks, 1991). A centralised world model is not
necessary because the world is its own best model. The
functionality of the robot emerges from the interaction
among its components and with the environment.
Intelligence is not explicitly encoded. The robot is simply
observed to be intelligent, depending on its emergent
functionalities and the situation of the world.
   More recently, Brooks (1996) proposed a second
paradigm shift, from behavior-based to cognitive robotics.
The basic idea seems to be to scale up the behavior-based
approach to generate human-like behavior and
intelligence. Since 1993, Brooks has been building Cog, a
humanoid robot, to demonstrate his new ideas.
   However, the emergence of complex human behavior
and intelligence in the humanoid does not seem to be an
easy task. Brooks is the first to acknowledge that the
behavior-based approach has been demonstrated almost
exclusively on navigation tasks, where the problem of
motivation for engaging in other activities does not even
arise. Sensing, action, reasoning and learning are deeply
rooted in human bodies, which are impossible to
reproduce with available technology. At most the human
appearance can be reproduced. Furthermore, even if the
technology for building good approximations of human
bodies was available, there is the whole history of
mankind evolution. Human intelligence emerged from
that evolution process. Many scientists are therefore
skeptical about purely behavior-based or cognitive
approaches and prefer to design explicitly the reasoning
and control mechanisms of the robot or system (Hayes-
Roth,1990; Haigh and Veloso,1996; Seabra Lopes, 1997).

3.2. Combining Reactivity with Reasoning
Reactive and behavior-based systems addressed with
some success the problem of situated activity, coping with
dynamically changing environments. In particular, the
display of emergent intelligent-looking behavior by



reactively controlled robots is considered one of the
successes of the approach. However, despite the modular
and incremental design that is often used, reactive
systems seem to be difficult to build, requiring a great
engineering effort to hard-code the desired functionality.
   Being limited to applications requiring no explicit
representation of the world is a major limitation of purely
reactive systems. For instance, in mobile robots, the
classical path planning problem requires some
representation of space. Any solution superior to random
motion necessitates an internal model of the robot’s
current location.
   A related fundamental limitation of this type of systems
is that they are generally unable to display adequate goal
directed behavior. On the other hand, when new situations
arise, the ability to plan ahead could avoid time-
consuming and possibly dangerous explorations of the
environment. Moreover, a search in an internal model is
orders of magnitude faster than the same search
performed on the environment. There is a great difference
between emergent clever-looking behavior and truly
clever behavior. It should be noted that, despite the efforts
of the emergent computation community, research in
emergent mind remains purely speculative (Havel, 1993).
   While purely reactive systems continue to be
investigated, many researchers started to develop hybrid
systems. Typically, reactivity is employed in low-level
control and explicit reasoning is employed in higher-level
deliberation (Georgeff and Lansky, 1987; Ambros-
Ingerson and Steel, 1988; Connell and Mahadevan, 1993;
Mataric, 1992; Firby et al.,1995; Seabra Lopes, 1997;
Arkin, 1998). Horswill (1995) presented one of the firsts
prototypes performing a classical AI task, from language
through vision, without assuming a central model.

3.3. Symbol Grounding
Most of the initial AI research took a strong logical and
symbolic perspective. This trend was encouraged by
failures of connectionism, such as the inability of the
initially proposed neural architectures to learn non linear
problems. Although many of these problems have been
solved with appropriate network structures and update
rules, connectionist models continue to fail in symbol
manipulation and language-level problems. Another
weakness of connectionist models is their inability for
providing explanations.
   The hypothesis on which most AI research is based is,
therefore, that the mind (or in general an intelligent
system) is a symbol system and cognition is symbol
manipulation.
   A symbol system is a set of tokens that are manipulated
on the basis of explicit rules. These rules are also tokens
or strings of tokens. The application of rules in symbol
manipulation is strictly syntactic (i.e. based on the shape
of symbols, not on their meaning) and consists of
combining and recombining symbol tokens. The symbol
tokens and, therefore, the entire symbol system, are
semantically interpretable: there is a way of
systematically assigning a meaning to syntax. The
problem, in this case, is how to define the symbol

meanings, i.e. how to link the symbols to the outside
world: the symbol grounding problem (Harnad, 1990;
MacDorman, 1999). In connection to this problem, other
more or less philosophical questions have been discussed,
namely those relating to consciousness and intensionality
(Russell and Norvig, 1995).
   While the more philosophical questions still need a lot
of debate and can be overlooked when developing
practical applications of AI, the same cannot be said
about symbol grounding. This is especially true in the
robotics domain. Steels (1999) explores visual grounding
in robotic agents.
   Intelligent robots will need high-level decision making
capabilities that are essentially based on symbol
manipulation. However, the meaning of symbols must be
obtained from sensors which provide essentially non
symbolic data. Connectionism, with its ability to discover
patterns, seems to be a good paradigm for implementing
the sub-symbolic layers of a cognitive architecture. For
this reason various authors have been proposing hybrid
symbolic-connectionist approaches (Harnad, 1990). The
exact architecture of these hybrid systems is the topic of
discussion.
   Sometimes it is argued that symbol grounding should be
a bottom-up process. However, like humans, machines
will benefit from using both grounding directions, i.e.
symbols externally communicated will be grounded in a
top-down fashion while other symbols will be discovered
in a bottom-up fashion. Symbol grounding is intimately
connected to learning: supervised learning is the most
promising approach for top-down grounding while
clustering is appropriate for bottom-up grounding.

4. Integrated Intelligence
The CARL project, here presented, is based on the
hypothesis that a combination of reactivity with reasoning
is more likely to produce useful results in a relatively near
future than the purely reactive or behavior-based
approaches. This is especially true for robots that are
expected to perform complex tasks that require decision-
making.
   The integration of reactivity with reasoning has proven
to be difficult to achieve. Horswill (1995) wrote:
«Traditional architectures have focused on traditional
problems (reasoning, representation, NLP) and alternative
architectures have focused on problems such as real-time
perception and motor control. There have been few if any
satisfying attempts to integrate the two». The position and
(driving hope) of the CARL project is that most of the
encountered difficulties are the result of not addressing
properly the learning and, especially, the interface issues.
   The reference architecture of the project is shown in
figure 1. It emphasises the integration of the following
four major dimensions of the problem of building
intelligent robots:

- basic sensory-motor skills,
- decision-making capabilities,
- learning, and
- human-robot interaction.
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4.1. Human-Robot Interface
A robot executing a task for humans is a process that
involves making decisions concerning the task progress
and controlling the hardware in the desired way. Decision
making is primarily based on symbol manipulation. Even
the primitive operations the robot is able to perform are
viewed as symbols. As already pointed out, symbol
grounding is a difficult problem to solve. However, to
correctly address symbol grounding in the context of task
execution, the first thing to notice is that most symbols
are inherent to the tasks. The human user, who defines the
tasks, will be a primary source of information for the
symbol grounding process. The communication interface
between human and robot is, therefore, of primary
importance (Connell, 2000).
   Fukuda and Arai (1995) point out that one of the most
delicate and important factors to take into consideration
for the success of such innovative devices, like service
robots, relates to the psychological aspects and to the
implementation of techniques for human-robot interaction
in unprotected environments, such as a house.
   In the traditional approach to building intelligent
systems, the human devises a formal language and
specifies symbol semantics with it. As the application
becomes more and more complex, the task of the
programmer becomes overwhelmingly difficult. The most
pervasive approach to robot programming still today in
industrial practice is a combination of guiding and textual
programming. A teach pendant is used to teach the
positions referenced in the program. This is probably the
simplest and oldest form of symbol grounding in robotics.
Efforts in developing automatic programming languages
got stuck in some of the typical AI problems, namely
automated reasoning and symbol grounding.
   Ideally, the human-robot interface should be multi-
modal (Flanagan, 1997). Certainly, it may still be useful
(at least in a research robot) to specify some information
textually using a formal language. A physical
demonstration of the task, or of certain operations in it, is
another form of communication. In some cases,
demonstrations in a virtual environment can be a better
alternative.
   Meanwhile, if we are developing intelligent robots with
significant decision making capabilities, the use of natural
language seems to be the most flexible type of interface

for exchanging task-level concepts and, certainly, a very
comfortable one for humans (Jayant, 1997; Edwards,
1997). But, it is unavoidable because no other alternative
is practical enough. The common (naïve) user does not
want to learn a formal programming syntax. To our
knowledge, the only project that has been consistently
working in this direction is JIJO-2 (Asoh et al., 1997; Fry
et al., 1998).
   Teaching a task, for instance, should be an interactive
process, in which the human explains one or two steps of
the task, the robot tries them out and then the human
explains a little more, and so on (Huffman and Laird,
1993). Natural language seems also to be the best way for
easily guiding the robot in recovering from failure
situations. In general, natural language seems to be the
easiest way of presenting new symbols (representing
physical objects, failure states, operations, or whatever) to
the robot. Grounding these symbols depends essentially
on the robot sensors and learning abilities.

4.2. Learning Module
Learning, defined as the process by which a system
improves its performance in certain tasks based on
experience, is one of the fundamental abilities that a
system must possess in order to be considered intelligent.
Learning can be seen as the combination of inference and
memory processes (Michalski, 1994). The application of
learning techniques to robotics and automation is
recognised as a key element for achieving truly flexible
manufacturing systems (Morik et al., 1999).
   The problem with implementing robot autonomy for
manufacturing or service is that it is not easy to design
and program from scratch all the necessary sensory-motor
and decision-making capabilities. The major contribution
of learning is to generate models and behaviors from
representative cases or episodes when such models and
behaviors cannot practically be designed and programmed
from scratch. The use of machine learning techniques for
acquiring these capabilities in a framework of
programming by human demonstration and explanation
seems a very promising approach (fig. 2).
   Until now, research in applying learning in robotics and
automation has focused on learning control functions,
adaptation and dealing with uncertainty in real-world
parameters. Behavior-based robotics has investigated the
integration of learning mechanisms in robot architectures
for navigation and environment exploration (Connell and
Mahadevan,1993). In this kind of applications, the
external feedback used for learning is either scalar
feedback or control feedback. In learning based on scalar
feedback, the robot receives a positive or negative reward
signal evaluating its performance. These rewards can be
provided more or less frequently. In a fully unsupervised
mode, only when the robot achieves the goal, will a
reward be provided, confirming success. In between
supervised and unsupervised learning, reinforcement
learning is based on scalar feedback received at the end of
every performed action, or at least when critical
intermediate states are reached.



   In learning based on control feedback, the robot
receives information about the appropriate actions to take
in different situations. This corresponds to supervised
learning. It is especially suited for top-down symbol
grounding and very useful in learning at the task level.
Task-level robot systems will also need analytic feedback,
meaning that the robot must be provided with
explanations of why certain actions are (or not) able to
achieve certain goals (Evans and Lee, 1994; Seabra
Lopes, 1997, 1999).

4.3. Decision-making Capabilities
Initially, the human user explains the task in his/her own
domain of concepts. For instance, the user might ask:
“Please, get me a coke from the fridge”. Executing this
task involves reasoning about the task and the
environment and making several decisions. To start with,
the robot must plan a strategy to achieve its goals. Then,
while executing the devised strategy, the robot may
encounter unexpected situations, that eventually lead to
failure. It is then necessary to analyse and recover from
that failure. These decision-making activities can be
addressed with AI techniques. Instead of hand-coding the
knowledge that must support decision-making, learning
and human-robot interaction is used to generate it.

Task planning  — This is an instance of the action
sequence planning problem (Hutchinson and Kak,
1990) which, in real-world situations, with many action
alternatives, becomes very difficult due to search
complexity. Having an understanding of why solutions
to past task planning problems were successful may be
a considerable help in new similar problems.
Explanation-based learning (Kedar-Cabelli and
McKarty, 1987) and case-based reasoning

(Kolodner,1993) techniques may be of great help in
robot task planning. Analytic feedback seems to play
the major role in learning for nominal task planning.

Execution monitoring  — The goal of execution
monitoring is to detect unexpected situations during
task execution. Monitoring certain goals is trivial. For
others, learning may help, for instance by generating
classification knowledge to discriminate between
different situations. Learning in execution monitoring
typically involves scalar and control types of feedback.

Failure diagnosis  — A diagnosis function is called when
unexpected situations arise (execution failures). In
general, failure diagnosis can be divided into four main
sub-problems, namely failure confirmation, failure
classification, failure explanation and status
identification (Chang et al., 1991; Meijer, 1991; de
Kleer et al., 1992; Camarinha-Matos, Seabra Lopes,
Barata, 1996). The first two sub-problems are basically
classification problems. Classification knowledge for
diagnosis can be acquired using inductive concept
learning methods (Seabra Lopes and Camarinha-Matos,
1998, 1999). Failure explanation uses a domain theory
to explain the execution failure. Deriving explanations
based on a domain theory and observations or
classifications of aspects of the robot system is, like
task planning, a problem that may involve a certain
search complexity. Knowledge about previous
explanation tasks may guide failure explanation.
Learning by analogy and by deductive generalisation
seems to play the main role in failure explanation.
Finally, state identification can be decomposed into a
set of classification tasks for recognising the effects of
the initial exception, as determined in the explanation
phase. Learning in failure diagnosis therefore primarily
uses control and analytic feedback.
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Failure recovery planning  — After diagnosing a failure,
the robot must plan a strategy to overcome the situation
and achieve its goals. In principle, this strategy will
make some corrections so that the robot may resume
execution of the initial plan in the point of failure or
some steps after. Pre-programming failure recovery
routines and search-based planning are two approaches
that cannot handle this complexity. The only solution
seems to be adapting plans provided by some external
agent (e.g. the human) for previous failure recovery
problems (Seabra Lopes, 1999). Like in task planning
and in failure explanation, analytic learning techniques
seem to be the most promising in failure recovery.

4.4. Basic Skills
The interaction of the robot with the environment and, in
particular, the execution of tasks is supported by a set of
sensory-motor skills, each of them involving a tight
connection of perception to action. A classical example,
from the robotised assembly domain, is the peg-in-hole
insertion skill, first studied, from a learning point of view,
by Dufay and Latombe (1984). In a mobile robot,
navigation with obstacle avoidance is also a basic skill.
Developing skills has been addressed with different
approaches, including model-based approaches,
programming by demonstration and learning. The
application of various types of neural networks, due to
their ability to handle non-linearity and uncertainty, has
already delivered interesting results. The use of reinforce-
ment learning in on-line skill learning or refinement is
also being investigated (Bagnell, Doty and Arroyo 1998;
Nuttin and Van Brussel, 1995). Skill learning involves
typically scalar and control types of feedback.
   Developing robot skills for specific applications has
been termed skill acquisition. An even more difficult
problem could be called skill discovery. In this case, the
robot must be actively exploring its environment. Such
exploration involves the generation of sensory-motor
interactions with the environment and the identification of
their effects. Once in a while, some of the experimented
sensory-motor interactions will produce effects that, from
the point of view of the tasks and goals of the robot, are
interesting to “keep in mind”. This kind of learning,
which necessarily involves all types of feedback (scalar,
control and analytic), while very relevant for true learning
robots, remains almost completely unexplored.

6. Current Work
Until now, the CARL team has been working mainly on
robot construction (starting from a Pioneer 2-DX mobile
platform) and on the human-robot communication
interface (Seabra Lopes and Teixeira, 2000).

6.1. Carl, the robot
Carl is the name of the robot of the CARL project (fig. 3).
It is based on a Pioneer 2-DX indoor platform from
ActivMedia Robotics, with two drive wheels plus the
caster. It includes wheel encoders, front and rear bumpers
rings, front and rear sonar rings and audio I/O card. The
platform configuration that was acquired also includes a

micro-controller based on the Siemens C166 processor
and an on-board computer based on a Pentium 266 MHz
with PC104+ bus, 64 Mb of memory and a 3.2 Gb hard
drive. The operating system is Linux.
   We have installed a compass (Vector 2XG from
Precision Navigation Inc.), a PTZ104 PAL Custom
Vision System and a Labtec 7280 microphone array.
   With this platform, we hope to be able develop a
completely autonomous robot capable, not only of
wandering around, but also of taking decisions, executing
tasks and learning.

6.2.  “Innate” capabilities
Our idea for Carl is to integrate, in the development
phase, a variety of processing and inference capabilities.
In contrast, the initial body of knowledge will be minimal.
After this phase is concluded (after the robot is born!), a
life-long learning process can start. Carl learns new skills,
explores its environment, builds a map of it, all this with
frequent guidance from the human teacher.
   Some of the "innate" capabilities / knowledge, that will
be integrated in Carl during the construction phase are:
• Wandering around in the environment while avoiding

obstacles; this is the only "innate" behavior.
• Natural language processing, supported by a fairly

comprehensive vocabulary of English words; the
meanings of most words are initially unknown to Carl.

• Basic speech processing.
• A small dictionary of words and their meanings for

identifying the robot’s sensors and basic movements;
these are the initially ground symbols over which Carl
will incrementally build his knowledge.

• Ontologies for organizing and composing behaviors,
map regions, dialogues, task plans, episodic memory,
etc.

• Knowledge of basic mathematical functions, that the
teacher can use for teaching new concepts or
behaviors.

• Logical deduction (in a Prolog framework)
• Capabilities for task planning and execution

monitoring.
• Capabilities for learning numerical functions.
• Capabilities for learning symbolic classification

knowledge.
• Capabilities for explanation-based learning and case-

based reasoning.
   Part of these capabilities can be implemented by
adapting prototypes previously developed by the research
team (Seabra Lopes, 1997 and 1999ab).

6.2.  Envisioned applications
The project is envisioning two demonstrations, one for the
short-term and the other for the long-term. The short-term
application is a "tour guide". This is an application in
which, ideally, the robot enters in dialogue with the
tourist or visitor, answering the questions that the tourist
asks, and skipping the aspects in which the tourist does
not seem to be interested. That means that the robot must
really maintain a knowledge representation about what
there is to see, adapt to the user and, at the same time, do
all other things that robots are expected to do in the
physical world, particularly navigation and localization. A



robotic tour guide for a museum in Bonn has been built at
Carnegie-Mellon University (Burgard et al., 1999), but
this robot only has pre-recorded messages and does not
enter any kind of dialogue. We therefore want to see how
far dialogue can go in such application with available
speech technology.
   The longer term demonstration is the “mobile
manipulator” (Khatib, 1999) for materials handling in an
unstructured environment (Doty and Van Aken, 1993).
With this, the CARL project will study in greater depth
the integration of human-robot communication and robot
learning with the traditional reasoning and real-time
action capabilities.

5. Conclusion and Current Work
   The CARL project aims to contribute to the
development of task-level robot systems by studying the
interrelations and integration of the four major
dimensions of the problem: human-robot interaction,
sensory-motor skills and perception, decision-making and
learning. A lot of literature has been produced on general
decision-making (Russell and Norvig, 1995), on decision
making for robots (Haigh and Veloso, 1996), on learning
for robot decision making (Seabra Lopes, 1997), on
different approaches to skill acquisition (Asada and Asari,
1988; Morik et al, 1999), on active sensing
(Crawley,1995) and on human-machine interaction
(Flanagan,1997; Jayant,1997). However, being all these
aspects fundamental for developing intelligent robots,
their integration in the same robot has seldom been
attempted.
   This lack of integration efforts in robotics is explained
by various technological limitations. However, thanks to
the increasing availability of compact hardware at
reasonable cost and to the dramatic increase in
computational power that was observed in recent years,

the proposed integration work is now becoming feasible
(Stork, 1997).
   Within CARL, care is being taken to avoid developing
every specific functionality that would be required, if the
robot was a final product. Attention is, therefore, focusing
on a small set of functionalities at the various levels of the
architecture and on the problems that their integration
raises. Particular attention is paid to symbol grounding in
connection with the learning and communication
modules.
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Abstract. One of the essential points in the design of a
telerobotic system is the characterization of the Human-Robot
interaction to be implemented. In most telerobotic systems user
interaction is still very computer-oriented, since input to the
robot is accomplished by filling forms or selecting commands
from a panel. Very little attention has been paid to more natural
ways of communication such as natural language, or gestures.
Besides this, in certain situations a voice-controlled user interface
is not enough to specify exactly a task to be performed by a
robot. Consider for example a doctor that have to operate a
person through a telerobotic system. It should be necessary to
specify the different tasks in a more accurate manner. This
introduces the convenience to have a mixture of both approaches,
the natural language and controls that allow the specification of a
task with exactitude.

1 INTRODUCTION

In this paper we present a real application whose goal
consists of the design and implementation of a telerobotic
system that includes learning capabilities and aims at
controlling a robot by means of a subset of the natural
language. Besides this, the user interaction is
complemented with a set of graphical controls that can be
manipulated through a mouse interaction and allow the user
to specify a task precisely.

The system, which provides control over a vision-
guided robot called “Jaume” (see fig. 1), follows an Object
Oriented Distributed Arquitecture by means of the CORBA
standard [1]. This allows the system to interconnect
multiple modules running on different platforms and

implemented using distinct programming languages (C++,
Java, etc). Besides this, the user interface is defined by
using the Java programming language, allowing it to be run
on multiple platforms or event better, over the Internet.

Figure 1. The robot “Jaume”.



2 RELATED WORK

Many different telerobotic systems have been reported since
Goertz introduced the first teleoperator at the Argonne
National Laboratory four decades ago [2]. Nowadays, the
expansion of the World Wide Web has allowed a increasing
number of user interfaces that control remote devices not
only for robots, but also cameras, coffee pots, and cake
machines, to name a few.

The first telerobotic systems with this kind of
interface were presented by researchers from the University
of Southern California (USC) and the University of Western
Australia (UWA). The Mercury Project [3], carried out at
the USC, led to the development of a system in which the
manipulator was a robotic arm equipped with a camera and
a compressed air jet, and the interface consisted of web
page that could be accessed using any standard browser.

In our system, we aim to allow operators to use
their voice and their mouse input to control the robot
movements. Besides this, the system is able to learn from
experience and the user interaction. Thus, it will accept
high-level commands such as “Jaume, pick up the small
pen”, that require the use of some visual identification to be
carried out. By the other side, the recognition algorithm has
been selected in order to allow it to be used as a real-time
application.

The Robot response must come up in less than a few
seconds. In fact, the problem to control a robot via the web
will have many additional difficulties because is a very
uncertain environment where the velocity of data
transmission can not be guaranteed, and the delay is always
present. A very recent discussion about this topics in the
telerobotics domain can be found in [4], [5], [6], and [7].

However, we have selected the web as the best way of
communication between the user interface and the robot
because it allows the manipulator to be accessed from any
computer connected to the internet. It makes this
connection cheap and easy, and we consider these reasons
are sufficient to prefer the Internet to a dedicated network
that would allow us a much better performance. Besides, as
new broadband Internet connections are coming up (fe.
ADSL or Satellite) this web bottleneck will fade out too.

3 OVERALL SYSTEM DESCRIPTION

The telerobotic system is based on Computer Vision and the
robot called “Jaume”, programmed in real time by a remote

interface using a subset of natural language specification
and/or a mouse input. The system is able to learn from the
user by means of its interaction, making then the
knowledge base more extensive as the time goes by.

A camera is used to obtain the environment
images with the objects the robot can access to. These
images are transferred to the computer running the user
interface, using Internet as access medium, and then
showed to the user in order to allow him to know the real
environment state. The restricted natural language input
gets into the system via the user interface, which translates
in real time these commands into another language that the
robot can understand.

Based on a previous work [8] we have designed a
Server application that offers low level grasping and
camera services. We will refer to this subsystem as “Robot
Server”. The Robot Server is in charge of setting up the
robot and the camera, and controlling them. The Robot
Server capabilities are used remotely by the user interface
running on the Internet through a distributed object
oriented interface implemented with CORBA (Common
Object Request Broker Arquitecture) [1]. See fig. 2 to
appreciate the different system components.

The natural language command can get into the
system by typing it directly into the User Interface or by
means of the North-bound interface that allows the system
to interconnect a speech recognition tool, such as “Dragon
System”, through the standard CORBA.

User

Remote Controller
User Interface

Pattern Recognition
Module

Robot Server

Objects

Remote Controller
North-Bound Interface



Figure 2. Overall System Architecture.

4 USER INTERFACE

Basically, the user interface consists of a Java application
that can be run on any kind of computer with a Java Virtual
Machine installed on it. The Java application allows users
to obtain images of the robot’s workspace and configuration
information about the robot and the camera, send
commands to the Robot Server for controlling the robot and
access the object database in the Database Server to read
and update the knowledge robot database.

The user interface, which is shown in fig. 3, allows the use
of a subset of natural language for specifying the orders to
be sent to the Robot Server. This means users can employ
the same names and adjectives they use to refer to objects in
the real life, as well as the same constructions for
expressing location (above, at the left hand of, etc). Besides
this, as we can see at the left side of the “scene window” in
fig. 3, the system includes a set of buttons than allows the
user to manipulate the objects directly into the scene. At the
moment the interaction is based on 2D scenes, but we are
starting to use the Java 3D specification, in order to allow
the user to interact with 3D scenarios.

Figure 3. User interface (Remote Controller).

4.1 Integrated object recognition techniques

We have implemented in our system object recognition
skills, by using a very fast classifier [9], based on automatic
vision processing of the scene, permitting to the user assign
labels to a new kind of possible object, if the system do not
match the corresponding class for this object in its model
data base.

The object recognition and learning tasks are
performed by a user interface module, which performs an
analysis of the real images received from the Robot Server
or provided by the user, and then computes a set of
descriptors that identify uniquely the objects contained in
the different scenes. These descriptors, known as “HU
descriptors”, are based on the invariant-moments theory
[10]. Once we compute the “HU descriptors” for a given
object sample, we apply the learning recognition procedure
to know if this object belongs to an already learned class or
whether it identifies a category that must be added to the
knowledge robot database.

Before the classification process and the HU
descriptors extraction of an object the image is preprocessed
and segmented in order to identify the objects belonging to
the scene. This action is accomplished through a previous
binaryzation of the scene and then a simple segmentation
algorithm that searches from top to bottom and from left to
right the different objects to be treated. The idea is to make
it simple enough in order to obtain as much performance as
possible.

4.2 Integrated natural language processing

The user interface includes a natural language processing
module that translates user commands into commands for
the Robot and the database servers. This module has access
to the database of known objects, in order to check if the
objects users are referring to are or not manageable by the
system. When an object cannot be recognized by the module
described above, the user will be asked for a name for that
object.

The system accepts both voice and keyboard entered
commands. A speech processing module is being developed
that translates voice commands into a string of text, which,
in turn, is translated into a sequence of commands for the
Robot and the database servers.



5 CONCLUSIONS AND FUTURE WORK

Future steps in the project will be oriented towards
completing and improving the set of services that each
component of the system must provide. In the user interface
the richness of the language the system can understand
must be increased. We also plan to extend the learning
capabilities, implementing facilities to define tasks, so that
the user can define new tasks as a sequence of other
already-known ones.

Finally, by reviewing the last researches about
telerobotics, two important challenges are pending. The
first one is the design of flexible and autonomous systems
able to accomplish a certain amount of high level operation
with a minimum of supervision from the operator. These
systems are used in controlled environments protected
against uncertainties, and they are able to learn high level
tasks, a priori, by means of simulation packages. By the
other hand, a second line of research appears that is related
to the evident problem of using a low-bandwidth medium
between the teleoperation user interface and the robot that
is placed far away from it. The user is unable to control the
robot properly because exists a delay for the feedback to
reach the user interface. Obviously this topics could
intersect with ours in a near future due to the fact that are
very closely related to the challenge of the project here
presented.
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