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Abstract. This paper presents a simple approach for the acquisition
and representation of spatial knowledge needed for controlling a semi-
autonomous wheelchair. Simplicity is required in the domain of rehabil-
itation robotics because typical users of assistive technology are persons
with severe impairments who are not technical experts. The approach
proposed is a combination of carrying out so-called basic behaviors and
the analysis of the wheelchair’s track of motion when performing these
behaviors. As a result, autonomous navigation in the user’s apartment or
place of work can be learned by the wheelchair by teaching single routes
between potential target locations.

This paper focuses on the analysis of the motion tracks recorded by the
vehicle’s dead reckoning system. As a means for unveiling the structure
of the environment while the system is moving, an incremental general-
ization is applied to the motion tracks. In addition, it is discussed how
two of such generalized motion tracks are matched to perform a one-
dimensional self-localization along the route that is followed.

Keywords. Route Learning, Navigation, Motion Tracks, Generalization,
Robotics, Rehabilitation

1 Introduction

During the recent decade, the research in the field of robotics has evolved from
the development of stationary manipulators to autonomous mobile systems that
can be employed as service robots. It can be assumed that service robots will
revolve many areas of private and business life the same way as the stationary
robots have changed the production process in factories. The basic skill of a
mobile system is navigation, i. e. moving from a start position to a target position.
Navigation is normally a combination of two different tasks: a navigator has to
determine his current position and he has to plan and execute at least the next
step on his way to the goal.

In an industrial environment, a mobile system is often designed as part of
the factory. Thus, the environment was constructed in a way that supports the
movement of the autonomous system, e. g., guidance marks were installed to sup-
port the system’s self-localization, and the robot has a map of the environment



with the information relevant for motion planning. Such prerequisites are hard
to realize in office and private environments in which people live and work, be-
cause these places are often subject to fluent changes, and they are not prepared
for the use of robots. Therefore, navigation techniques used in industrial appli-
cations cannot directly be adopted for service robots. Instead, other methods
have to be developed that are able to deal with unknown and partially dynamic
environments to fulfill the needs in service robotics.

In addition, service robots are normally surrounded by persons that are not
technical experts. Laymen and laywomen often associate artificial autonomous
systems with natural ones, and therefore they have the expectation that these
systems behave similarly. Hence, to gain a high acceptance for service robots,
they must act in a predictable way. In addition, and in contrast to biological
systems, a service robot must be safe, i. e., it must be guaranteed that it will not
do any harm to persons, animals, or objects in the environment.

The application domain addressed by the author’s research group is the area
of rehabilitation robotics. Due to the changing distribution of ages in future pop-
ulations, more and more elder people, in addition to handicapped persons, will
be forced to maintain their mobility with the help of rehabilitation technology.
The dominating factor in this field are the additional costs that result from the
use of assistive technology. Therefore, it is required that the enhancements are
cheap, e.g. an “intelligent” wheelchair should cost less than $1000,- more than
a normal power wheelchair. This avoids the use of expensive equipment such as
laser scanners.

2 Acquisition and Representation of Spatial Knowledge

An autonomous mobile system needs spatial knowledge as basis for any form
of navigation. In service robotics in general and in rehabilitation robotics in
particular, this spatial knowledge must be easy to acquire, because usually, the
system has to be set-up when it is delivered. For example, it would not be
acceptable if the delivery man or woman must draw up a precise metrical map
of the customer’s apartment, including all furniture, etc, without any technical
assistance. Instead, the autonomous system should support the service technician
in obtaining the spatial knowledge employing its sensory equipment.

A very common approach is to represent spatial knowledge as maps. There are
several types of maps that were used in robotics. Most approaches use some kind
of metrical grid map. These maps normally consist of a homogeneous grid of cells,
but also adaptive, heterogeneous grids have been realized (Kollmann et al., 1997).
In two-dimensional obstacle maps (e. g. in Jorg et al., 1993), each cell encodes the
probability of the presence of an obstacle at the corresponding (x,y) location in
the scene. In three-dimensional configuration maps (e.g. in Hoyer et al., 1994),
each cell states whether the robot can occupy the corresponding (z, y, 6) position
(including the orientation of the robot). Configuration maps can easily be used
to implement path planning, but known algorithms are very time-consuming
(Hoyer et al., 1994). In combination with stochastic sensor models, this type of



map can be employed for the realization of a robust self-localization technique
(Burgard et al., 1997).

Mojaev and Zell (1998) developed a system that generates a metrical 2-D
grid map while the robot is moving, i.e. on the fly. In their approach, either
sonar readings or laser scans are inserted into small local probabilistic grid maps
that are then integrated into a single global map. The integration is performed
by searching for the greatest similarity between overlapping regions of the new
local map and the existing global map. The search space is limited to the neigh-
borhood of the estimated position of the local map. The estimation is based
on the odometry readings of the system. Thus, a map can be generated by ei-
ther manually driving the robot around in the scene, or by letting it explore
the environment by itself. The major disadvantage of this approach is that the
map only states where obstacles are and where are none, but not, where usable
connections between positions are. Therefore, navigation requires the usage of
a path planning algorithm, which can generate high computational costs if the
map has a lot of cells.

In contrast to grid based methods, Gutmann and Nebel (1997) used laser
scans to measure and represent the environment. Again, in their approach the
robot has to be controlled on an arbitrary route through the scene. During this
drive, it takes laser scans of its environment and stores them together with a dead
reckoned position. Afterwards, these scans are integrated into a single, consistent
map of scan points, and in addition, a topological structure of the environment
is generated based on the assumption that positions are neighbored where the
scans taken have many scan points in common. However, the laser scans, i. e. the
metrical information, is preserved; it is required for the self-localization of the
system. This approach has two drawbacks: On the one hand and in contrast to
the method of Mojaev and Zell (1998), the map is generated offline, i. e. the whole
approach does not work in real-time. On the other hand, it is not guaranteed
that all connections in the topological map can really be traveled by the robot.
Therefore, the connections have to be verified by trying to pass through each of
them. However, it would be acceptable to do this during the normal operation
of the system, i.e. after the learning phase.

Franz et al. (1997) developed a method that generates a topological view
map based on one-dimensional panoramic images, i.e. views. The special thing
about their approach is that the views recorded do not only mark the nodes in
the topological structure, but they are also the means to get from one position
to a neighboring one. The major weakness of their technique is that each view
has to be unique, and thus the method is not able to map arbitrarily large
environments.

The major feature of a representation of spatial knowledge in maps is that
a path can be planned from any start position to any target location. However,
to allow a user to select start and end of a route, a graphical presentation of
the map is required. If this is not possible, e. g., because a screen to display this
information is to expensive, maps lose their major advantage over topological
representations. So if navigation should be realized at low costs, route learning is



an interesting alternative, because routes can be presented to the user as simple
texts, e.g. “from desk to printer.” This allows the implementation of a variety
of input methods, e. g., the user can pick up a route from a list, or he or she can
select one by speech input.

3 The Bremen Autonomous Wheelchair

In the Bremen Autonomous Wheelchair project, a system is developed that re-
alizes several levels of support: from a safe collision avoidance (Lankenau and
Meyer, 1997) to an automatic speed control (Lankenau et al., 1998) to obsta-
cle avoidance (Rofer and Lankenau, 1998) to several basic behaviors such as
wall-following or turning round. Currently, the highest level of support is the au-
tonomous driving of pre-taught routes in networks of passages. As was described
by Krieg-Briickner et al. (1998), routes can be represented as sequences of basic
behaviors and so-called routemarks that trigger the switching between the be-
haviors. To satisfy the demands for simplicity in this domain, these combinations
are learned during teaching drives—one for each route—that are controlled, e. g.,
by the salesperson or the wheelchair mechanic. After that, the wheelchair is able
to travel routes autonomously. This will support users suffering from severe im-
pairments who are currently not able to control a power wheelchair, e.g. blind
people. Rofer and Miiller (1998) used a camera to detect artificial routemarks.
However, this approach had two drawbacks: on the one hand, the environment
has to be prepared to use this method, and on the other hand, the wheelchair has
to be equipped with a camera on a turntable. As this is an expensive solution,
it is not preferable for the health care domain. Therefore, a more cost-effective
approach has been chosen to find points of reference along the routes. It only
uses the sensory equipment that is already required by the other modules on
the wheelchair. The method developed analyzes the wheelchair’s motion to rep-
resent the course of the taught routes and it uses this representation for two
purposes: to decide whether the system is still on the right track, and to trigger
the switching between the basic behaviors.

4 The Robotics Platforms

The navigation approach presented in this paper was developed and tested on
three different systems: the first prototype of the Bremen Autonomous Wheel-
chair, the current version “Rolland,” and a Nomad 200 owned by the Computer
Science Department in the University of Manchester:

The first prototype of the Bremen Autonomous Wheelchair (cf. Fig. 1a) is a non-
holonomic vehicle that is driven by its front wheels and steered by its back wheels
(Krieg-Briickner et al., 1998). The system is equipped with twelve bumpers, six
infrared sensors, 16 ultrasonic sensors and a camera. Due to two wheel-encoders,
the wheelchair can measure the rotations of its front wheels. Thus, it is able to
perform dead reckoning.



Fig. 1. The robotics plattforms. a) The first prototype of the Bremen Autonomous
Wheelchair. b) The second prototype “Rolland.” ¢) The Nomad 200.

Rolland. The basis for the actual Bremen Autonomous Wheelchair (cf. Fig. 1b)
is a commercial power wheelchair manufactured by the German company Meyra
(cf. Fig. 1). Its kinematics are quite similar to the ones of the first prototype.
However, the new wheelchair is faster, can drive narrower curves, and its sonar
sensors are distributed better around the system. The maximum speed currently
used is 84 cm/s. The wheelchair makes use of 27 Polaroid sonar sensors with an
opening angle of 25° that are mounted around the system and a PC placed be-
hind the seat that is running the real-time operating system QNX. Even the
original Meyra wheelchair is able to measure its actual speed and its steering ra-
dius as standard, and thus “Rolland” performs dead reckoning. However, curves
are not measured very precisely.

The Nomad 200 (cf. Fig. 1¢) is a cylindrical robot that can turn on the spot. Its
maximum speed is 50 cm/s. It is equipped with 16 sonar sensors that are equal
to the ones used on Rolland. Nomad’s mechanics are optimized for a precise
odometry. However, over longer distances, the dead reckoning readings also drift
away (Owen and Nehmzow, 1997). The Nomad 200 in Manchester uses only a
486/80 as host computer that is significantly slower than the Pentium PCs on
the wheelchairs.

5 Navigation Approach

Odometry (dead reckoning) is easy to realize but is also known for its proneness
to mistakes because small deviations can accumulate to large errors. Therefore,
it can only be used locally to reckon a robot’s position and cannot be employed



for a global self-localization without a correction mechanism based on external
information.

The basic idea of the route navigation approach presented here is the follow-
ing: when the wheelchair drives using basic behaviors such as wall-following, its
movements reflect the structure of the environment. The dead reckoning system
of the wheelchair can record these movements. The resulting motion tracks can
be employed to generate representations of the routes the system has followed.
If the system drives along a route a second time, its dead reckoning system will
produce a very similar track. In order to be able to use such representations for
navigation, a method has to be found to match different tracks to perform, e.g.
a self-localization along the route.

In comparison to methods that try to generate a map-like representation of
the environment, e.g., with the help of distance sensors, the major advantage
of motion tracks is their continuity that is a result of the continuous motion of
the wheelchair. The noise in the sensor readings is considerably reduced by the
inertia of the mobile system because the distance measurements of the sensors
influence the route representation only indirectly via the basic behaviors.

In the navigation approach presented here, the wheelchair is controlled along
a route by switching between the basic behaviors. The system records its dead
reckoning positions as well as the changes of the behaviors. As the odometry
data can consist of many measurements, it is generalized to generate a compact
representation of the route. This information is stored, and it is used as reference
for autonomous drives along this route. Based on the assumption that navigation
in buildings is essentially a combination of following corridors and turning at
corners, a representation has been chosen in which routes consist of straight lines
that cross under certain angles. Therefore, a route description is a sequence of
distances and angles, e.g. “800 cm, 89°, 345 cm, -83°, 566 cm”.

In an autonomous replay, the dead reckoning data is recorded, too. It is
generalized the same way as during the teaching drive. The description stored
always represents the complete route whereas the current track only stands for
the part of the route traveled so far. Therefore, the current description can
only be matched to the beginning of the stored one. The segment in the stored
representation that is matched with the last segment of the current track is the
current segment. Together with the length of the last segment in the current
track, i.e. the distance to the last corner, this defines the wheelchair’s current
position with respect to the route representation stored. This position can be
used to switch between the basic behaviors at appropriate locations, and thus
enables the system to repeat a route that has been stored.

In addition, this approach allows a second application: during the matching
of the two generalizations, it can be determined whether they represent the same
route or not. Thus it can be noticed when the wheelchair has lost its way, e. g.,
because a behavior was performed erroneously. This is depicted in Fig. 2 that
shows three route descriptions: the first one was learned, the second is a correct
repetition of the first one, and the third is an erroneous replay. In case of the
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Fig. 2. Three motion tracks (each approximately 25 m in length) and the corners
detected. a) Original track. b) Correct replay. c) Erroneous replay.
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Fig. 3. The acceptance intervals for the generalization of a motion track.

latter, the mistake was detected shortly after the erroneous behavior occurred,
i. e. the wheelchair missed a door because it was closed.

6 Generalization

The basic idea of generalizing a given track S is to find a simpler track G
representing the general shape of S—i.e. the important global information—
and suppressing small zigzags and deviations (Musto et al., 1999). In the case
of the wheelchair application, such deviations are generated by variations in
the execution of the basic behaviors, e.g., because the system has to avoid a
dynamic obstacle such as people. A simple approach to generalize S is to create
a polygon track G differing less than a certain distance from S (cf. Fig. 3). As it
is the goal of the generalization to unveil the structure of the environment, each
segment should correspond to a corridor in reality. The wheelchair’s freedom of
movement is limited by the walls of the corridors it is following. Therefore, it is
reasonable to use the widths of the passages the system is traveling as threshold
for the generalization.

A motion track S is a sequence of positions in a Cartesian system of coordi-
nates with an unknown origin and with an unknown orientation. Each position
consists of a ¢ and a y coordinate. In addition, the width w of the corridor



is stored for each position. This value is measured using the wheelchair’s ultra-
sonic sensors that are oriented sideways. In the work presented here, the distance
between two subsequent measurements always was approximately 20 cm.

S = [81,82,...,Sn]
Ti
Si= | Yi ,ViG{l,...,TL} (1)
w;

Based on a start point s,, longer and longer segments are constructed. For
each of these temporary segments, a straight line is constructed between the
starting position s, and the temporary end position sp. Then, the maximum
deviation from this straight line is determined as error e:

(-Tz' —:ca) <wb —wa>
s b Yi = Ya Y — Ya
= max

= 2
a,b i—a <$b _ ma) ( )
Y — Ya

As soon as this error exceeds the generalization threshold, a point s, is known
that is not a valid member of the current segment. As has been discussed ear-
lier, the threshold for the partitioning of the motion data is the width of the
corresponding corridor. For each position s; in the motion track, a width w; has
been measured, but because these distances have been determined using sonar
sensors, many outliers can be expected. To robustly estimate the widths of the
corridors, all measurements w, ...w;, are inserted into a histogram, and then
this histogram H returns only the most frequent one, eliminating typical noise
in the sonar measurements. As a result, the index c is either calculated as index
of the first point in S behind s, that is violating the generalization threshold,
or—if the end of S is reached—as the last index n:

S _ S
Co = cla,a—i-l
n ifb>n 3)
where ¢/, b ifej, > Hy,

a,b
S ;
Ca pt1 Otherwise

In the next step, the point is searched for that is an adequate end position of
the segment and that represents best the corner between this straight line and
its successor. The basic idea for determining this position is that two successive
line segments build two sides of a triangle. Seen from both end positions of the
two sides, the sum of the lengths of both sides should be maximal. Therefore,
the point is searched for where this sum has its biggest value. This position is
supposed to be the corner between the two segments. However, this approach
only works robustly if both sides of the triangle have approximately the same
length. Therefore, the second segment is lengthened by the distance between s,
and s.. As the orientation of the second segment is unknown, the segment is
extended towards the direction of movement at s, which can be approximated
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Fig. 4. Detecting the corner between two segments. a) Each s; is connected to s, and
pf,c. b) The point sq with the maximal sum of distances is assumed to be the corner.

as the difference between the x/y components of s, and s._;. Thus a position p
is constructed as second end point of the triangle:

Gon)
S Zc Le — Te—1 Ye — Ya
Pa,e (yc) (Zlc — Ye1 > To— To1 )
Ye = Yec—1
With the help of p, the index d of the position that represents the corner in
the track can be estimated. Hence, for each index i between a and ¢, the sum of
the lengths of the two straight lines s;s, and s;p are calculated, and the index

with the maximum sum is selected as the index d of the corner’s position (cf.
Fig. 4):

dj. € {o‘oe {a...c},b? :I?_cagcbgs
_ e ()
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As a result, the first segment has been determined. It ranges from s, to sg4.
The corner at sq is also the start of the subsequent segment that can be calculated
in the same way. So, the partitioning is continued until the end of S, i.e., until
sn, is reached. Thus, a list G' can be calculated that is the generalization of S.
Each entry in this list consists of the start position and the width of a segment.
The only exception from this is the last member of the list: it simply describes
the last position in the original motion track.
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After the generalization G is known, the metrical lengths [; of the k — 1 seg-
ments, the angles a; between them, and the average widths of the corresponding
corridors can easily be determined as abstract route description R:

lo k-1
R= Qo Q-1
Wo Wg—1
xh =t
where [; = ol Ve {l...k—1}
Yivr1 — Y;
xi, o, — (7
arctan ( ~it2 il
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Y=\ —arctan Vit T T ) ifie {1... k- 2}
Yivr1 — Y;
0 ifi=k—-1
w; = w}

An implicit assumption in the navigation approach presented in section 5
is that similar motion tracks are generalized to similar route representations.
However, there are two cases in which this conjecture is violated:

1. If there are long parts with a slight curvature in a motion track, either
because a corridor has this shape, or—more likely—because of odometry
drift, its generalization may be arbitrary. Small variations in the wheelchair’s
course may generate very different segments. However, the angles between
such segments that were arbitrarily separated are always small.

2. If a corridor’s width is similar to its length, it may be generalized to a
separate segment in one track (cf. Fig. 5a) and integrated into an adjacent
segment in another track (cf. Fig. 5b).

Whereas the first problem could be handled during the generalization process
by combining neighboring segments connected under small angles, the second
problem cannot be eliminated during the generalization. Therefore, both prob-
lems are not taken into account before the matching process because during this
phase both of them can be dealt with.



Fig. 5. Two motion tracks and their generalizations. a) The short segment was de-
tected. b) The short segment was integrated into the following one.

7 Matching Generalized Motion Tracks

Two generalized tracks are matched by running through both of them segment by
segment. On the one hand, this allows to determine corresponding segments, on
the other hand, it can be checked whether both tracks describe the same route.
To perform the latter, the segments of the tracks as well as the angles between
them are compared. If they are not similar enough, the tracks are incompatible,
and therefore it is assumed that they do not describe the same route, i.e., the
wheelchair has moved along different trajectories.

As has been discussed in section 5, the current track will usually be shorter
than the reference track. Therefore, the matching of the two tracks is not a
symmetric process because one of the two route representations is allowed to
be shorter than the other one. Hence, the matching function tests whether the
current track is less or equal than the reference track, and if it is, it determines
the position in the reference track where the current track ends, i. e. it calculates
the corresponding segment in the reference track and uses the length of the last
segment in the current track as metrical offset from the beginning of the segment.

The matching of the two tracks is performed segment by segment, starting
at their beginnings, i. e. at the segments with the first indices:

MR,R' — M{ﬁ,R' (8)

For each pair of segments from both tracks, it is first checked whether the
segment in the current track is significantly longer than the corresponding one
in the reference track. If this is the case, the tracks seem to be incompatible.
However, as has been discussed in the previous section, it is possible that the
segment in the current track is too long because it is the counterpart for two
segments in the reference track. Therefore, the function J is called, that attempts
to join the actual segment in the reference track with its successor, and then the
matching is retried. The opposite case of the previous one is given if the actual
segment in the current track is significantly shorter than the one in the reference
track, and it is not the last segment (indicated by o’ # 0). Then, it is tried to
overcome the mismatch by joining two adjacent segments in the current track.



Fig. 6. Tolerances possible in the course of motion. a) In segment length. b) Angular
deviations between two segments.
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The function T defines the tolerance for the comparison of the lengths. This
threshold consists of four values:

— The width of the previous segment w' if the current segment is not the first
one (cf. Fig. 6a).

— The width of the successive segment w" if the current segment is not the
last one (cf. Fig. 6a).

— A base tolerance tpase- This value should be larger than the distance between
two neighboring positions in the original tracks. In the work presented here,
it was set to 50 cm.

— A factor tgactor that models odometry errors depending on the distance trav-
eled. The wheelchair’s odometry is quite reliable in measuring lengths of
straight lines. S0, tactor can be small, i.e. 2%.

TiR =w 4+ w" + tpase + littactor

, fwiifi>1
where w’ = { 0  otherwise (10)

w! = Wiy1 if (67 75 0
0 otherwise

The function J tries to join the segment ¢ with its successor in a route
description R. An integration of two segments into one is only possible

— if the segment ¢ is not the last one,



— and either the segment 7 or ¢ + 1 is short, i.e. it is not more than twice as
long as the corresponding corridor is wide,
— or the angle between both segments is small, i. e. less than amin-

Otherwise, an error is returned because both route descriptions are incompat-
ible. If the segments can be joined, this is performed geometrically. The length
l; of the new segment is determined from a vectorial addition of the lengths of
the original segments. The resulting angle a; to the following segment is either
the sum of the original angles, or it is zero, if the new segment is the last one in
the route description. It is unnecessary to adapt the angle to the previous route
segment, because it is ignored by any further processing. The width w; of the
new segment is the maximum width of the two segments replaced.

JR — R if oy 75 0OA (lz < 2w; V li+1 < 2wip1 V |Oéz| < amin)
¢ error otherwise
rj ifje{l...i—1}
lll

where 1 = o ifj=1

wll
Tyl otherwise
= l+ 11 cosa;
- l,’+1 sin (67
o — 0 ifajp1 =0
o; + a1 otherwise
w" = max (w;, wit1)

(11)

If the actual segment in the current track is the last one (indicated by o/ = 0),
the matching was successful, and the index of the corresponding segment in the
reference track as well as the length of the last segment in the current track are
returned. This pair represents the wheelchair’s current position, and it is used
to start the basic behaviors at the same locations as during the teaching drive.
Otherwise, if the end of the reference track is reached, the current track is longer
than the reference track, and hence the representations are incompatible:

. (f) if af, =0

nR, _ 14

Miw™™ =9 error  if ay Z0ANa; =0 (12)
M]"PR otherwise

1,3
Next, the angles following these segments in both tracks are compared. This
comparison is performed in a qualitative way because the angles may differ
heavily, either because the motion tracks can vary between two recordings (cf.
Fig. 6b), because of the wheelchair’s weakness in measuring angles (cf. Fig. 7b
and 7c¢), or if parts of the route are generalized with a different number of seg-
ments. The angles are mapped to the four qualitative categories “left”, “right”,
“forwards”, and “backwards” that describe overlapping angular ranges:



left, =a €]0...7[
right, =a €]-7...0[
forwards, = & € [—Qmin - - - Qmin] (13)

backwardsy, = @ & [T + Qmin - - - T — Qmin]

Two angles are assumed to be compatible if they both share at least one
qualitative category. This is determined by the function C":

Ca,p = leftq Aleftg V right, Arights V forwards, A forwardsg Vv

backwards, A backwardsg (14)

So, if both angles are compatible, the comparison is continued with the next
segments. Otherwise, an error is indicated.

IR,R’ .
MIIIR,R’ . Mz'—i—i,i’-‘rl if Cai,a’,, (15)
i = “;
b error otherwise

8 Results

The generalization and matching algorithms presented in this paper are improve-
ments of methods developed earlier (Rofer, 1998). The motion tracks in Fig. 2
were recorded by the first prototype of the Bremen Autonomous Wheelchair, and
they were generalized using the old version of the algorithm. The experiments
with the Nomad 200 of the University of Manchester were also performed using
the first generalization and matching approach. The results were documented in
detail by Rofer (1998). Although the robot was able to follow very long routes,
it had problems with tracks containing a short segment between two very long
ones. Using the enhanced version of the algorithm that has been presented in
this paper, the actual Bremen Autonomous Wheelchair “Rolland” had no prob-
lems to follow arbitrary routes, as long as they could be described using its
basic behaviors. Figure 7a schematically shows a typical route that was tested.
The resulting motion tracks, together with the corners detected, are depicted
in Fig. 7b and 7c. Although the odometry drift is quite different between both
tracks, the same corners are detected in both of them. In addition, the wheel-
chair was able to cope with situations as shown in Fig. 5. Therefore, the route
following approach is very robust against typical odometry errors and against
variations in the execution of the basic behaviors. In addition, its computational
complexity is small enough to run on slower computers as the 486/80 used on
the Nomad 200.

9 Conclusion

In this paper, a simple approach for the acquisition and representation of spa-
tial knowledge for the purpose of navigation has been presented that satisfies
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Fig. 7. Angular errors in long (> 100 m) motion tracks. a) The test scene. b+c) Two
different tracks and the corners detected.

the demands for simplicity and robustness of the target application that was
chosen: a semi-autonomous wheelchair supporting persons with severe impair-
ments. The navigation approach discussed is a combination of the execution of
basic behaviors and the generalization of the track of motion recorded while the
wheelchair is performing these behaviors. After a route has been trained once,
it is stored in a very compact representation, enabling the wheelchair to follow
it autonomously.

During the development of the navigation method, the approach was im-
plemented on three different robotics platforms. Thus, it has proven to be a
universal and robust method for navigation.
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