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Abstract. Representing and reasoning about orientation infor-
mation is an important aspect of qualitative spatial reasoning. We
present a novel approach for dealing with intrinsic orientation in-
formation by specifying qualitative relations between oriented line
segments, the simplest possible spatial entities being extended and
having an intrinsic direction. We identify a set of 24 atomicrelations
which form a relation algebra and for which we compute relational
compositions based on their algebraic semantics. Reasoning over the
full algebra turns out to beNP-hard. Potential applications of the cal-
culus are motivated with a small example which shows the reasoning
capabilities of the dipole calculus using constraint-based reasoning
methods.

1 Introduction

Qualitative representation of space abstracts from the physical world
and enables computers to make predictions about spatial relations,
even when precise quantitative information is not available [2]. Dif-
ferent aspects of space can be represented in a qualitative way. The
most important of these are topological information and orientation
information about physical objects which are usually spatially ex-
tended. While it is common for representing topological information
to use extended spatial regions as the basic entities, most approaches
to qualitatively representing and reasoning about orientation infor-
mation deal with points as the basic entities. Those orientation ap-
proaches that use extended spatial regions as the basic entities mostly
approximate regions by using, for instance, minimal bounded rectan-
gles whose sides are parallel to the axes of the global reference frame.
This, however, does not account for representing intrinsicorientation
information.

In this paper we develop one of the simplest possible calculifor
representing intrinsic orientation information, namely,by using ori-
ented line segments represented by their start and end points as the
basic entities.
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Figure 1. Orientation relation between two dipoles
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We propose calculi on different levels of granularity whichall
form relation algebras and as such allow for using standard constraint
based reasoning mechanisms originally developed for temporal rea-
soning. Even on the coarsest level of granularity our calculi enable to
represent polygonal lines which are particularly interesting for appli-
cations such as cognitive robotics [10] or spatial information systems
[6].

2 The Basic Representation of the Dipole Relations

The basic entities we are using are dipoles, i.e., oriented line seg-
ments formed by a pair of two points, a start point and an end point.
Dipoles are denoted by

� � � � � � � � �
, the start point by�	 , the end

point by 
	 , respectively (see Figure 1). These dipoles are used for
representing spatial objects with an intrinsic orientation. Given a set
of dipoles it is possible to specify many different relations of different
arity, e.g., depending on the length of dipoles, the angle between dif-
ferent dipoles, or the dimension and nature of the underlying space.
The goal of identifying different relations is to obtain a set of jointly
exhaustive and pairwise disjointatomic relations, i.e., between any
two dipoles exactly one relation holds. If these relations form are-
lation algebrait is possible to apply standard constraint-based rea-
soning mechanisms which were originally developed for temporal
reasoning and which have also proved valuable for spatial reasoning.
In order to enable efficient reasoning, it should be tried to keep the
number of different base relations relatively small.

For this reason, we will restrict for now to using two-dimensional
continuous space, in particular� �

, and distinguish the location and
orientation of the different dipoles only according to whether a point
lies to the left, to the right, or on the straight line throughthe referring
dipole. Then�� can either lie to the left of

�
(see figure 1), on the

straight line through
�

or to the right of
�

, expressed as
� 
 �� ,� � �� or

� � �� , respectively. Using these three relations between
a dipole and a point it is possible to specify the relations between two
dipoles with the following four relationships:

� � �� � � � 
� � � � �	 � � � 
	 �
where R is one of�� � 
 � ��. Since this still leads to a very large num-
ber of different atomic relations, we require in the first version of our
algebra all points to be ingeneral position, i.e., no more than two
points are on a line (the extended version of the algebra is described
in section 5). This gives us the following 14 relations that hold if the
four points�� � 
� � �	 � 
	 are distinct:
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Figure 2. The 24 atomic relations of the dipole calculus
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	 and� 
 �� � � � 
� � � 
 �	 � � � 
	 cannot be realized on the
plane. These 14 relations are similar to the relations between line
segments derived by Schlieder [13]. However, in order to obtain a
relation algebra, we also have to consider those relations where two
dipoles share common points. Then�� can be equivalent to the start
point of

�
or to the end point of

�
. This is denoted as

� � ��
or

� � �� , respectively. Using these additional dipole-point rela-
tions, we obtain the following ten additional dipole-dipole relations:
�� 

� � ���� � 
��� � ��
� � �
�� � ���
 � 
�� 
 � ���� � ���� � �����

. Altogether we
obtain 24 different atomic relations. These relations are jointly ex-
haustive and pairwise disjoint provided that all points arein general
position. The relation sese is the identity relation. We use

� �� to refer
to the set of 24 atomic relations, and

� � � �� to refer to the powerset
of

� �� which contains all��� possible unions of the atomic relations.
The relations which are introduced above in an informal way can

be defined in an algebraic way. Every dipole� on the plane� �
is an

ordered pair of two points�� and
� , each of them is represented
by its Cartesian coordinates	 and
 , with 	 � 
 � � and�� �� 
� .

� � 
�� � 
� � � �� � 

�� �� � 
�� �� �
The basic relations are then described as polynomial equations

with the coordinates as variables. The set of solutions for asystem
of equations describes all the possible coordinates for these points.
As an example, we will have a more detailed look at the relation� ���� �

. We need to find an equation, which is solvable iff a point
lies to the right of a given line. Then, we can use this equation to ex-
press the premises of the relation:

� � �� � � � 
� � � � �	 � � � 
	 .
The equation for “right of” is constructed as follows (

� � �� serves
as example):

With �� � ���� �� � ��� ����� �� � ��� �� �, hence �� � � ���� �� ���� ����� �� � ��� ��� and �� �
���� �� ���� ����� �� � ��� �� �. Whenever�� lies on the right of the line�	 
	 , the
inequation �

�� �  �� ! "
(1)

holds. To change this into a equation, we introduce a new variable# .
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Figure 3. Constructing equations with the coordinates as variables

As # � can only take nonnegative values, the resulting equation�
�� �  �� $ # � � "

with # � � %�"�
(2)

will have a solution iff the point�� lies to the right of the line�	 
	 .
The equation 1 is modified in a similar way for the premise “left of”
(l): � 
 �� :

�
�� �  �� & # � � "

with # � � %�"�
(3)

Note that the equations will only have a solution, when�	 �� 
	 .
Constructing the dipole-point relations

�
and

�
is done by using the

same variables for the identical points.
For the following substitutions	 � � 
�	 �� , 	 � � 
�	 �� , 	 � �

	 �� , 	� � 

	 �� , 	 ' � 
�� �� , 	( � 
�� �� , 	 ) � 

� ��,	* � 

� �� , and new introduced variables# � � � � � � #� , the complete

set of equations describing relation
� ���� �

reads as:

$	 �	� & 	 �	( & 	 �	 � $ 	 �	 ' $ 	 �	( & 	�	' $ # �� � "$	 �	� & 	 �	* & 	 �	 � $ 	 �	 ) $ 	 �	* & 	�	) $ # �� � "$	 �	( & 	 �	* & 	 �	 ' $ 	 �	 ) $ 	 '	* & 	(	) $ # �� � "$	 �	( & 	 �	* & 	�	 ' $ 	�	 ) $ 	 '	* & 	(	) $ # �� � "

with 	 � � � � � � 	* � � � # � � � � � � #� � � %�"�
. The other relations are

constructed in an analogous way.

3 Constraint Reasoning with the Dipole Calculus

For reasoning about the dipole relations we apply constraint-based
reasoning techniques which were originally introduced fortemporal
reasoning [1] and which also proved valuable for spatial reasoning
[12]. In order to apply these techniques to a set of relations, these
relations must form a relation algebra [8], i.e., they must be closed
under composition (+), intersection (,), complement (

�
), and con-

verse (- ) and there must be an empty relation, a universal relation,
and an identity relation. While the converse (see Table 1), the com-
plement, and the intersection of relations can be computed from the
set-theoretic definitions of the relations, the composition of relations
must be computed based on the semantics of the relations. Thecom-
positions are usually computed only for the atomic relations which
are then stored in a composition table. The composition of compound
relations can be obtained as the union of the compositions ofthe cor-
responding atomic relations.

We computed the compositions of the atomic relations using the
algebraic semantics of the relations. For this we apply the method of
“Gröbner Bases” using a geometric theorem prover [3]. A possible
composition table entry. � + . � /0 . 1 is represented (for every
combination of. � � . � , and. 1 ) by a set of equations. This set re-
sults from the union of three sets, one for each relation as shown in
the previous section.. � 
� � � � � . � 
� � � � � . 1 
� � � � is a con-
tradiction if and only if the set of equations has no solution. This can
happen because of a equation with no solution (e.g.	 �2 � $ 3

) or a
violation of the condition# � � � � � � #4 � � %�"�

(e.g.# �2 & # �5 � "
).

By computing the Gröbner Base, equations are generated which do
not change the systems solution. These generated equationsallow the
prover to detect, if there cannot be a solution. For all combinations
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of . � � . � , and. 1 where no contradiction was detected, we have to
construct a possible configuration of points in the plane. Instead of
generating this configuration from the equations (which canbe quite
complicated), we simply search for a valid configuration of points on
a grid.

. rrrr rrrl rrlr rrll rlrr rllr rlll lrrr
.� rrrr rlrr lrrr llrr rrrl lrrl llrl rrlr
. �

llll lllr llrl llrr lrll lrrl lrrr rlll

. lrrl lrll llrr llrl lllr llll ells errs
.� rllr lllr rrll rlll lrll llll lsel rser
. �

rllr rlrr rrll rrlr rrrl rrrr errs ells

. lere rele slsr srsl lsel rser sese eses
.� rele lere srsl slsr ells errs sese eses
. �

rele lere srsl slsr rser lsel sese eses

Table 1. Converse and reflection table of the dipole calculus

The composition table for the atomic relations is given in Table 24.
We use� to mark places which can be filled with

�
or



. In order to

reduce the size of the table, trivial cases (sese,eses) for the columns
are omitted. Symmetric cases can be derived using the converse op-
eration and a reflection operation (reflection on an axis, denoted. �

,
see also Table 1). The missing entries can be calculated using the
following equation:

. � + . � � 
.�� + .�� �� � 
. �� + . �� ��
(4)

Dipole constraints are written as	. 
 where	 � 
 are variables for
dipoles and. is a

� � � �� relation. Given a set
�

of dipole con-
straints, an important reasoning problem is deciding whether

�
is

consistent, i.e., whether there is an assignment of all variables of
�

with dipoles such that all constraints are satisfied (asolution). We
call this problemDSAT. DSAT is a Constraint Satisfaction Problem
(CSP) [9] and can be solved using the standard methods developed
for CSP’s with infinite domains (see, e.g. [8]).

A partial method for determining inconsistency of a set of con-
straints

�
is the path-consistency methodwhich enforces path-

consistency on
�

[9]. A set of constraints is path-consistent if and
only if for any two variables, there exists an instantiationof any third
variable such that the three values taken together are consistent. It is
necessary but not sufficient for the consistency of a set of constraints
that path-consistency can be enforced. A naive way to enforce path-
consistency is to strengthen relations by successively applying the
following operation until a fixed point is reached:

� � � � � � � . 25 � . 25 , 
. 2� + . �5 �
where

� � � � �
are nodes and. 25 is the relation between

�
and

�
. The

resulting set of constraints is equivalent to the original set, i.e., it
has the same set of solutions. If the empty relation occurs while per-
forming this operation

�
is inconsistent, otherwise the resulting set

is path-consistent. In Section 6 we use the path-consistency method
to solve a small navigation problem with the dipole calculus.

4 Computational Properties of the Dipole Calculus

Although we restricted the possible binary relations between dipoles
to 24 atomic relations,

� � � �� is very expressive. For instance, it is�
An electronic version of the table can be obtained at

http://www.informatik.uni-hamburg.de/WSV/DRA

possible to express directed and undirected graphs and their proper-
ties such as planarity or (convex) cycles. Hence, it is not surprising
that 	
�� 
� � � �� � is NP-hard which can be shown by reduction
of theBETWEENNESS problem (Instance: Finite set

�
, collection�

of ordered triples


 � � � � � of distinct elements from

�
, Question:

Is there a one-to-one function f from
�

to
3 � � � ���� �� �

such that for
each



 � � � � � in
�

, � 

 � � � 
� � � � 
� � or � 
� � � � 
� � � � 

 �. [5])

Theorem 1 	
�� 
� � � �� � is NP-hard

Proof. Reduction fromBETWEENNESS. Given a finite set
�

and
a collection

�
of ordered triples (


 � � � �
) of distinct elements from�

. For every element



of
�

introduce two dipoles

 � and


 �
such that


 ������ � ��� ��
 � holds. For every pair

 � �

of distinct ele-
ments of

�
we require that


 ������ � �� ���� �, 
 ������ � � ����� �, and
 2�� ��� � ��� ��� 2 (for
� � 3 � �) holds. The latter constraint guarantees

that the graph formed by the dipoles

 � � 
 � � � � � � � � � � � is planar (see

Figure 4).
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Figure 4. Reduction of a set� to a graph of dipoles
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Figure 5. Reduction of a triple�� � � � �� to dipole constraints. If� is
between� and�, the constraints are satisfied (see (a),(b)), if� is between�

and�, then either�� overlaps�� or � or � overlaps� � or � which
contradicts the constraints (see (c),(d)).

For every ordered triple! � 

 � � � � � we introduce the two dipoles
! � � !� and the constraints


 ������ � ��� ��! �, � ����� � � �����! �,� ������ � �����!�, � ������ � ��� ��!�, 
 2�� ��� � �� � ��!�, and� 2�� ��� � �� � ��! �. As it can be seen in Figure 5, these constraints
guarantee that the set of dipole constraints

�
is consistent iff there

a one-to-one function� from
�

to
3 � � � ���� �� �

such that for each

 � � � � � in
�

, � 

 � � � 
� � � � 
� � or � 
� � � � 
� � � � 

 �. "
We have so far neither been able to prove that	
�� 
� � � �� �

is a member of#$ nor whether reasoning over the atomic relations
is tractable. However, it follows from the algebraic semantics of the
relations that	
�� 
� � � �� � is a member of$
$�%&. This is be-
cause all relations can be expressed as equalities over polynomials
with integer coefficients. Systems of such equalities can besolved
using polynomial space [11].

5 An Extended Version of the Dipole Calculus

In certain domains we might want to represent spatial arrangements
in which more than two start or end points of dipoles are on a straight
line. Then we need three more dipole-point relations. The additional
relations describe the cases when the point is straight behind the
dipole ('), in the interior of the dipole (() or straight in front of the
dipole () ). The corresponding regions are shown on Figure 6. Such a
set of relations was proposed by Freksa [4].
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Figure 6. Extended dipole-point relations

Street D

Street B Street C

Street A

Figure 7. Navigating in an arrangement of one-way streets

Using the same notation scheme like the one for the coarse Dipole
Relation Algebra

� � � �� we get the following 69 atomic relations:
� rrrr, rrrl, rrlr, rrll, rlrr, rllr, rlll, lrrr, lrrl, lrll, l lrr, llrl, lllr, llll, ells,
errs, lere, rele, slsr, srsl, lsel, rser, sese, eses, lllb, llfl, llbr, llrf, lirl, lfrr,
lril, lrri, blrr, irrl, frrr, rbrr, lbll, flll, brll, rfll, rll i, rrlf, illr, rilr, rrbl, rlir,
rrfr, rrrb, ffbb, efbs, ifbi, bfii, sfsi, beie, ffbb, bsef, biif, iibf, sisf, iebe,
ffff, fefe, fifi, fbii, fsei, ebis, iifb, eifs, iseb

�
. The derived fine grain

Dipole Relation Algebra is called
� � � (� . � � � (� contains Allen’s

interval relations [1] as a special case:
� /0 ����
� /0 �'' ! /0 ''�
� /0 �)'� � ( /0 '��)� /0 ()' ( � ( /0 '(()� /0 '� ( � ( /0 ((')� /0 �)�( �( /0 �(�)
) /0 ' �(� � /0 (�' �

In these cases the dipoles are on the same straight line and have
the same direction.

� � � (� also contains 10 additional relations
which correspond to the case with dipoles on a line and opposite
directions (only 10 out of 13 because there are more self-converse
cases). The composition table for

� � � (� can be obtained at
http://www.informatik.uni-hamburg.de/WSV/DRA.

6 A Sample Application of the Dipole Calculus

The dipole calculus can be used in navigation domains. A small ex-
ample shows a scenario in which a car navigates through a network
of one-way streets (see Figure 7). The car starts from street

�
and

wants to reach a goal within street� . Because of the direction of�
it cannot enter� directly from

�
. Therefore the car has to enter

�
or

�
to reach� . It is unknown whether

�
of

�
meets� . Only the

position of the streets with respect to
�

is known. We now can use� � � �� to express our initial knowledge:���
�� �� � � ����
 �� � � ���
��� 
� �
The question is whether street

�
or street

�
can be used to drive into

street� : � �� 

� � ������ (6)� �� 

� � ������ (7)

To decide this question we build two sets of constraints,
� � contains

the constraints (5), (6) (corresponding to the assumption
�

meets� ) and
� � contains the constraints (5), (7). By applying the path-

consistency method to both sets it turns out that
� � contains a con-

tradiction while path-consistency can be enforced to
� � . This gives

us the following solution to the navigation problem: street
�

cannot
meet street� , street

�
has a chance to meet street� . Thus, we have

a good reason to turn into street
�

instead of street
�

.

7 Related Work

Schlieder [13] suggested a calculus for reasoning about oriented
line segments which is based on clockwise and counter-clockwise
orientation of triples of points. Schlieder’s calculus does, however,
not form a relation algebra (e.g., it does not contain an identity re-
lation) and as such does not allow using constraint based reason-
ing methods. Instead, Schlieder uses inferences based on concep-
tual neighborhood structures. The double-cross calculus by Freksa
[4] describes relations between triples of points, which can be re-
garded as relationships between a dipole and an isolated point. In
contrast to Freksa’s ternary relations, our dipole relations are binary
relations which makes reasoning much easier. Also, Freksa distin-
guishes more possible relations between a dipole and a pointthan we
do. Isli and Cohn [7] developed a ternary algebra for reasoning about
orientations. Their algebra has a tractable subset containing the base
relations.

8 Conclusion and Perspective

We presented a calculus for representing and reasoning about qual-
itative intrinsic orientation information. We chose oriented line seg-
ments as the basic entities since they are the simplest spatial entities
that show two important features of physical objects: they have an
intrinsic orientation and they are extended. We identified asystem of
24 atomic relations between dipoles and computed the composition
table based on their algebraic semantics, which allows for applying
constraint-based reasoning methods. We further proved that reason-
ing over these relations isNP-hard and inPSPACE. It is a matter of
further studies whether the calculus is in#$ and whether reasoning
over the atomic relations is even tractable. Potential applications of
the calculus are demonstrated with a small navigation example.
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Rel BC | llll | lllr | llrl | llrr | lrrl | lrrr | rlrr | srsl | errs | rele
| | | | | | | | | |

Rel AB | | | | | | | | | |
--------+------+------+------+------+------+------+------+------+------+------
llll | sese | lsel | rser | eses | ells | ells | lsel | lrrr | lrrr | rlrr

| lsel | lere | rele | lsel | slsr | errs | rser | lrll | lrll | rlll
| rser | errs | ells | rser | *ll* | slsr | lere | llrr | llrr | llrr
| lere | srsl | slsr | lere | l*ll | srsl | rele | lllr | lllr | llrl
| rele | l**l | *ll* | rele | *l*r | *ll* | l**l | llll | llll | llll
| ells | *r*l | r*l* | ells | l*rr | *r*l | r*l* | | |
| errs | l*r* | *l*r | errs | | **rr | **rr | | |
| slsr | *rr* | r**r | slsr | | | | | |
| srsl | | | srsl | | | | | |
| ll** | | | ll** | | | | | |
| r*l* | | | r*l* | | | | | |
| *r*l | | | *r*l | | | | | |
| **rr | | | **rr | | | | | |

--------+------+------+------+------+------+------+------+------+------+------
lllr | lsel | lsel | rser | lsel | lere | lere | eses | lere | lere | ells

| rser | srsl | slsr | rser | slsr | slsr | lsel | lrrr | lrrr | rllr
| slsr | l**l | llr* | slsr | l*r* | l*r* | rser | lrrl | lrrl | rlll
| srsl | lll* | *l*r | srsl | *l*r | *l*r | ells | llrr | llrr | llrl
| ll** | *r*l | r**r | ll** | | | errs | llrl | llrl | lllr
| *r*l | | | *r*l | | | *ll* | lllr | lllr | llll
| r**r | | | r**r | | | l**l | | |
| | | | | | | *rr* | | |
| | | | | | | r**r | | |

--------+------+------+------+------+------+------+------+------+------+------
llrl | lere | lere | rele | lere | lsel | eses | lere | lsel | lsel | slsr

| rele | errs | ells | rele | ells | lsel | slsr | lrrl | lrrl | rlrr
| ells | l*r* | *ll* | ells | *ll* | rser | l*r* | lrll | lrll | rllr
| errs | *rr* | ll*l | errs | l**l | ells | *l*r | llrl | llrl | llrr
| ll** | ll*r | r*l* | ll** | | errs | | lllr | lllr | llrl
| r*l* | | | r*l* | | *ll* | | llll | llll | lllr
| *rr* | | | *rr* | | l**l | | | |
| | | | | | *rr* | | | |
| | | | | | r**r | | | |

--------+------+------+------+------+------+------+------+------+------+------
llrr | **ll | lll* | ll*l | **ll | lsel | lsel | ells | lsel | lsel | ells

| ll** | *rll | r*ll | ll** | lere | rser | errs | lere | lere | slsr
| rr** | l*rr | *lrr | rr** | *lll | lere | slsr | lrrr | lrrr | rlrr
| **rr | *rrr | r*rr | **rr | l**l | rele | srsl | lrrl | lrrl | rllr
| | | | | l*r* | l**l | *ll* | lrll | lrll | rlll
| | | | | *lrr | r*l* | *r*l | llrr | llrr | llrr
| | | | | | **rr | **rr | llrl | llrl | lllr
| | | | | | | | llll | llll | llll

--------+------+------+------+------+------+------+------+------+------+------
lrll | rser | sese | eses | lsel | ells | errs | lsel | lrll | rrrr | rrrr

| rele | lsel | lsel | lere | errs | srsl | lere | llrr | rrrl | rrlr
| ells | rser | rser | errs | slsr | *r*l | l**l | lllr | rrll | rrll
| slsr | lere | lere | srsl | srsl | *rr* | l*r* | llll | rlrr | lrll
| *ll* | rele | rele | l**l | *ll* | r*rr | *lrr | | |
| r*l* | ells | ells | *r*l | *r*l | | | | |
| *l*r | errs | errs | l*r* | **rr | | | | |
| r**r | slsr | slsr | *rr* | | | | | |
| | srsl | srsl | | | | | | |
| | ll** | ll** | | | | | | |
| | r*l* | r*l* | | | | | | |
| | *r*l | *r*l | | | | | | |
| | **rr | **rr | | | | | | |

--------+------+------+------+------+------+------+------+------+------+------
lrrl | rele | lere | lere | lere | eses | rser | lere | lsel | rser | srsl

| ells | rele | rele | errs | lsel | errs | slsr | lrrl | rrrr | rrrl
| *ll* | ells | ells | l*r* | rser | *rr* | l*r* | lrll | rrrl | rrlr
| ll*l | errs | errs | *rr* | ells | r**r | *l*r | llrl | rrlr | rrll
| r*l* | ll** | ll** | ll*r | errs | | | lllr | rlrr | lrrl
| rr*l | r*l* | r*l* | rr*r | *ll* | | | llll | rllr | lrll
| | *rr* | *rr* | | l**l | | | | |
| | | | | *rr* | | | | |
| | | | | r**r | | | | |

--------+------+------+------+------+------+------+------+------+------+------
lrrr | ll*l | lll* | ll*l | lll* | lsel | rser | ells | lsel | rser | errs

| r*ll | r*ll | r*ll | rrl* | rser | rele | slsr | lere | rele | srsl
| llr* | rrr* | rr*r | l*rr | lere | r*l* | *ll* | lrrr | rrrr | rrrr
| rrr* | l*rr | l*rr | *rrr | rele | r**r | *l*r | lrrl | rrlr | rrrl
| | | | | l**l | *rrr | l*rr | lrll | rrll | rrll
| | | | | r*l* | | | llrr | rlrr | lrrr
| | | | | **rr | | | llrl | rllr | lrrl
| | | | | | | | llll | rlll | lrll

--------+------+------+------+------+------+------+------+------+------+------
rlll | lsel | eses | sese | rser | ells | ells | rser | rrrr | lrrr | rlll

| lere | lsel | lsel | rele | errs | slsr | rele | rrrl | llrr | llrr
| errs | rser | rser | ells | slsr | *ll* | r*l* | rrll | lllr | llrl
| srsl | lere | lere | slsr | srsl | *l*r | r**r | rlll | llll | llll
| l**l | rele | rele | *ll* | *ll* | l*rr | *rrr | | |
| *r*l | ells | ells | r*l* | *r*l | | | | |
| l*r* | errs | errs | *l*r | **rr | | | | |
| *rr* | slsr | slsr | r**r | | | | | |
| | srsl | srsl | | | | | | |
| | ll** | ll** | | | | | | |
| | r*l* | r*l* | | | | | | |
| | *r*l | *r*l | | | | | | |
| | **rr | **rr | | | | | | |

--------+------+------+------+------+------+------+------+------+------+------
rllr | lsel | lsel | lsel | rser | sese | lere | rser | rele | lere | ells

| srsl | rser | rser | slsr | lere | slsr | errs | rrrl | lrrr | rllr
| l**l | slsr | slsr | llr* | rele | l*r* | *rr* | rrlr | lrrl | rlll
| lll* | srsl | srsl | rrr* | slsr | *l*r | r**r | rrll | llrr | llrl
| *r*l | ll** | ll** | *l*r | srsl | | | rllr | llrl | lllr
| rrl* | *r*l | *r*l | r**r | r*l* | | | rlll | lllr | llll
| | r**r | r**r | | *r*l | | | | |
| | | | | l*r* | | | | |
| | | | | *l*r | | | |

|

rel BC | llll | lllr | llrl | llrr | lrrl | lrrr | rlrr | srsl | errs | rele
| | | | | | | | | |

rel AB | | | | | | | | | |
--------+------+------+------+------+------+------+------+------+------+------
rlrr | lll* | lll* | ll*l | ll*l | lsel | lsel | errs | rser | lsel | ells

| *rll | *rll | *rll | rr*l | rser | lere | srsl | rele | lere | slsr
| ll*r | rrr* | rr*r | *lrr | lere | l**l | *r*l | rrrr | lrrr | rlrr
| rr*r | *lrr | *lrr | r*rr | rele | l*r* | *rr* | rrlr | lrrl | rllr
| | | | | l**l | *lrr | r*rr | rrll | lrll | rlll
| | | | | r*l* | | | rlrr | llrr | llrr
| | | | | **rr | | | rllr | llrl | lllr
| | | | | | | | rlll | llll | llll

--------+------+------+------+------+------+------+------+------+------+------
rrll | eses | rser | lsel | sese | errs | ells | lsel | rrrr | rrrr | rrrr

| lsel | rele | lere | lsel | srsl | errs | rser | rrrl | rrrl | rrlr
| rser | ells | errs | rser | r*ll | slsr | lere | rrll | rrll | rrll
| lere | slsr | srsl | lere | *r*l | srsl | rele | rlrr | rlrr | lrrr
| rele | *ll* | l**l | rele | *rr* | *ll* | l**l | rlll | rlll | lrll
| ells | r*l* | *r*l | ells | r*rr | *r*l | r*l* | | |
| errs | *l*r | l*r* | errs | | **rr | **rr | | |
| slsr | r**r | *rr* | slsr | | | | | |
| srsl | | | srsl | | | | | |
| ll** | | | ll** | | | | | |
| r*l* | | | r*l* | | | | | |
| *r*l | | | *r*l | | | | | |
| **rr | | | **rr | | | | | |

--------+------+------+------+------+------+------+------+------+------+------
rrlr | lsel | rser | lsel | lsel | rele | sese | rser | rele | rele | errs

| rser | slsr | srsl | rser | srsl | lere | errs | rrrl | rrrl | rrrr
| slsr | rrr* | l**l | slsr | r*l* | rele | *rr* | rrlr | rrlr | rrrl
| srsl | *l*r | *r*l | srsl | *r*l | slsr | r**r | rrll | rrll | rrlr
| ll** | r**r | rrl* | ll** | | srsl | | rllr | rllr | lrrr
| *r*l | | | *r*l | | r*l* | | rlll | rlll | lrrl
| r**r | | | r**r | | *r*l | | | |
| | | | | | l*r* | | | |
| | | | | | *l*r | | | |

--------+------+------+------+------+------+------+------+------+------+------
rrrl | lere | rele | lere | lere | rser | rser | sese | rser | rser | srsl

| rele | ells | errs | rele | errs | errs | lere | rrrr | rrrr | rrrl
| ells | *ll* | l*r* | ells | *rr* | *rr* | rele | rrrl | rrrl | rrlr
| errs | r*l* | *rr* | errs | r**r | r**r | slsr | rrlr | rrlr | rrll
| ll** | rr*l | rr*r | ll** | | | srsl | rlrr | rlrr | lrrl
| r*l* | | | r*l* | | | r*l* | rllr | rllr | lrll
| *rr* | | | *rr* | | | *r*l | | |
| | | | | | | l*r* | | |
| | | | | | | *l*r | | |

--------+------+------+------+------+------+------+------+------+------+------
rrrr | **ll | *lll | l*ll | **ll | rser | lsel | ells | rser | rser | errs

| ll** | rr*l | rrl* | ll** | rele | rser | errs | rele | rele | srsl
| rr** | *lrr | l*rr | rr** | r*l* | lere | slsr | rrrr | rrrr | rrrr
| **rr | r*rr | *rrr | **rr | *rll | rele | srsl | rrlr | rrlr | rrrl
| | | | | r**r | l**l | *ll* | rrll | rrll | rrll
| | | | | *rrr | r*l* | *r*l | rlrr | rlrr | lrrr
| | | | | | **rr | **rr | rllr | rllr | lrrl
| | | | | | | | rlll | rlll | lrll

--------+------+------+------+------+------+------+------+------+------+------
srsl | rele | rele | lere | lere | errs | errs | lere | slsr | rrrr | rrlr

| ells | ells | errs | errs | rrrr | rrrr | rlrr | srsl | rrrl | rrll
| rrlr | rrlr | rrrr | rrrr | rrrl | rrrl | lrrr | | rlrr | lrll
| rrll | rrll | rrrl | rrrl | rlrr | rlrr | lrrl | | |
| rllr | rllr | lrrr | lrrr | lrrr | lrrr | llrr | | |
| rlll | rlll | lrrl | lrrl | lrrl | lrrl | llrl | | |
| lllr | lllr | llrr | llrr | | | | | |
| llll | llll | llrl | llrl | | | | | |

--------+------+------+------+------+------+------+------+------+------+------
slsr | rrlr | rrll | rrrr | rrrr | lere | lere | errs | sese | lere | ells

| rrll | lrll | rlrr | rrrl | rlrr | rlrr | rrrr | slsr | lrrr | rllr
| lrll | lllr | llrr | rlrr | lrrr | lrrr | rrrl | srsl | lrrl | rlll
| lllr | llll | llrl | llrr | lrrl | lrrl | rlrr | | llrr | lllr
| llll | | | llrl | llrr | llrr | lrrr | | llrl | llll
| | | | | llrl | llrl | lrrl | | |

--------+------+------+------+------+------+------+------+------+------+------
errs | rrrl | rrrl | rrrr | rrrr | rser | rser | slsr | eses | rser | srsl

| rrll | rrll | rrlr | rrlr | rrrr | rrrr | rlrr | ells | rrrr | rrrl
| rlll | rlll | lrrr | lrrr | rrlr | rrlr | rllr | errs | rrlr | rrll
| llrl | llll | llrr | llrr | rlrr | rlrr | lrrr | | rlrr | lrrl
| llll | | | lllr | rllr | rllr | llrr | | rllr | lrll
| | | | | lrrr | lrrr | lllr | | |

--------+------+------+------+------+------+------+------+------+------+------
ells | lsel | lsel | rser | rser | slsr | slsr | rser | ells | lrrr | rlll

| srsl | srsl | slsr | slsr | rlrr | rlrr | rrrr | errs | llrr | llrl
| rrrl | rrrl | rrrr | rrrr | rllr | rllr | rrlr | | lllr | llll
| rrll | rrll | rrlr | rrlr | lrrr | lrrr | rlrr | | |
| lrrl | lrrl | rlrr | rlrr | llrr | llrr | rllr | | |
| lrll | lrll | rllr | rllr | lllr | lllr | lrrr | | |
| llrl | llrl | llrr | llrr | | | | | |
| llll | llll | lllr | lllr | | | | | |

--------+------+------+------+------+------+------+------+------+------+------
rele | lsel | rser | lsel | rser | srsl | slsr | rser | rrrl | ells | lere

| srsl | slsr | srsl | slsr | rrrl | rlrr | rrrr | rrll | errs | rele
| rrrl | rrrr | rrrl | rrrr | rrll | rllr | rrlr | rlll | |
| rrll | rrlr | rrll | rrlr | rlll | lrrr | rlrr | | |
| lrrl | rlrr | lrrl | rlrr | lrrl | llrr | rllr | | |
| lrll | rllr | lrll | rllr | lrll | lllr | lrrr | | |
| llrl | llrr | llrl | llrr | | | | | |
| llll | lllr | llll | lllr | | | | | |

--------+------+------+------+------+------+------+------+------+------+------
lere | rrrl | rrrr | rrll | rrrr | lsel | rser | slsr | lsel | eses | sese

| rrll | lrrr | rlll | rrlr | rlll | rrrr | rlrr | lrrl | ells | lere
| rlll | llrr | llrl | lrrr | lrrl | rrlr | rllr | lrll | errs | rele
| llrl | lllr | llll | llrr | lrll | rlrr | lrrr | llrl | |
| llll | | | lllr | llrl | rllr | llrr | llll | |
| | | | | llll | lrrr | lllr | | |

--------+------+------+------+------+------+------+------+------+------+------
rser | rrlr | rrrr | rrlr | rrrr | rele | lere | errs | rele | sese | eses

| rrll | rrrl | rrll | rrrl | rrlr | rlrr | rrrr | rrlr | slsr | lsel
| lrll | rlrr | lrll | rlrr | rrll | lrrr | rrrl | rrll | srsl | rser
| lllr | llrr | llll | llrr | rllr | lrrl | rlrr | rllr | |
| llll | | | llrl | rlll | llrr | lrrr | rlll | |
| | | | | lrll | llrl | lrrl | | |

--------+------+------+------+------+------+------+------+------+------+------
lsel | rele | lere | rele | lere | ells | errs | lere | lrll | slsr | lsel

| ells | errs | ells | errs | rllr | rrrr | rlrr | lllr | srsl | rser
| rrlr | rrrr | rrlr | rrrr | rlll | rrrl | lrrr | llll | |
| rrll | rrrl | rrll | rrrl | lrll | rlrr | lrrl | | |
| rllr | lrrr | rllr | lrrr | lllr | lrrr | llrr | | |
| rlll | lrrl | rlll | lrrl | llll | lrrl | llrl | | |
| lllr | llrr | lllr | llrr | | | | | |
| llll | llrl | llll | llrl | | | | | |

--------+------+------+------+------+------+------+------+------+------+------
sese | llll | lllr | llrl | llrr | lrrl | lrrr | rlrr | srsl | errs | rele

--------+------+------+------+------+------+------+------+------+------+------
eses | rrll | rrrl | rrlr | rrrr | rllr | rlrr | lrrr | ells | slsr | lsel

Table 2. Composition table of the atomic relations of
� � � ��
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