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Qualitative Spatial Reasoning about L ine Segments

Reinhard MoratZ

Abstract.
mation is an important aspect of qualitative spatial reampriVe
present a novel approach for dealing with intrinsic origotain-
formation by specifying qualitative relations betweeneated line
segments, the simplest possible spatial entities beingndgd and
having an intrinsic direction. We identify a set of 24 atométations
which form a relation algebra and for which we compute retl
compositions based on their algebraic semantics. Reagonér the
full algebra turns out to bP-hard. Potential applications of the cal-
culus are motivated with a small example which shows theoréag
capabilities of the dipole calculus using constraint-bassasoning
methods.

1 Introduction

Qualitative representation of space abstracts from theipalworld
and enables computers to make predictions about spatioms,
even when precise quantitative information is not avaddB]. Dif-
ferent aspects of space can be represented in a qualitadieTive
most important of these are topological information an@mation
information about physical objects which are usually siitiex-
tended. While it is common for representing topologicabiniation
to use extended spatial regions as the basic entities, ppsiaches
to qualitatively representing and reasoning about ortemtanfor-
mation deal with points as the basic entities. Those oriiemtap-
proaches that use extended spatial regions as the basieemtostly
approximate regions by using, for instance, minimal bodneetan-
gles whose sides are parallel to the axes of the global referfeame.
This, however, does not account for representing intrioseantation
information.

In this paper we develop one of the simplest possible cafouli
representing intrinsic orientation information, namdly,using ori-
ented line segments represented by their start and endspasrthe
basic entities.

Figurel. Orientation relation between two dipoles
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We propose calculi on different levels of granularity whiat
form relation algebras and as such allow for using standamdtcaint
based reasoning mechanisms originally developed for testhpea-
soning. Even on the coarsest level of granularity our ceémadble to
represent polygonal lines which are particularly intenestor appli-
cations such as cognitive robotics [10] or spatial infoliorasystems

[6].
2 TheBasic Representation of the Dipole Relations

The basic entities we are using are dipoles, i.e., orientexddeg-
ments formed by a pair of two points, a start point and an ernat.po
Dipoles are denoted by, B, C,.. ., the start point by 4, the end
point by e 4, respectively (see Figure 1). These dipoles are used for
representing spatial objects with an intrinsic orientatiGiven a set

of dipoles it is possible to specify many different relagai different
arity, e.g., depending on the length of dipoles, the angierdsen dif-
ferent dipoles, or the dimension and nature of the undeaglgjmace.
The goal of identifying different relations is to obtain & e&jointly
exhaustive and pairwise disjoiatomicrelations, i.e., between any
two dipoles exactly one relation holds. If these relatiomsrf are-
lation algebrait is possible to apply standard constraint-based rea-
soning mechanisms which were originally developed for terap
reasoning and which have also proved valuable for spatiabrEng.

In order to enable efficient reasoning, it should be triedgegkthe
number of different base relations relatively small.

For this reason, we will restrict for now to using two-dimemsl
continuous space, in particul®?, and distinguish the location and
orientation of the different dipoles only according to whiesta point
lies to the left, to the right, or on the straight line throubh referring
dipole. Thensg can either lie to the left ofA (see figure 1), on the
straight line throughA4 or to the right of A, expressed ad 1 sg,

A osporAr sg, respectively. Using these three relations between
a dipole and a point it is possible to specify the relatiorta/ben two
dipoles with the following four relationships:

ARsgANAReg ANBRsaABRea,

where R is one ofr, 1, o}. Since this still leads to a very large num-
ber of different atomic relations, we require in the firstsien of our
algebra all points to be igeneral positioni.e., no more than two
points are on a line (the extended version of the algebrasisriieed

in section 5). This gives us the following 14 relations theldhif the
four pointssg, er,sa, e are distinct:

Arrrr B = ArsgAAresABrsasABrey
Arrrl B (= ArspANArepABrssABlea
Arrlr B (= ArspANArepABlssABrea
ArllB := ArsgpANAregABlssABley
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Figure2. The 24 atomic relations of the dipole calculus
Arlcr B (= ArspAAlesABrssABrea
Arllr B = ArsgANAlegABlsasABrey
Arlll B = ArsgAAlegABlssABley
Alrrr B (= AlsgpANAregABrssABrega
Alrrl B ;= AlspANArepABrsaABleg
AllllB := AlspAAresABlsasABlea
Allir B := AlsgANAlegsABrsaABreg
AllrlB = AlsgANAlegABrsaABley
Alllr B := AlspAAlegABlssANBrea
Allll B AlspANAlegABlsgsABleya

The casesA r sek ANA 1l es AB r sgs AN B 1 esq and
AlseANAresAB1lsasABr escannot be realized on the
plane. These 14 relations are similar to the relations betwime
segments derived by Schlieder [13]. However, in order t@ioba
relation algebra, we also have to consider those relatidresevtwo
dipoles share common points. Thes can be equivalent to the start
point of A or to the end point ofd. This is denoted asl s sg
or A e spg, respectively. Using these additional dipole-point rela-
tions, we obtain the following ten additional dipole-dipaklations:
{ells, errs, lere, rele, slsr, srsl, Isel, rser, sese, eses}. Altogether we
obtain 24 different atomic relations. These relations anetly ex-
haustive and pairwise disjoint provided that all pointsiargeneral
position. The relation sese is the identity relation. WeBDseto refer
to the set of 24 atomic relations, afR.424 to refer to the powerset
of D24 which contains al2?* possible unions of the atomic relations.

The relations which are introduced above in an informal weay c
be defined in an algebraic way. Every dip@eon the plandR? is an
ordered pair of two pointsp andep, each of them is represented
by its Cartesian coordinatasandy, with z,y € R andsp # ep.

D = (sp,ep), sp = ((sp)a, (sp)y)

The basic relations are then described as polynomial emsati

with the coordinates as variables. The set of solutions feystem

of equations describes all the possible coordinates faetipeints.
As an example, we will have a more detailed look at the ratatio
Arrrr B. We need to find an equation, which is solvable iff a point
lies to the right of a given line. Then, we can use this equaiicex-
press the premises of the relatiohr sg, Areg,Brsa,Brea.
The equation for “right of” is constructed as followd ¢ sp serves

as example): enhson)

f A — ((ea)z—(sa)e A €p)y—(sa >

With A = ((Z4):7(24)7), henced’ = ((J4)¥= 24 ) and P =
(sB)a—(sA)=

(( g ). Whenevessg lies on the right of the lingzex, the

\MsB)y—(ea)y
inequation

AP >0 1)

holds. To change this into a equation, we introduce a nevabkai.

Figure3. Constructing equations with the coordinates as variables

Asv? can only take nonnegative values, the resulting equation

@)

will have a solution iff the poins g lies to the right of the lin@s€ex.
The equation 1 is modified in a similar way for the premiset t#f

():

PA.P—v*=0  withv € R\{0}

Alsp tA.P4+0v® =0 withveR\{0} (3)

Note that the equations will only have a solution, when # ea4.
Constructing the dipole-point relatioesande is done by using the
same variables for the identical points.

For the following substitutiong: = (sa)z, 2 = (sa)y, z3 =
(ea)s, x4 = (ea)y, v5 = (sB)z, T6 = (sB)y, 7 = (eB)a,
zg = (eB)y, and new introduced variables, . . ., v4, the complete
set of equations describing relatignrrrr B reads as:

—T1Z4 + T1T6 + T2T3 — T2T5 — T3T6 + TaTs — Uf
—T1%4 + 2128 + T2T3 — T2T7 — T3T8 + T4T7 — v§
—Z1Z6 + T1Ts + Tals — Taky — Ts5Tg + TeLy — V3
—T3Te + TaTs + Tals — Taly — T5Ts + Ty — Vi

o o oo

with z1,...,z8 € R, v1,...,v4 € R\{0}. The other relations are
constructed in an analogous way.

3 Constraint Reasoning with the Dipole Calculus

For reasoning about the dipole relations we apply constlzred
reasoning techniques which were originally introducedtéonporal
reasoning [1] and which also proved valuable for spatiasoamg
[12]. In order to apply these techniques to a set of relafitmsse
relations must form a relation algebra [8], i.e., they mustlosed
under compositiond), intersection 1), complement-, and con-
verse (—) and there must be an empty relation, a universal relation,
and an identity relation. While the converse (see Tableht).com-
plement, and the intersection of relations can be computed the
set-theoretic definitions of the relations, the compositibrelations
must be computed based on the semantics of the relationohfte
positions are usually computed only for the atomic relatiamich
are then stored in a composition table. The composition wipmund
relations can be obtained as the union of the compositiotiseafor-
responding atomic relations.

We computed the compositions of the atomic relations udieg t
algebraic semantics of the relations. For this we apply ththod of
“Grobner Bases” using a geometric theorem prover [3]. Asjidle
composition table entryR, o R, +— R, is represented (for every
combination ofR., Ry, andR,) by a set of equations. This set re-
sults from the union of three sets, one for each relation as/shin
the previous sectiorR. (A, B) A Ry(B,C) A R.(A,C) is a con-
tradiction if and only if the set of equations has no solutibhis can
happen because of a equation with no solution (gg= —1) or a
violation of the conditiorvs, . .., v, € R\{0} (e.g.v7 + v} = 0).
By computing the Grobner Base, equations are generatechvdai
not change the systems solution. These generated equaliimmnshe
prover to detect, if there cannot be a solution. For all corations



of R., Ry, andR, where no contradiction was detected, we have topossible to express directed and undirected graphs arndptiogier-

construct a possible configuration of points in the planstdad of
generating this configuration from the equations (whichlmaquite
complicated), we simply search for a valid configuration @ifis on
agrid.

R reee | oreel | oeede {orell | orler | orlle | el | drerr
R~ | reee | rler | deee { Mer | oreel | deel | Hel | orrlr
R |1 W { Ael | Hee | odell | deel | deee |l
R Ieel | Il lee | Ul | We | 1N ells | errs
R~ | rllr | Nr | rell | rlll Il | 1N Isel | rser
R rlie [ reler | eell | oeele | reel | reer | errs | ells
R lere | rele | slsr| srsl| Isel | rser | sese| eses
R~ | rele | lere | srsl| slsr| ells | errs | sese| eses
R rele | lere | srsl | slsr| rser| Isel | sese| eses
Tablel. Converse and reflection table of the dipole calculus

The composition table for the atomic relations is given ihl&2*.
We usex to mark places which can be filled withor 1. In order to
reduce the size of the table, trivial cases (sese,esed)daadiumns
are omitted. Symmetric cases can be derived using the cmogr
eration and a reflection operation (reflection on an axisptiehR’,
see also Table 1). The missing entries can be calculated tisin
following equation:

RioRy=(Ry oRy)” =(RioRy) (4)

Dipole constraints are written asRy wherez, y are variables for
dipoles andR is a DR.A24 relation. Given a se® of dipole con-
straints, an important reasoning problem is deciding wdre® is
consistenti.e., whether there is an assignment of all variable® of
with dipoles such that all constraints are satisfieddhitior). We
call this problemDSAT. DSAT is a Constraint Satisfaction Problem
(CSP) [9] and can be solved using the standard methods gedktlo
for CSP’s with infinite domains (see, e.g. [8]).

A partial method for determining inconsistency of a set afi-co
straints © is the path-consistency methodhich enforces path-
consistency or® [9]. A set of constraints is path-consistent if and
only if for any two variables, there exists an instantiatdmny third
variable such that the three values taken together arestensilt is
necessary but not sufficient for the consistency of a setmdtcaints
that path-consistency can be enforced. A naive way to eafpath-
consistency is to strengthen relations by successivelyyimgpthe

following operation until a fixed point is reached:
Vi,5,k: Rij + Rij N (R 0 Rkj)

wheres, j, k are nodes and;; is the relation betweehandj. The
resulting set of constraints is equivalent to the origiretl §e., it
has the same set of solutions. If the empty relation occuitevbr-

forming this operatior® is inconsistent, otherwise the resulting set

is path-consistent. In Section 6 we use the path-consisteethod
to solve a small navigation problem with the dipole calculus

4 Computational Properties of the Dipole Calculus

Although we restricted the possible binary relations betweipoles
to 24 atomic relationsPR.A24 is very expressive. For instance, it is

4 An electronic version of the table can be obtained
http://ww. informatik. uni -hanbur g. de/ WsV/ DRA

ties such as planarity or (convex) cycles. Hence, it is ngirsing
that DSAT(DR.Az4) is NP-hard which can be shown by reduction
of theBETWEENNESS problem (Instance: Finite set, collection
C of ordered triplega, b, ¢) of distinct elements fron#, Question:
Is there a one-to-one function f frod to 1, 2, ..., | A| such that for

each(a,b,¢) in C, f(a) < f(b) <f(c) or f(c) < f(b) < f(a).[5])
Theorem 1 DSAT(DR.Az4) is NP-hard

Proof. Reduction fromBETWEENNESS. Given a finite setd and

a collectionC' of ordered triplesd, b, ¢) of distinct elements from
A. For every element of A introduce two dipolesa; and a2
such thati{ells, errs}ta= holds. For every pais, b of distinct ele-
ments ofA we require thati{slsr, srsi}bi, ai{lere,rele}bs, and
ai{rllr,lrri}b; (fori = 1,2) holds. The latter constraint guarantees
that the graph formed by the dipoles, a2, b1, b2, - . . is planar (see
Figure 4).

e2

Figure4. Reduction of a sef to a graph of dipoles
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Figure5. Reduction of a tripl€a, b, ¢) to dipole constraints. 1§ is
betweern ande, the constraints are satisfied (see (a),(b)),iff betweera

andc, then eithert1 overlapscl or ¢2 or t2 overlapsal or a2 which
contradicts the constraints (see (c),(d)).

For every ordered triple = (a, b, ¢) we introduce the two dipoles
t1,t2 and the constraintsai{ells,errs}ti, bi{lere,rele}t,
bi{lere,rele}ts,  ci{ells,errs}ta,  as{rllr,lrri}tz, and
bi{rllr,lrrl}t1. As it can be seen in Figure 5, these constraints
guarantee that the set of dipole constra@tss consistent iff there
a one-to-one functiorf from A to 1,2, ...,|A| such that for each

(a,6,¢)inC, f(a) < f(b) < f(c) or f(c) < f(b) < f(a). O

We have so far neither been able to prove BSAT(DR.A24)
is a member ofNP nor whether reasoning over the atomic relations
is tractable. However, it follows from the algebraic senmbf the
relations thaDSAT(DR.A24) is a member oPSPACE. This is be-
cause all relations can be expressed as equalities ovengmolgls
with integer coefficients. Systems of such equalities casdieed
using polynomial space [11].

5 An Extended Version of the Dipole Calculus

In certain domains we might want to represent spatial agarants
in which more than two start or end points of dipoles are omaagiit
line. Then we need three more dipole-point relations. Tiutital
relations describe the cases when the point is straighintethie
dipole (), in the interior of the dipoleif or straight in front of the

at dipole ). The corresponding regions are shown on Figure 6. Such a

set of relations was proposed by Freksa [4].
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Figure 6. Extended dipole-point relations
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Figure7. Navigating in an arrangement of one-way streets

Using the same notation scheme like the one for the coarsddip
Relation AlgebraDR.A24 we get the following 69 atomic relations:
L rrer, reel, erle, eedl elee, elle, el drer, deel, Aell, T deey el Wi, 1, ells,
errs, lere, rele, slsr, srsl, Isel, rser, sese, eses lltidr, [Irf, lirl, Ifrr,

Iril, Irri, blrr, irel, free, rorr, 1ol Al bril, efll, fll i, rrlf, illr, rilr, rrebl, rlir,
rrfr, rrrb, ffbb, efbs, ifbi, bfii, sfsi, beie, ffbb, bsef, ifiiiibf, sisf, iebe,
ffff, fefe, fifi, fhii, fsei, ebis, iifb, eifs, iseb}. The derived fine grain
Dipole Relation Algebra is calleBPR . Asg. DR.Ago contains Allen’s
interval relations [1] as a special case:

= ++ sese

< +— ffbb > + bbff

m +— efbs mi +—+ bsef
o +— ifbi oi +~ biif
d — ©bfii di +~— iibf
s +— sfsi si +— sisf
f +— Dbeie fi — iebe

7 Redated Work

Schlieder [13] suggested a calculus for reasoning aboental
line segments which is based on clockwise and counter-alicek
orientation of triples of points. Schlieder’s calculus sloprowever,
not form a relation algebra (e.g., it does not contain antitere-
lation) and as such does not allow using constraint basesbmea
ing methods. Instead, Schlieder uses inferences based mmeo
tual neighborhood structures. The double-cross calcuuBrbksa
[4] describes relations between triples of points, which be re-
garded as relationships between a dipole and an isolated. poi
contrast to Freksa's ternary relations, our dipole retatiare binary
relations which makes reasoning much easier. Also, Frelsia-d
guishes more possible relations between a dipole and atbaintve
do. Isliand Cohn [7] developed a ternary algebra for reampabout
orientations. Their algebra has a tractable subset canggihe base
relations.

8 Conclusion and Perspective

We presented a calculus for representing and reasoning gbals
itative intrinsic orientation information. We chose ottied line seg-
ments as the basic entities since they are the simplestbpatities
that show two important features of physical objects: thayehan
intrinsic orientation and they are extended. We identifisgsiem of
24 atomic relations between dipoles and computed the cdtigos
table based on their algebraic semantics, which allowsgplying
constraint-based reasoning methods. We further provedehaon-
ing over these relations MP-hard and irPSPACE. It is a matter of
further studies whether the calculus isNi® and whether reasoning
over the atomic relations is even tractable. Potentialiegipbns of

In these cases the dipoles are on the same straight line aed hathe calculus are demonstrated with a small navigation elamp

the same directionDR.A69 also contains 10 additional relations

which correspond to the case with dipoles on a line and ofgposi Acknowledgement

directions (only 10 out of 13 because there are more selfersp
cases). The composition table f@PR.As9 can be obtained at
http://ww.informatik.uni-hanburg. de/ WsV/ DRA.

6 A Sample Application of the Dipole Calculus

The dipole calculus can be used in navigation domains. Alsral
ample shows a scenario in which a car navigates through arietw
of one-way streets (see Figure 7). The car starts from sttemtd
wants to reach a goal within streBt Because of the direction @

it cannot enteD directly from A. Therefore the car has to entBr
or C to reachD. It is unknown whetheB of C meetsD. Only the
position of the streets with respect tbis known. We now can use
DR.A24 to express our initial knowledge:

A{slsr}B, A{srsl}C, A{rele}D (5)

The question is whether streBtor streetC' can be used to drive into
streetD: Bf{ells, errs}D (6)
C{ells, errs} D @)

To decide this question we build two sets of constraiBtscontains
the constraints (5), (6) (corresponding to the assumpBomeets

D) and ©» contains the constraints (5), (7). By applying the path- [7]

consistency method to both sets it turns out Batcontains a con-
tradiction while path-consistency can be enforce®to This gives
us the following solution to the navigation problem: strBetannot
meet streeD, streetC' has a chance to meet stréet Thus, we have
a good reason to turn into stre@tinstead of streeB.
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