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Abstract— This paper presents a new approach for the absolute
self-localization of a mobile robot in structured large-scale environ-
ments. The requirements with regard to both, the necessary a-priori
knowledge as well as the sensor equipment, are low. The algorithm
scales up very well, due to a hybrid representation of the environment
that augments a topological map with metric information. As a con-
sequence, the method is especially suited for usage in large-scale ser-
vice robotics applications. As an example for a future application, the
so-calledNavigation Assistantof the Bremen Autonomous Wheelchair
“Rolland” is discussed. The self-localization results presented below
stem from experiments with the wheelchair on a 2,176m long indoor
and outdoor parcours on the campus of the Universiẗat Bremen.
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I. M OTIVATION

FUTURE generations of service robots are going to be
mobilein the first place. Both, in classical application

areas such as the cleaning of large buildings or property
surveillance, but especially in the context of rehabilitation
robots, such as intelligent wheelchairs, mobility will be a
major characteristic of these devices. After having shown
that it is technically feasible to build these robots, addi-
tional requirements will become more and more important.
Examples of such demands are the operability in common
and unchanged environments, adaptability to user needs,
and low material costs. To satisfy these requirements, meth-
ods have to be developed that solve the fundamental prob-
lems of service robot navigation accordingly.

Fig. 1. Bremen Autonomous Wheelchair “Rolland”. It is based on the
commercial power wheelchairGenius 1.522manufactured by the German
company Meyra, and it has been extended by a PC and several proximity
sensors.

Pursuing these considerations, we developed a new self-
localization approach for the rehabilitation robot “Rolland”
(see figure 1 and [1], [2]) within the framework of the
projectBremen Autonomous Wheelchair. The algorithm re-
quires only minimal sensor equipment (odometry and two
sonar sensors), works in unchanged environments and pro-
vides a sufficient precision for a robust navigation in large
building complexes.

II. RELATED WORK

THERE are two basic principles for the self-localization
of mobile robots [3]:Relative approaches need to

know at least roughly where the robot started and are sub-
sequently able to track its locomotion. At any point in time,
they know the relative movement of the robot with respect
to its initial position, and can calculate the robot’s current
position in the environment. It has to be ensured that the lo-
calization does never lose track, because there is no way to
recover from a failure for these approaches. Modern rela-
tive self-localization methods make often use of laser range
finders. They determine the robot’s locomotion by match-
ing consecutive laser-scans and deriving their mutual shift.
Gutmann and Nebel [4], [5] use direct correlations in their
LineMatchalgorithm, Mojaev and Zell [6] employ a grid
map as “short term memory”, and Röfer [7] accumulates
histograms as basic data structure for the correlation pro-
cess.

On the other hand,absoluteself-localization approaches
are able to find the robot in a given map without hav-
ing any a-priori knowledge about its initial position. Even
more difficult, they solve the “kidnapped robot problem”
[8], where—during runtime—the robot is deported to a dif-
ferent place without being notified. From there, it has to
(re-)localize itself. That means, the robot has to deliber-
ately “unlearn” acquired knowledge.

The absolute approaches are more powerful than the
relative ones and superior in terms of fault tolerance
and robustness. They try to match the current situation
of the robot—defined by its locomotion and the sensor
impressions—with a given representation of the environ-
ment, e. g. a metric map. As this problem is intractable in
general, probabilistic approaches have been proposed as a
heuristics. The idea is to pose a hypothesis about the cur-
rent position of the robot in a discrete model of the world
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from which its location in the real world can be inferred.
A distribution function that assigns a certain probability to
every possible position of the robot, is adapted stepwise.
The adaptation depends on the performed locomotion and
the sensor impressions. Due to the lack of a closed expres-
sion for the distribution function, it has to be approximated.
One appropriate model is provided by grid-based Markov-
localization approaches that have been examined for some
time: they either use sonar sensors [9] or laser range finders
[10] to create a probability grid. As a result, a hypothesis
about the current position of the robot can be inferred from
that grid. Recently, so-called Monte-Carlo-localization ap-
proaches became very popular. They use particle filters to
approximate the distribution function [11], [12]. As a con-
sequence, the complexity of the localization task is signifi-
cantly reduced. Nevertheless, it is not yet known how well
these approaches scale up to larger environments.

Apart from these purely metric representations of the en-
vironment, Kuiperset al. propose the integration of met-
ric and topological concepts with their “spatial seman-
tic hierarchy” [13]. The idea is pursued by Simmons and
Koenig [14] and Nourbakhshet al. [15] by augmenting
topological maps with metric information. The resulting
self-localization methods also work probabilistically on
the basis of the odometry and a local model of the envi-
ronment perceived with the sensors. Thrun [16] compares
grid-based and topological approaches. He finds that espe-
cially in large-scale environments, a combination of both
paradigms gives the best results with respect to computa-
tional complexity and preciseness.

For about a decade, robot navigation research also deals
with integrated approaches of simultaneous localization
and mapping (so-calledSLAMtechniques). Current results
in a hybrid grid-based and topological approach have been
presented by Tomatiset al. [17]. They employ a 360◦ laser
range finder and extract features such as corners and open-
ings which are used to navigate in a global topological map.
In addition, the laser-scans are searched for line structures
(walls, cupboards, etc.) which build the basic data struc-
ture for several local metric maps (one for each node of
the topological map). Choset and Nagatani [18] use gen-
eralized Voronöı graphs to represent the robot’s environ-
ment topologically. Low-level control laws enable the robot
to explore unknown territory by generating and following
the Voronöı graphs edges. Localization is done by match-
ing (local) graph fragments with the previously constructed
global graph.

III. M ODELING LOCOMOTION AND ENVIRONMENT

IN order to be able to determine the robot’s position by
matching its situation (i. e. the current and past sensor

impressions and its locomotion) with a representation of
the environment, comparable models for both, the robot’s
situation and the environment, must exist. We present an

Fig. 2. Route generalization [19]. The figure shows the locomotion of
the robot as recorded by its odometry, the detected corners as well as the
acceptance areas for each route segment.

approach for the absolute self-localization of a mobile
robot that uses as situation model the incremental gener-
alization of traveled tracks introduced by Röfer [19]. The
idea is to generalize the locomotion of the traveling robot
during runtime to an abstract route description. This de-
scription represents the route as a sequence of straight seg-
ments that intersect under certain angles, and thus defines
the situation of the robot.

Fig. 2 shows the locomotion of the robot as recorded by
its odometry system as a solid curved line. The corners rec-
ognized by the generalization algorithm are depicted as cir-
cles. The rectangular boxes represent the so-called accep-
tance areas: As long as the robot remains within such a re-
gion, it is assumed that the robot is still located in the same
corridor. The width of the rectangular boxes is determined
with the help of a histogram-based approach from the mea-
surements of two sonar sensors mounted on the wheel-
chair’s left- and righthand side chassis [19]. The general-
ization of the traveled track is carried out incrementally, i. e.
while the robot moves. Therefore, the distance traveled so
far in the current segment as well as the angle to the previ-
ous segment may change during runtime depending on the
locomotion of the robot. This property of the route gener-
alization approach influences the self-localization method
proposed in the sequel, since the information about the cur-
rent segment is volatile and is thus subject to change.

The abstraction resulting from this generalization
method turns out to be very robust with regard to temporary
obstacles and minor changes in the environment. Neverthe-
less, it is only helpful, if the routes are driven in a network
of corridors or the like. Fortunately, almost all larger build-
ings such as hospitals, administration or office buildings
consist of a network of hallways.

Thus, the approach presented here confines itself to
“corridor-rich” environments. Since we did not yet inte-
grate a mapping component in our algorithm, an a-priori
known map in form of a so-calledroute graph[20] must
exist. The nodes of a route graph (see figure 3) corre-
spond to decision points in the real world: hallway corners,
junctions or crossings. The edges of the graph represent
straight corridors that connect the decision points. In addi-
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Fig. 3. Route graph. The depicted route graph represents the part of the
campus of the Universität Bremen that is relevant for the experiments
shown in the results section of this paper (see section V). It consists of 46
graph nodes and 144 junctions. The represented corridors range in length
from 4.3m to 179m.

tion to the topological information, the route graph contains
(geo-)metric data about the length of the corridors as well
as about the included angles. In contrast to grid-based rep-
resentations, such a data structure is much easier to handle
with respect to the required amount of computing time and
memory. For example, the campus environment depicted in
figure 4 is represented as a list of only 144 so-calledjunc-
tions (see figure 3). A junction is defined by its incoming
corridor, the outgoing corridor, the angle included, and the
length of the outgoing corridor.

While the representation of the environment as a route
graph is formally very similar to Voronoı̈ diagrams as re-
cently used, e.g., by Thrun [16], Zwynsvoordeet al. [21],
[22], and Choset [18], our localization approach is not only
applicable in sensory-rich (indoor) environments but also
in pure outdoor or hybrid scenarios such as the campus ex-
ample presented below. This is because we use the general-
ization of the robot’s locomotion as reference information
for the localization. Thus, we do not have to rely on input
from proximity sensors as it is necessary for the Voronoı̈
diagram based approaches (a Voronoı̈ diagram is defined
on the basis of the sensor-perceived distance of the robot to
objects in its environment).

IV. SELF-LOCALIZATION IN ROUTE GRAPHS

WE use a probabilistic approach to ongoingly deter-
mine the hallwayH (represented by an edge in the

route graph), in which the robot is most likely located at
that very moment in time. Since the distance already trav-
eled inH is also known, an additional offset can be derived.
As a result, the position of the robot within the hallway is

found precise enough for most global navigation tasks. The
precision is limited by about half of the width of the cor-
ridor the robot is located in. This approach turns out to be
rather insensitive to odometry errors (see figure 5), because
the offsets normally represent only short distances that re-
sult from accumulating straight movements, and almost no
rotational motion which often causes dead reckoning er-
rors.

A. Basic Idea

The basic idea of the self-localization approach is to
match the incremental generalizationR of the currently
traveled route with the route graph.R is defined as a se-
quence of corners as follows:

R = 〈Ci〉, whereCi = (α, l), i ∈ {1 . . . n} (1)

In (1), α is the angle between the incoming and the out-
going segment of a corner, andl is the length of the out-
going segment. Note thatαC1 is a “don’t care” value, i. e.
only the outgoing segment of the first corner is considered,
the angle is ignored. Furthermore, the shape and thus the
defining parameters of the final cornerCn are subject to
change until a new cornerCn+1 is detected (see above).

Each junctionJ in the route graph is assigned a param-
eterp which indicates the probability thatR finishes inJ .
Initially, p is uniformly distributed over all junctions. The
matching qualityp is inductively defined: A route general-
ization comprising only one cornerC1 directly matches a
junctionJ , if the corresponding angles and outgoing seg-
ment lengths match with regard to a certain metric. A route
consisting of the cornersC1 . . . Cn (n > 1) matchesJ if its
final cornerCn directly matchesJ , and if the initial part of
R (i. e.C1 . . . Cn−1) matches the route graph such that the
incoming edge ofJ is reached.

Then, the matching qualityp is defined as follows:

p = h · s∆d · s∆α (2)

Here, ∆d = |d − l|/l, whered is the distance already
traveled in a corridor, andl is the length of the corridor.
∆α is the difference between the angle included by the final
corner of the route and the one included by the junction of
the route graph under consideration. The sigmoid function
s ensures that small deviations with respect to the corridors’
lengths or the angles, respectively, are tolerated whereas
large deviations only result in a very weak matching qual-
ity. The “history” factorh is explained in section IV-B.

If the robot stayed in a distinct hallway forever, this
method would suffice to quickly determine which junction
in the route graph represents the corresponding corridor.
In order to be also able to model transitions to adjacent
hallways, the junctions have to be detected as corners by
the route generalization algorithm, and the relevant junc-
tion probabilities have to be propagated through the route
graph.



B. Propagation

If a corner is detected in the trajectory traveled so far,
one of the following cases applies: the generalized corner
also exists in reality (correct detection), the corner doesnot
exist in reality (phantom detection), or the robot did turn
around in a hallway (see below).

Furthermore, it is possible that a junction existing in
reality had been passed and had not (yet) been detected
by the generalization algorithm (junction missed). Usually,
this cannot be blamed on the generalization but on the fact
that—based only on locomotion data—one cannot distin-
guish traveling in a straight hallway with no junctions or
crossings from traveling in a straight hallway passing sev-
eral T-junctions. Therefore, the self-localization algorithm
has to solve this problem.

The three different cases of a detected corner as well as
the case of a missed junction are considered in parallel by
processing a temporary probability valuep′ij for each of
these casesi for every junctionj in the route graph. The
ultimate decision about the definitive shape of the so far fi-
nal route cornerCn is not made until another cornerCn+1

is detected. Only then, the characteristics ofCn are irre-
vocably known, as mentioned above. The maximum of the
temporary probability valuesp′ij determines which case is
“believed in”.

During the propagation process, the “history”h of a
junction J is assigned the maximum probability of those
junctions that comprise an outgoing segment that leads to
J (see (2)). Updating and propagating the probabilities is of
linear complexity with respect to the number of junctions
representing the environment. Since the number of junc-
tions is usually related sublinearly (or linearly at most) to
the size of the environment, the approach scales very well.

C. Turning Around Within a Corridor

As the Bremen Autonomous Wheelchair is a nonholo-
nomic vehicle, the orientation of the robot within a corridor
has to be modeled as well. Since turning on the spot is gen-
erally not possible for the wheelchair, each real corridor is
represented by at least two unidirectional edges in the route
graph (forward and backwards orientation in the corridor).
Handling transitions between these edges, i. e. dealing with
turns of the wheelchair in a hallway, requires some special
effort. This is because a turning maneuver can be carried
out at any position within the hallway. In contrast to that,
leaving the corridor is only possible at junctions. To be able
to also cover turns, the set of junctions that initially form
the route graph is extended with so-called“turn-junctions”
at program start. As an example, consider the route graph
depicted in figure 3 that is used for the experiments pre-
sented in section V. The 144 junctions of this route graph
require an additional set of 102 turn-junctions. The upper
bound of the number of required turn-junctions for a route
graph withn “real” junctions is2n. However, in typical

Fig. 4. Sketch of the campus of the Universität Bremen. The area shown
covers about 380m× 322m. The buildings visited by the wheelchair are
grey shaded. The route traveled is depicted as a dashed line. Its length
amounts to 2,176m.

environments, it often happens that two or more junctions
share one turn-junction, e. g. junctionscdh andkdh in fig-
ure 3 both need the turn-junctiondhd. The incoming and
the outgoing segment of these turn-junctions represent the
same hallway (forwards and backwards direction) and in-
clude an angle of180◦. After having generated the turn-
junctions at program start, they are dealt with as if they
were “normal” junctions in the sequel. The only exception
is that the deviation of the length is ignored when calculat-
ing the matching quality of a generalized route corner with
such a turn-junction (undershooting is accepted for turn-
junctions).

V. RESULTS

EXPERIMENTS with the Bremen Autonomous Wheel-
chair “Rolland” have been carried out on the cam-

pus of the Universiẗat Bremen. The wheelchair is driven
indoors and outdoors, visits seven different buildings and
passes the boulevard which connects the buildings. The
traveled distance amounts to 2,176m. Traveling along this
route with a maximum speed of 84cm/s takes about 75min.
While traveling, the wheelchair generates a log file which
records one state vector every 32ms. Such a state vector
contains all the information available for the wheelchair:
current speed and steering angle, joystick position, current
sonar measurements, and complete laser scans. As men-
tioned, only locomotion data and the measurements of two
sonar sensors are used for the localization approach pre-
sented here. Feeding the log file (192MB) into our simula-
tor SimRobot [23], we are able to test the self-localization
approach withreal data on a simulated robot. Note that
the simulator works in real-time, i. e. it also delivers the
recorded data in 32ms intervals to the connected software
modules, one of which is the self-localization module.
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Fig. 5. Annotated route generalization data used for the experiments de-
scribed in the results section. Axes’ unit is meter. Obviously, the data
logged by the wheelchair’s odometry is not that precise. While distances
are measured relatively precise, angles between segments are often com-
pletely wrong: e. g., compare the different generalizations of the “Boule-
vard” on the way there and back from the NW2 building. The circles along
the route depict the corners found by the generalization algorithm. Those
labeled are correctly detected, the others are “phantom” corners. The la-
bels correspond to the junction labels used in figure 3. The route starts
at (0/0) in the MZH building. The indoor parts of the route are indicated
by the grey-shaded areas labeled with the buildings’ names. Even though
start and end point (bottom center, labeled “Finish”) are identical in real-
ity, they differ by 290m in the recorded data.

For the evaluation of the approach, a laser-scan map of
the whole route was generated, using the scan matching
method presented in [7]. For such a large scene, the laser
map deviates from the original layout of the environment
in that the relative locations of the buildings are not 100%
correct. Therefore, the route-graph was embedded into the
laser scan map making it possible to compare both local-
ization results on a metric basis while traveling through the
route with simultaneously active scan matching and route
localization modules1.

The deviations between the metric positions determined
by the reference locator and the locations calculated by the
route localization approach presented in this paper are de-
picted in figure 6. Note that the horizontal axis corresponds
to timealong the route and not todistance, i. e. the wheel-
chair stopped several times and also had to shunt some-
times, so that distances along this axis do not directly cor-
respond to metric distances along the route.

The new method represents the environment as edges
of a graph that should be—but in factare not always—
centered in the corridors. As a consequence, the metric pre-

1That is the reason why the layout of the route graph depicted in figure 3
differs from the map shown in figure 4.
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cision of the approach is limited: deviations perpendicular
to a corridor can reach its width, which can be more than
10m outdoors (e. g. corridordc). Deviations along a cor-
ridor may be caused by one of three reasons: first, they
can result from the location at which the current corridor
was entered. The bandwidth of possibilities depends on the
width of the previous corridor. Second, deviations can be
due to odometry errors, because the wheelchair can only
correct its position when it drives around a corner. In case
of the boulevard (corridorcdh), the wheelchair has covered
approximately 300m without the chance of re-localization.
Third, deviations can also result from a certain delay before
a turn is detected (e.g. the peak behindJE in Fig. 6).

Even though the odometry data turned out to be very bad
(see Fig. 5), the approach presented here is able to robustly
localize the wheelchair. It takes a while before the initial
uniform distribution adapts in such a way that there is suf-
ficient confidence to pose a reliable hypothesis about the
current position of the robot. But if this confidence is once
established, the position is correctly tracked.

VI. A PPLICATION SCENARIO

THE self-localization approach presented here will be
used to extend theRoute Assistantof the Bremen Au-

tonomous Wheelchair [1] that has been developed in coop-
eration with the neurological clinic of a Bremen hospital.

The current version of the Route Assistant provides the
following functionality: During a teaching phase, the sys-
tem explores the routes and places pertinent for the future
user(s). If, e. g., the wheelchair is used in a rehabilitation
center for amnesic patients, the routes to all relevant places
in the building could be learned and stored for later replay
with the help of the generalization algorithm mentioned in
section III. In the replay mode, a nurse chooses a certain
target for the patient in the wheelchair. Similar to a GPS-
based navigation system, the large-scale navigation is done
by the Route Assistant by giving instructions where to go



at decision points, enabling the patient to travel around on
his or her own. The patient is independently responsible for
controlling the vehicle with respect to local maneuvers such
as obstacle avoidance. At the current state of development,
the Route Assistant is restricted to scenarios in which it ini-
tially knows its position in a specific route. Then, it is able
to direct the user to the goal of this single route. The ma-
jor new contribution of the self-localization approach pre-
sented here is the robustness it provides the Route Assistant
with. As networks of routes are represented in the route
graph, an erroneous maneuver of the user can easily be
dealt with: The self-localization method continuously cal-
culates the current position of the wheelchair in the route
graph which enables a simple planning module to find a
path to the goal.

VII. C ONCLUSION AND FUTURE WORK

SELF-LOCALIZATION of mobile robots in large-scale
environments can be efficiently realized if a hybrid rep-

resentation of the environment is used. The probabilistic
approach presented here matches an incremental general-
ization of the traveled route with an integrated topological-
metric map, theroute graph. Real-world experiments at the
Universiẗat Bremen showed the robustness and efficiency
of the algorithm. Nevertheless, it should be regarded as a
basic method for absolute self-localization that can be ex-
tended on demand. In the first place, a disambiguation of
situations and the resulting reduced time for the initial lo-
calization can be obtained if the route generalization and
the route graph were augmented by feature vectors.

The algorithm will be extended such that self-localizing
becomes possible even in a-priori unknown environments,
i. e. it will tackle the SLAM problem. For this purpose, the
robot has to build the route graph from scratch during run-
time and, subsequently, it has to solve the problem ofplace
integration. That means, it has to find out whether its cur-
rent position is already represented in the route graph, or
whether it is located in a corridor that is so far unknown.
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[19] T. Röfer, “Route navigation using motion analysis,” inProc. Conf.
on Spatial Information Theory ’99, Berlin, Heidelberg, New York,
1999, vol. 1661 ofLecture Notes in Artificial Intelligence, pp. 21–
36, Springer.

[20] S. Werner, B. Krieg-Br̈uckner, and Th. Herrmann,Modelling Nav-
igational Knowledge by Route Graphs, vol. 1849 ofLecture Notes
in Artificial Intelligence, pp. 295–316, Springer, Berlin, Heidelberg,
New York, 2000.

[21] D. van Zwynsvoorde, T. Simeon, and R. Alami, “Incremental topo-
logical modeling using local Voronoı̈-like graphs,” in Proc. of
IEEE/RSJ Int. Conf. on Intelligent Robots and System (IROS 2000),
Takamatsu, Japan, October 2000, vol. 2, pp. 897 – 902.

[22] D. van Zwynsvoorde, T. Simeon, and R. Alami, “Building topolog-
ical models for navigation in large scale environments,” inProc.
of IEEE Int. Conf. on Robotics and Automation ICRA 2001, Seoul,
Korea, May 2001, pp. 4256 – 4261.
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