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Abstract— This paper describes the use of natural language
route descriptions in the mobile robot navigation domain. Guided
by corpus analysis and earlier work on coarse qualitative route
descriptions, we decompose instructions given by humans into
sequences of imprecise route segment descriptions. By applying
fuzzy rules for the involved spatial relations and actions, we con-
struct a search tree that can be searched in a depth-first branch-
and-bound manner for the most probable goal configuration w.r.t.
the global workspace knowledge of the robot. The applicability
of our approach is shown by a real-world experiment where an
operator instructs his automated wheelchair to navigate in an
office-like environment.

I. INTRODUCTION

Since robots have found their way from sealed work-stations
in factories to populated places such as museum halls, railway
stations, or hospitals, it is clear that sharing an environment
with human beings requires suitable means of communication
between these two groups. Apart from safety issues, appropri-
ate communication becomes even more important if man and
machine collaborate in order to fulfil a task. Service robots
serve as a good example for these needs.

In our case, the autonomous wheelchair “Rolland” [1] is
intended to assist its operator in various navigation tasks. The
most natural application scenario allows the wheelchair-bound
person to ask the device to go to a desired goal location e.g.
“Please bring me to the kitchen.”. In the case that the system’s
map of the environment has never been annotated with the
symbol “kitchen”, a clarifying utterance such as “Go down the
corridor and take the second door to the left.” could recover
from potential failure. The work presented in this paper applies
to task descriptions of the latter form.

We begin in section II with a brief overview of approaches
to communicate qualitative task descriptions to a robot. Sec-
tion III continues with the description of our experimental
platform and accounts for the utilized prerequisites from
the robotics domain, e.g. data structures for global world
knowledge, self localization, and the local navigation method
applied. In section IV we present the formalization of our so-
called Coarse Route Descriptions (CRD). As an extension to
the work in [2], they are based on the analysis of corpora
which were aquired during an experiment where about 27
subjects had to give route descriptions to a designated goal,
while operating the autonomous wheelchair Rolland [3]. In

section V we present our approach to mapping CRDs to the
global environment map. Commencing with the global pose
of the system, we apply fuzzy rules for the spatial relations
that describe the involved sub-goals, as well as subsequent
actions which mostly comprise reorientations along the route
to the goal. In section VI we conclude with the presentation
of experimental results that where acquired by the execution
of an a priori given coarse qualitative route description.

II. RELATED WORK

Current research in human-robot interaction (HRI) com-
prises a vast spectrum of applied interface techniques. Thrun
gives in [4] a broad survey of the state of the art and
divides current approaches into direct and indirect interaction.
Whereas direct communication means that the robot and its
operator are able of initiating a dialogue act, indirect commu-
nication solely allows the operator to give commands, possibly
followed by a response from the robot. Another distinction of
HRI is given in [5], where the authors contrast the so-called
“Front-End” approach that completely specifies the task to be
performed by the robot against an incremental approach. The
latter one is based on the decomposition of task descriptions
into elementary actions, thus allowing for dynamic changes in
the execution phase.

From the perspective of instructed robot navigation, differ-
ent modalities in HRI have been established. Kyriacou et.al.
describe in [6] a verbally instructed robot that executes a given
route description in an artificial miniature town. Encouraged
by corpora analysis they transfer a given route description into
a list of action chunks accompanied by spatial relations and
landmarks. During the execution phase the system builds on
computer vision, e.g. for the recognition of referenced road
features. We can anticipate that this approach differs from
our work in that it solely relies on local sensor maps instead
of exploiting prior available global knowledge. Hence, the
comparison of both approaches is a good example for the
contrasting incremental, resp. front-end approaches.

Unlike natural language driven interfaces, Chronis et.al.
use sketched route maps for communicating with a mobile
robot [7]. Hand-drawn landmarks that are derived from closed
polygons are enriched by spatial relations that indicate their
position w.r.t. the sketched route. The resulting Qualitative



Landmark States (QLS) are finally matched against the sen-
sorial input in order to keep the robot on track.

III. EXPERIMENTAL PLATFORM AND PREREQUISITES
FROM THE ROBOTICS DOMAIN

Our experimental platform Rolland III is the battery-
powered wheelchair Meyra Champ 1.594. In contrast to its
predecessor that was equipped with a ring of sonar sensors,
and later on with a single backward facing laser range finder
[8], Rolland III is equipped with two laser scanners mounted
at ground level, which allow for scanning beneath the feet
of a human operator. As an additional sensor device, the
system provides two incremental encoders which measure
the rotational velocity of two independently actuated wheels.
Please note that the provided information needed for dead
reckoning is highly imprecise due to variable wheel diameter
and slippage.

A. Local Navigation and Obstacle Avoidance

The cruicial factor for the applicability of a mobile robot
system in a real world scenario is its ability to deal with
dynamic and unforeseen obstacles. To do so, almost all
approaches use periodic sensor measurements in order to
maintain a map of the vicinity of the robot. Using this
local map, they either compute geometric paths or apply
reactive behaviours in order to reach a locally defined goal
while avoiding perceived obstacles. Common examples are
the Dynamic Window Approach (DWA) [9], the Virtual Force
Field Method (VFFM) [10], Nearness Diagram Navigation
(NDN) [11] and many others.

The basic DWA, as an example for path planning algo-
rithms, turned out to be not suitable for our needs, because it
only checks single arcs with fixed curvature in every cycle of
computation. Although this approach is sufficient for circular
robots being able to turn around their midpoint while entering
a narrow passage, it does not model a necessary haul-off
movement needed by vehicles turning around the center of
their rear axle. A similar problem arises when employing a
purely behaviour-based approach like the VFFM. Here the
robot is modeled as a particle influenced by the sum of
repulsive forces from the obstacle points and an attractive force
starting from the desired goal. It is obvious that one cannot
achieve shunting behaviours using this technique. Minguez et
al. proposed a method for incorporating the kinematics and
the shape of a robot in behaviour-based techniques [12]. The
authors exemplified their approach by applying the VFFM and
NDN in their so-called Ego-KinoDynamic Space, and thereby
explicitly taking account for the contour and the kinematic
properties of the used robot. Despite this refinement, the
overall algorithm still looks only one curve ahead, leaving
the problem of haul-off movements untreated.

Starting from these insights we decided to employ a geo-
metric path planner using cubic Bezier curves, since they are
able to connect two given points while accounting for a desired
curve progression and for directional requirements in the start
point and end point. Considering the work of Hwang et al.

Fig. 1. Occupancy grid including cubic Bezier curve-based path, connecting
startPose and goalPose. Control points ~p1 and ~p2 are located on straight lines
that i) pass through ~p0 resp. ~p3 and ii) are aligned to the orientation of
startPose resp. goalPose.

[13] which gives a broad overview on approaches using this
type of curve, we will now sketch our basic algorithm. Given
the current pose of the wheelchair startPose = (xs, ys, θs)
and the desired target goalPose = (xg, yg, θg), we search the
space of cubic Bezier curves for paths that

i) connect ~p0 = (xs, ys) with ~p3 = (xg, yg),
ii) are smoothly aligned with θs in ~p0 and with θg in ~p3,

iii) are obstacle free in the sense that a contour of the robot
shifted tangentially along the path does not intersect with
any obstacle point from a given occupancy grid OG.

Equation (1) describes a cubic Bezier curve, connecting the
points ~p0 and ~p3, at a given arc length t ∈ [0..1]. In order to
unequivocally determine the characteristics of the curve, we
still have to chose the control points ~p1 and ~p2 such that we
fulfil requirements ii) and iii).

~p(t) = ~at3 +~bt2 + ~ct + ~p0, t ∈ [0..1]
with ~c = 3(~p1 − ~p0),

~b = 3(~p2 − ~p1)− ~c,

~a = ~p3 − ~p0 −~b− ~c

(1)

The computation of the free parameters ~p1 and ~p2, as can
be seen in (2), spans the search space over the cubic Bezier
curves, whose solution is intended to solve our path planing
problem.

~p1(l1) = ~p0 + l1
−−−−−−−−−−−−→
(cos(θs), sin(θs)), l1max > l1 > 0

~p2(l2) = ~p3 − l2
−−−−−−−−−−−−→
(cos(θg), sin(θg)), l2max > l2 > 0

(2)

Fig. 1 illustrates the result of a single path planning cycle.
It shows the occupancy grid including the integral of former
sensor measurements along with the current state of the robot
startPose and the desired target goalPose. The solid drawn
cubic Bezier curve has been chosen as a solution in fulfillment



TABLE I
EBNF FORMALIZATION OF COARSE ROUTE DESCRIPTIONS. FOR THE SAKE OF COMPACTNESS WE OMIT THE DEFINITION OF CURSIVE PRINTED

NON-TERMINALS.

<CoarseRouteDescription> ::= { <CoarseRouteSegmentDescription> }
<CoarseRouteSegmentDescription> ::= ( <ControllerOnRouteSegment>, <RouterOnRouteSegment>, <ActionAtEndOfRouteSegment> )
<ControllerOnRouteSegment> ::= { ( <SpatialRelation> <AttributedPlace> | <DistancePredicate> ) }
<RouterOnRouteSegment> ::= { ( <SpatialRelation> <AttributedPlace> }
<ActionAtEndOfRouteSegment> ::= <TurnAction> | “Stop”
<SpatialRelation> ::= “After”3 | “Along”2 | “Between”2 | <NaturalLanguageDirection>2|3 | “OutOf”3 | “Through”3 | “Until”2
<NaturalLanguageDirection> ::= <NatLangDir::2Clock> | <NatLangDir::4Clock> | <NatLangDir::8Clock> | <NatLangdir::12Clock>
<NatLangDir::2Clock> ::= “Left” | “Right”
<NatLangDir::4Clock> ::= “Left” | “Front” | “Right” | “Back”
<NatLangDir::8Clock> ::= “Left” | “FrontLeft” | “Front” | “FrontRight” | “Right” | “BackRight” | “Back” | “BackLeft”
<NatLangDir::12Clock> ::= “9oClock” | “10oClock” | “11oClock” | “12oClock” | “1oClock” | “2oClock” | “3oClock” | “4oClock”

“5oClock” | “6oClock” | “7oClock” | “8oClock”
<AttributedPlace> ::= ( <Place>, <AttributeType>, <AttributeValue> )
<DistancePredicate> ::= <NumericalValue> ( <LengthUnit> | <TimeUnit> )
<TurnAction> ::= <NaturalLanguageDirection>

of requirements i) - iii) that minimizes the time of travel. The
upper velocity-bound of the robot at point ~p(t) is therefore
determined by the minimal distance between the robot-contour
tangentially located at ~p(t) to any obstacle-point, and the
curvature c(t).

B. Global Localization

As an intermediate step before using already available
topological information for localization, a Monte-Carlo-
Localization method was implemented that is based on the
self-locator used by the German RoboCup Team [14]. To
establish hypotheses of the current location of the wheelchair,
particles are drawn from a pre-computed table that indexes
the global environment by the area of the scan perceived from
a certain position. In addition, only distance measurements
resulting from flat surfaces i.e. from segmented lines are used
to determine the current position. Thereby, persons standing
around are ignored. The number of particles drawn from
observations depends on how good the actual sensor measure-
ments match the expected measurements from the positions of
particles [15].

C. RouteGraph as Data Structure for Global World Knowledge

In order to solve high level tasks such as the interpretation of
coarse qualitative route descriptions, one needs an appropriate
global data structure that meets a list of requirements. Beside
the adequate representation of navigable space, it has to be
extendible by annotations that describe landmarks of interest.
These annotations could be given either by humans or by
automatic feature detectors. After all, it has to provide an
interface that supplies basic spatial queries as a foundation for
the evaluation of more elaborated spatial tasks. This interface
is described in section V.

In our work we apply a graph structured representation, i.e.
the Route Graph, to do the job sketched above. In the route
graph taxonomy, broadly described in [16] and [17], a route
graph representing the whole workspace of the robot consists
of several Route Graph Layers each of a different Kind. At
several Places which represent distinguishable robot poses, the
route graph layers are connected via Transitions, depicting a

correspondance between places inside different kinds of map
representation. On the other hand, places can be connected
by Route Segments in a single route graph layer, stating that
the robot can go from one place to the other. Concatenation
of these route segments results in Routes, describing complex
navigation tasks.

Our ongoing work is mainly focused on the topological
layer of the route graph e.g. the analysis of its use in self
localization tasks. The topological layer describes a network
of places and route segments with maximal clearance to the
surrounding obstacles, based on Voronoi diagrams. Our frame-
work implemented so far is able to compute this description
either from local sensor-based grid maps, or from a pre-
existing global grid map derived from a CAD blueprint.

IV. FORMALIZATION OF COARSE ROUTE DESCRIPTIONS
GIVEN VIA NATURAL LANGUAGE

In this section we lay out the concept of interpreting coarse
qualitative route descriptions, usually given by humans to
other agents. The main idea, borrowed from [2], states that
the concerned route descriptions can be segmented into four
categories: starting-point, path/progression, reorientation and
goal. Following this insight, the authors develop a route
description as a sequence of tupels of the following form:

< [ { controlmarks } router ] reorientation > (3)

Starting at the current pose of the agent, controlmarks de-
scribe distinctive landmarks along a route segment without
directional changes. By reaching a router that depicts a place
where a directional change may occur, a reorientation stands
for the directional instruction that aligns the agent to the new
route segment. The following route segments are encoded in
the same way with the only difference that the the final router
represents the goal of the whole route description. Before we
describe miscellaneous enhancements of this formalization, we
take a brief look at some corpus examples in order to justify
the overall approach. The corpus results from an empirical
study, where about 27 subjects had to give in-advance route
descriptions towards a designated goal, while operating the



(a) The places to the front left. (b) Pass through the cabinet and the patch cabinet. (c) Go until the 4th. junction to the left.

Fig. 2. Interpretation of spatial relations “NaturalLanguageDirection”, “Through” and “Until” via fuzzy functions. The current pose of the agent i.e. the ego
is depicted by a bold arrow. Prominent places acting as relatum are labeled by their fuzzy ratings.

autonomous wheelchair Rolland. See [3] and [18] for a brief
discussion of this study. In both of the following examples that
are translated from German to English, the subjects describe
the way from their current pose to the so-called Stugaraum.

i) ...I have to turn around...once...180 degrees1...drive
through the door...turn right...and pass through the
connecting door...then turn right once again...then a
quite long time straight ahead...pass the elevators...pass
the main stairs...and then we arrive at the Stugaraum...

ii) ...we turn once...180 degrees...leave the room...on the
corridor we turn 90 degrees to the left...follow the
corridor...through the glass door...after the glass door
we take the first junction...turn 90 dregrees to the
left...continue straight ahead...through a glass door...down
the corridor...through a second glass door...and on the
left side there is the Stugraum...

Considering the italic printed reorientation blocks, the bold
printed routers and normal typeset controlmarks, one can ver-
ify the basic form of definition 3 against the given examples.
In spite of this achievement, the inner structure of each single
building block remains undeveloped. For this reason we have
extended the basic formalization of coarse route descriptions.
A first look on the resulting EBNF in table I reveals the overall
structure.

As in definition 3, a CoarseRouteDescription is still defined
as an ordered sequence of CoarseRouteSegmentDescription,
each of which now comprises a ControllerOnRouteSegment,
a RouterOnRouteSegment and an ActionAtEndOfRouteSeg-
ment. So that the controller and the router are capable to
represent a landmark along, respectively at the end of the
route segment, they are now defined via a SpatialRelation and
an AttributedPlace. Whereas the controller can characterize
a route segment also via a DistancePredicate e.g. “a quite

1Note that this example is somewhat unusual, due to the precisely given
turning angles. The translation of these numerical values into the proper
spatial relations, e.g. 180 degrees ; NatLangDir::Back, is part of the semantic
speech analysis and outside the scope of this work.

long time straight ahead”, the expressiveness of controllers and
routers basically lies in the combination of spatial relations and
attributed places. A simple example for such a combination is
“through a glass door”, in which the spatial relation “through”
is a three-valued relation. As the first argument it takes the
current pose of the agent called ego. The attributed place “glass
door” forms the second argument and is called relatum in an
abstract way. The last argument referent is the hypothetical
pose that is reached when moving from ego “through” the
relatum. The EBNF in table I gives an open list of spatial
relations whose order is denoted by an attached superscript.

A special spatial relation is given by NaturalLanguageDi-
rection. This frequently appearing relation can either be used
as a binary relation e.g. “the door to my left”, or as a ternary
relation such as “the door left to the elevator”. To take account
for the fact that humans use directions in different levels
of granularity, four kinds of NaturalLanguageDirection have
been defined, each of a different resolution. They range from
NatLangDir::2Clock which solely differentiates Left and Right
to NatLangDir::12Clock in analogy to the directions pointed
to by a watch-hand at clock hours.

Completing the formalization of coarse route descriptions,
an attributed place represents a landmark that is referenced via
a spatial relation. To stay general, the type and the domain of
an attribute are left unspecified. A typical example that is used
in our implementation (cf. sec. V) is “the third junction to the
left”, representing a place that has the property of being the
third junction with a possible veer to the left w.r.t. a given
ego.

V. PROCESSING OF COARSE ROUTE DESCRIPTIONS

This section starts with a specification of fuzzy functions
that correspond to the spatial relations that most frequently
appeared in the corpora. We then proceed with the devel-
opment of an algorithm that inputs a formalized CRD (cf.
sec. IV) representing the current task description, a global
route graph (cf. sec. III-C) which holds the available world
knowledge, and the global pose of the system. By evaluating



each fuzzy function that corresponds to the consecutively
appearing spatial relations in the CRD, our algorithm builds
up a search tree that is searched in a depth-first branch-and-
bound manner to determine the most probable goal pose of
the route description.

A. Spatial Relations as Fuzzy Functions

Our approach introduced here treats the task of evaluating
spatial relations as a judgement of how well at least two
given points out of the global workspace description can be
correlated via the spatial relation to be analyzed. We chose
fuzzy functions mapping to the domain [0..1] because of the
intrinsic coarse nature of natural language information.

1) Natural Language Direction: When humans use direc-
tional prepositions in natural language, they use them either as
binary or ternary spatial relation. In this example we describe
the binary case, in which the agent references a relatum
from its current pose ego. As described in section IV, one
uses natural language directions within different levels of
granularity. Our illustration in Fig. 2(a) addresses the direc-
tion “FrontLeft” out of an eight-valued set of directions i.e.
<NatLangDir::8Clock> (cf. table I). We start by computing
the angle α between i) the straight line that connects ego with
relatum and ii) the vector that is based in the position of
ego and aligned to the current heading of ego. Taking the
most compatible angle β for the given direction “FrontLeft”,
which is pi/4 w.r.t. the eight-valued level of granularity, and
the normalizing constant c, we now compute the fuzzy rating
of the spatial relation “FrontLeft” as can be seen in (4).

FRNatLangDir(ego, relatum) = e−
1
2 ( |α−β|

c )2
(4)

2) Passing Through Given Landmarks: The ternary spatial
relation “Through” takes as its first argument the current
pose of the agent called ego. In our example the second
argument is given by the two landmarks lm1 = cabinet and
lm2 = patch cabinet, both labeled as relatum. The third
argument referent is the global place we want to reach by
passing from ego through relatum. This situation is illustrated
in Fig. 2(b). Starting from ego depicted by the bold arrow,
we choose an arbitrary relatum, that is to be evaluated by the
spatial relation, in the neighborhood of ego. In a first step
we apply a standard graph search algorithm to compute the
route ρ from the closest place nearby ego to relatum. If ρ
does not exist, we judge relatum with the lowest possible
value 0. Otherwise we continue with the computation of a
circular region χ with diameter dχ = ‖ ~lm2 − ~lm1‖ such
that the centers of the landmarks lie on χ’s circumference.
The mentioned circle χ now segments ρ into the parts before,
inside and after χ. Taking the length λ of ρ after χ, and the
normalizing constant c, we now compute the fuzzy rating of
the spatial relation “Through” as can be seen in (5).

FRThrough(ego, referent, relatum) = e−
λ
c (5)

The fact that fuzzy ratings decrease for places that are farther
away from χ models the typical nature of human route de-

scriptions in that single parts apply to the direct neighborhood
of referenced landmarks.

3) Going Until Indexed Junction: The binary spatial rela-
tion “Until” takes as its first argument the current pose of the
agent called ego. In our example the second argument relatum
is given by the place until which we want to go from ego, i.e.
the i = 4th place with a junction to the left. In order to look
for an indexed place with a given attribute, we first have to
define the fuzzy rating for the existence of that attribute in a
given place ø. Therefore we model a junction to a given natural
language direction in analogy to the binary direction relation
in section V-A.1, however with a different computation of the
angle α. In this case the angle α is computed as the angle
between two route segments sharing the common place ø. We
now start with the computation of the route ρ from the closest
place nearby ego to relatum. Interpreting ρ as an ordered
set of places {p0, p1, ..., pn}, we compute the ordered set of
fuzzy ratings FR(ρ) = {fr1, fr2, ..., frn}, which represent
the judgements that there exists a junction to the left in the
corresponding places pi. Considering the j =

(
n
i

)
possible

combinations to find in pn the ith place with a junction to the
left, we can now compute {A1,A2, ...,Aj} as the

(
n
i

)
-subsets

of FR(ρ) (cf. [19]), yielding the overall fuzzy rating for the
spatial relation “Until” as can be seen in (6).

FRUntil(ego, relatum) =
j∑

k=1

n∏
l=1

{
frl:frl ∈ Ak

1− frl:frl /∈ Ak

(6)

B. Evaluation of Coarse Route Descriptions via Search Trees

For the evaluation of coarse route descriptions, i.e. the
calculation of the most likely target pose, we utilize a search
tree the nodes of which represent fuzzy rated places that
result from the evaluation of single CRD-elements. Fig. 3
illustrates the construction of the search tree. Considering a
single node as a compound of a pose and its fuzzy rating
or score, the root p1 is given by the initial pose of the agent
along with the highest possible score 1. Taking the first spatial
relation SR1 that appears in the ordered list of coarse route
segment descriptions, one chooses the first candidate pose p2

Pose,
FuzzyRating

Initial Pose

Most likely Goal Pose

p1

p2

p3

p4

p5

p6 p7

p8 p9 p10

p11 p12 p13 p14

p15

p16 p17

p18

SR
1

SR
n

SR
2

Fig. 3. Evaluation of a coarse route description via depth-first, branch-and-
bound search.



that acts as the relatum for the fuzzy function associated with
SR1. After calculating p2’s own score, it is multiplied by the
score of the parent node p1. This mechanism propagates the
uncertainty of former fuzzy ratings down to lower levels of
the search tree. The algorithm now recursively continues in
a depth-first branch-and-bound manner with the evaluation of
the following spatial relations. In order to keep the size of the
search tree small, we apply two different bound-criteria. First
we do not construct nodes from the evaluation of a single
spatial relation if the resulting score is lower than a given
threshold c1. Second we stop the evaluation at a given node if
its cumulative score is already lower than the highest score of
a leaf resulting from the evaluation of the final spatial relation.
In addition to these rules, we only address candidates for the
relatum of the spatial relation to be analyzed that are closer
to the current ego than a given distance c2.

VI. CONCLUSION

In this work we have addressed the formalization of coarse
qualitative route description in order to apply them to the
mobile robot navigation domain. It has been shown that the
involved spatial relations can be regarded as the key-elements
in understanding route descriptions. By interpreting them with
the help of fuzzy functions, we were able to derive the most
probable target pose from a given route description. As an
example of our real world experiments (cf. Fig. 4 for an
illustration), the following instruction has been formalized,
evaluated and executed in an office-like environment.

...go to the elevators area and continue until the first
junction to the left...turn left there and pass through
the cabinet and the patch cabinet...then continue until
the second door to the left...turn left, go through the
door and stop...

The findings presented so far bridge a gap between low-level
speech recognition and ontological language understanding on
the one hand and path planning for mobile robots on the other
hand. Upcoming work has to focus on the investigation of
further spatial relations in order to interpret the wide choice
of natural language route descriptions.

Fig. 4. Test run as estimated by the Monte Carlo Localizer: Starting at the
corridor to the lower left, going via the elevators area, passing through the
cabinets and finishing in the office to the upper right. Note that the depicted
trajectory results from a real world experiment that has been conducted with
an autonmomously moving robot, instructed by spoken route descriptions (cf.
[20] for an illustrative video).
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