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The ability to navigate in known and unknown environments belongs to the key skills of today’s mobile robots. Especially in struc-
tured environments, characteristics of the robot’s surroundings can be used to simplify the task. In many everyday scenarios, routes 
constitute a good representative of the structural nature of the robot’s world. In addition, a route description is an adequate means to 
specify the robot’s locomotion. This article recapitulates the experiences and findings with respect to the route-based navigation of 
mobile robots resulting from the work of the Bremen project “ Robot Navigation”  within the framework of the priority program “ Spa-
tial Cognition”  funded by the Deutsche Forschungsgemeinschaft (DFG). 

1 Introduction 
Within the framework of the priority program “Spatial Cognition” 
[4][3] the Bremen project “Robot Navigation” [1] develops a suite 
of basic behaviors [13] and navigation techniques. Experiments 
are carried out with the Bremen Autonomous Wheelchair “Rol-
land” (see Fig. 1 left) that serves as research platform on the one 
hand, and as a prototypical rehabilitation robot on the other hand 
[9].  

       
Figure 1. Rolland, the Bremen Autonomous Wheelchair, and the generalization 
of a motion track 

This article recapitulates the relevant experiences and findings 
during the past six years: the underlying algorithm for the incre-
mental generalization of traveled routes to a compact representa-
tion [11] is summarized. We show how these route descriptions 
have been used for route learning, “one-dimensional” localization, 
and navigating a robot by route instructions [10]. Current work 
deals with self-localization in large-scale environments [8]. We 
use a real-time capable probabilistic approach to absolutely local-
ize the robot in a given representation of the world, a network of 
routes (the so-called route graph, cf. [15]).  

2 Routes 
The concept of a route is fundamental to our navigation ap-
proach. Definitions in the literature (cf., e.g., [5][6][15]) differ only 
slightly in details such as terminology and notation, but usually 
agree on the basic assumption that a route is a sequence of deci-
sion points that are connected by segments. Depending on the 
problem domain, this general definition can be instantiated for dif-
ferent real world scenarios, such as railroad connections between 
large cities, paths in a park, or corridors in a tax office building. 

2.1 Representation 
For the application scenario we pursue (see section 1), a more 
specific definition of a route is used. Accordingly, a route is a se-
quence of straight segments that intersect under certain angles. 
Since almost no robot is able to travel along a straight path (es-

pecially in dynamically changing environments), such a route 
represents an abstraction of a real movement of the robot: 

 R = 〈Ci 〉 , where Ci = (αi, l i), i ∈{1 … n} (1) 

The route R is a finite sequence of so-called corners Ci, each of 
which is a pair of the angle αI between the incoming and the out-
going straight segment of this corner, and the length l i of the out-
going segment. As an example, consider a route specified as 
“(0°, 800 cm), (89°, 345 cm), (-83°, 566 cm)”. 

The acquisition of such a route description is accomplished by the 
incremental generalization of traveled tracks introduced by Röfer 
[11]. The idea is to generalize the locomotion of the traveling ro-
bot during runtime to an abstract route description. On the right, 
Fig. 1 shows the locomotion of the robot as recorded by its 
odometry system as a solid curved line. The corners recognized 
by the generalization algorithm are depicted as circles. The rec-
tangular boxes represent the so-called acceptance areas: As long 
as the robot remains within such a region, it is assumed that the 
robot is still located in the same corridor. The width of the rectan-
gular boxes is determined with the help of a histogram-based ap-
proach from the measurements of two sonar sensors mounted on 
the wheelchair’s left- and right-hand side chassis. The generaliza-
tion of the traveled track is carried out incrementally, i.e. while the 
robot moves. 

2.2 Self-Localization in Routes 
In [11], it is shown how two such route descriptions are matched 
to perform a “one-dimensional” self-localization along the route 
that is followed by the robot: In a teaching phase, the wheelchair 
is controlled along a route, e.g. by manually steering it with the 
joystick. The system records its dead reckoning positions. As the 
odometry data can consist of many measurements, it is general-
ized to generate a compact representation of the route, as pre-
sented in the previous section. This information is stored, and it is 
used as reference for future (autonomous) runs along this route.  

In such a future run, the dead reckoning data is recorded, too. It 
is generalized the same way as during the teaching phase. The 
description stored always represents the complete route whereas 
the current track only stands for the part of the route traveled so 
far. Therefore, the current description can only be matched with 
the beginning of the stored one. The segment in the stored repre-
sentation that is matched with the last segment of the current 
track is called the current segment. Together with the length of 
the last segment in the current track, i.e. the distance to the last 
corner, this defines the wheelchair's current position with respect 
to the route representation stored.  

Thomas Röfer
Röfer, T., Lankenau, A. (2002). Route-Based Robot Navigation. In: Freksa, C. (Hrsg.): Künstliche Intelligenz - Themenheft Spatial Cognition. Fachbereich 1 der Gesellschaft für Informatik e.V., arenDTaP. 29-31.



2.3 Basic Behaviors 
Basic behaviors such as wall-following or turning-on-the-spot can 
be used to provide the robot with a high degree of robustness [7]. 
Since a basic behavior is a rather abstract description of the ro-
bot’s locomotion, the navigation success is comparatively inde-
pendent of the exact structure of the environment. Therefore, mi-
nor changes such as moved furniture or dynamic “obstacles” 
such as people walking by do not cause any problem. 

2.4 Navigation along Routes 
The integration of the route generalization method and the basic 
behaviors results in the route navigation approach presented in 
[11]. It works as follows: when the wheelchair travels using basic 
behaviors such as wall-following, its movements reflect the struc-
ture of the environment. The dead reckoning system of the 
wheelchair can record these movements. The resulting motion 
tracks can be employed to generate representations of the routes 
the system has followed. Positions along the route where the 
wheelchair switched the current basic behavior, e.g. from corri-
dor-following to door-passage, are stored with the route. If the 
system drives along a route a second time, its dead reckoning 
system will produce a very similar track. Now, the wheelchair can 
choose the behavior stored for the current location and autono-
mously follow the route. 

Another route-based navigation approach is presented in [10]. A 
mobile robot is provided with a route description in a formal lan-
guage. The instruction makes use of coarse and qualitative ex-
pressions such as “left” or “far”. In addition, it contains behavior- 
and environment-related information. While traveling, the wheel-
chair perceives its surroundings by sonar sensors and extracts in-
formation about special landmarks, the controlmarks and the 
routers. This is done by an algorithm based on line detection 
which is borrowed from the field of image processing. Depending 
on the current situation, the robot chooses one of the available 
basic behaviors, e.g. corridor-following, to follow the route in ac-
cordance with the previously given instructions. 

3 From Routes to Route Graphs 
As summarized so far, the developed techniques enable a robust 
navigation of a mobile robot along routes that consist of straight 
segments which meet under certain angles. Self-localization is 
done by matching a previously learned route description with the 
incrementally generalized one. Adequate navigation skills are 
provided by switching between basic behaviors while traveling on 
a route. Even the detection of navigation errors is possible if the 
target route and the actual route diverge.  

Nevertheless, the route concept is a “one-dimensional” one. As 
is, it is not general enough for the complex large-scale navigation 
tasks we intend to solve. Therefore, we extend the single route 
navigation to the navigation in networks of routes, the so-called 
route graphs [15]. 

3.1 Representation 
As a model of the environment, we use such a route-graph. It is a 
hybrid topological-metric map. The nodes of a route graph (see 
Fig. 2) correspond to decision points in the real world: hallway 
corners, junctions or crossings. The edges of the graph represent 
straight corridors that connect the decision points. In addition to 
the topological information, the route graph contains (geo-)metric 

data about the length of the corridors as well as about the in-
cluded angles.  
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Figure 2. A Route Graph. The depicted route graph represents a part of the cam-
pus of the Universität Bremen. It consists of 42 graph nodes and 128 junctions. 
The represented corridors range in length from 4.3m to 179m. 

In contrast to common grid-based representations [2][14], such a 
data structure is much easier to handle with respect to the re-
quired amount of computing time and memory. For example, the 
campus environment depicted in Fig. 3 left is represented as a list 
of only 128 so-called junctions (see Fig. 2). A junction J is defined 
by its incoming corridor IJ, the outgoing corridor JK, the angle γ 
enclosed by both corridors, and the length d of the outgoing corri-
dor. Then, the set of all junctions is the route graph G: 

 G = {Ji | Ji = (I i, Ki, γi, di), i ∈{1 … m}} (2) 

3.2 Self-Localization in Route Graphs 
We use a probabilistic approach (for an overview on probabilistic 
algorithms in robotics, see [14]) to ongoingly determine the hall-
way H (represented by an edge in the route graph), in which the 
robot is most likely located at a certain moment in time [8]. Since 
the distance already traveled in H is also known, an additional 
offset can be derived. As a result, the position of the robot within 
the hallway can be determined precise enough for most global 
navigation tasks. The precision is limited by about half of the 
width of the corridor the robot is located in. Due to the modeling 
of the environment and the robot’s locomotion, our algorithm 
turns out to be rather insensitive to odometry errors (see Fig. 3 
right: the odometry error accumulates to 290m after 2.2km travel 
distance), because the offsets normally represent only short dis-
tances that result from accumulating straight movements, and 
almost no rotational motion which often causes dead reckoning 
errors. 

The algorithm continuously matches the current route generaliza-
tion with the route graph and is thus able to pose a hypothesis 
about the wheelchair’s position. The sensor requirements are 
very low (odometry, two sonar sensors). Furthermore, the ap-
proach is open for extensions, e.g. adding information to the route 
graph that helps to disambiguate situations of perceptual aliasing. 



In spite of the poor odometry data, experiments on the campus of 
the Universität Bremen show that the wheelchair is able to robus-
tly self-localize on a 2.2 km long route through seven buildings, 
along several large outdoor “corridors”, and over open places 
(see Fig. 3 left). 

4 Conclusion 
The results of the Bremen project “Robot Navigation” within the 
framework of the DFG priority program “Spatial Cognition” show 
that routes constitute an adequate basic data structure for mobile 
robot navigation in structured environments. On the one hand, 
they are suitable as descriptions of the environment in form of 
route graphs. On the other hand, they provide a good characteri-
zation of a robot’s locomotion in form of generalized descriptions 
of the motion track. Matching both models in a probabilistic ap-
proach is a robust self-localization method for mobile robots in 
“corridor-rich” scenarios. 
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Figure 3. Route across the campus and the generalization of the odometry scan 
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