
A Behavior Architecture for Autonomous
Mobile Robots Based on Potential Fields?

Tim Laue and Thomas Röfer

Bremer Institut für Sichere Systeme, Technologie-Zentrum Informatik, FB 3,
Universität Bremen, Postfach 330 440, 28334 Bremen, Germany.

E-Mail: {timlaue,roefer}@tzi.de

Abstract. This paper describes a behavior-based architecture which in-
tegrates existing potential field approaches concerning motion planning
as well as the evaluation and selection of actions into a single architec-
ture. This combination allows, together with the concept of competing
behaviors, the specification of more complex behaviors than the usual
approach which is focusing on behavior superposition and is mostly de-
pendent on additional external mechanisms. The architecture and all
methods presented in this paper have been implemented and applied to
different robots.

1 Introduction

Artificial potential fields, developed by [1] and also in detail described by [2, 3],
are a quite popular approach in robot motion planning because of their capability
to act in continuous domains in real-time. By assigning repulsive force fields
to obstacles and an attractive force field to the desired destination, a robot
can follow a collision-free path via the computation of a motion vector from
the superposed force fields. Especially in the RoboCup domain, there also exist
several applications of potential functions for the purposes of situation evaluation
and action selection [4–6].

Most approaches consider potential fields only as a tool being embedded
in another architecture, e. g. a planner [4, 7]. In these cases, the potential field
implementations are limited to special tasks such as obstacle avoidance or the
computation of an appropriate passing position. Due to some limitations, which
are discussed in Sect. 2.1, the standard approach is not able to produce a behavior
of an adequate complexity for several tasks, e. g. robot soccer.

The approach presented here combines existing approaches in a behavior-
based architecture [3] by realizing single competing behaviors as potential fields.
The architecture has generic interfaces allowing its application on different plat-
forms for a variety of tasks. The process of behavior specification is realized via
a description language based on XML.

? The Deutsche Forschungsgemeinschaft supports this work through the priority pro-
gram “Cooperating teams of mobile robots in dynamic environments”.

Thomas Röfer
T. Laue, T. Röfer (2005). A Behavior Architecture for Autonomous Mobile Robots Based on Potential Fields. In RoboCup 2004: Robot World Cup VIII, Nr. 3276, S. 122–133, Lecture Notes in Artificial Intelligence. Springer.

v2

v1

max(a(v),..,a(v))1 n
V= v

...
nv

Behavior 1

W
or

ld
 M

od
el

Behavior n

Behavior 2 V

Fig. 1. The basic scheme of behavior selection. Only the behavior the output v of which
has the highest activation value a(v) will be executed.

This paper, which is based on the works of [8], is organized as follows: Section
2 gives an overview of the structure of the architecture, the mechanisms for
behavior selection and the way of behavior specification, Section 3 shows the
possibilities of modeling the environment, the Sections 4 and 5 describe the
used approaches and some extensions for motion planning and action evaluation.
Previous applications of the architecture are presented in Section 6 and the paper
ends with the conclusion in Section 7.

2 Architecture

The architecture described in this section represents a framework for modeling
the environment and a set of behaviors. It is also responsible for the task of
behavior selection.

2.1 Competition Instead of Exclusive Superposition

As above-mentioned, potential fields are based on the superposition of force
fields. Being a quite smart technique for obstacle avoidance, this approach fails
when accomplishing more complex tasks including more than one possible goal
position. An obvious example is the positioning of a goalkeeper: The usage of
attractive force fields for its standard defense position as well as for a near
ball to be cleared would lead to a partial erasement of the fields causing an
unwanted behavior. This problem could be solved by using an external entity
which selects the most appropriate goal, but this proceeding would affect the
claim of a stand-alone architecture. Therefore, different tasks have to be splitted
into different competing behaviors. This applies also to tasks based on action
evaluation, especially since they use a different computation scheme, as explained
in Sect. 5.

The approach of action selection by [9, 3], as shown in Fig. 1, has been con-
sidered as being most suitable for this architecture. A number of independent
behaviors without any fixed hierarchy as in [10] compete for execution by the

goal robot−1 robot−2 ball kickable−ball

kick−ball

go−to−ball

(1450,0,0)

robot−1−state robot−2−state ball−state

World Model

Goal

Robot

Ball

KickBall

Selector

Object Classesown−state

Instances

Object States

Result

Behaviors

Fig. 2. A simplified example of a behavior for playing soccer, showing the elements of
the architecture and their interdependencies.

respective computation of activation values which represent the current appro-
priateness.

As potential fields are rather based on functions and vectors than on symbolic
representations [11], there are several facile ways to gain activation values from
single behaviors, e. g. the value of a potential function at a certain position or
the length of a computed motion vector. Constant activation values for standard
behaviors are also possible.

To refine the behavior selection scheme, various mechanisms could be used.
Among the blocking and keeping of behaviors under certain circumstances, be-
haviors can be combined with others to realize small hierarchies. For instance,
this allows the usage of a number of evaluation behaviors differentiating situa-
tions (e. g. defense or midfield play in robot soccer) respectively combined with
appropriate motion behaviors.

2.2 The Design of the Architecture

As to be seen in Fig. 2, the architecture consists of several interdependent ele-
ments:

Object States An object state contains information about an object in the
environment. The appropriate data has to be converted from the robot’s
sensor layer, as described in Sect. 2.3.

Object Classes An object class is used as a template for object instances. Due
to its complex configuration, it is described in a separate section (3).

Object Instances Obtaining all necessary parameters and data from classes
and object states, instances may be assigned to one or more behaviors. In
the case of a world model containing absolute positions, their state can also
be static.

Behaviors In this architecture a behavior equals a potential field for motion
planning respectively an action evaluation via potential functions. These
methods are described in more detail in the Sections 4 and 5

2.3 Embedding the Architecture in Robot Systems

To use the architecture within a special robot system, two components have to be
programmed to connect the generic interfaces with both the robot’s sensor layer
and the execution layer. Concerning the sensor component, it does not matter
whether the robot system uses localization techniques to compute a world model
using absolute positions or just reacts on sensor measurements, as long as an
appropriate mapping of the data structures may be found. The second compo-
nent has to be an interpreter which translates the abstract motion parameters
or activates chosen actions, e. g. a kick or a ball catching motion, both by setting
the corresponding motor parameters.

2.4 Using XML for Behavior Specification

As afore mentioned, the architecture consists of several elements. Specifying a
behavior is therefore equivalent to specifying all entities and their interdepen-
dencies. Such modeling tasks may be managed in a better way by using external
configuration files than by programming all needed elements in a programming
language such as e. g. C++. Thus, a format for behavior specification has been
described in XML. Figure 3 shows extracts from an example behavior. The
reasons to use XML instead of defining a new grammar from scratch are its
structured format as well as the big variety and quality of existing editing, vali-
dation, and processing tools. Many XML editors, for example, are able to check
the validity of a behavior specification at run time or even assist the user during
the selection of elements and their attributes. Actually, a behavior specification
has to be transformed into an intermediate code which may easily be interpreted,
since on many embedded computing platforms, XML parsers are not available
due to resource and portability constraints.

3 Modeling of the Environment

Since the methods for motion planning and action selection, which will be ex-
plained in the following sections, are not directly configurable, the whole behav-
ior depends on the model of the environment, in particular on the parameters

a)

<object name="Opponent -Robot" type="repulsive">

<asymptotic -function range="200"

at-zero="1000"

const -interval="1"/>

<point -field/>

<circle radius="90"/>

</object >

b)

<motionfield name="go-to-ball">

<return -const value="-1"/>

<include name="ball"/>

<include name="own -penalty -area"/>

<include -group name="all -robots"/>

</motionfield >

Fig. 3. Extracts from an XML behavior specification: a) An object class describing the
attributes of an opponent robot. b) A motion behavior for moving towards a ball.

of the object classes. The architecture offers various options allowing a detailed
description. An object class O may be considered as the following tuple:

O = (fO, GO, FO) (1)

With fO being a potential function, which may be chosen among several standard
functions [2] and a social function introduced by [12]. The range of the field as
well as its gradient depend directly on the parameters which have to be assigned
to fO. A geometric primitive GO is used to approximate an object’s shape. The
kind of field FO determines the shape of the region influenced by O, which may,
for example, be a circumfluent area around GO or a tangential field around the
position of the instance.

As shown in Fig. 4, an object instance excites in its environment both a
potential field and a charge [4] based on its potential function. They may be
computed separately in the following way: Let P be an arbitrary position in the
environment of an object instance and vO (P, S, GO, FO) a function computing
a vector from P to an instance I of the class O given its geometry and kind of
field as well as the object state S assigned to the instance, the value ϕI (P) of
the potential function is to be computed as follows:

ϕI (P) = f(|vI (P, S, GO, FO)|) (2)

Analogous, the field vector vI (P) of the potential field is:

vI (P) = f ′(|vI (P, S, GO, FO)|) vI (P, S, GO, FO)
|vI (P, S, GO, FO)|

(3)

a) b)

Fig. 4. In the environment of an object instance both a) a potential field and b) the
value of the potential function may be computed.

Due to this duality, each object instance may be assigned to and used by motion
behaviors as well as for the evaluation of actions.

4 Motion behaviors

All motion behaviors are mainly based on the standard motion planning ap-
proach by [1]. Some of the main extensions have been the integration of relative
motions which allow the robot to behave in spatial relations to other objects,
e. g. to organize in multi-robot formations, and the implementation of a path
planner to avoid local minima.

4.1 The General Procedure of Motion Planning

Following the standard approach as described in [1–3], a vector v can be com-
puted by the superposition of the force vectors vI of all n object instances
assigned to a behavior:

v =
n∑

I=1

vi (R) (4)

With R being the current position of the robot, v can be used to determine
the robot’s direction of motion, rotation and speed. Due to the equal interface
of all objects, this method does not have to distinguish between attractive and
repulsive objects.

4.2 Relative Motions

Assigning force fields to single objects of the environment allows the avoidance
of obstacles and the approach to desired goal positions. Nevertheless, moving to

Fig. 5. Planning a path to the ball on a Sony Four-legged Robot League field. The
dark lines show the generated search tree. The chosen path is drawn bright.

more complex spatial configurations, e. g. positioning between the ball and the
penalty area or lining up with several robots is not possible directly. An extension
of the Motor-Schema approach [13] to dynamically form multi-robot formations
has been developed by [14]. A quite similar technique has been used in this
architecture, but it is not limited to a set of special formations. Relative motions
are realized via special objects which may be assigned to behaviors. Such an
object consists of a set of references to object instances and a spatial relation, e. g.
between or relative-angle. These are used to dynamically compute a geometric
representation of the desired destination region, which will subsequently be used
as the object’s GO. Via an additional assignment of a potential function, such
objects may be integrated into the process of motion planning in a transparent
way among all other object instances.

4.3 Dealing with Local Minima

Local minima are an inherent problem of potential fields [15] which has, of
course, to be discussed when using this approach for motion planning since an
optimal standard solution does not exist. In the past, several heuristics have
been proposed [3], but they cannot guarantee to be effective. Due to the increas-
ing computing resources even in embedded systems, the usage of path planners
becomes practicable in real-time applications [16].

This approach uses the A* algorithm [17] for path planning. To discretize
the continuous environment, a search tree with a dynamic number and size of

Fig. 6. Two examples of action evaluation from [4]. In both cases a kick to the side
as well as a forward kick of a ball are evaluated. Bright regions represent a better
evaluation.

branches, similar to [16] is built up (see Fig. 5). The potential functions of the
objects in the environment are used to determine the path costs.

The path planner is integrated in such a way that it may be used by every
motion behavior. There also exist mechanisms to detect whether the robot enters
or leaves a local minimum and thus to use the path planner only on demand.

5 Behaviors for Action Evaluation

In this architecture, actions are considered to be indivisible entities which have
to be executed by the robot after their selection, e. g. the activation of a kick
motion. It is also possible that an action evaluation behavior is combined with
a motion behavior to determine the appropriateness of its execution.

There exist several approaches using potential functions to evaluate certain
situations or the results of planned actions. Most of them rasterize the environ-
ment into cells of a fixed size [5, 7] and compute the value of each cell to determine
the most appropriate position. A quite different approach is the Electric Field
Approach [4] which is computationally much less expensive. By computing the
anticipated world state after an action, only relevant positions have to be evalu-
ated, as shown in Fig. 6. Due to its efficient computation and the direct mapping
of possible actions, a similar approach has been integrated into the architecture.

5.1 The Procedure of Action Evaluation

Analogous to the computation of a field vector, the value ϕ (P) (for which [4]
use the term Charge) may be determined at an arbitrary position P , being the
sum of the potential functions of all object instances assigned to the behavior:

ϕ (P) =
n∑

I=1

ϕI (P) (5)

To use this method to evaluate a certain action which changes the environment,
e. g. kicking a ball, this action has to be mapped to a geometric transformation

a) b)

Fig. 7. The behavior architecture has been used in RoboCup competitions as well on
a) Sony ERS-210A robots as to control b) Small-size robots.

in order to describe the motion of the manipulated object. A set off different
transformations, inter alia including rotation, translation, and tracing the po-
tential field gradient, has been implemented, together with mechanisms to check
for collisions and practicability of the action. External mechanisms as planners
are not needed. To describe more complex actions, e. g. turning with a ball and
subsequently kicking to the goal, sequences of actions may also be specified.

Having computed an anticipated future state, the value ϕ may also be deter-
mined along with a value ϕd representing the change of the environment which
will be caused by an execution of the action. Both values may be used as acti-
vation values of the behavior.

6 Applications

Up to now, the architecture has been applied to two different platforms, both
being RoboCup teams of the Universität Bremen, to be seen in Fig.7.

The main test and development platform have been the robots of the Bremen
Byters, which are a part of the GermanTeam [18], a team which competes in the
Sony Four-legged Robot League. To specify the environment of that domain,
about 40 object instances based on 15 different classes have been used. Each
player has a different role and therefore a different set of behaviors. For playing
soccer, about 10–15 behaviors have been needed, e. g. Go to Ball, Go to Defense
Position or Kick Ball Forward. Due to the large number of degrees of freedom,
these robots are able to perform many different motions, resulting in a variety
of kicks. After measuring the effect of each kick on the position of the ball, they
could directly be specified as behaviors and therefore be evaluated and selected

by the architecture. Also sequences of actions have been used, allowing a quite
forward-looking play. Except for the handling of special game states, for which
all members of the German Team use XABSL [19], the complete behavior could
be realized via the architecture presented in this paper.

The second platform has been the control program of B-Smart [20], running
on an external PC and computing the behaviors for a team of omni-directional
driven small-size robots, which are able to move with a speed of up to two meters
per second. Due to the generic nature of the architecture and the similarity of
the domains, large parts of the Bremen Byters’ behaviors and their specification
of the environment were copied leaving only several changes of parameters to be
made, e. g. the dimensions of the field and the ranges of the potential functions.
Through that, the portability of this approach of behavior modeling has been
shown. Nevertheless, the direct interchange of unchanged behaviors is not a
primary goal. Especially considering robot soccer competitions, optimizations
for a single system are often more important.

7 Conclusion and Future Works

This paper presents a behavior-based architecture for autonomous mobile robots,
integrating several different approaches for motion planning and action evalua-
tion into a single general framework by dividing different tasks into competing
behaviors. This approach turned out to be able to specify an overall behavior
sufficiently for handling complex tasks in the robot soccer domain. The archi-
tecture’s abstract design using external behavior specifications in XML files has
also appeared to be well manageable.

In the future, the authors intend to port the architecture to other platforms
to test and extend the capabilities of this approach. There exist several features
already implemented but not adequately tested, e. g. the integration of object
instances based on a probabilistic world model. In addition, the behavior selec-
tion process is currently extended to deal with a hierarchy of sets of competing
behaviors similar to [21, 22], allowing the specification of even more complex
overall behaviors.

At the RoboCup 2004, the architecture will be used again by B-Smart and
will also be integrated in the behavior control of the German Team.

Acknowledgements

The authors would like to thank the members of the GermanTeam as well as
the members of B-Smart for providing the basis of their research.

References

1. Khatib, O.: Real-time Obstacle Avoidance for Manipulators and Mobile Robots.
The International Journal of Robotics Research 5 (1986) 90–98

2. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Boston,
USA (1991)

3. Arkin, R.C.: Behavior-Based Robotics. MIT Press, Cambridge, Massachusetts,
USA (1998)

4. Johannson, S.J., Saffiotti, A.: Using the Electric Field Approach in the RoboCup
Domain. In Birk, A., Coradeschi, S., Tadokoro, S., eds.: RoboCup 2001: Robot
Soccer World Cup V. Volume 2377 of Lecture Notes in Artificial Intelligence.,
Springer (2002)

5. Meyer, J., Adolph, R.: Decision-making and Tactical Behavior with Potential
Fields. In Kaminka, G.A., Lima, P., Rojas, R., eds.: RoboCup 2002: Robot Soccer
World Cup VI. Volume 2752 of Lecture Notes in Artificial Intelligence., Springer
(2003)

6. Weigel, T., Gutmann, J.S., Dietl, M., Kleiner, A., Nebel, B.: CS-Freiburg: Coordi-
nating Robots for Successful Soccer Playing. IEEE Transactions on Robotics and
Automation 18 (2002) 685–699

7. Ball, D., Wyeth, G.: Multi-Robot Control in Highly Dynamic, Competitive En-
vironments. In Browning, B., Polani, D., Bonarini, A., Yoshida, K., eds.: 7th
International Workshop on RoboCup 2003 (Robot World Cup Soccer Games and
Conferences). Lecture Notes in Artificial Intelligence, Springer (2004) to appear.

8. Laue, T.: Eine Verhaltenssteuerung für autonome mobile Roboter auf der Basis
von Potentialfeldern. Diploma thesis, Universität Bremen (2004)

9. Maes, P.: How To Do the Right Thing. Connection Science Journal 1 (1989)
291–323

10. Brooks, R.: A Robust Layered Control System for a Mobile Robot. IEEE Journal
of Robotics and Automation 2 (1986) 14–23

11. Brooks, R.: Intelligence without representation. Artificial Intelligence Journal 47
(1991) 139–159

12. Reif, J.H., Wang, H.: Social Potential Fields: A Distributed Behavioral Control for
Autonomous Robots. In Goldberg, K., Halperin, D., Latombe, J.C., Wilson, R.,
eds.: The Algorithmic Foundations of Robotics. A. K. Peters, Boston, MA (1995)
331 – 345

13. Arkin, R.C.: Motor Schema-Based Mobile Robot Navigation. The International
Journal of Robotics Research 8 (1989) 92–112

14. Balch, T., Arkin, R.C.: Behavior-based Formation Control for Multi-robot Teams.
IEEE Transactions on Robotics and Automation 14 (1999) 926–939

15. Koren, Y., Borenstein, J.: Potential Field Methods and Their Inherent Limitations
for Mobile Robot Navigation. In: Proceedings of the IEEE International Conference
on Robotics and Automation, Sacramento, California, USA (1991) 1398–1404

16. Behnke, S.: Local Multiresolution Path Planning. In Browning, B., Polani, D.,
Bonarini, A., Yoshida, K., eds.: 7th International Workshop on RoboCup 2003
(Robot World Cup Soccer Games and Conferences). Lecture Notes in Artificial
Intelligence, Springer (2004) to appear.

17. Hart, P., Nilsson, N.J., Raphael, B.: A Formal Basis for the Heuristic Determina-
tion of Minimum Cost Paths in Graphs. IEEE Transactions on Systems Science
and Cybernetics SSC-4 (1968) 100–107

18. Röfer, T., Brunn, R., Dahm, I., Hebbel, M., Hoffmann, J., Jüngel, M., Laue,
T., Lötzsch, M., Nistico, W., Spranger, M.: GermanTeam 2004. The German
RoboCup National Team. In: 8th International Workshop on RoboCup 2004
(Robot World Cup Soccer Games and Conferences). Lecture Notes in Artificial
Intelligence, Springer (2004) to appear.

19. Lötzsch, M., Bach, J., Burkhard, H.D., Jüngel, M.: Designing Agent Behavior
with the Extensible Agent Behavior Specification Language XABSL. In Browning,
B., Polani, D., Bonarini, A., Yoshida, K., eds.: 7th International Workshop on
RoboCup 2003 (Robot World Cup Soccer Games and Conferences). Lecture Notes
in Artificial Intelligence, Springer (2004) to appear.

20. Kurlbaum, J., Laue, T., Lück, B., Mohrmann, B., Poloczek, M., Reinecke, D.,
Riemenschneider, T., Röfer, T., Simon, H., Visser, U.: Bremen Small Multi-Agent
Robot Team (B-Smart) Team Description for RoboCup 2004. In: 8th International
Workshop on RoboCup 2004 (Robot World Cup Soccer Games and Conferences).
Lecture Notes in Artificial Intelligence, Springer (2004) to appear.

21. Behnke, S., Rojas, R.: A hierarchy of reactive behaviors handles complexity. In:
Proceedings of Balancing Reactivity and Social Deliberation in Multi-Agent Sys-
tems, a Workshop at ECAI 2000, the 14th European Conference on Artificial In-
telligence, Berlin (2000)

22. Jäger, H., Christaller, T.: Dual Dynamics: Designing Behavior Systems for Au-
tonomous Robots. In Fujimura, S., Sugisaka, M., eds.: Proceedings of the Inter-
national Symposium on Artificial Life and Robotics (AROB ’97), Beppu, Japan
(1997) 76–79

