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Abstract. Navigation is one of the most fundamental tasks to be accomplished
by many types of mobile and cognitive systems. Most approaches in this area
are based on building or using existing allocentric, static maps in order to guide
the navigation process. In this paper we propose a simple egocentric, qualita-
tive approach to navigation based on ordering information. An advantage of our
approach is that it produces qualitative spatial information which is required to
describe and recognize complex and abstract, i.e., translation-invariant behavior.
In contrast to other techniques for mobile robot tasks, that also rely on landmarks
it is also proposed to reason about their validity despite insufficient and insecure
sensory data. Here we present a formal approach that avoids this problem by use
of a simple internal spatial representation based on landmarks aligned in anex-
tended panoramic representationstructure.

1 Introduction

Navigation is one of the most fundamental tasks to be accomplished by robots, au-
tonomous vehicles, and cognitive systems. Most successful approaches in the area of
robot navigation like potential fields (see [8] and [5]) are based on allocentric, static
maps in order to guide the navigation process (e.g. [7]). This approach has an intu-
itive appeal and gains much intuition from cognitive science: thecognitive map(a good
recent overview [11]). The main purpose is to build up a precise, usually allocentric,
quantitative representation of the surrounding environment and to determine the robot’s
position according to this allocentric, quantitative map.

One difficulty results from the fact that the same spatial representation serves as a
basis for different tasks often with heterogeneous requirements. For example, more ab-
stract reasoning tasks like planning coordinated behavior, e.g.,counterattackanddouble
pass, and plan recognition usually rely on more abstract, qualitative spatial representa-
tions. Generation of qualitative spatial descriptions from quantitative data is usually a
difficult task due to uncertain and incomplete sensory data. In order to fit heterogeneous
requirements, we should be able to represent spatial qualitative description at different
levels of granularity, i.e., invariant according to translation and/or rotation and based on
different scalings.



Based on recent results from cognitive science (see, e.g., [22]), we present a formal,
egocentric, and qualitative approach to navigation which overcomes some problems of
quantitative, allocentric approaches. By the use of ordering information, i.e., based on a
description of how landmarks can shift and switch, we generate anextended panoramic
representation(EPR). We claim that our representation in combination with path inte-
gration provides sufficient information to guide navigation with reduced effort to the
vision process. Furthermore the EPR provides the bases for qualitative spatial descrip-
tions that may be invariant to translation and/or rotation.

Since our approach abstracts from quantitative or metrical detail in order to in-
troduce a stable qualitative representation between the raw sensor data and the final
application, it can for example be used in addition to the well-elaborated quantitative
methods.

2 Motivation

Modeling complex behavior imposes strong requirements on the underlying represen-
tations. The representation should provide several levels of abstraction for activities as
well as for objects. For both types of knowledge, different representations were pro-
posed and it was demonstrated that they can be used successfully. Activities can, e.g.,
be described adequately with hierarchical task networks (HTN) which provide clear for-
mal semantics as well as powerful, efficient (planning-) inferences (see e.g. [2]). Objects
can be described either in ontology-based languages (e.g., OWL [16]) or constraint-
based languages (e.g., [6]). Both types of representations allow for the representation
of knowledge at different levels of abstraction according to the domain and task specific
requirements. In physically grounded environments, the use of these techniques requires
an appropriate qualitative spatial description in order to relate the modeled behavior to
the real world.

2.1 Allocentric and Egocentric Representations

In an egocentric representation, spatial relations are usually directly related to an agent
by the use of an egocentricframe of referencein terms like, e.g.,left, right, in front,
behind. As a consequence, when an agent moves through an environment, all spatial
relations need to be updated. In contrast, representations based on an allocentric frame
of reference remain stable but are much harder to acquire. Additionally, the number of
spatial relations which have to be taken into account may be much larger because we
have to consider the relations between each object and all other objects in the environ-
ment, whereas the number of relations in egocentric representations can be significantly
smaller (see Fig. 1)3. An interesting phenomenon, when looking into the didactic lit-
erature about, e.g., sports [9] we often find that (tactical and strategic) knowledge is
described in both, egocentric and allocentric terms, whereas, e.g., the literature about
driving lessons strongly relies on purely egocentric views. At least one of the reasons
are that the latter representation seems to provide better support for acting directly

3 For reasons of clarity not all allocentric relations are drawn in diagram 1(a).
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(a) Allocentric relations (b) Egocentric relations

Fig. 1.Allocentric vs. egocentric spatial relations

in physically grounded environments, since perception as well as the use of actuators
are directly based on egocentric representations. In addition, egocentric representations
provide better support for rotation and translation invariant representations when used
with a qualitative abstraction (see the next section 3.3 and 4 for more details).

3 Related Work

3.1 Cognition: Dynamic, Egocentric Spatial Representations

The fact that even many animals (e.g., rodents) are able to find new paths leading to fa-
miliar objects seems to suggest that spatial relations are encoded in an allocentric static
,,cognitive map”. This almost traditional thesis is supported by many spatial abilities
like map navigation and mental movement that humans are able to perform (beginning
with [18] and [10]). Nevertheless, recent results in cognitive science provide strong ev-
idence for a different view ([22] among many others). Instead of using an allocentric
view-independent map, humans and many animals build up a dynamic, view-dependent
egocentric representation. Although the allocentric interpretation of thecognitive map
seems to differ radically from the egocentric representation theory, both theories can
account for many observations and differ mainly in two points: The allocentric,cog-
nitive map-interpretations assumes that the spatial representation is view-independent
and that therefore viewpoint changes do not have any influence on the performance
of, e.g., spatial retrieval processes. Many recent experiments provide evidence for the
opposite, they show that viewpoint changes can significantly reduce performance in
terms of time and quality (e.g. pointing errors) (among others, [20] and [21]). The sec-
ond main difference is concerned with the dynamic of the underlying representation.
The egocentric interpretation assumes that all egocentric relations have to be updated
with each egocentric movement of a cognitive system. The underlying assumption of
a sophisticated series of experiments done by Wang ([20] and [21]) was that spatial
relations have to remain stable in an allocentric,cognitive mapindependent from ego-
centric movements. When errors arise, e.g., because of path integration, the error rate
(,,configuration error”) should be the same for all allocentric relations; otherwise they
rely on an egocentric representation. The results indicate clear evidence for egocentric
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representations and have been confirmed in a series of differently designed experiments,
e.g., [1] and [3].4

3.2 Robot Navigation

Currently, the most promising techniques for robust mobile robot localization and nav-
igation are based on Monte-Carlo-Localization using probabilitic representations from
the raw sensory data (see [17] and [13] for RoboCup-application). Based on a sample
set of locations, the robot’s position can be estimated by probablilites, which allows
to handle even very challenging tasks like the kidnapped robot problem of moving the
robot without telling it.

A famous method for navigation is based on the use of potential fields for avoiding
obstacles. Following the flow of superposed partial fields, the robot can be guided to
approach a goal position (see [8] and [5] for a RoboCup-application).

3.3 The Panorama Approach

The concept of panorama representation has been studied extensively in the course of
specialized sensors (e.g., omnivision, see, e.g., [23]). We present an extended approach
based on the panorama approach by Schlieder ([15] and [14]).

A complete, circular panorama can be described as a360o view from a specific,
observer-dependent point of view. LetP in Fig. 2(a) denote a person, then the panorama
can be defined as the strict ordering of all objects:house, woods, mall, lake. This order-
ing, however, does not contain all ordering information as described by the scenario.The
mall is not only directly between thewoodsand thelake, but more specifically between
the opposite side of thehouseand thelake (the tails of the arrows). In order to repre-
sent the spatial knowledge described in a panorama scenario, [15] introduced a formal
model of a panorama.

Definition 1 (Panorama). Let Θ= {θ1, . . . , θn} be a set of pointsθ ∈ Θ and Φ =
{φ1, . . . , φn} the arrangement of n-1 directed lines connectingθi with another point of
Θ, then the clockwise oriented cyclical order ofΦ is called the panorama ofθi.

As a compact shorthand notation we can describe the panorama in Fig. 2(b) as the
string < A, C, D,Bo, Ao, Co,Do,B >. Standard letters (e.g.,A) describe reference
points, and letters with a followingo (e.g.,Ao) the opposite side (the tail side). As
the panorama is a cyclic structure the complete panorama has to be described byn
strings withn letters, withn being the number of reference points on the panorama.
In our example, the panorama has to be described by eight strings. Furthermore, the
panorama can be described as a set of simple constraintsdl(vp, lm1, lm2)5. Based on
this representation, [14] also developed an efficient qualitative navigation algorithm.

4 Nevertheless, these results do not allow the strict conclusion that humans do not build up an
allocentric cognitive map. On the contrary, e.g., Easton and Sholl ([1]) have shown that under
very specific conditions it is possible to build up allocentric maps. Regardless these results
indicate, that under more natural conditions human navigation relies on egocentric snapshots
and a dynamic mapping between these.

5 Short fordirect− left(viewpoint, landmark1, landmark2).
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(a) Concrete Panorama (b) Abstract Panorama

Fig. 2.Panorama-views

The panorama representation has an additional, more important property: it is in-
variant with respect to rotation and translation. But evidently, not every behavior can be
described in such an abstract manner. In order to model complex, coordinated behav-
iors, often more detailed ordinal information is involved. Additionally, different metric
information (e.g., distance) is required in some situations. In the following section, we
show how the panorama can be extended in a way that more detailed ordinal and metric
information can be introduced.

4 An Extended Panorama Representation

Instead of building an allocentric map we provide an egocentric snapshot-based ap-
proach to navigation. The most fundamental difference between both approaches is that
an egocentric approach strongly relies on an efficient, continuous update mechanism
that updates all egocentric relations in accordance with the players’ movement. In this
section we show that this task can be accomplished by strict use of a simple 1D-ordering
information, namely an extended qualitative panorama representation (EPR).

This update mechanism has to be defined with respect to some basic conditions:

• Updating has to be efficient since egocentric spatial relations change with every
movement, i.e., the updating process itself and the underlying sensor process.

• The resulting representation should provide the basis for qualitative spatial descrip-
tions at different levels of granularity.

• The resulting representation should provide different levels of abstraction, i.e., ro-
tation and/or translation invariance.

• The process of mapping egocentric views should rely on a minimum of allocentric,
external information.

Due to the nature of ordering information, this task has to be divided into two sub-
tasks: (1) updating within a given frame of reference (short notation: FoR), i.e., the soc-
cer field and (2) updating of landmark representations from an external point of view,
e.g., the penalty area. In section 4.1 we briefly discuss the key properties of the first
task in relation to ordering information from a more theoretical point of view, whereas
in section 5 these aspects are investigated in more detail. In section 4.2 we describe the
theoretical framework underlying the mapping- and update-mechanism for egocentric
views on external landmarks.
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4.1 Within a Frame of Reference

A crucial property of panoramic ordering information is that it does not change as long
as an agent stays within a given FoR, i.e., the corners of a soccer field, do not change
unless the player explicitly leaves the field (see Fig. 3(a)). So in order to use ordering in-
formation for qualitative self-localization we have to introduce an egocentric FoR. But
even with an egocentric FoR the location within this FoR can only be distinguished into
a few different qualitative states(e.g., ego-front between front-left and front-right cor-
ner of the field, see Fig. 3(a)). This way of qualitative self-localization is too coarse for
many domains as well as for the different RoboCup-domains. In section 5 we demon-
strate in more detail how angular distances can be used to overcome this problem6.

A perhaps even more important property of spatial locations within a given FoR
is that they can be used as a common FoR for the position of different landmarks in
relation to each other (e.g., the position of the penalty area can be described in within-
relation to the soccer field). This property is especially important for an egocentric
snapshot-based approach to navigation since it provides the common frame that is re-
quired to relate different snapshots to each other (for a more detailed discussion see
[19]).

4.2 Updating Outside-Landmark Representations

In a re-orientation task we can resort the knowledge about the previous position of
a player. Therefore we concentrate on an incremental updating process, based on the
following two assumptions:(1) It is known that the configuration of perceived landmarks
A,B, ... ∈ L either form a triangle- or a parallelogram configuration (e.g. either by
vision or by use of background knowledge). (2) The positionPt−1 of an agentA in
relation toL at time stept − 1 is known.The EPR (LPT ) of a triangle configuration
can then be defined as follows (see also Fig. 3(b)):

Definition 2 (Triangle Landmark Panorama). LetPA denote the position of an agent
A andCT (ABC) the triangle configuration formed by the set of pointsA,B,C in the
plane. The lineLPA/V P is the line of view fromPA to VP, with VP being a fixed
point withinCT (ABC). Furthermore,LOrth(PA/V P ) be the orthogonal intersection of
LPA/V P . The panoramic ordering information can be described by the orthogonal pro-
jectionP (PA, V P,CT (ABC)) of the pointsABC ontoLOrth(PA/V P ).

Therefore, moving around a triangle configurationCT (ABC) results in a sequence
of panoramas which qualitatively describe the location of the observer position. A360o

movement can be distinguished in six different qualitative states:

Observation 41 (Triangle Landmark Panorama Cycle)
The EPR resulting from the subsequent projectionP (PA, V P,CT (ABC)) by counter-
clockwise circular movement aroundVP can be described by the following ordered,
circular sequence of panoramas:
(CAB), (ACB), (ABC), (BAC), (BCA), (CBA)

6 An additional approach is to introduce more landmarks that are easy to perceive or to introduce
additional allocentric FoR when available (e.g., north, south, etc.)

6



For each landmark panorama the landmark panorama directly left as well as at the
right differ in exact two positions that are lying next to each other (e.g.,(ABC), (BAC)
differ in the position exchange betweenA andB). These position changes occur exactly
when the view lineLPA/V P intersects the extension of one of the three triangle lines:
LAB , LAC , LBC . Starting with a given line (e.g.,LAB) and moving either clock- or
counter-clockwise, the ordering of line extensions to be crossed is fixed for any triangle
configuration (see Fig. 3(b)). This property holds in general for triangle configurations
but not, e.g., for quadrangle configurations (except for some special cases as we will see
below). Since (almost) each triplet of landmarks can be interpreted as a triangle con-

(a) Use of Egocentric Frame of Reference (b) Triangle panorama construction
by projection (result here: (ACB))

Fig. 3.FoR and Triangle panorama.

figuration, this form of qualitative self-localization can be applied quite flexibly with
respect to domain-specific landmarks. The triangle landmark panorama, however, has
(at least) two weaknesses: The qualitative classification of an agent’s position into six
areas is quite coarse and, triangle configurations are somewhat artificial constructs that
are rarely found in natural environments when we consider solid objects7. A natural
extension seems to be applying the same idea to quadrangles (see Fig. 4). The most
direct approach is to interpret a quadrangle as a set of two connected triangles shar-
ing two points by a common line so that each quadrangle would be described by a set
of two triangle panoramas. With this approach, the space around a quadrangle would
be separated into ten areas and therefore it would be more expressive than the more
simple triangle panorama. It can be shown that eight of the resulting triangle landmark
panorama (one for each triangle of the quadrangle) can be transformed into quadruple

7 The triangle configuration can be applied generally to any triple of points that form a triangle
- also to solid objects. The connecting lines pictured in Fig. 3(b) and 4(a) are used to explain
the underlying concept of position exchange (transition)
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that results when we transform e.g. a rectangle directly into a landmark panorama rep-
resentation (e.g., the above given tuple ((BCA)(CDA)) can be transformed into (BCDA)
without loss of information)8. The expressiveness of the other two landmark panoramas
is weaker: they have to be described as a disjunction of two quadruple tuples. Since the
expressiveness is weaker and the landmark panorama representation of a quadruple tu-
ple panorama representation is much more intuitive we focus on the latter one (see
Fig. 4(a)).

Definition 3 (Parallelogram Landmark Panorama). Let PA denote the position of
an agentA andCP (ABC) the parallelogram configuration formed by the set of points
A,B,C, D the plane. The lineLPA/V P is the line of vision fromPA to VP, with VP
being a fixed point withinCP (ABCD). Furthermore,LOrth(PA/V P ) be the orthogonal
intersection ofLPA/V P . The landmark panoramic ordering information can then be
described by the orthogonal projectionP (PA, V P,CP (ABCD)) of the pointsABCD
ontoLOrth(PA/V P ).

Moving around a parallelogram configurationCP (ABCD) also results in a sequence
of landmark panoramas which describe the location of the observer position qualita-
tively. A 360o movement can be split into twelve different states:

Observation 42 (Parallelogram Landmark Panorama Cycle)
The panoramic landmark representations resulting from the subsequent projection
P (PA, V P,CP (ABCD)) by counter-clockwise circular movement aroundVP can be
described by the following ordered, circular sequence of panoramas:
((BCAD), (BACD), (ABCD), (ABDC), (ADBC), (DABC), (DACB),
(DCAB), (CDAB), (CDBA), (CBDA), (BCDA))

(a) Parallelogram panorama construction by
projection (result here: (BACD))

(b) Circular representation of panoramic
ordering information for parallelograms

Fig. 4.Parallelogram panorama

The two presented landmark panoramas can be mapped flexibly onto landmarks that
can be found in natural environments like a penalty area. While solid objects often

8 The detailed proof will take too much space.
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form rectangle configurations, irregular landmarks can be used in combination as a
triangle configuration, since this approach is not strictly restricted to point-like objects.
An interesting extension is to build up more complex representations by using landmark
configurations as single points in larger landmark configurations. This allows us to build
up nesting representations which support different levels of granularity according to the
requirements of the domain.

5 Implementation

According to the described scenarios, the EPR is meant to be a qualitative fundament for
tasks that are important for mobile robot exploration. The latter part described in 4.2 is
not adequate for the RoboCup scenario because there is almost no structure for the robot
to move around. Here, we will show some experimental extraction of EPR sequences
to practically point up the idea presented in section 4.1 and the basic idea of building
panoramic ordering information from the image data.

For our experiments, we use theRobotControl/SimRobot[12] simulation environ-
ment for the simulation of one four-legged robot. This tool is shared with the Ger-
manTeam, which is the German national robotic soccer team participating in the Sony
four-legged league in the international RoboCup competitions. The visual perception of
the robot is egocentric, but only partial.

Although this is a restriction to the general EPR concept itself,

5.1 Visual Feature Extraction

In order to expediently fill the EPR with information, the recognition of landmarks is
necessary. Usually, the robot’s viewing angle of57.6o degrees is not enough to get a
reasonably meaningful EPR with the feature extraction of goals and flags supported by
theRobotControltool (see [13] for a description of this features).

Thus, we further introduced the symmetry line operator proposed by Huebner [4] to
extract 2D field lines as additional features from the image data. The method is simple,
robust, and works without plenty of parametrization. Additionally, it offers the oppor-
tunity to test the approach with natural landmarks (lines) instead of artifacts (colored
beacons). After processing the images, lines are distinguished from curves and repre-
sented by their start and end point in the image (see Fig. 5). The lines can be put into the
Panoramaby adopting these points or the center point, for example. Anyway, a classifi-
cation of edge types is more efficient with respect to the subsequent need of recovering
the landmarks. To support the panorama with a broader range of landmark types which
ideally are points on the field, we can classify each pair of lines extracted from an im-
age into different line pair types. In our experiment, we extracted L-lines, T-lines and
X-lines (see Fig. 5). These edge-extracted features represent the additional landmarks
that are used for the EPR.

5.2 Qualitative Representation

The simulated environment for the experiment corresponds to the standard four-legged
league field configuration with lines instead of the sideboards. One robot is instructed
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Fig. 5. Landmarks for the EPR. Center column: Landmarks extracted (for six representation be-
tween given start position (left) and goal position (right): “L” for L-lines, “T” for T-lines, “X” for
X-lines; horizontal lines (yellow), vertical lines(green), goals(red) and flags(blue).

to move a certain path presented by a given sequence of EPRs. Using the EPR represen-
tation and a qualititative conversion of the feature angles, we can establish a qualitative
EPR sequence of detected landmark configurations for a path. Some samples of such
sequences might look like the following, corresponding to the EPR of Fig. 5:

[(TLINE,VERY_FAR);(LLINE, SAME);(TLINE,SAME);(XLINE,SAME);]
[(TLINE,VERY_FAR);(XLINE, SAME);(FLAG,SAME);(TLINE,SAME);]
[(TLINE,FAR);(FLAG,SAME);(LLINE,CLOSE);(TLINE,MEDIUM); ...

As can be seen in this example, the line landmarks appear and disappear frequently
in the robot’s view. This is caused by the landmark feature extraction working on insuf-
ficient simulated image data. We are optimistic that real images are more comfortable
for the extraction of lines, because they are not supposed to be fragmented like those
in simulated images. Although this is error-prone in this regard, we claim to deal with
this problem using the EPR. The representation can generally be useful for this re-
orientation task, where the agent knows at least to some extent where it has been. Based
on this information, the circular panorama landmark representation can tell us which
hypotheses are plausible according to previous information.

The same panoramic representation is additionally used in our simulation soccer
teamVirtual Werder. Although sensor problems are neglectable since the world model
is more comprehensive and detailed it provides a simple and intuitive interface for the
generation of qualitative descriptions.
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6 Conclusion and Future Work

Navigation, localization, planning, and reasoning for physically grounded robots im-
poses strong but heterogeneous requirements on the underlying spatial representation
in terms of abstraction and precision. In contrast to many other approaches to this topic
which try to generateallocentricmaps, we proposed a newegocentricapproach based
on recent results from cognition. The qualitative EPR is dynamic in a predictable way
for outside landmarks as stated in the two observations described above. This represen-
tation, however, provides also interesting properties for navigation inside fixed land-
marks (e.g., navigating within a room).

Besides the re-orientation task mentioned in the last section, the landmark panorama
can help to focus perception in a qualitative self-allocation task. During the transition of
one panorama landmark into another exactly one position change is performed. There-
fore, in this case the perception of further landmarks is without any use for updating the
qualitative position of the agent. Additionally, the panorama landmark representation
is not only useful for position updating but also for re-orientation without knowledge
about the previous position. The perception of a partial landmark panorama of a triangle
configuration is sufficient to provide us with two hypotheses about the current position.
In order to validate which hypothesis holds we just have to find out where another land-
mark appears in the panoramic structure. Addionally, a landmark panorama provides
a stable basis for qualitative, spatial descriptions (e.g. left of, right of), since it is, ob-
viously, sensitive to rotation but invariant to transition, it is also interesting for several
outstanding applications based on qualitative information.

Although a detailed analysis of the relation to the recent cognitive results is out of
the scope in this paper, we want to mention that the EPR shows several properties which
are observed in recent experiments: e.g., translation tasks seem to be performed more
easily and accurately than rotation tasks.

Several tasks remain to be done. We are currently extending our landmark-based
(re-)orientation vision module so that it is not only able to track EPRs but also allows
active snapshot-based navigation (first results are available). Thereby we implement
the concept of outside-landmarks that formally describes how landmarks can shift and
switch during movement (see section 4.2). This should also allow to detect the geo-
metric structure of previously unseen objects. After validating our extended panorama
representation in the RoboCup-domain, we consider to transfer this method of the EPR
into an omnidirectional vision module for mobile robot tasks.
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