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Oliver Obst3, Thomas Röfer1, Frieder Stolzenburg4, Ubbo Visser1, and

Thomas Wagner1

1 Center for Computing Technologies (TZI), Universität Bremen, D-28359 Bremen
{dylla,roefer,visser,twagner}@tzi.de

2 Computer Science Department, RWTH Aachen, D-52056 Aachen
{gerhard,ferrein}@cs.rwth-aachen.de

3 Universität Koblenz-Landau, AI Research Group, D-56070 Koblenz
{murray,fruit}@uni-koblenz.de

4 Hochschule Harz, Automation and Computer Sciences Department
D-38855 Wernigerode, fstolzenburg@hs-harz.de

Abstract. The paper discusses a top-down approach to model soccer knowledge,
as it can be found in soccer theory books. The goal is to model soccer strategies
and tactics in a way that they are usable for multiple RoboCup soccer leagues,
i.e. for different hardware platforms. We investigate if and how soccer theory can
be formalized such that specification and execution is possible. The advantage
is clear: theory abstracts from hardware and from specific situations in leagues.
We introduce basic primitives compliant with the terminology known in soccer
theory, discuss an example on an abstract level and formalize it. We then consider
aspects of different RoboCup leagues in a case study and examine how examples
can be instantiated in three different leagues.

1 Motivation

Thinking about the goal of the RoboCup community “to beat the human soccer cham-
pion by the year 2050” we start thinking about the human way of playing soccer. Talk-
ing to real experts in that field revealed that strategy and tactics play a major part in the
game. But a computer scientist is more intrigued by available methods and restrictions
that do exist for various reasons (e.g. expressivity of languages used). The following
question arises: Can we apply soccer theory to the RoboCup domain in a way that the
majority of the leagues would benefit? The motivation of this paper is therefore to take
an adequate soccer theory book and examine its formalization.

Success in modern soccer games largely depends on the physical and tactical abili-
ties of single players and on the overall strategy that coordinates team behavior whose
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goal is to sustain the strength of the individual players and to restrict the abilities of
the opponents. Additionally, the use of an appropriate tactic is the foundation for co-
ordinated team behavior. A big advantage of this approach is that the outcome can be
applied to more than one RoboCup league. We go further and argue that it is possible
to have a team of robots from different institutions that are able to play soccer together.

The paper is organized as follows: We motivated our approach in Sect. 1, introduce
basic primitives compliant with the terminology known in soccer theory. We discuss
an example on an abstract level formalizing it with Golog as specification language in
Sect. 2. We then consider aspects of different RoboCup leagues in a case study and
examine how examples can be instantiated in three different leagues in Sect. 3. We
discuss our approach in Sect. 4.

2 World Modeling for the Soccer Domain

This section contains a description of how modern soccer knowledge is organized.
Nowadays there are many textbooks on soccer theory. Here, we focus on Lucchesi’s
book [8], because it concentrates on the presentation of tactics (and not on training
lessons). We derive basic primitives from [8] and formally specify some soccer tactics.

2.1 The Organization of Soccer Knowledge

According to [8], we interpret a soccer strategy as a tuple str = 〈RD,CBP〉. With RD as a
set of role descriptions that describe the overall required abilities of each player position
in relation to CBP, the set of complex behavior patterns is associated with the strategy.
Given the strategy str, the associated role description rd ∈ RD can be described by the
defense tactics task, the offense tactics task, the tactical abilities, and the physical skills.
Although soccer strategies in current literature [8, 10] are not as highly structured as
strategies for American football, they provide sufficient structure to build up a top-level
ontology with respect to specialization and aggregation. According to [8], the offensive
phase can be structured into four sub-phases: gaining ball possession, building up play,
final touch and shooting. In general, there are two ways to build up the play: either
we introduce the phase in a counter-attack manner, fast and direct with a long pass or
deliberately by a diagonal pass or a deep pass followed by a back pass. In the sequel,
we will concentrate on the building-up phase.

2.2 Basic Primitives

Following the lines of [8], we distinguish between role (back, midfield, forward) and
side (left, center, right) in soccer. This distinction is more or less independent from
the pattern of play (e.g. 3-4-1-2 or 4-2-3-1). The combination of role and side (e.g.
center forward) can be interpreted as type of a (human or robotic) soccer player or as
position (region or point) on the soccer field. Therefore, we basically have nine different
positions, as illustrated in Fig. 1(a).

The notions player type and position can be seen as instances or specializations of
the notion of an abstract address, usually associated with its (actual) coordinates or a
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region on the soccer field. Also the ball (strictly speaking, its position) is an address,
i.e. the parameter or goal of a test or operation of a soccer player (agent). A movable
object in the context of soccer may be a player or the ball. An object is in a current
state, which includes besides other data the current speed or view direction.

Although not explicitly mentioned, a model of behavior is assigned to every object,
e.g. average or maximum speed or as a special case a deceleration rate for the ball.
Additionally every player needs to hold data about other agents’ states. We abstract this
by the term world model. All this is summarized in the class diagram in Fig. 1(b).

In [8, p. ii] only few symbols are introduced that are used throughout the many
diagrams in that book: players (in many cases only the team-mates, not the opponents
are shown), the ball, passing, movement of the player receiving the ball, and dribbling.
Conceptually, all symbols correspond to actions, which we abbreviate as pass, goto,
and dribble. Since all actions are drawn as arrows starting at some player, naturally
two arguments can be assumed: player and address. goto(player[LF ],region[CF ]) e.g.
means that the left forward player moves in front of the opponent goal.

Although in most cases this is not explicitly mentioned in [8], actions require that
certain prerequisites are satisfied, when they are performed. Since our approach aims at
a very abstract and universal (league-independent) formalization of soccer, we restrict
ourselves to only two tests: possession of ball and reachability. Each of them can be
seen as predicate with several arguments: hasBall has the argument player (the ball
owner); reachable has two arguments, namely an object and an address.

A pass e.g. presupposes reachability, i.e. it should be guaranteed that the ball reaches
the team-mate. Clearly, the implementation of the reachability test is heavily dependent
of the respective soccer league and its (physical) laws. Therefore, at this point, we only
give a very general and abstract definition: Object o can reach an address a iff o can
move to a and after that the ball is not in possession of the opponent team. This also
covers the case of going to a position where the ball will be intercepted. We will go into
further details in Sect. 2.5.
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(a) Tactical regions on the field.
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object_behavior_model:
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side : {left,center,right}

hasBall

(b) Class hierarchy for soc-
cer derived from [8].

Fig. 1. Tactical regions and address hierarchy derived from [8]. The field is divided into three rows
(corresponding to player roles) back (B), midfield (M), and forward (F) and three lanes (sides):
left (L), center (C), right (R). An address may be one of the nine regions or player types.
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2.3 Towards a Formal Specification of Soccer Tactics

For specifying soccer moves we use the logic-based programming language Golog [6].
Golog is a language for reasoning about actions and change and is based on the sit-
uation calculus [12]. Properties of the world are described by fluents, functions and
relations with a situation term as their last arguments. The way actions change fluents
is specified in terms of so-called successor state axioms, which also provide a solution
to the frame problem. Together with action precondition axioms, axioms for the initial
situation, a few foundational axioms and a domain closure and unique names assump-
tion these form the basic action theories [12]. Golog uses basic action theories to define
the meaning of primitive actions. In addition it provides familiar control structures like
sequence, if-then-else, or procedures to specify complex action patterns. Recent exten-
sions dealing with concurrency, continuous change and time [2, 5] make the language
suitable for the soccer domain.

While Golog has been and is used to implement soccer agents [3], we use it
here merely as a specification language, because it comes equipped with a formal se-
mantics. As we will see, the language allows a fairly natural representation of typ-
ical play situations. The primitive actions we consider here are goto(player,region),
pass(player,region), and dribble(player,region). Further we need the action intercept
which is a complex action built from the primitive ones. The arguments of the actions
are player and region denoting that the particular player should go to, pass, or dribble
the ball to the given position. For describing the properties of the world on the soccer
field we need the fluents reachable and hasBall(player) among others.

2.4 Example

Fig. 2(a) depicts a possible move for a counter-attack. There, player movements are
represented by arrows (→ or y), passes are indicated by dashed arrows (99K), and
squiggly arrows ( ) stand for dribbling. Before we are able to formalize the whole
manœuvre, we have to think about what passing means exactly. As in several action
calculi, we introduce constraints associated with this action. A pass from player p to
p′ requires that beforehand p is in ball possession and the ball can be passed to p′,
i.e. the logical conjunction hasBall(p)∧ reachable(ball, p′). Afterwards p′ is in ball
possession, i.e. hasBall(p′). In [8, p. 27], three different types of passes are mentioned
that can be formalized by additional constraints: long pass with p.role = B∧ p′.role =
F , diagonal pass with p.side 6= p′.side, and deep pass with p.role < p′.role where we
assume that the roles (which can also be understood as rows in Fig. 1(a)) are ordered.

In Fig. 2(a), player 8 just captured the ball from the opponent team, dribbles toward
the goal while the forwards (player 9 and player 11) revolve the opponent defense in
order to get a scoring opportunity from both corners of the penalty area while player 10
starts a red herring by running to the center. The white circles represent the opponents.5

The counter-attack can be specified with Golog as shown in Fig. 2(b). The program
is from the view of player 8, that is, all actions and tests are performed by this player.

5 In the original figure (diagram 21 in [8]) there are no opponent players as well as no dedicated
regions; we inserted them here for illustration purposes.
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(a) Extended diagram 21 from [8].

proc counterattack 21
intercept;
startDribble(region[CF]);
waitFor(reachable(p11,region[RF])∨

reachable(p9,region[RF])∨
∃x.Opponent(x)∧Tackles(x));

endDribble;
if reachable(p11,region[LF])

then pass(region[LF]);
else if reachable(p9,region[RF])

then pass(region[RF]);
endproc

(b) The specification in Golog.

Fig. 2. Counter-attack example.

Player 8 gains the ball with an intercept action. He dribbles toward the center (denoted
by region[CF ])) until either player 11 or player 9 is able to receive the pass or an op-
ponent forces player 8 to do another action (which is not specified in this example).
In the specification above we use the action pair startDribble and endDribble instead
of a single dribble action accounting for temporal aspects of that action. Splitting the
dribble action into initiation and termination is a form of implicit concurrency, since
other actions can be performed while dribbling. We omit further technical details and
refer to [5].

The next step in the presented sequence is a waitFor construct. Its meaning is that
no further actions are initiated until one of the conditions becomes true, i.e. player 11
or 9 are able to receive a pass in their respective region or an opponent tackles player 8,
i.e., an opponent can intercept the ball (go-reachability). It is perhaps worth mentioning
that during the blocking of the waitFor the dribbling of player 8 continues and sensor
inputs are processed to update the relation reachable, which is discussed in more detail
in Sect. 2.5. See [5] for details of how sensor updates can be formalized in Golog.

Finally, in the conditional we have to test which condition became true to choose
the appropriate pass. Note that we do not choose an action in the case of neither player 9
nor player 11 can receive the pass as this would be the matter of another soccer move
procedure. The counter-attack programs for the other players can be specified similarly.

2.5 Reachability

For our theory, reachability is central. As our theory aims at being a general one for dif-
ferent soccer leagues, we do not have a specific reachability relation. Building a specific
reachability relation is dependent on the league and even within a league, it depends on
abilities of single robots or agents. However, the different reachability relations share
some properties independent of the league. In general, we can distinguish three different
reachability relations:

5



1. a player p not being in ball possession will reach an address a on the field before
any other player: reachablego(p,a) with prerequisite ¬hasBall(p)

2. a player p being in ball possession is able to dribble towards address a with high
probability of still being in ball possession afterwards: reachabledribble(p,a) with
prerequisite hasBall(p)

3. a player p being in ball possession is able to pass the ball b towards address
a with high probability of a team-mate being in ball possession afterwards:
reachablepass(b,a) with prerequisite hasBall(p)

We are aware of the fact that we need as precise world knowledge as possible,
e.g. current positions and speed, for determining the future ball possession like above.
Additionally we need assumptions on future behaviors, e.g. the ball path after being
kicked. While for team-mates we know the agent’s internal structure we may conclude
possible future actions with high probability. About opponent agents a lot less is known
and therefore predictions are more uncertain. The uncertainty of world data is quite
different over the leagues. In the simulation league world data is quite reliable while in
the four-legged league, e.g. position estimations are not very accurate.

Many different implementations of reachability can be thought of for the different
leagues. The use of Voronoi diagrams and their dual, the Delaunay triangulation (see
e.g. [1]) has been proven useful in the past, especially in the simulation league. Here
only direct neighboring players, team-mates and opponents, are connected. Note that a
direct approach with Voronoi diagrams is only one possibility for implementing reach-
ability. It will only be applicable for robotic soccer, if all agents more or less have the
same physical abilities in each region on the soccer field.

3 The RoboCup as Case Study

So far, we have only presented a very abstract way of describing team-play and cooper-
ative moves in soccer. We investigated the reachability relation, that forms a central part
of the theory, and discussed some of the underlying models and assumptions, as well
as the simplifications we made, but nothing has been said about the concrete problems
that arise when one tries to actually carry out the specified moves. Thus, in this section
we will discuss possible ways of realizing the abstract specifications in the mid-size,
simulation, and legged league.

Mid-Size League. The design of robots in the mid-size league underlies only few
restrictions like the maximum size of robots. As the robots are fully autonomous, one
central problem is the perception of the environment and dealing with actuators like
ball kicking devices. Therefore, many problems in this league rather deal with low-
level problems, e.g. vision or ball handling, than with high-level aspects (team-play).
Concerning the primitive actions as in the example in Sect. 2.4, goto, pass, and dribbling
facilities are needed.

On the other hand, it was shown in [3] that Golog with extensions like decision-
theoretic planning or probabilistic projection can be applied in the mid-size league in
the RoboCup (2003) and is really competitive and, thus, it should be possible to adapt
the moves described in [8].
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Simulation League. From a technical point of view, the simulation league is suited best
for carrying out the tactics presented in [8]. First of all, this is the only league where
teams of 11 players play against each other. So the number of players that is needed for
making the presented moves is given. In addition, the skills of the players are developed
well enough in this league, too, such that team-play can easily be realized.

As dribbling is an expensive and potentially unsafe behavior in the simulation
league, and passing is preferred, we focus on describing possibilities of implementing
pass reachability (see Sect. 2.5). The reachability of a pass partner is usually determined
by checking a cone from the player with the ball towards a potential pass recipient. If
this cone is free of opponent players, the recipient is reachable with a pass. A possible
implementation is presented in [13].

Sony Four-Legged Robot League. As in the mid-size league, the four players are too
few for carrying out tactical diagrams such as the ones in [8], and, moreover, with the
current field size there is no need for passing the ball.

One method used in this league by the GermanTeam [14] to describe robot behav-
ior is the Extensible Agent Behavior Specification Language (XABSL) [7]. It describes
behavior in the form of a hierarchy of state machines, so-called options, using XML. In
each option, the current state defines which sub-option or which basic behavior (some
pre-coded routine such as pass) is active. So at each point in time, a path from the root
option through several levels of other options to a basic behavior is active. This path
changes whenever the current state of an option is changed to another one based on a
decision tree. In principle, the behavior of player 8 in diagram 21 in [8] (counter-attack)
can be modeled in XABSL. As the XML description would be out of proportion for this
paper, we refer the reader to the long version [4].

4 Conclusions

As mentioned in Sect. 2.5, the concept of reachability is important. Reachable can
be based on some qualitative information such as distance (e.g., near, intermediate,
far away) or orientation (e.g., front-left, right, back-right). Examples of how to use
qualitative spatio-temporal knowledge and reasoning for the RoboCup can be found in
[9, 15, 16].

The intention of our investigation was to apply soccer theory as stated in soccer
expert books to the RoboCup soccer domain. Our motivation was the significance of
strategies and tactics in real soccer games. The main goal was to figure out whether we
would be able to find an abstract level of formalization that enables us to bring benefit to
multiple soccer leagues in RoboCup. We have chosen two examples for counter-attacks
and used Golog as specification language. Please note that Golog is only one example
for a specification language.

The biggest lesson learned is that we are able to formalize soccer theory on an
abstract level. This might not be surprising, however, some of the concepts real soccer
experts use are quite fuzzy and therefore difficult to define and implement. A prominent
example is the concept of reachability, which is used in our examples. It turned out that
the definition plays a crucial part in the implementation.
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Our case study revealed that there is a lot of work to be done. There are still many
problems concerning the low-level skills such as receiving the ball in the mid-size
league. The simulation league has an excellent platform for this kind of experiments.
The move has been implemented prototypically for the simulation league teams of both,
RoboLog Koblenz6 and Allemaniacs Aachen as a proof of concept. We will carry out
systematic experiments in the future. The behavior of the German Team in the Sony
legged league is modeled in XABSL as mentioned in the previous section. It turned out
that the abstract behavior could be modeled and therefore implemented.
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