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Abstract. This paper presents a new approach to optimize gait param-
eter sets using evolutionary algorithms. It separates the crossover-step
of the evolutionary algorithm into an interpolating step and an extrapo-
lating step, which allows for solving optimization problems with a small
population, which is an essential for robotics applications. In contrast
to other approaches, odometry is used to assess the quality of a gait.
Thereby, omni-directional gaits can be evolved. Some experiments with
the Sony Aibo models ERS-210 and ERS-7 prove the performance of the
approach including the fastest gait found so far for the Aibo ERS-210.

1 Introduction

In the Sony Four-Legged Robot League, two teams of four Sony Aibos each
compete on a field of approximately 4.2 m × 2.7 m. For 2004, the two models
allowed to be used are the ERS-210 and the ERS-7 (cf. Fig. 1a). As in all
RoboCup leagues, speed is an essential factor in the game. Therefore, quite a
lot of work has been done to optimize the gait of the Aibo using a variety
of different approaches. In [3], a stationary state evolutionary algorithm was
used to optimize the gait of the Aibo ERS-110, based on research done with
Aibo’s predecessor [4]. Thereby, a maximum speed of 100 mm/s was reached.
On the ERS-210, Powell’s method for multidimensional minimization was used
to optimize the gait parameters [5]. The maximum speed reached was 270 mm/s.
With an evolutionary hill climbing with line search approach, a parameter set
resulting in a maximum speed of 296.5 mm/s was found [7]. In both latter
works, the shapes of the foot trajectories were optimized. Using a variation of
standard policy gradient reinforcement learning techniques, a maximum speed
of 291 mm/s was reached, using a static, half-elliptical foot trajectory shape. In
that paper it was also argued that the shapes of the foot trajectories sent to the
robot significantly differ from the shapes actually performed, and therefore the
adaptation of the shape of the locus is not necessarily important.

The typical training setup used in [4, 3, 5, 7, 6] was as follows: the robot walks
from one side of the field the other one, then it turns on the spot and walks back
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Fig. 1. a) The Aibos ERS-210 and ERS-7. b) A leg of an ERS-210 (modified from [6]).

to the first side, and so on. For orientation, it uses two beacons placed on both
sides of the field (or color stripes in a pen in [4, 3]). The beacons are used to
measure the speed of the walk as well as when to stop and to turn around. While
in [4, 3, 5, 7] single robots are used, [6] trained three robots at once, thereby
reducing the learning time by factor three. In [4, 3, 5, 7], the optimization was
done on-board the robot. In contrast, [6] used an off-board computer for learning
that controls the three robots used for evaluating different walk parameter sets.

2 Experimental Setup

The major drawback of the approaches described in the previous section is that
they only optimize the gait for walking straight ahead with a more or less steady
head. However, in most situations in actual RoboCup games, the robots have
to perform different motions, especially when following the ball. They have to
turn left and right while walking, move sideways and sometimes backwards. All
these dynamic elements required for games cannot be learned when the robot
only walks from beacon to beacon. Therefore, a more flexible scheme is required.

2.1 Measuring Robot Motion

So it must be possible to measure omni-directional robot motion. On the one
hand, it is necessary to measure how good the motion performed matches the
motion that was desired, on the other hand, the scheme must be simple enough
to be performed at the actual competition site, because the carpet used there
can differ from the carpet the robot was originally trained with in the laboratory.

Using a Self-Localization Method. All RoboCup teams have already im-
plemented some kind of metric self-localization for their robots. They are either
based on particle filters [10] or on extended Kalman filters [12]. However, both
methods are based on an estimate of the actual motion of the robot, which is



used to bridge the time between the recognition of external references such as
the beacons or the edges of the field [10]. This estimate is based on odome-
try. However, in contrast to wheeled motion, the four-legged robots typically
use forward-odometry, i. e., the actual motion of the robot is not measured, but
instead it is assumed that the motion requested is actually performed by the sys-
tem. In fact, the walking engine is manually calibrated to execute the requested
motions as precise as possible. Hence, forward-odometry just means to sum up
the requested speeds for forward, sideward, and rotational motion, because it
is assumed that this will also be the resulting motion. Although this assump-
tion is too optimistic anyway, it is quite obvious that it will certainly be false
if new walk parameters are tested. Therefore, using traditional self-localization
methods to judge the quality of a new gait will fail.

Using an External Sensing System. Another possibility would be to use
an external sensing system to measure the actual motion of the robot. This
can either be an overhead camera as used in the Small-Size League, or a laser
scanner, as used in [11]. However, both methods are not suitable for training
at the actual competition site, because there may be no possibility to mount a
camera above the Legged League field, and the fields cannot be reserved long
enough to be exclusively used for training with a laser scanner that must always
be able to see the robot.

Using Proprioception. The solution is to use real odometry. The Sony Aibo
robot is equipped with sensors that can detect whether a foot touches the ground
or not. In addition, it can measure the actual angles of all joints. Thus using
forward kinematics, the actual motion of the feet can be calculated, especially
the part of it, in which they have contact to the ground. If this is done for at
least two feet, the actual motion of the robot can be reconstructed, as long as
the feet do not skid over the ground. It is assumed that skidding feet will result
in an uneven walk, which can be detected by another proprioceptive system of
the Aibo: its acceleration sensors in x, y, and z direction.

2.2 Odometry

Since gaits using the typical PWalk-style originally introduced by the team from
the University of New South Wales [2] are state of the art, such a kind of walk
is also used for the work presented in this paper (cf. Fig. 3). This is important,
because with this kind of walk, only the contact sensors of the hind legs touch
the ground, and therefore, only these two sensors can be used for calculating the
motion of the robot. The current position of such a ground contact sensor can
easily be determined based on the measurements of the angles of the three joints
the Aibo has in each leg using forward kinematics. These angles are automati-
cally determined by the Aibo every 8 ms. The three-dimensional positions (cf.
Fig. 1b) for the left and right hind feet change over time with the motion of the
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Fig. 2. Principle of treating legs as wheels [9]. Walking a) forwards, b) sideways. c)
Turning. d) Turning while walking forward.

legs and can be computed relative to some origin in the body of the robot. How-
ever, for odometry, only their lengthwise and sideward components are required.
Therefore, pleft

t and pright
t are only two-dimensional vectors.

The overall offset a hind leg h has walked during a period of time ta . . . tb can
be determined by summing up all the 2-D offsets between successive positions
at which the foot had contact to the ground:

dh
ta,tb

=
(

dxh
ta,tb

dyh
ta,tb

)
=

tb∑
t=ta+1

{
ph

t − ph
t−1 , if gh

t ∧ gh
t−1

0, , otherwise (1)

g just states whether the ground contact sensor of leg h was active at time t or
not. Since each leg has sometimes contact to the ground and sometimes not while
walking, it is important to always determine the distance with ground contact
for a complete step phase. Otherwise, the distances measured by the left and the
right feet are not comparable.

For quadruped walking, the three requested motion speeds xr, yr, and θr are
overlaid to result in the actual xh and yh amplitudes of the legs. The walking
engine of the GermanTeam [9] uses the following equations for the two hind legs.
Please note that the feet move always in the opposite direction of the robot’s
body, so everything is negated (r is the radius to the body center):

xleft = −xr + rθr (2)
yleft = −yr + rθr (3)

xright = −xr − rθr (4)
yright = −yr + rθr (5)

For odometry, everything is the other way round. The foot motion is known,
and the speed components have to be calculated. By transforming the motion
equations, the measured walking speeds xm, ym, and θm can be calculated from
the measured ground contact distances dleft and dright. Please note that dx and



dy measure only half of a step phase (while the corresponding foot touches the
ground), so everything measured is multiplied by 2, i. e. all divisions by 2 are
missing:

xm
ta,tb

= −
dxright

ta,tb
+ dxleft

ta,tb

tb − ta
(6)

ym
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= −
dyright

ta,tb
+ dyleft

ta,tb
+ dxright

ta,tb
− dxleft

ta,tb

tb − ta
(7)

θm
ta,tb

= −
dxright

ta,tb
− dxleft

ta,tb

r(tb − ta)
(8)

3 Evolutionary Algorithm

In evolutionary algorithms, a population of individuals is used to find a solution
for a given problem. Each individual has a number of genes gi that represent
possible values for the variables of the problem. In each evolution step, the fitness
f is determined for each individual, i. e., the current values of its genes are used
to solve the problem and the solution is assessed by a so-called fitness function.
Then, based on the current population and the fitness of its individuals, a new
generation is created that replaces the current one. There are two major methods
to generate individuals for the next population that can be combined in a lot of
different ways: mutation and crossover. Mutation just adds noise to the genes of
an individual and thereby creates a new one. In the crossover, the genes of two
individuals are combined two a new one. There exist quite a lot of methods to
select individuals for mutation or crossover [1].

In the work presented here, the genes represent the parameters of a gait.
The fitness cannot directly be calculated, instead it has to be determined based
on measurements, i. e. the gait parameter set has to be tested by letting the
robot actually walk with these parameters. Thus, the fitness for a certain set of
parameters has to be assumed to be noisy, so each time it will be measured it will
be slightly different. This is especially true for learning omni-directional walking,
because it is impossible to test all possible combinations of walking directions and
rotation speeds. Therefore, the selection of individuals is based on a probabilistic
approach. The ratio of an individual fitness to the overall fitness of the whole
population is interpreted as the probability that the parameter set represented
by this individual is the best one. So based on this interpretation, individuals
are drawn from a population to form a new one. For each individual in the new
population, two individuals are drawn from the previous one, and their genes
are crossed. If a new population consists to more than 50% of a single individual
from the previous population, every second individual is mutated.

The initial population is generated from a single individual (a hand-coded
gait parameter set) by mutation. In addition, whenever the battery of the robot
is empty, the best individual found so far is used to form the basis for the next
evolution run.



Mutation. The mutation performed is rather simple. For each gene (i. e. gait
parameter) a mutation radius is defined that has a reasonable size with respect
to the possible range of that parameter. The genes are then mutated by adding
random values within their mutation radius to them.

gnew
i = gold

i random−ri...ri
(9)

Crossover. As a new approach to evolutionary algorithms, there are two differ-
ent methods for crossover: the interpolation and the extrapolation. They are used
alternately, so one generation is created by interpolating between the individuals
of the previous one, and the next one results from an extrapolation between the
individuals of its predecessor. For the interpolating step, two individuals a and
b are selected based on their fitness f and a new one is created by a random
interpolation between their genes:

gnew
i = βga

i + (1− β)gb
i

where α = random0...1

β = αfa

αfa+(1−α)fb

(10)

While the idea of the interpolating step is to find a solution that is between
two individuals, the extrapolating step shall find a solution that is outside. The
difference between the genes of two individuals is used to extrapolate to one or
the other side. The amount and direction of the extrapolation is again biased by
the fitness of the two individuals selected:

gnew
i =

{
gb

i + (1− β)(ga
i − gb

i ) , if β < 1
ga

i + (β − 1)(gb
i − ga

i ) , otherwise
where α = random0...1

β = 2αfa

αfa+(1−α)fb

(11)

That way, a solution can be found by alternately interpolating and
extrapolating—without disturbing mutations. However, if a single individual is
drawn too often, neither interpolation nor extrapolation can generate different
sets of genes. Therefore, mutation is applied in such a case.

3.1 Fitness Function

The fitness function assessing the individual gait parameter sets is the sum of
two values. On the one hand, it is determined, how good the motion performed
matches the motion requested, and on the other hand, the measurements of the
acceleration sensors are used to judge the smoothness of the gait.

Error Function. For each step, the motion actually performed is determined
based on the calculations described in Section 2.2. However, instead of just using
the odometry offset, a special kind of walk is forced by extending equation (1).
In addition to determining the offset a foot moved on the ground, also the offset



is calculated that the foot has moved while the other foot was on the ground.
This second offset is negated and the average of both is used as a replacement for
the original equation for the foot motion. This kind of fitness function enforces
that when one foot is on the ground, the other one will swing in the opposite
direction. Otherwise, the feet may waste time during their air phase by moving
in the wrong direction.

d′hta...tb
=

∑tb

t=ta+1

dh,h
t −d

h,other(h)
t

2

where dh,h′

t =
{

ph
t − ph

t−1 , if gh′
t ∧ gh′

t−1

0 , otherwise
(12)

d′ is used instead of d in the equations (6) to (8), resulting in the measured
walking speeds x′m, y′m, and θ′m. They are compared to the requested walking
speeds xr, yr, and θr. These are determined by summing up all the requested
speeds for the same whole step. The error w is determined as follows:

wta...tb
= |x′mta...tb

− xr
ta...tb

|+ |y′mta...tb
− yr

ta...tb
|+ α|θ′mta...tb

− θr
ta...tb

| (13)

α is a weight that relates errors made in translation to the deviations in rotation.
If more than one step is used for the assessment (which is normally the case),
the average error is used.

Vibration. The acceleration sensors ax, ay, and az of the Aibo measure accel-
erations along the x, y, and z axes of the robot. The amount of vibration during
a walk can easily be determined by calculating the standard deviation of the
measurements:

vta...tb
= stdv(ax

ta...tb
) + stdv(ay

ta...tb
) + stdv(az

ta...tb
) (14)

Fitness of an Individual. The overall fitness of an individual can then be
computed as a sum of error and vibration. However, since small errors and few
vibrations are desired, both values have to be negated. In addition, they have to
be scaled to relate them to each other (by φ, β, and gamma):

fta...tb
= eφ−βwta...tb

−γvta...tb (15)

4 Results

Experiments were conducted both with the ERS-210 and the ERS-7. As the
ERS-210 was used as test bed in some recent work [5, 7, 6], a similar experiment
is described here in detail. However, as another walking engine was used, the 23
parameters evolved are different. In fact, 26 parameters were evolved, but three
of them are only relevant if the robot is also moving sideways or it is turning.
In the final experiment conducted with the ERS-7, they were also used.

As in [6], a fixed half-ellipsoidal locus shape was used. The parameters are:



Fig. 3. The Aibo ERS-210 walking with 311 mm/s.

– The relative positions of the fore/hind feet as (x, y, z) offsets
– The height of the steps performed by the fore and hind legs
– The tilt of the locus (cf. Fig. 1b) of the fore and hind feet
– The timing of a step. The overall duration of a step is separated into a

ground phase, a lift phase, an air phase, and a lowering phase. Since all
phases sum up to 1, one of them can be calculated from the others and is
left out. Please note that for the half-ellipsoidal shape of the locus used, the
lifting and lowering phases are just waiting positions for the feet. As it will
pointed out later, this does not mean that the feet actually stop during these
phases, because the actual motion of the feet is different from the motion
that they were requested for.

– The step size determines the amplitude of a step (here: only in x direction).
– The duration of a step (in seconds)
– The difference between the speed of the forefeet and the hind feed. In fact,

this value modifies the amplitudes of the motion of the hind feet, so it is
possible that the hind feet perform smaller steps that the front feet (here:
only for x speed).

– A phase shift between the fore and the hind feet
– A body shift in x and y direction. This shifting is synchronous to the phases

of walking, but also a phase shift can be defined. This allows the body to
swing back and forth and left to right while walking.

4.1 ERS-210

The ERS-210 was trained to walk forward as fast as possible. As in [6], a popu-
lation of 15 individuals was used. However, each parameter set was only tested



Table 1. The parameters evolved for the ERS-210

Parameter Initial Best
Value Value

Front locus
z offset 76.85 58.97
y offset 78.1 67.24
x offset 55.88 63.26
step height 5.0 6.14
tilt -0.25 -0.48
ground phase 0.5 0.64
lift phase 0.06 0.04
lowering phase 0.06 0.12

Step
size 76.0 89.77
duration 0.64 0.512

Rear to Front offsets
x speed ratio 1.1 1.0
phase shift 0 -0.012

Parameter Initial Best
Value Value

Rear locus
z offset 108.72 111.54
y offset 76.95 58.09
x offset -45.216 -35.96
step height 24.0 27.27
tilt 0.05 0.12
ground phase 0.5 0.34
lift phase 0.06 0.19
lowering phase 0.06 -0.02

Body shift
x ratio 0 1.12
y ratio 0 -0.10
phase offset 0 0.35

for five seconds, the last three seconds of which were used to assess the perfor-
mance of the resulting walk. The first two seconds were ignored to eliminate any
influence of (switching from) the previous gait parameter set. The robot walked
from goal to goal and was turned manually. To avoid assessing the time when
the robot was picked up, learning was interrupted when the back switch of the
robot was pressed, and the assessment of the current individual was restarted
when the button was released. To match the conditions in the related work, the
robot’s head did not move.

Learning was started with a variation of the hand-tuned gait of the German-
Team 2003 [9]. The middle position of the hind feet was manually moved to the
front to let the foot sensors have contact to the ground. The initial values of all
parameters are given in Table 1. From this initial setup, the gait was learned
automatically. After about three hours, the fastest gait found by the robot had
a speed of 311±3 mm/s (13.5 s for 4.2 m from goal line to goal line on a Sony
Legged League field), which is also the fastest gait found so far for the Aibo
ERS-210. In addition, the gait is quite smooth, i. e. the head of the robot does
not shake significantly. Under [8] two videos can be downloaded showing the
Aibo walking from the front and from the side. Six images from the latter video
are depicted in Figure 3, showing a single step phase.

In addition, Figure 4 shows the trajectories of the feet and the knees of the
robot. Please note that for the front legs (on the right in both subfigures), the
robot is walking on its knees. Thus the feet never have contact to the ground.
In [5, 7] it is analyzed, which shape of a foot trajectory is optimal. However,
the resulting trajectories of the feet were never investigated in that work. Fig-
ure 4 shows that there is a severe difference between the shape of the locus that
was desired (half-elliptical), and the resulting shape. While the knees follow the
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Fig. 4. The motion of the legs when moving with 311 mm/s (the orientation of the
robot is the same as in Fig. 3). The dashed lines show a single snapshot of the positions
of the legs. The dotted curves depict the trajectory of the feet and the knees as sent to
the robot. The solid curves visualize the motion of the knees and the feet as measured
by the joint sensors. a) Trajectories of a picked-up robot. b) Trajectories when walking
on the ground. When ground contact was detected, the solid curve is drawn in gray.

given trajectory quite well (in fact they never reach the maximum front point
and overshoot the maximum back point), the feet have very significant devia-
tions. The resulting trajectory of the hind feet can be explained by over- and
undershooting the given trajectory (it overshoots less when the robot is picked
up, cf. Fig. 4a), but the control system seems to have real problems in following
the desired loci of the forefeet.

4.2 ERS-7

All other experiments were conducted with the new Aibo model ERS-7, because
it will be used in RoboCup 2004. However, the results are preliminary, because
the experiments were only conducted with the beta version of the control soft-
ware at a stage in which also the porting of the code from the ERS-210 to the
ERS-7 was not completely finished. A major problem with the ERS-7 was that
it switched itself off if there was too much load on one of its legs, and that this
condition could easily be reached. These problems were only solved in the second
release of the final version of the operating system, which came to late to repeat
the experiments for this paper. So training the ERS-7 was a little bit compli-
cated, because sometimes it had to be restarted after a few minutes. However,
quite impressive results were achieved.

Walking Straight Ahead. The experiment conducted with the ERS-210 was
repeated with the ERS-7. The robot is much more powerful, so it was able to
reach 400±3 mm/s using a gait with 2.3 steps/s. The general appearance of the
gait is quite similar to the gait of the ERS-210.



Walking Straight Backward. Then, the ERS-7 was trained to walk straight
backward using the same experimental setup as before. The resulting gait per-
forms less steps per second (1.9) and the robot is significantly slower (294 mm/s).
In this walk, the robot still walks on the knees of the fore legs and the hind feet
(which was more or less predefined by the hand-tuned walk that was used as a
start). The result shows that walking on the knees in walking direction is su-
perior to using the knees as hind legs (with respect to the walking direction).
However, the speed of a gait only walking on the four feet still has to be tested,
but the training may be complicated because such a gait it is less stable and the
robot may often fall down.

Following the Ball. As the main goal of this work was to be able to train a
gait under more realistic conditions, the ERS-7 was also trained while following
the ball. In this setup, the ball was moved manually and the normal go-to-ball
basic behavior from the GermanTeam’s code was used to follow the ball. Again,
each walking parameter set was switched every five seconds, and again, only
the last three seconds were assessed. Learning was only interrupted when the
motion requested by go-to-ball was too slow, because in such cases any kind
of walk parameter set would get a good assessment. The ball was moved in a
way that resulted in a good mixture between walking straight (less often) and
turning for the ball (more often, due to the small field). The gait parameters
were initialized with the ones from the fastest straight ahead gait of the ERS-7.
After about of three hours of training, the Aibo had learned a gait with 3.1
steps/s, a maximum forward speed of 331 mm/s, and a rotation speed of 195◦/s.
The sideward and backward speeds were low, because the go-to-ball behavior
seems not the use these motion directions. Due to the very high step frequency,
the gait is extremely reactive.

5 Conclusions and Future Work

This paper presented a new approach to optimize gait parameter sets using evo-
lutionary algorithms. On the one hand, it is the first method that is potentially
suitable to learn appropriate parameter sets for any motion required in RoboCup,
on the other hand, separating the crossover-step of the evolutionary algorithm
into interpolation and extrapolating proved to be a good means to optimize the
parameter sets. As a result, the fastest gait of the Aibo ERS-210 known so far
has been found, outperforming the runner-up by 5%. In addition, preliminary
experiments with the new Aibo ERS-7 also showed promising results.

However, as has already pointed out in [5], the more general a gait is, the less
fast it will be. Therefore, several parameter sets have to be combined, each for
a certain range of walking directions and rotations. This way, the gaits evolved
for the ERS-7 were combined and used by the Bremen Byters at the RoboCup
German Open 2004. They turned out to be the fastest gaits for forward mo-
tion, backward motion, and rotation in the whole competition, although other
teams had also experimented with evolutionary gait optimization. In addition,



the odometry calculation presented in this paper replaced the original forward
odometry, because it scales better with different walking speeds.

However, since they were trained independently from each other, the transi-
tion between them is not guaranteed to be smooth, i. e. the robot may stumble.
For instance, although they have a different step frequency, switching between
the fast forward gait and the ball follower gait of the ERS-7 seems to work
quite fine, while the transition between the ball follower (forward) gait and the
backward gait is uneven. Therefore, several parameter sets for different direc-
tions/rotations have to be learned at once with interpolations between neigh-
boring sets. Thus the transitions between the sets should be smooth, but it is
still possible to have specialized sets for certain motions such as walking straight
ahead.
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11. T. Röfer and M. Jüngel. Fast and robust edge-based localization in the Sony
four-legged robot league. In International Workshop on RoboCup 2003 (Robot
World Cup Soccer Games and Conferences), Lecture Notes in Artificial Intelli-
gence, Padova, Italy, 2004. Springer. to appear.

12. C. Sammut, W. Uther, and B. Hengst. rUNSWift 2003. In International Workshop
on RoboCup 2003 (Robot World Cup Soccer Games and Conferences), Lecture
Notes in Artificial Intelligence, Padova, Italy, 2004. Springer. to appear.




