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Abstract. The paper presents the self-localization approach used by
the World Champion in the Sony Four-Legged Robot League 2004. The
method is based on a particle filter that makes use of different features
from the environment (beacons, goals, field lines, field wall) that provide
different kinds of localization information and that are recognized with
different frequencies. In addition, it is discussed how the vision system
acquires these features, especially, how the orientation of field lines is
determined at low computational costs.

1 Introduction

The Sony Four-Legged Robot League (SFRL) is one of the official leagues in
RoboCup, in which a standardized robot platform is used, namely the Sony
Aibo. The robots act completely autonomously. The main sensor of the Sony
Aibo is the camera located in its head. The head can be turned around three
axes (2× tilt, 1× pan), and the camera has a field of view of approximately 57◦

by 42◦. The soccer field in the SFRL has a size of approximately 5m×3m. As the
main sensor of the robot is a camera, all objects on the RoboCup field are color
coded. There are two-colored beacons for localization (pink and either yellow or
skyblue), the two goals are of different color (yellow and skyblue), the field is
green, and the field lines as well as the field wall are white.

During actual RoboCup games, the beacons and goals are rarely perceived,
especially by the robot that is handling the ball. Therefore it is advantageous if
also the field lines and the field wall can be employed for localization. However,
different features in the environment are recognized with different frequency
and they provide different kinds of information usable for localization. Lines
only provide localization information perpendicular to their orientation. The
field lines are mostly oriented across the field, but the side lines of the penalty
area also provide important information, especially for the goalie. The field lines
are seen less often than the field wall that is surrounding the field. Therefore the
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Fig. 1. Different scanlines and grids. a) The main grid which is used to detect objects
on the field. b) The grid lines for beacon detection. c) The grid lines for goal detection.

latter provides information in both Cartesian directions, but it is often quite far
away from the robot. Therefore, the distance information is less precise than the
one provided by the field lines. The field wall is seen from nearly any location on
the field. Goals and beacons are the only means to determine the orientation on
the field, because the field lines and the field wall are mirror symmetric. Goals
and beacons are seen only rarely. It turned out that the vision system is reliably
able to determine the orientation of field lines, while the orientation of the edge
between field wall and field is not as stable. Therefore, it is distinguished between
field lines along the field and field lines across the field. This especially improves
the localization of the goalie, because it sees both types of lines surrounding the
penalty area.

2 Acquiring Localization Information

The vision system of the GermanTeam processes images of a resolution of 208×
160 pixels, but looking only at a grid of less pixels. The grid is aligned to the
so-called horizon, i. e. the plane that is in parallel to the field plane, but on the
height of the camera. The idea is that for feature extraction, a high resolution
is only needed for small or far away objects. In addition to being smaller, such
objects are also closer to the horizon. Thus only regions near the horizon need
to be scanned at a relative high resolution, while the rest of the image can be
scanning using a wider spaced grid.

Each grid line is scanned pixel by pixel from top to bottom and from left to
right respectively. During the scan each pixel is classified by color. A characteris-
tic series of colors or a pattern of colors is an indication of an object of interest,
e. g., a sequence of some orange pixels is an indication of a ball, a sequence
of some pink pixels is an indication of a beacon, an (interrupted) sequence of
sky-blue or yellow pixels followed by a green pixel is an indication of a goal, a
sequence of white to green or green to white is an indication of an edge between
the field and the border or a field line, and a sequence of red or blue pixels is an
indication of a player. All this scanning is done using a kind of state machine;
mostly counting the number of pixels of a certain color class and the number



of pixels since a certain color class was detected last. That way, beginning and
end of certain object types can still be determined although some pixels of the
wrong class are detected in between.

To speed up the object detection and to decrease the number of false pos-
itives, essentially three different grids are used. The main grid covers the area
around and below the horizon. It is used to search for all objects which are sit-
uated on the field, i. e. the ball, obstacles, other robots, field borders, field lines,
and the lower borders of the goals (cf. Fig. 1a). A set of grid lines parallel to
and in most parts over the horizon is used to detect the pink elements of the
beacons (cf. Fig. 1b and Fig. 2). The goal detection is also based on horizontal
grid lines (cf. Fig. 1c).

As a first step towards a more color table independent classification, points
on edges are only searched at pixels with a big difference of the Y channel of
the adjacent pixels. An increase in the Y channel followed by a decrease is an
indication of an edge. If the color above the decrease in the Y channel is sky-blue
or yellow, the pixel lies on an edge between a goal and the field. The detection
of points on field lines and borders is still based on the change of the segmented
color from green to white or the other way round.

The differentiation between a field line and the border is a bit more compli-
cated. In most cases, the border has a bigger size in the image than a field line.
But a far distant border might be smaller than a very close field line. Therefore
the pixel, where the segmented color changes back from white to green after a
green-to-white change before, is assumed to lie on the ground. With the known
height and rotation of the camera, the distance to that point is calculated. The
distance leads to expected sizes of the field line in the image. For the classifica-
tion, these sizes are compared to the distance between the green-to-white and
the white-to-green change in the image to determine if the point belongs to a
field line or a border. The projection of the pixels on the field plane is also used
to determine their relative position to the robot.

a) b) c)

Fig. 2. Three steps in beacon detection: a) Scanlines searching for pink runs. The pink
segments are the detected pink runs, the red segment is the result of clustering. b) The
specialist detects the edges of the beacon. c) The generated percept.



In addition, for every point classified as being on the edge of a field line or
the field wall, the gradient of the Y channel is computed (cf. Fig. 3a,b). This
gradient is based on the values of the Y channel of the edge point and three
neighboring pixels, using a Roberts operator ([3]):
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where |∇I| is the magnitude and 6 ∇I is the direction of the edge. 6 ∇I is after-
wards projected to the field plane, resulting in a direction in field coordinates.

3 Self-Localization

A Markov-localization method employing the so-called Monte-Carlo approach
[1] is used to determine the position of the robot. It is a probabilistic approach,
in which the current location of the robot is modeled as the density of a set of
particles. Each particle can be seen as the hypothesis of the robot being located
at this posture. Therefore, such particles mainly consist of a robot pose, i. e.
a vector pose = (x,y,θ) representing the robot’s x/y-coordinates in millimeters
and its rotation θ in radians. A Markov-localization method requires both an
observation model and a motion model. The observation model describes the
probability for taking certain measurements at certain locations. The motion
model expresses the probability for certain actions to move the robot to certain
relative postures. The one used is described in [2].

The localization approach works as follows: first, all particles are moved ac-
cording to the motion model of the previous action of the robot. Then, the prob-
abilities for all particles are determined on the basis of the observation model
for the current sensor readings, i. e. bearings on landmarks calculated from the

a) b)

Fig. 3. Points on the edges, including computed gradients. a) On a line. b) On a field
wall.



actual camera image. Based on these probabilities, the so-called resampling is
performed, i. e. moving more particles to the locations of samples with a high
probability. Afterwards, the average of the probability distribution is determined,
representing the best estimation of the current robot pose. Finally, the process
repeats from the beginning. Since the general approach has already been de-
scribed in [2], this paper focuses on how to combine the perceptions of beacons,
goals, and (directed) edge point in a way that results in a stable self-localization.

Observation Model. The observation model relates real sensor measurements
to measurements as they would be taken if the robot were at a certain location.
Instead of using the distances and directions to the landmarks in the environ-
ment, i. e. the beacons and the goals, this localization approach only uses the
directions to the vertical edges of the landmarks. However, although the points
on edges determined by the image processor are represented in a metric fashion,
they are also converted back to angular bearings. The advantage of using land-
mark edges for orientation is that one can still use the visible edge of a landmark
that is partially hidden by the image border. Therefore, more points of reference
can be used per image, which can potentially improve the self-localization.

The utilized percepts are bearings on the edges of beacons and goals, and
points on edges between the field and the field lines, the field wall, and the goals.
These have to be related to the assumed bearings from hypothetical postures.
As has been pointed out in [2], the different percepts contain different kinds
of localization information and are seen with different frequencies. Therefore, it
is required to represent separate probabilities for beacons and goals, horizontal
field lines, vertical field lines, field walls, and goal edges for each particle.

As the positions of the samples on the field are known, it can be determined
for each measurement and each sample, where the measured points would be
located on the field if the position of the sample was correct. For each of these
measured points in field coordinates, it can be calculated, where the closest point
on a real field line of the corresponding type is located. Then, the horizontal and
vertical angles from the camera to this model point are determined. These two
angles of the model point are compared to the two angles of the measured point.
The smaller the deviations between the model point and the measured point
from a hypothetic position are, the more probable the robot is really located
at that position. Deviations in the vertical angle (i. e. distance) are judged less
rigidly than deviations in the horizontal angle (i. e. direction).

Calculating the closest point on an edge in the field model for a small number
of measured points is still an expensive operation if it has to be performed for,
e. g., 100 samples. Therefore, the model points are pre-calculated for each edge
type and stored in two-dimensional lookup tables with a resolution of 2.5 cm.
That way, the closest point on an edge of the corresponding type can be deter-
mined by a simple table lookup. Figure 4 visualizes the distances of measured
points to the closest model point for the four different edge types.



a) b)

c) d)

Fig. 4. Mapping of positions to closest edges. a) Field lines along the field. b) Field
lines across the field. c) Field wall. c) A goal.

Probabilities for Beacons and Goals. The observation model only takes
into account the bearings on the edges that are actually seen, i. e., it is ignored
if the robot has not seen a certain edge that it should have seen according to
its hypothetical posture and the camera pose. Therefore, the probabilities of
the particles are only calculated from the similarities of the measured angles to
the expected angles. Each similarity s is determined from the measured angle
ωmeasured and the expected angle ωexpected for a certain pose by applying a
sigmoid function to the difference of both angles:

s(ωmeasured, ωexpected) =

{
e−50d2

if d < 1
e−50(2−d)2 otherwise

where d = |ωmeasured−ωexpected|
π

(2)

The probability qlandmarks of a certain particle is the product of these similari-
ties:

qlandmarks =
∏

ωmeasured

s(ωmeasured, ωexpected) (3)



Probabilities for Edge Points. The probabilities of the particles are calcu-
lated from the similarities of the measured angles to the expected angles. Each
similarity s is determined from the measured angle ωseen and the expected angle
ωexp for a certain pose by applying a sigmoid function to the difference of both
angles weighted by a constant σ:

s(ωseen, ωexp, σ) = e−σ(ωseen−ωexp)2 (4)

If αseen and αexp are vertical angles and βseen and βexp are horizontal angles,
the overall similarity of a sample for a certain edge type is calculated as:

qedge type = s(αseen, βseen, αexp, βexp) = s(αseen, αexp, 10−9
|v|
200

)·s(βseen, βexp, 100)

(5)
For the similarity of the vertical angles, the probability depends on the robot’s
speed v (in mm/s), because the faster the robot walks, the more its head shakes,
and the less precise the measured angles are.

Calculating the probability for all points on edges found and for all samples
in the Monte-Carlo distribution would be a costly operation. Therefore, only
three points of each edge type (if detected) are selected per image by random.
To achieve stability against misreadings, resulting either from image processing
problems or from the bad synchronization between receiving an image and the
corresponding joint angles of the head, the change of the probability of each
sample for each edge type is limited to a certain maximum. Thus misreadings
will not immediately affect the probability distribution. Instead, several read-
ings are required to lower the probability, resulting in a higher stability of the
distribution. However, if the position of the robot was changed externally, the
measurements will constantly be inconsistent with the current distribution of
the samples, and therefore the probabilities will fall rapidly, and resampling will
take place.

The filtered probability q′ for a certain type is updated (q′old → q′new) for
each measurement of that type:

q′new =

 q′old + ∆up if q > q′old + ∆up

q′old −∆down if q < q′old −∆down

q otherwise.
(6)

For landmarks, (∆up,∆down) is (0.1, 0.05), for edge points, it is (0.01, 0.005)

Overall Probability. The probability p of a certain particle is the product of
the three separate probabilities for bearings on landmarks, edges of field lines
along and across the field, the field wall, and goals:

p = q′landmarks · q′longitudinal lines · q′latitudal lines · q′field walls · q′goals (7)



4 Results

[2] presented quantitative results on the precision of the localization approach
on an empty field using only lines and goals. The recent improvements clearly
target to achieving a good localization during actual RoboCup games, i. e. in
situations in which the main focus is on perceiving the ball and localization
information is recognized rather rarely. Therefore, the games of the GermanTeam
performed in Lisbon (videos at http://www.tzi.de/4legged) represent a good
evaluation of how well the localization system works, because many parts of the
behavior description of the GermanTeam rely on correct localization, e. g. which
kick is selected at which position, and the placement of the defensive players,
especially the goal keeper. At RoboCup 2003, it was also demonstrated that the
GermanTeam can play soccer without the beacons.

5 Conclusions

This paper presents how beacons, goals, as well as points on edges between the
field and field lines or field walls are determined, namely features that are re-
quired to localize on a RoboCup field. It is also shown how the edge points are
augmented with the direction of the edge using a computationally cheap opera-
tion. All these features are used by a particle filter to determine the position of
the robot. Here, separate probabilities for different features are used per parti-
cle, because the features provide different information about the position of the
robot, and they are recognized with different frequencies.
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