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1 Institute for Robot Research (IRF), Universität Dortmund
walter.nistico@udo.edu

2 Center for Computing Technology (TZI), FB 3, Universität Bremen
roefer@tzi.de

Abstract. This paper presents selected methods used by the vision sys-
tem of the GermanTeam, the World Champion in the Sony Four-Legged
League in 2004. Color table generalization is introduced as a means to
achieve a larger independence of the lighting situation. Camera calibra-
tion is necessary to deal with the weaknesses of the new platform used in
the league, the Sony Aibo ERS-7. Since the robot camera uses a rolling
shutter, motion compensation is required to improve the information
extracted from the camera images.

1 Introduction

The perceptive layer in a robotic architecture is the primary source of informa-
tion concerning the surrounding environment. In case of the RoboCup 4-legged
league, due to the lack of range sensors (e.g. laser scanners, sonars), the robot
only has the camera to rely upon for navigation and object detection, and in
order to be able to use it to measure distances, the camera position in a robot-
centric reference system has to be dynamically estimated from leg and neck joint
angle measurements, having to deal with noise in these measures. The robot in-
teracts with a dynamic and competitive environment, in which it has to quickly
react to changing situations, facing real-time constraints; image processing tasks
are generally computationally expensive, as several operations have to be per-
formed on a pixel level, thus with an order of magnitude of 105−106 per camera
frame. The need to visually track fast moving objects (i.e. the ball) in the ob-
served domain, further complicated by the limited camera field of view, makes
it necessary for the vision system to be able to keep up with the highest possi-
ble frame rate that the camera can sustain: in the case of the robot Sony Aibo
ERS-7, 30 fps. As a result, image segmentation is still mainly achieved through
static color classification (see [3]).

? The Deutsche Forschungsgemeinschaft supports this work through the priority pro-
gram “Cooperating teams of mobile robots in dynamic environments”.



2

2 Color Table Generalization

Robustness of a vision system to lighting variations is a key problem in RoboCup,
both as a long term goal to mimic the adaptive capabilities of organic systems,
as well as a short term need to deal with unforeseen situations which can arise
at the competitions, such as additional shadows on the field as a result of the
participation of a packed audience. While several remarkable attempts have been
made in order to achieve an image processor that doesn’t require manual cali-
bration (see [5], [12]), at the moment traditional systems are more efficient for
competitions such as the RoboCup. Our goal was to improve a manually created
color table, to extend its use to lighting situations which weren’t present in the
samples used during the calibration process, or to resolve ambiguities along the
boundaries among close color regions. Thereto, we have developed a color table
generalization technique which uses an exponential influence model similar to
the approach described in [7], but in contrast to it, is not used to perform a
semi-automated calibration from a set of samples. This new approach is based
on the assumption of spatial locality of the color classes in the color space, so
that instead of the frequency of a set of color samples, it’s the spatial frequency
of neighbors in the source color map to determine the final color class of a given
point, following the idea that otherwise, a small variation in lighting conditions,
producing a spatial shift in the mapping, would easily result in classification
errors. Thus, a color table is processed in the following way:

– Each point assigned to a color class irradiates its influence to the whole color
space, with an influence factor exponentially decreasing with the distance:

Ii(p1, p2) =
{

λ|p1−p2| i = c(p2)
0 ∀i 6= c(p2)

(1)

where p1, p2 are two arbitrary points in the color map, λ < 1 is the ex-
ponential base, Ii(p1, p2) is the influence of p2 on the (new) color class
i ∈ {red, orange, yellow, · · · } of p1, and c(p2) is the color class of p2,

– Manhattan distance is used (instead of Euclidean) to speed up the influence
calculation (O(n2), where n is the number of elements of the color table):

|p1 − p2|manhattan = |p1y − p2y|+ |p1u − p2u|+ |p1v − p2v| (2)

– For each point in the new color table, the total influence for each color class
is computed:

Ii(p0) = Bi ·
∑
p6=p0

Ii(p0, p) (3)

where Bi ∈ (0..1] is a bias factor which can be used to favor the expansion
of one color class over another

– The color class that has the highest influence for a point is chosen, if:

max(Ii)
Ibk +

∑
i Ii

> τ (4)
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where τ is a confidence threshold, Ibk is a constant value assigned to the
influence of the background (noColor) to prevent an unbounded growth of
the colored regions to the empty areas, and i again represents the color class.

a) b)

Fig. 1. Effects of the exponential generalization on a color table: (a) original, (b)
optimized.

The parameters λ, τ , Bi, Ibk control the effects of the generalization process,
and we have implemented 3 different settings: one for conservative generalization,
one for aggressive expansion, one for increasing the minimum distance among
neighboring regions. The time required to apply this algorithm, on a 218 elements
table, is ≈ 4− 7 minutes on a 2.66GHz Pentium4 processor, while for a table of
216 elements, this figure goes down to only 20-30 seconds.

3 Camera Calibration

With the introduction of the ERS-7 as a platform for the 4-Legged League,
an analysis of the camera of the new robot was required to adapt to the new
specifications. While the resolution of the new camera is ≈ 31% higher compared
to the previous one, preliminary tests revealed some specific issues which weren’t
present in the old model. First, the light sensitivity is lower, making necessary
the use of the highest gain setting, at the expense of amplifying the noise as
well; such a problem has been addressed in [10]. Second, images are affected by
a vignetting effect (radiometric distortion), which makes the peripheral regions
appear darker and dyed in blue.

3.1 Geometric camera model

In the previous vision system, the horizontal and vertical opening angles of the
camera were used as the basis for all the measurement calculations, following the
classical “pinhole” model; however for the new system we decided to use a more
complete model taking into account the geometrical distortions of the images
due to lens effects, called the DLT model (see [1].) This model includes the lack
of orthogonality between the image axes sθ, the difference in their scale (sx, sy),
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a) b) c)

d) e) f)

Fig. 2. Exponential generalization. (a) and (d) represent images taken from the same
field, but in (d) the amount of sunlight has increased: notice the white walls appearing
bluish. (b) and (e) are the result of the classification from the original color table,
calibrated for the conditions found in (a); notice that (e) is not satisfactory, as the
ball is hard to detect and the goal appears largely incomplete. (c) and (f) are classified
using the generalized table, showing that it can gracefully accommodate to the new
lighting conditions (f).

and the shift of the projection of the real optical center (principal point) (u0, v0)
from the center of the image (together called “intrinsic parameters”) and the
rotation and translation matrices of the camera reference system relative to the
robot (R, T , “extrinsic parameters”). In addition to this, we have also decided
to evaluate an augmented model including radial and tangential non-linear dis-
tortions with polynomial approximations, according to [4] and [8]. In order to
estimate the parameters of the aforementioned models for our cameras, we used
a Matlab toolbox from Jean-Yves Bouguet (see [2]). The results showed that
the coefficients (sx, sy, sθ), are not needed, as the difference in the axis scales
is below the measurement error, and so is the axis skew coefficient; the shift
between the principal point (u0, v0) and the center of the image is moderate
and dependent from robot to robot, so we have used an average computed from
images taken from 5 different robots. As far as the non-linear distortion is con-
cerned, the results calculated with Bouguet’s toolbox showed that on the ERS-7
this kind of error has a moderate entity (maximum displacement ≈ 3 pixel), and
since in our preliminary tests, look-up table based correction had an impact of
≈ 3ms on the running time of the image processor, we decided not to correct it.

3.2 Radiometric camera model

As the object recognition is still mostly based on color classification, the blue
cast on the corners of the images captured by the ERS-7’s camera is a serious
hindrance in these areas. Vignetting is a radial drop of image brightness caused
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by partial obstruction of light from the object space to image space, and is
usually dependent on the lens aperture size ([9], [6]), however, in this case the
strong chromatic alteration seems difficult to explain merely in terms of optics,
and we suspect it could be partially due to digital effects. To be able to observe
the characteristics of this vignetting effect, we captured images of uniformly
colored objects from the robot’s camera, lit by a diffuse light source (in order
to minimize the effects of shadows and reflections). As can be seen in Figure 3,

a) b) c) d)

Fig. 3. (a,b,c) Histograms of the U color band for uniformly colored images: yellow (a),
white (b) and skyblue (c). In case of little or no vignetting effect, each histogram should
exhibit a narrow distribution around the mode, like in (c). (d) Brightness distribution
of the U color band for a uniformly colored yellow image.

the radiometric distortion di for a given spectrum i of a reference color I is
dependent on its actual value (brightness component):

di(I) ∝ λi(Ii) (5)

Moreover, the chromatic distortion that applies on a certain pixel (x, y) appears
to be also dependent on its distance from a certain point (cf. Fig. 3(d)), center
of distortion (ud, vd), which lies approximately close to the optical center of
the image, the principal point; so, let r =

√
(x− ud)2 + (y − vd)2, then (radial

component):
di(I(x, y)) ∝ ρi(r(x, y)) (6)

Putting it all together:

di(I(x, y)) ∝ ρi (r(x, y)) · λi (Ii(x, y)) (7)

Now, we derive ρi, λi,∀i ∈ {Y, U, V } from a set of sample pictures; since both
sets of functions are non-linear, we decided to use a polynomial approximation,
whose coefficients can be estimated using least-square optimization techniques:

ρi (r) =
n∑

j=0

%i,j · rj

λi (Ii) =
m∑

j=0

li,j · Ij
i

(8)

In order to do so, we have to create a log file containing reference pictures which
should represent different points belonging to the functions that we want to
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estimate, hence we chose to use uniform yellow, blue, white and green images
taken under different lighting conditions and intensities. Then, the log file is
processed in the following steps:

– For each image, a reference value is estimated for the 3 spectra Y, U, V, as the
modal value of the corresponding histogram (numOfBins = colorLevels =
256).

– The reference values are clustered into classes, such that series of images
representing the same object under the same lighting condition have a single
reference value; this is achieved using a first order linear Kalman filter to
track the current reference values for the 3 image spectra, and a new class
is generated when:

∃j ∈ {Y, U, V } :
∣∣∣rm

j,k − rp
j,k−1

∣∣∣ > ϑ (9)

where rm
j,k is the reference (for spectrum j) measured at frame k, rp

j,k−1 is
the reference predicted by the Kalman filter at frame k− 1, and ϑ = 40 is a
confidence threshold.

– Simulated annealing ([11]) is used to derive the coefficients (ud, vd), and %i,j ,
li,j∀i ∈ {Y, U, V } (in a separate process for each color band)

– In each step, the coefficients %i,j , li,j are mutated by the addition of zero mean
gaussian noise, the variance is dependent on the order of the coefficients, such
that high order coefficients have increasingly smaller variances than low order
ones

– The mutated coefficients are used to correct the image, as:

I ′i(x, y) = Ii(x, y)− ρi (r(x, y)) · λi (Ii(x, y)) (10)

– For each image Ii,k in the log file (i is the color band, k the frame number),
given its reference value previously estimated ri,k, the current “energy” E
for the annealing process is calculated as:

Ei =
∑
(x,y)

(
I ′i,k(x, y)− ri,k

)2 (11)

– The “temperature” T of the annealing is lowered using a linear law, in a
number of steps which is given as a parameter to the algorithm to control the
amount of time spent in the optimization process; the starting temperature
is normalized relative to the initial energy

– The correction function learned off-line is stored in a look-up table for a fast
execution on the robot.

Figure 4 shows some examples of corrections obtained after running the algo-
rithm on a log file composed of 8 image classes (representing different colors at
different lighting conditions) of 29 images each, decreasing the temperature to
0 in 100 steps, for a total optimization time of 7 minutes (Pentium4 2.66GHz).
In case of the image spectra which exhibit the highest distortion (Y, U), the
variance after the calibration is reduced by a factor of 10.
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a) b) c) d)

Fig. 4. Color correction in practice: histograms of the U color band of a uniformly
yellow colored image before correction (a), and after (b); actual image taken from a
game situation, before correction (c) and after (d).

4 Motion Compensation

The camera images are read sequentially from a CMOS chip using a rolling
shutter. This has an impact on the images if the camera is moved while an
image is taken, because each scan line is captured at a different time instant. For
instance in Figure 5 it can be seen, that the flag is slanted in different directions
depending on whether the head is turning left or right. In experiments it was
recognized that the timestamp attached to the images by the operating system
of the Aibo corresponds to the time when the lowest row of the image was taken.
Therefore, features in the upper part of the image were recorded significantly
earlier. It is assumed that the first image row is recorded shortly after taking the
previous image was finished, i. e. 10% of the interval between two images, so 90%
of the overall time is spent to take the images. For the ERS-7, this means that
the first row of an image is recorded 30 ms earlier than the last row. If the head,
e. g., is rotating with a speed of 180◦/s, this results in an error of 5.4◦ for bearings
on objects close to the upper image border. Therefore, the bearings have to be
corrected. Since this is a quite time-consuming operation, it is not performed as a
preprocessing step for image processing. Instead, the compensation is performed
on the level of percepts, i. e. recognized flags, goals, edge points, and the ball.
The compensation is done by interpolating between the current and the previous
camera positions depending on the y image coordinate of the percepts.

a) b)

Fig. 5. Images taken while the head is quickly turning. a) Left. b) Right.
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5 Results

The algorithms described here have been tested and used as part of the vision
system of the GermanTeam which became World Champion in the Four-Legged
League at the RoboCup 2004 competitions. The average running time of the
whole image processor was 9±2 ms, and the robot was able to keep up with
the maximum camera frame rate under all circumstances, i.e. 30 fps. Through-
out the competitions, our vision system proved to be robust and accurate, and
our robots’ localization was widely acclaimed as the best of the league; these
techniques have also been used on the vision system of Microsoft Hellhounds, a
member of the GermanTeam, achieving the second place in the Variable Lighting
Technical Challenge at the Japan Open 2004 competitions.
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