Rofer T. (2003). An Architecture for a National RoboCup Team. In: Kaminka, G.
A., Lima, P. U., Rojas, R. (Hrsg.): RoboCup 2002: Robot Soccer World Cup VI.
Lecture Notes in Artificial Intelligence. Springer. 417-425.

An Architecture for a National RoboCup Team

Thomas Rofer

Center for Computing Technology (TZI), FB3, Université Bremen
Postfach 330440, 28334 Bremen, Germany
roefer@zi . de

Abstract. This paper describes the architecture used by the GermanTeam 2002
in the Sony Legged Robot League. It focuses on the specia needs of a nationa
team, i.e. a“team of teams’ from different universitiesin one country that com-
pete againgt each other in national contests, but that will jointly line up at thein-
ternational RoboCup championship. In addition, the tools developed by the
GermanTeam will be presented, e.g. the first 3-D smulation used in the Sony
Legged Robot League.

1 Introduction

All RoboCup leagues share the problem that there are more teams that want to par-
ticipate in the world championship than a normal contest schedule can integrate.
Therefore, each league has its own approach to limit the number of participants to a
certain amount. For ingance, teams in the simulation league have to qualify by sub-
mitting a team description and two log files, one of a game against a strong opponent,
the other of a game against an average one. Based on this materid, a committee se-
lects the teams for the championship. In contrast, participantsin the Sony Legged Ro-
bot League only qualify by submitting a description of their scientific goals—before
they have even worked with the robots. Each year, the Sony Legged League grows a
little bit, e.g. from 16 to 19 teams from 2001 to 2002. So far, teams that were once ac-
cepted in the league were allowed to stay during the following years without a further
qualification, amongst other reasons because of their investment in the robots. Thus,
only afew new teams have the chance to join the league.

Currently, it is discussed how to provide to chance to participate in the league to
more research groups. One solution would be to set up national teams, as the Ger-
manTeam that was founded in 2001 [1]. The GermanTeam currently consists of stu-
dents and researchers a five universities: the Humboldt-Universitdt zu Berlin, the
Universitét Bremen, the Technische Universitét Darmstadt, the Universitét Dortmund,
and the Freie Universitét Berlin. The members of the GermanTeam are allowed to
participate as separate teams in national contests, but will jointly line up at the inter-
national RoboCup championship as a single team.

The other solution would beto install national leagues, of which the winning team
will get the ticket to participate in the international contest. On the one hand, this ap-
proach would enforce the competition, but on the other hand, the goal of the RoboCup
initiative is to promote research, and competing teams do not work together very well.


Thomas Röfer
Röfer T. (2003). An Architecture for a National RoboCup Team. In: Kaminka, G. A., Lima, P. U., Rojas, R. (Hrsg.): RoboCup 2002: Robot Soccer World Cup VI. Lecture Notes in Artificial Intelligence. Springer. 417-425. 



Therefore, it may be a good compromise to support collaboration on the lower, na-
tional leve, while stressing the element of competition on the international level.

The GermanTeam is an example of a national team. The members will participate
as separate teams in the German Open 2002, but will form a single team at Fukuoka.
Obvioudly, the results of the team would not be very good if the members will de-
velop separately until the middle of April, and then try to integrate their code to a sin-
gle team in only two months. Therefore, an architecture for robot control programs
was devel oped that allows to implement different solutions for the tasks involved in
playing robot soccer. The solutions are exchangeable, compatible to each other, and
they can even be distributed over a varying number of concurrent processes. The ap-
proach will be described in section 2. Finally, in section 3, the tools that were imple-
mented to support the devel opment of the robot control programs are presented.

2  Multi-Team Support

The major goal of the architecture presented in this paper is ability is to support the
collaboration between the university-teams in the German national team. Some tasks
may be solved only once for the whole team, so any team can use them. Others will
be implemented differently by each team, e.g. the behavior control. A specific solu-
tion for a certain task is called amodule. To be able to share modules, interfaces were
defined for all tasks that could be identified for playing robot soccer in the Sony
Legged League. These tasks will be summarized in the next section. To be able to
easily compare the performance of different solutions for same task, it is possible to
switch between them at runtime. The mechanisms that support this kind of devel op-
ment are described in section 2.2. However, a common software interface cannot hide
the fact that some implementations will need more processing time than others. To
compensate for these differences, each team can use its own process layout, i.e. they
can group together modules to processes that are running concurrently (cf. section
2.2).

21 Tasks

Figure 1 depicts the tasks that were identified by the GermanTeam for playing soccer
in the Sony Legged Robot League. They can be structured into five levels:

Sensor Data Processing. On thislevel, the data received from the sensorsis preproc-
essed. For instance, the image delivered by the camera is segmented, and then it is
converted into a set of blobs, i.e. image regions of the same color class. The current
states of the joints are analyzed to determine the direction the cameraislooking at. In
addition, further sensors can be employed to determine whether the robot has been
picked up, or whether it fell down.

Object Recognition. On this level, the information provided by the previous level is
searched to find objects that are known to exist on the field, i.e. landmarks (goals and



l SensorDataF'rocessor ImageF'rocessor

BlobCollection

Buissaosoid
losuss

[F'IayersF'erceptorl [LinesF’erceptorl [LandmarksF'erceptorl BallPerceptor 2

o @

Q.

EX:

BodyPercept PlayersPercept LandmarksPercept BallPercept %" -
=]

SelfLocator
RobotPose

~® BehaviorControl

LEDRequest HeadControlMode MotionRequest

l LEDControl l l HeadControl l MotionControl

HeadMotionRequest

Fig. 1. The modules implemented by the GermanTeam 2002

l RobotStateDetec!orl l PlayersLocator

RobotState PlayerPoseCollection

Bulapow
108[qo

BallPosition

1011U02
101ARYaq

|013Uu0d
uonow

JomtDa!aEuffer OdometryData

flags), field lines, other players, and the ball. The sensor readings that were associated
to objects are called percepts.

Object Modeling. Percepts immediately result from the current sensor readings.
However, most objects are not continuoudy visible, and noise in the sensor readings
may even result in a misrecognition of an object. Therefore, the positions of the dy-
namic objects on the fidld have to modeed, i.e. the location of the robot itself, the
poses (i.e. the (x, y, 6 positions on the field) of the other robots, and the position of
the ball. Theresult of thislevd isthe estimated world state.

Behavior Control. Based on the world state and therole of the robot, the fourth level
generates the behavior of the robot. This can either be performed very reactively, or
ddiberative components may be involved. The behavior level sends requests to the
fifth level to perform the selected motions.

Moation Control. The fina level performs the motions requested by the behavior
levd. It diginguishes between motions of the head and of the body (i.e. walking).
When walking or standing, the head is controlled autonomousdly, e.g., to find the ball
or to look for landmarks, but when a kick is performed, the movement of the head is
part of the whole motion. The motion module also performs dead reckoning and pro-
vides this information to many other modules.



2.2 Debugging Support

One of the basic ideas of the architecture is that multiple solutions exist for a single
task, and that the devel oper can switch between them at runtime. In addition, it isaso
possible to include additional switches into the code that can also be triggered at run-
time. The redization is an extension of the debugging techniques aready imple-
mented in the code of the GermanTeam 2001 [2]: debug requests and solution re-
guests. The system manages two sets of information, the current state of all debug
keys, and the currently active solutions. Debug keys work similar to C++ preprocessor
symbols, but they can be toggled at runtime. A specia infrastructure called debug
queues is employed to transmit requests to all processes on arobot to change this in-
formation at runtime, i.e. to activate and to deactivate debug keys and to switch be-
tween different solutions. The debug queues are aso used to transmit other kinds of
data between the robot(s) and the debugging tool on the PC (cf. section 3). For exam-
ple, motion requests can directly be sent to the robot, images, text messages, and even
drawings can be sent to the PC. This alows to effectively visualize the state of a cer-
tain module, textually and even graphically. These techniques work both on the real
robots and on the smulated ones (cf. section 3.1).

2.3 Process-Layouts

As aready mentioned, each team can group its modules together to processes of their
own choice. Such an arrangement is called a process layout. The GermanTeam 2002
has devel oped its own model for processes and the communication between them:

Communication between Processes. In the robot control program devel oped by the
GermanTeam 2001 for the championship in Seattle, the different processes exchanged
their data through a shared memory [2], i.e., a blackboard architecture [3] was em-
ployed. This approach lacked of a simple concept how to exchange data in a safe and
coordinated way. The locking mechanism employed wasted alot of computing power
and it only guaranteed consistency during a single access, but the entriesin the shared
memory could still change from one access to the other. Therefore, an additional
scheme had to be implemented, as, e.g., making copies of all entries in the shared
memory at the beginning of a certain cal culation step to keep them consistent. In addi-
tion, the use of a shared memory is not compatible to the new ability of the Sony Aibo
robots to exchange data between processes via a wird ess network.

The communication scheme introduced in GT2002 addresses these issues. It uses
standard operating system mechanisms to communicate between processes, and there-
fore it also works via the wireless network. In the approach, no difference exists be-
tween inter-process communication and exchanging data with the operating system. A
single line of code is sufficient to establish a communication link. A predefined
scheme separates the processing time into a communication phase and a calculation
phase.

The inter-object communication is performed by senders and receivers exchang-
ing packages. A sender contains a single ingtance of a package. After it was directed
to send the package, it will automatically transfer it to all receivers as soon as they



Ball R

[EpEyS SUNpEE SySpR 2

4
Debug

S T Nce=--.
I S SR e
=3 I U Nt tabebtt TEEEES BE L i
X
To a4 T ey A p—— !
Behavior i -
:
/ :
// 1
Output f==------=-----—mm oo m ]

Fig. 2. Process layout of the Bremen Byters. The broken lines indicate the debugging part.

have requested the package. Each receiver aso contains an instance of a package. The
communication scheme is performed by continuously repeating three phases for each
process:

1. All receivers of a process receive all packages that are currently available.

2. The process performsitsnormal calculations, e.g. image processing, planning, etc.

During this, packages can already be sent.

3. All senders that were directed to tranamit their package and have not done it yet
will send it to the corresponding receivers, if they are ready to accept it.

Note that the communication does not involve any queuing. A process can miss to
receive a certain package if it is too dow, i.e, its computation in phase 2 takes too
much time. In this aspect, the communication scheme resembles the shared memory
approach. Whenever a process enters phase 2, it is equipped with the most current
data available.

The whole communication is performed automatically; only the connections be-
tween senders and receivers have to be specified. In fact, the command to send a
package is the only one that has to be called explicitly. This significantly eases the
implementation of new processes.

Different Layouts. The figures 2 and 3 show two different process layouts. Both con-
tain a debug process that is connected to all other processes via debug queues. Note
that debug queues are transmitted as normal packages, i.e. a package contains awhole
gqueue. Comparing the two process layouts, it can be recognized that on the one hand,
the Bremen Byterstry to parallelize as much as possible; on the other hand, Humbol dt
2002 focuses on using only a few processes, i.e. the first four levels (cf. Fig. 1) are dll
integrated into the process Cognition. In the layout of the Bremen Byters, one process
is used for each of the levels one, four, and five, and three processes implement parts
of the levels two and threg, i.e. the recognition and the modeling of individual aspects
of the world state are grouped together. Odometry is used to decompose information
that is dependent: although both the players process and the ball process require the
current pose of the robot, they can run in paralld to the self-localization process, be-
cause the odometry can be used to estimate the spatia offset since the last absolute
localization. This allows running the ball modeling with a high priority, resultingin a
fast update rate, while the self-localization can run as a background process to per-
form a computationally expensive probabilistic method as, e.g., the one described in
[4] or the method used by the GermanTeam 2001 [2].



ﬂnition

Robot

Motion [¢=============----==a

Fig. 3. Process layout of Humboldt 2002. The broken lines indicate the debugging part.

Currently, it is not known which process layout will be the more successful one.
The Darmstadt Dribbling Dackels are using a third approach that is a compromise be-
tween the two discussed here, and al three will compete against each other at the
German Open. So the best can be used for the world championship.

3 Development Toolson the PC

Two tools were implemented on the PC to ease the devel opment of the robot control
programs. The first is a 3-D simulator, and the second is a general tool that provides
nearly any support imaginable, even the simulator is integrated.

3.1 SimRobot

SimRobot is a kinematic robotics simulator that was developed in the author's group
[1]. It iswritten in C++ and is distributed in public domain [6]. It consists of a port-
able simulation kernd and platform specific graphical user interfaces. Implementa-
tions exist for the X Window System, Microsoft Windows 3.1/95/98/ME/NT/2000/XP,
and IBM OS2. Currently, only the development for the 32 hit versions of Microsoft
Windows is continued.

A simulation in SmRobot consists of three parts. the smulation kernd, the
graphical user interface, and a controller that is provided by the user. The German-
Team 2002 has implemented the whole simulation of up to eight robots including the
inter-process communication described in section 2.3 as such a controller, providing
the same environment to robot control programs as they will find on the real robots.
In addition, an object called the oracle provides information to the robot control pro-
gramsthat is not available on the real robots, i.e. the robots own location on the field,
the poses of the teammates and the opponents, and the position of the ball. On the one
hand, this allows implementing functionality that relies on such information before
the corresponding modules that determine it are completely implemented. On the
other hand, it can be used by the implementators of such modules to compare their re-
sults with the correct ones.

3.2 RobotControl

RaobotContral is the successor of DogControl, the debugging tool used by the Ger-
manTeam in 2001 [2]. Its purpose is to integrate all functionality that is required dur-
ing the development of the control programsfor the Sony Aibo robots.



a)

P SimRobot - GT2002

WORLD “GT2002" (
QUICKSHADING;
QUICKHOUTNG;

7202011000001010100110111

77 Colors in vuu

AMBIENT (0.5,1.0,1.0);

Fig. 4. @ SmRobot simulating the GermanTeam 2002. b) RobotControl: color tool, smula-
tion, message viewer, and motion tester.

Running Robot Controllers. First of all, RobotControl has the ability to run the
process-layouts that make up the robot control programs. The simulation kernd of
SimRobot isintegrated into RobotControl, but in contrast to SimRobot, the robot con-
troller cannot only be provided with simulated inputs. It is also possible to connect it
to real robots via the wireless network, and, as a third possibility, the inputs can be
generated by replaying log files.

L og Files can ether be recorded with arobot, storing them on a memory stick, or the
data can be transferred from the robot via the wireless network to RobotControl, and
then it will be recorded to a file on the harddisk of the PC. Asthe same robot control-
ler code runsin al environments, even a simulated robot can produce log files. Log
files can contain sensor data and intermediate data as, e.g., blob collections. Robot-
Control is able to replay log files in real-time or sep by step. As RobotControl can
run under a debugger, al normal debugging features are available (setting break-
points, ingpecting variables, etc.).

Extensibility. The main purpose of RobotContral is to function as the user interface
of the Aibo robots. Therefore, it provides the infrastructure to easily add new toolbars
and dialogs. The window layout of RobotContral is aways stored and restored on re-
start. Figure 4b shows a screenshot of RobotContral, in which severa toolbars and
diaogs can be seen. Toolbars control the replay of log files, they control running the
simulation, they allow sending debug keys to real or smulated robots, provide the
ability of switching solutions and configuring the wireless network, etc. Dialogs alow
generating color tables (for image segmentation, shown in Fig. 4b left), display the
simulator scene (Fig. 4b right), control the mations of the robot (Fig. 4b lower right
pane), and display debug messages (Fig. 4b lower |eft pane) and debug drawings (Fig.
4b center). Asaresult, RobotContral isavery powerful and flexible tool.



4  Concluson and Future Work

The paper has presented the architecture used by the GermanTeam 2002 in the Sony
Legged Robot League. The architecture has been designed for a national team, i.e. a
team from different universities that compete against each other in nationa contests,
but that will form a single team at the international RoboCup world championship.
The architecture is currently implemented on two different systems, i.e. the Sony
Aibo robots and on Microsoft Windows—integrated into the ssmulator SimRobot and
the control software RobotControl. SimRobot is the first 3-D simulator used in the
Sony Legged League, and has also been integrated into RobotControl, a universal tool
to support the devel opment of the robot soccer team.

Acknowledgements

Although the author contributed to the architecture presented in this paper, namely by
realizing the communication scheme and the smulation, the architecture itsdf is the
result of the work of many people in the GermanTeam. From the author’s point of
view, the main “architects’ of the team are Mattias Jingdl, Martin Loetzsch (both
Humboldt Universitét zu Berlin), and Max Rieder (Technische Universitét Darm-
stadt). The author wants to thank them and aso al the other members of the team,
who arefilling the architecture with life.

The author aso thanks the Sony Corporation for their professional support, the
Deutsche Forschungsgemeinschaft (DFG) for funding parts of the project through the
priority program “Cooperating teams of mobile robots in dynamic environments’.

References

1. Burkhard, H.-D., Duffert, U., Jungel, M., Lotzsch, M., Koschmieder, N., Laue, T., Rofer, T.,
Spiess, K., Sztybryc, A., Brunn, R., Rider, M., v. Stryk, O.: GermanTeam 2001. Technica
report. Only available online: http://www.tzi.de/kogrob/papers/GermanTeam2001report. pdf
(2001).

2. Brunn, R, Differt, U., Jingel, M., Laue, T., Létzsch, M., Petters, S., Risler, M., Rofer, T.,
Spiess, K., Sztybryc, A.: GermanTeam 2001. In RoboCup 2001. Lecture Notes in Artificial
Intelligence. Springer (2001), to appear.

3. Jagannathan, V., Dodhiawala, R., Baum, L.: Blackboard Architectures and Applications.
Academic Press, Inc. (1989).

4. Lenser, S, Veloso, M.: Sensor resetting localization for poorly modeled mobile robots. In
Proc. of the IEEE International Conference on Robotics and Autormation (2000).

5. Rofer, T.: Strategies for Using a Simulation in the Development of the Bremen Autonomous
Wheelchair. In Zobel, R., Moeller, D. (Eds.): Smulation-Past, Present and Future. Society
for Computer Simulation International (1998) 460-464.

6. SimRobot homepage. http://www.tzi.de/s mrobot.





