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Abstract. This work is about the integration of the skills robot control,
landmark recognition, and qualitative reasoning in a single autonomous
mobile system. It deals with the transfer of coarse qualitative route de-
scriptions usually given by humans into the domain of mobile robot nav-
igation. An approach is proposed that enables the Bremen Autonomous
Wheelchair to follow a route in a building, based on a description such
as “Follow this corridor, take the second corridor branching off on the
right-hand side and stop at its end.” The landmark recognition uses a
new method taken from the field of image processing for detecting sig-
nificant places along a route.

1 Introduction

When designing human-computer interfaces for computer systems that solve
configuration tasks (e.g. layout-manager), move in space on their own (e.g.
semi-autonomous robots), or help humans to move in space (e.g. navigation
systems), a good understanding of humans’ spatial mental models is important.

It is well known [15] that in these spatial mental models the relations between
the elements are coarse and include no metrical information. Typical spatial ex-
pressions are “next to”, “left of”, “east of”, etc. Humans’ spatial models typically
do not only include no metric information, there also occur systematic distor-
tions that influence judgements on distances and directions, e.g. the distance
from a landmark to an ordinary building is judged smaller than the other way
round, which leads to asymmetric distances [12].

Considering these findings, we see that computer systems dealing with motion
in space should be able to understand coarse, qualitative relations and should
be robust against errors humans make due to systematic distortions, e. g., they
should not rely too much on metric information.

In the work described in this paper, qualitative route descriptions are used
in an application from the robotics domain, i.e. controlling a semi-autonomous
wheelchair along a route. In the field of spatial reasoning, qualitative relations
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are established between complex objects such as a refrigerator or a person, e.g.
in [2]. In contrast, the items in the qualitative descriptions presented here are
very simple, because the autonomous mobile system must be able to recognize
them with its limited sensory equipment.

The intended scenario is as follows: In a hospital, a patient should visit a
certain room, e. g. for having a medical examination. He or she is handicapped,
so a wheelchair is used to travel to the examination room. Normally, the pa-
tient would be guided by a nurse. But, considering all the medical examination
performed each day in a hospital, this costs a lot of the staff’s time. Therefore,
the hospital is equipped with intelligent power wheelchairs, enabling the nurse
to instruct the wheelchair where to go. Then, the patient is automatically trans-
ported to the examination room. Currently, the experiments are carried out in
an office building in the University of Bremen. Even though this building is ac-
cessible for wheelchairs, navigating there is more complex than in the hospital
environment because the corridors and the doors are comparatively narrow.

The Bremen Autonomous Wheelchair “Rolland” serves as the experimental
platform. It is based on the commercial power wheelchair Genius 1.522 man-
ufactured by the German company Meyra. The wheelchair is a non-holonomic
vehicle that is driven by its front axle and steered by its rear axle. The human
operator controls the system with a joystick. In addition, an external keyboard
can be used by the service staff, e. g. to type in some instructions. The wheelchair
is equipped with a standard PC (Pentium 233, 64 MB RAM) and a ring of sonar
sensors to perceive its environment. Furthermore, the system is able to perform
dead reckoning by measuring its speed and steering angle.

2 System Architecture

To navigate through an environment along a specified route requires a variety
of skills: measuring locomotion (dead reckoning), perceiving the surroundings
(obstacle and landmark detection), self-localization (mapping from reality to
route description), planning (choosing an appropriate action in each situation),
and moving as such.

In a technical system, the navigation skills can be implemented as asyn-
chronously communicating hardware and software components that run in par-
allel. In the Bremen Autonomous Wheelchair, the communication is done via
a real-time capable network (for more information cf. [5]). Since the implemen-
tation details do not matter here, Fig. 1 shows a schematic overview of the
architecture and the information flow in the system described in this paper.

The wheelchair runs in a control loop of 32 ms cycles and provides three
components relevant here: a state monitor that supplies information about the
current state of the actuators, 27 sonar sensors that measure the distance to
objects in the surroundings, and the motor which accepts driving commands.

In order to hide the specific properties of the hardware, an abstraction of
a safe wheelchair had been introduced (cf. [5,9]). It is called SAM (short for
Sensor/Actuator-Module). SAM runs in real-time, i.e. its main loop must not
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Fig. 1. System architecture (schematic overview; details in the text).

take longer than the 32ms frame time prescribed by the wheelchair. It processes
the data produced by the wheelchair and the sensors, waits for driving commands
in a (speed, radius)-format from other modules, and sends safe target motor
commands to the vehicle. Furthermore, SAM provides the higher-level modules
Situation detector and Behaviors with odometry data it derived from the actual
speed and the actual steering angle by dead reckoning. In addition, it delivers
the current status of the sonar sensors, i.e. the distance value measured by each
sensor, the global position where the wheelchair was located when taking that
specific measurement, and the absolute point in time of the measurement.

Concurrent to SAM, three high-level modules are responsible for the skills
of environment perception and self-localization (Situation detector, cf. section
3), choosing adequate motion behaviors (Navigator, cf. section 4) and executing
these behaviors (Behaviors, cf. [4]).

The situation detector extracts features from the sonar image that are
mapped to certain landmark types, such as “CorridorRight”. In the current im-
plementation, this module produces a data record every 10 cm travel distance.



It contains the actual position of the wheelchair relative to its starting-point,
and a 5-bit feature vector that indicates the detected landmark type.

This information is matched by the navigator with the initial route descrip-
tion which specifies the target track. According to the current situation, the
navigator processes a behavior the execution of which allows the wheelchair to
follow the target route.

This behavior (e. g. “FollowRightWall”) is passed to the third high-level mod-
ule. Tt simply converts the active behavior in a target motor command that
consists of a speed and a radius component. This command is sent to SAM.

In the sequel, the situation detector and the navigator are described in detail.

3 Perceiving the Environment: Situation Detector

With its limited sensory equipment, the wheelchair can only perceive a small
part of its environment. The data is analyzed to detect landmarks, which are
used as points of reference during navigation.

In order to recognize them, the situation detector module (cf. section 2) pro-
cesses the readings of the wheelchair’s sonar sensors in several steps. At first,
corridor walls are determined with a line detection algorithm. Then a coarse grid
of relative positions in the wheelchair’s immediate surroundings is searched for
prominent properties, such as “there is a wall aligned with the corridor direc-
tion on the right side in front”. Finally, typical patterns in the coarse grid are
recognized yielding landmarks, e. g., “the corridor turns left”.

3.1 Probabilistic Obstacle Map

The sonar sensors’ measurements are accumulated in a probabilistic obstacle
map. This is a local grid map covering an area of 4m x 4m. The center of the
wheelchair’s front axle is located in the center of the map. For each cell in this
map, two values are kept track of: the number of measurements that covered
this cell and the number of measurements that detected an obstacle in this cell.
The ratio of the latter to the former is taken as the cell’s probability to contain
an obstacle (cf. Fig. 2b).

The map is shifted in the opposite direction of the wheelchair’s movement in
space, thus it moves in the same way as the real environment observed from the
wheelchair.

3.2 Line Segment Detection

In the next step, walls are to be extracted from the probabilistic obstacle map.
This is achieved by a method from image processing: edge detection using a
Hough transform.

Firstly, the structure matrix [1] is determined. It contains information on the
orientation and the contrast of an edge in the local environment of each map
cell. This information can be regarded as an orientation vector which serves



ER T e T

Fig. 2. Processing steps. a) In a simulation, the wheelchair is located in a corner of
a corridor facing a wall. b) The probabilistic obstacle map. Darker entries indicate
greater occupation probabilities of the map cells. ¢) The orientation map. The gray
values encode the angles of the lines entered. Darker pixels mark clockwise increasing
angles. The lightest shade of gray stands for a horizontal line. d) The orientation grid.
The arrow indicates the corridor direction. The orientation of the line in each grid cell
represents the main orientation angle in the corresponding area of the orientation map.
The gray value of a line indicates the frequency of pixels of that orientation. A darker
line means more pixels.

for speeding up the Hough transform. The next subgoal is to find maxima of
intensity in the Hough space. These correspond to straight lines in the obstacle
map which in turn are likely to represent walls in the wheelchair’s environment.
To find out the exact coordinates of the wall candidates, both dimensions of the
Hough space which represent the angle and the distance from the origin of the
coordinate system are searched consecutively for relative extrema. A dynamic
threshold value is used to reduce the influence of noise.

The result of this procedure is a set of coordinate pairs corresponding to lines
of infinite length in the coordinate system of the probabilistic obstacle map. Each
of these lines is traced through the obstacle map yielding line segments where
the line covers entries in the map.

These solid line segments are inserted into another grid map. In this map,
the line segments consist of pixels which encode the orientation angle of the



line. The size and resolution of this orientation map are the same as those of
the probabilistic obstacle map, and it is shifted according to the wheelchair’s
movements as well (cf. Fig. 2¢).

3.3 Orientation Grid

As mentioned, the wheelchair currently operates in an office environment and
will be used in a hospital in the future. Thus, the chief navigation task is to find
routes along corridors. To accomplish this, the orientation of a corridor has to
be determined first.

The walls of the corridor are expected to be the most frequent entries in
the local obstacle map. Therefore, the orientation map is searched for the most
prominent orientation angle. This is done by computing a histogram of the angles
of the cells in the orientation map. The mean angle of the most frequented class
yields the orientation of the corridor.

The orientation angle of the corridor is defined in an interval of length =,
since an orientation, e.g., from north to south is equivalent to an orientation
from south to north. To obtain a direction, the orientation angle is combined
with the heading direction of the wheelchair. There are two directions which
comply with the corridor orientation. The direction which differs less from the
heading direction of the wheelchair is the direction of the corridor.

In the next step, the orientation map is divided into twelve areas relative
to the position of the wheelchair, facing in the corridor direction. These cate-
gories of relative positions mark areas of interest for assessing the features of the
wheelchair’s surrounding. They make up a coarse grid in the orientation map
(cf. Fig. 2d). In each of these areas, the main orientation is computed with a
histogram in the same way as described above.

3.4 Landmark Detection

The orientation grid is searched for typical patterns that indicate prominent fea-
tures of the wheelchair’s surroundings. These landmark categories are: wall in
front, corridor left, corridor right, door left and door right. A Boolean variable
corresponds to each of these landmark categories, the state of which is deter-
mined according to the presence of the feature. For instance, a “wall in front”
is detected if the main orientation angle of the two center grid cells in front of
the wheelchair is perpendicular to the corridor direction, and if the sum of the
numbers of the wall pixels of that orientation in these grid cells is greater than
a threshold value.

Finally, the Boolean vector, the components of which represent the results
of the detection of the five categories, is mapped to a specific type of landmark.
In the example given in Fig. 2, the landmark category detection yields a “true”
value for the categories “wall in front” and “corridor left”. The combination of
these is the landmark “LeftHandBend.”



4 The Navigator

The navigator matches the landmark information computed by the situation
detector with the initial route description which specifies the target track. De-
pending on the current situation, the navigator determines a behavior allowing
the wheelchair to follow the route.

4.1 Coarse Route Descriptions

According to [13], humans are used to give route descriptions that can be seg-
mented into pieces mainly belonging to four categories: starting-point, reorien-
tation (direction), path/progression, and goal. However, it was also found that
people often give additional information such as extra landmarks (not only at
turning points), cardinal directions, and the shape of the path between land-
marks. “This information, while not essential, may be important for keeping the
traveler confidently on track” [13], p. 169.

Humans typically give route descriptions as a sequence of elementary pieces
which consist at least of some of the following items:

— starting-point

reorientation

path/progression (additional landmarks, approximate distances, ...)
— goal

In order to ease the communication of a human operator with the wheelchair,
it should understand route descriptions that consist only of these elements, and
thus enable the vehicle to find its way in a building based on such a description.

The starting-point is always the current position of the robot. The goal is
the end of the route. A route description is specified by a sequence of tuples of
the following kind:

< [ { controlmarks } router | reorientation >

A reorientation is some directional instruction that humans often use in route
descriptions [14], such as “TurnLeft”, “EnterRightDoor”, or “FollowCorridor”. A
router is a landmark where a directional change can take place. The last router is
the goal of the route. Controlmarks support following routes over longer distances
without directional changes; they are especially useful to describe locations where
no turn should take place. Depending on the situation, landmarks found by the
situation detector are interpreted as controlmarks and routers, respectively.

The coarse qualitative route description A

< RightHandBend TurnRight >
< CorridorRight CorridorLeft TurnLeft >
< CorridorRight DeadEnd Stop >



1
1
1
1
1
1
1
1
1
1
1
1

Y

Fig. 3. Plan of the second floor of the MZH-building of Bremen University and the
route A (dashed line, approx. 65m in reality)

corresponds to a route depicted as a dashed line in Fig. 3. However, the
wheelchair is not able to directly perform operations such as “TurnRight” be-
cause it cannot determine how far it has to turn. Instead, basic behaviors such as
“FollowRightWall” are employed. They are started before arriving at the router
and may end after it has successfully been passed.

In a first step, the route description is converted into a representation that
takes such demands into account:

< FollowRightWall Right HandBend >

< FollowLeftWall CorridorRight CorridorLeft >
< FollowLeftWall CorridorRight DeadEnd >

< Stop >

This representation does not yet prevent the wheelchair from turning into
a corridor that is part of a controlmark and therefore should not be entered.
Instead, this is achieved when following the route.



4.2 Generation of Driving Commands

The navigator generates driving commands, i. e. it processes the route represen-
tation and derives basic behaviors that are adequate in the specific situations.
The basic navigation algorithm works as follows: the navigator always selects
the first elementary piece of the route representation, the tuple T'. Depending
on the contents of 7', one of the following three cases can occur:

T consists only of a reorientation. Then, the behavior must have an intrinsic
end, and it is able to detect when it is has reached this state, as e.g. “Stop” or
“TurnRound”. The navigator waits until the behavior module announces that
this action has been terminated by setting the behavior status accordingly. The

navigator will then remove 7' and switch to the next tuple.

There are controlmarks in 7. These controlmarks have to be straightly
passed in order to reach the router where a reorientation has to take place.
Therefore, a default behavior is associated with each controlmark type that is
necessary to avoid entering, e. g., a branching corridor which is part of the mark.
After a controlmark has successfully been passed, it is removed from T and the
navigator continues with the rest of the current tuple.

There are no controlmarks or they all have successfully been passed, i.e.,
they were removed from 7. Then, it has to be searched for the router. The ma-
jor difference between a controlmark and a router is that the wheelchair is not
prevented from turning off at the router, so if the router is, e.g., a “Crossing”
and the behavior is “FollowLeftWall”, the wheelchair is allowed to—and in fact
should—turn into the left branch of the crossing. Again, if the router has suc-
cessfully been passed, T is deleted from the route representation and the next
tuple becomes the actual one.

When the route description is empty, the navigator stops the wheelchair, and it
is assumed that the goal has been reached.

5 Experimental Results

Experiments with the wheelchair robot prove that the approach described in
this article does work in practice. In Fig. 4 a successful trial to follow route A
(for details cf. above) is depicted.

However, relying on sonar sensors for perceiving the environment has its
drawbacks. As the angular resolution of these sensors is relatively weak and their
distance information is prone to be erroneous (cf. [10]), extracting features of the
environment reliably from sonar data was not always successful. For instance,
an open door of an office was occasionally interpreted as a branching corridor
by the situation detector. Moreover, a closed door could hardly be distinguished



!

Initial:
FollowRightWall

CorridorRight
(control mark)

RightHandBend:
CorridorLeft: FollowLeftwall
FollowLeftWall
CorridorRight

(control mark)

/ DeadEnd: Stop

Fig. 4. Path of the wheelchair successfully following route A. The triangles indicate
the position and orientation of the robot in intervals of about 0.25s. The distortions
of the depicted path, particularly the turns not appearing as right angles, are due to
the non-ideal dead reckoning system of the wheelchair. For a map of the setting of this
experiment cf. Fig. 3.

from a wall. Therefore, doors have not been used as controlmarks or routers for
these experiments.

6 Conclusion and Outlook

In order to improve the acceptance of service and rehabilitation robots such as
the Bremen Autonomous Wheelchair, the problem of human-computer interac-
tion has to be tackled. Especially in the context of elder and handicapped users,
these robots have to satisfy some conditions: Firstly, they should be safe in the
sense that they work as they are intended to do and do no harm to people or
objects in their environment. Secondly, they should only assist the human op-
erator and provide skills he or she lost due to age, illness or impairments, but
they should not replace the user’s remaining capabilities. And thirdly, the robots
should be easy to control.

This paper deals with the latter in that it presents an approach to feed a
mobile robot with a route description that makes use of coarse and qualitative
expressions such as “left of”. This approach integrates the topics control of mo-



bile robots, landmark recognition and qualitative reasoning in a single service
robotics application.

While traveling, the wheelchair perceives its environment by sonar sensors
and extracts information about special landmarks, the controlmarks and the
routers. This is done by an algorithm based on line detection which is borrowed
from the field of image processing. In accordance with the current situation, the
robot chooses one of the available basic behaviors, e.g. “FollowCorridor”.

The first experimental results show that the approach presented here is a
promising method to guide mobile systems through buildings.

In order to improve the robustness of the algorithm, the recorded odome-
try data should be generalized (cf. [6,11] and [8] for incremental generalization
of routes) and matched with the route descriptions augmented by qualitative
distances.

When using qualitative distances in route descriptions, the performance of
the landmark detection can significantly be increased, because the likelihood of
the existence of a particular landmark varies with its position along the route.
By taking this fact into account, the misinterpretations of sonar images can be
minimized.

The integration of the segmentation and classification algorithm presented
in [7] will result in a further improvement by extracting motion shapes from
the route descriptions. The algorithm exploits the fact that the shape of the
path between two landmarks can be considered as a landmark itself, e.g. in a
description such as “The street makes a sharp turn to the left, which you follow.
After this turn, take the next street on the right.” The wheelchair can make use
of this additional information without further sensor equipment.

Future work will also deal with supplying route descriptions in natural lan-
guage rather than in the formal language used in this article.

Acknowledgements

The authors are supported by the Deutsche Forschungsgemeinschaft (DFG)
within the Priority Program “Spatial Cognition”.

References

1. J. Bigiin and G. H. Granlund. Optimal orientation detection of linear symmetry.
In Proc. of the First International Conference on Computer Vision, pages 433-438.
IEEE Computer Society Press, 1987.

2. B. Claus, K. Eyferth, C. Gips, R. Hornig, U. Schmid, S. Wiebrock, and F. Wysotzki.
Reference frames for spatial inference in text understanding. In Spatial Cognition
- An interdisciplinary approach to representing and processing spatial knowledge,
number 1404 in Lecture Notes in Artificial Intelligence. Springer, 1998.

3. C. Freksa and D. M. Mark, editors. Spatial Information Theory. Cognitive
and Computational Foundations of Geographic Information Science. Interna-
tional Conference COSIT’99, volume 1661 of Lecture Notes in Computer Science,
Berlin,Heidelberg,New York, August 1999. Springer.



10.

11.

12.

13.

14.

15.

B. Krieg-Briickner, Th. Réfer, H.-O. Carmesin, and R. Miiller. A taxonomy of
spatial knowledge and its application to the Bremen Autonomous Wheelchair. In
Ch. Freksa, Ch. Habel, and K. F. Wender, editors, Spatial Cognition, volume 1404
of Lecture Notes in Artificial Intelligence, pages 373-397, Berlin, Heidelberg, New
York, 1998. Springer.

A. Lankenau, O. Meyer, and B. Krieg-Briickner. Safety in robotics: The Bremen
Autonomous Wheelchair. In Proceedings of AMC’98, 5th Int. Workshop on Ad-
vanced Motion Control, pages 524-529, Coimbra, Portugal, 1998.

A. Musto, K. Stein, A. Eisenkolb, and Th. Roéfer. Qualitative and quantitative rep-
resentations of locomotion and their application in robot navigation. In Proceedings
of the 16th International Joint Conference on Artificial Intelligence (IJCAI-99),
August 1999.

A. Musto, K. Stein, A. Eisenkolb, K. Schill, and W. Brauer. Generalization, seg-
mentation and classification of qualitative motion data. In H. Prade, editor, Pro-
ceedings of the 13th European Conference on Artificial Intelligence (ECAI-98),
pages 180-184. John Wiley & Sons, 1998.

A. Musto, K. Stein, A. Eisenkolb, K. Schill, Th. Réfer, and W. Brauer. From motion
observation to qualitative motion representation. In C. Freksa, C. Habel, and
K. Wender, editors, Spatial Cognition II, Lecture Notes in Artificial Intelligence.
Springer, 2000.

Th. Rofer and A. Lankenau. Architecture and applications of the Bremen Au-
tonomous Wheelchair. In P. P. Wang, editor, Proc. of the Fourth Joint Conference
on Information Systems, volume 1, pages 365-368. Association for Intelligent Ma-
chinery, 1998.

Th. Rofer and A. Lankenau. Ensuring safe obstacle avoidance in a shared-control
system. In J. M. Fuertes, editor, Proc. of the 7th International Conference on
Emergent Technologies and Factory Automation, pages 1405-1414, 1999.

Th. Rofer. Route navigation using motion analysis. In Freksa and Mark [3], pages
21-36.

E.K. Sadalla, W.J. Burroughs, and L.J Staplin. Reference points in spatial cogni-
tion. Journal of Exzperimental Psychology: Human Learning and Memory, 6:516—
528, 1980.

B. Tversky and P. U. Lee. How space structures language. In C. Freksa, C. Habel,
and K.-F. Wender, editors, Spatial Cognition. An Interdisciplinary Approach to
Representing and Processing Spatial Knowledge, volume 1404 of Lecture Notes in
Artificial Intelligence. Springer, 1998.

B. Tversky and P. U. Lee. Pictorial and verbal tools for conveying routes. In
Freksa and Mark [3], pages 51-64.

B. Tversky. Cognitive maps, cognitive collages, and spatial mental models. In
Andrew U. Frank and Irene Campari, editors, Spatial Information Theory. A The-
oretical Basis for GIS. European Conference, COSIT’93, volume 716 of Lecture
Notes in Computer Science, pages 14—24, Berlin, Heidelberg, New York, 1993.
Springer.





