Controlling a Wheelchair with Image-based Homing

Thomas Röfer

Bremen Institute for Safe and Secure Systems

University of Bremen, Germany
Contents

Biological Motivation

Sensor for Taking Panoramic Images

Matching Panoramic Images

Calculating the Rotation and the Translation Direction

Controlling a Wheelchair

Experiments and Results
Snapshot Learning in Bees

(Cartwright and Collett 1983)
Sensor for Taking Panoramic Images

spherical mirror

horizontal plane

camera

direction

intensity

$-\pi$ $-2\pi/3$ $-\pi/3$ 0 $\pi/3$ $2\pi/3$ π
Matching Panoramic Images

![Graphs showing intensity vs. direction](image)
Basic Idea

1st image \hspace{2cm} 2nd image

- initialize
- train
- matching
- choose one pixel of the 1st image
- search 2nd image for most similar pixel pair
- adapt positions of the 1st image in σ-neighborhood

4096×4096
One-dimensional Feature Map

adaptation

position y_i

similarity

red + 1st derivation

green + 1st derivation

blue + 1st derivation
Similarity Search

\[y_{ji} - \sigma \]

\[y_{ji} \]

\[y_{ji} + \sigma \]

\[w_j \]

\[w_{i+1} \]
Adaptation Step

\[y_{j_{i-\sigma}} \rightarrow y_{j_i} \rightarrow y_{j_{i+\sigma}} \]

adaption step
Translational and Rotational Optical Flow
Dividing Optical Flow into Rotation and Translation

- Optical flow
 - Rotation
 - Translational flow
Calculating the Translation Direction

FOE

FOC
Relation between Rotation and Direction on a Wheelchair

Rotation ω

Target position

Direction δ

Current position

$\frac{\omega}{2} = -\delta$
Representing Trajectories as Image Sequences

\[\frac{\omega}{2} \neq -\delta \]
If the Translational Flow Is Large, Reduce ε. Otherwise, Reduce ω.

\[\varepsilon = \frac{\omega}{2} + \delta \]
Experiments and Results
Analysis

- targets
- direction
- rotation
- weighted