Routemark-Based Navigation of a Wheelchair

**Thomas Röfer** 

**DFG Priority Programme "Spatial Cognition"** 

Prof. B. Krieg-Brückner Bremen Institute for Safe and Secure Systems Center for Computing Technology

**Bremen University, Germany** 







# The Bremen Autonomous Wheelchair

### Vehicle

- 134 cm x 72 cm
- front driving axle
- back steering axle
- on-board PC + 5 microcontrollers

### Sensors

- 12 tactile sensors
- 6 infrared sensors
- 8 wide-angle ultrasonic sensors (80°)
- 8 narrow-angle ultrasonic sensors (7°)
- 1 camera on a pan-tilt-head
- odometry







# Sensor Weaknesses

### Ultrasonic

- reflections: diagonal, smooth surfaces
- absorption: soft surfaces



#### Infrared

6

- perceived too late: dark, unreflective surfaces
- perceived too early: mirroring surfaces



# Local Obstacle Map

#### **Properties**

- "short term memory"
- stores local surroundings of the wheelchair
- size 4 x 4 m<sup>2</sup>
- entries are forgotten after 30 seconds

#### Input

- 6 narrow-angle and 2 wideangle ultrasonic sensors
- 6 infrared sensors

### Output

4 "virtual sensors"





## **Basic Behaviors**

### **Behaviors**

- wall-centering
- wall-following left/right
- turning into left/right door
- direction-following forward/backward
- stop

8

### **Mode of operation**

- forward until collision
- then 50 cm back
- again forward



# Semi-Local 3D-marks

### **Preliminary Work**

image sequence

- $\rightarrow$  small (semi-local) image regions
- $\rightarrow$  normal flow field
- $\rightarrow$  focus of expansion

### **Future**

Q

- $\rightarrow \text{depth}$
- $\rightarrow$  semi-local 3D-structures
- $\rightarrow$  3D-marks

### **Advantages**

- efficient (realtime)
- robust against noise

















## **Backtracking**

### **Method**

- no inverse behaviors
- instead: recording odometry positions during behavior
- canceling behavior by backtracking recorded positions
- with "direction-following backward" behavior

### Strategy

15

- backtracking last segment, searching for routemarks
- repeating last segment
- backtracking last two segments
- repeating last two segments etc.



# Summary

### **The Bremen Autonomous Wheelchair**

sensor control subsystems

### **Basic Behaviors**

local obstacle map

### Routemarks

- semi-local 3D-marks
- artificial routemarks
- local routemark map

### **Route Navigation**

- teaching
- autonomous switching of behaviors
- errors

16

backtracking

BINP |