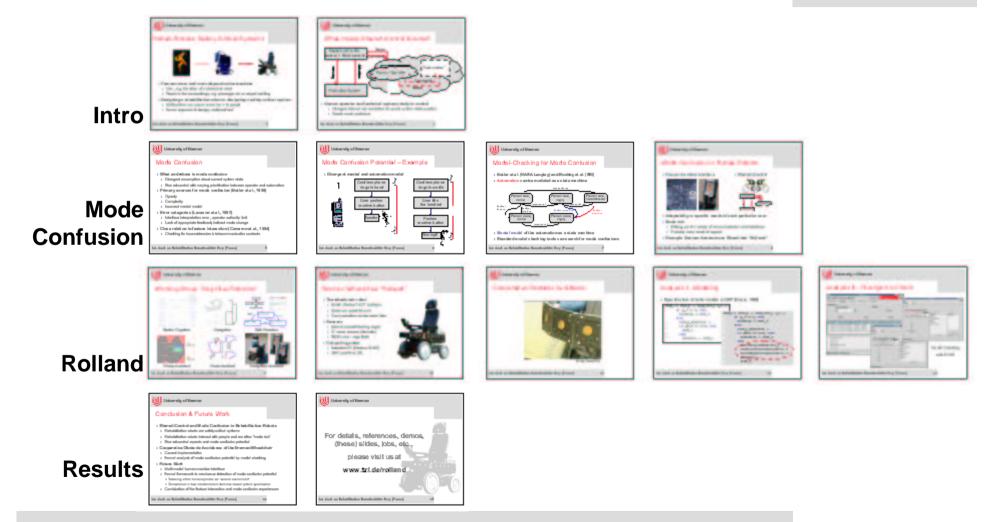


Avoiding Mode Confusion in Service Robots

The Bremen Autonomous Wheelchair "Rolland" as an Example from Rehabilitation Robotics

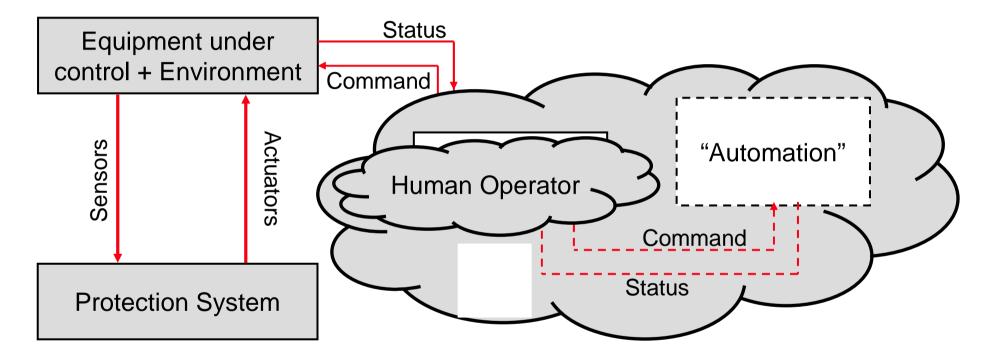

Axel Lankenau

Bremen Institute of Safe Systems Center for Computing Technologies University of Bremen Germany

www.tzi.de/rolland

Outline of the Talk

Rehab-Robots: Safety-Critical Systems



Persons more and more depend on the machine

- User, e.g. the driver of a wheelchair robot
- People in the surroundings, e.g. passengers in an airport building
- Designing a rehabilitation robot is designing a safety-critical system
 - Malfunctions can cause severe harm to people
 - Formal approach to design, verify and test

What makes Shared-Control Special?

Human operator and technical system jointly in control

- Divergent internal representation of current system state possible
- Result: mode confusion

Mode Confusion

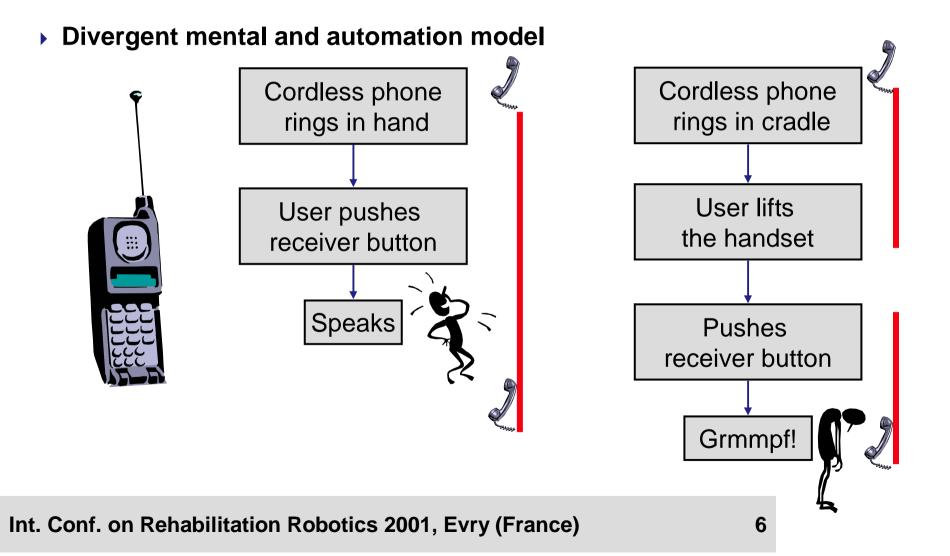
What and where is mode confusion

- Divergent assumption about current system state
- Shared-control with varying prioritization between operator and automation

Primary sources for mode confusion (Butler et al., 1999)

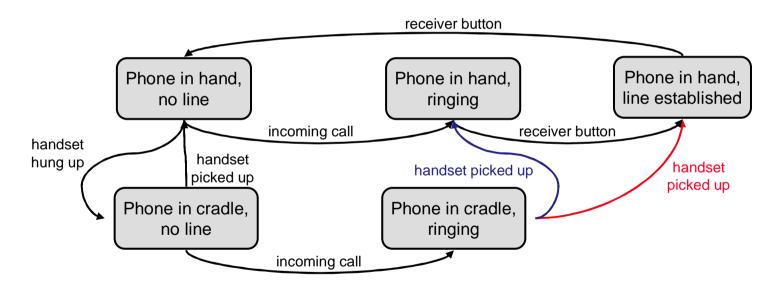
- Opacity
- Complexity
- Incorrect mental model

Error categories (Leveson et al., 1997)


- Interface interpretation error, operator authority limit
- Lack of appropriate feedback, indirect mode change

Close relation to feature interaction (Cameron et al., 1994)

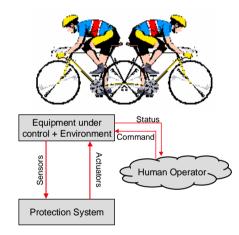
Checking for inconsistencies in telecommunication contexts


Mode Confusion Potential – Example

Model-Checking for Mode Confusion

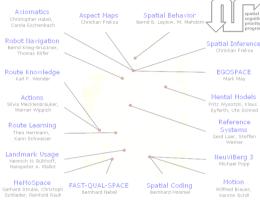
- Butler et al. (NASA Langley) and Rushby et al. (SRI)
- Automation can be modeled as a state machine

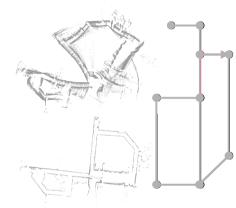
- Mental model of the automation as a state machine
- Standard model checking tools can search for mode confusions

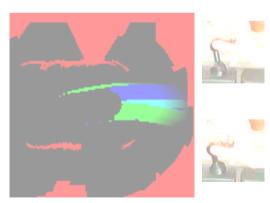


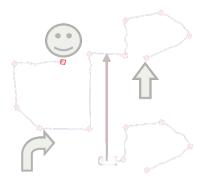
Mode Confusion in Rehab-Robots

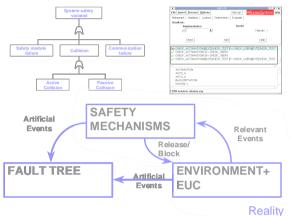
Human-machine interface


Shared-Control


- Adaptability to specific needs of each particular user
- Mode rich
 - Making use of a variety of sensors/actuators and interfaces
 - Probably many levels of support
- Example: Bremen Autonomous Wheelchair "Rolland"


Working Group "Cognitive Robotics"


Spatial Cognition


Navigation

Driving Assistant

Route Assistant

Safe Robotics

Navigation Assistant

Bremen Wheelchair "Rolland"

The wheelchair robot

- Model "Genius 1.522" by Meyra
- Maximum speed 84 cm/s
- Communication via two serial links

Sensors

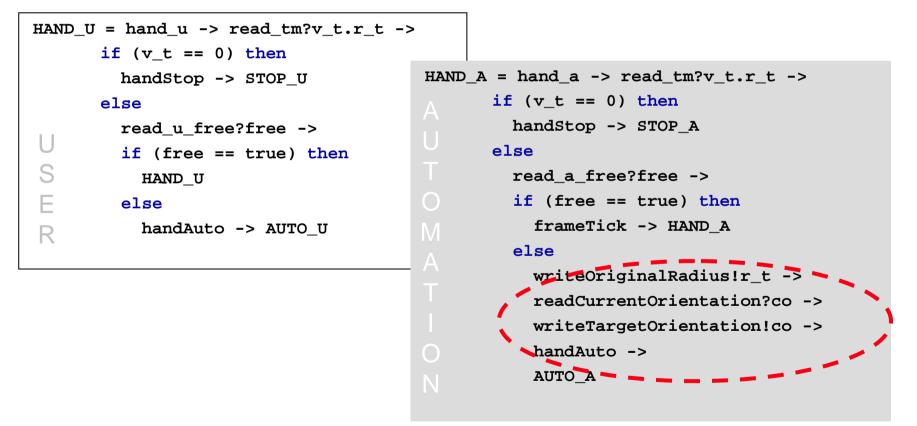
- Internal (speed/steering angle)
- > 27 sonar sensors (Nomadic)
- SICK laser range finder

Computing power

- Industrial-PC (Pentium III 600)
- QNX (real-time OS)

Cooperative Obstacle Avoidance

© hitec, 3sat (2000)


Int. Conf. on Rehabilitation Robotics 2001, Evry (France)

11

Analysis I - Modeling

Specification of both models in CSP (Hoare, 1985)

Analysis II - Divergence Check

FDR 2.75			
File Assert Process Options	nterrupt III <u>IIFormalSystems</u> Help	FD	PR Debug 1
Refinement Deadlock Livelock Determinism E	Valuate	<u>File</u>	Help
Deadlock:	1	Example 1 🔮 of 1	
Implementation	Model	0 1	
10 E	Failures -	CHECK_AUTOMATION4[[EXT]]CHECK	·
		CHECK_AUTOMATION4[[EXT]]CHECK	Performs Accepts
Check Add	Clear		hand_a read_tm_11
Add	Clear	Ì	read_a_free.false handAuto
		i X	auto_a read tm1.1
★ CHECK_AUTOMATION4[EXT]CHECK_TEST [F= CHECK_AUTOMATION5 [T= CHECK_USER4	FDR Debug 1	α' D	read_a_free.true
✓ CHECK_AUTOMATION5 [F= CHECK_USER4	Eile	L L	
✓ CHECK_AUTOMATION5[[EXT]]CHECK_TEST [F=	Example 1 of 1	AUTOMATION	
	0 1	[] []	Allowed
			Show tau Show Acc. Ref.
AUTOMATION AUTO A	CHECK_USER4[IEXT]]CHECK_TEST	FDR2 debugger	
AUTO U		rforms	
BACK2ROTATION	CHECK_USER4_CHECK_TEST rea	nd_u d_tm.11	
CHAOS(-)	har	d_u_free.false ndAuto	Model Checking
		d_tm1.1	-
FDR2 session: obsneu.csp		d_u_free.true oHand	with FDR2
		nd_u d tm.11	
	USER	-	
		☐ Show tau	
	FDR2 debugger		

Conclusion & Future Work

Shared-Control and Mode Confusion in Rehabilitation Robots

- Rehabilitation robots are safety-critical systems
- Rehabilitation robots interact with people and are often "mode rich"
- Shared-control aspects and mode confusion potential

• Cooperative Obstacle Avoidance of the Bremen Wheelchair

- Current implementation
- Formal analysis of mode confusion potential by model checking

Future Work

- Multi-modal human-machine interface
- Formal framework to mechanize detection of mode confusion potential
 - Modeling of the human operator as "second environment"
 - Derivation of critical situations from fault-tree based system specification
- Integration of the feature interaction and mode confusion experiences

For details, references, demos, (these) slides, jobs, etc.,

please visit us at

www.tzi.de/rolland