

Mobile Robot Self-Localization in Large-Scale Environments

Axel Lankenau, Thomas Röfer

Bremen Institute of Safe Systems
Center for Computing Technology (TZI)

Universität Bremen

Germany

Working Group "Cognitive Robotics"

System safety

Violated

System safety

S

Spatial Cognition

GT GERMANTEAM

Safe Robotics

Driving Assistant

RoboCup

SLAM

Navigation Assistant

Generalization of Locomotion

Modeling the Environment

Junctions

- Angle between incoming and outgoing segment
- Length of outgoing segment
- List of incoming segments

Inductive Approach

- Idea: Assigning route corners to junctions
- ▶ Two-step assignment
 - Corner matches a junction
 - The rest of the generalized route matches up to the junction

Probabilities from Similarities

Probabilities: Matching Corners

- Differentiation between the probabilities that
 - the corner previously generalized really exists, ...
 - Angle of corner is similar to angle of the junction in the route graph
 - ... the corner has been detected erroneously, ...
 - Angle of corner is similar to 0°
 - ... a corner has been overlooked, ...
 - Angle of the junction in the route graph is similar to 0°
 - ... it has been turned around at the corner previously generalized
 - Angle of corner is similar to 180°

Propagation of Probabilities

- When no corner has been detected
 - Probabilities of overlooked corners
- When a corner has been detected
 - Case 1: corner really exists (normal junction, turn around)
 - Case 2: corner does not exist

Building: MZH

▶ Building: NW 2

▶ Buildings: IW + BIBA

Building: MZH

Overall length: 2176 m

Odometry Data

Route Graph

Results I

- Believed in previous corner
- Not believed in previous corner
- Most probable position

Intensity encodes confidence

Speeded up by factor 70

Results II

Related Work

	RouteLoc	Nourbakhsh et al.	Simmons & Koenig	Thrun et al.
Model	Topological-metric map	State set / topological map	Markov states, hybrid topological-metric map	Particle filter, metric map
Sensor input	odometry (+ 2 sonars for generalization)	$\begin{array}{l} {\rm sonars}\;(+\;{\rm odometry}\;{\rm for}\\ {\rm corridor}\;{\rm centering}) \end{array}$	odometry + sonars	$\begin{array}{l} {\rm odometry} + {\rm camera} \ {\rm or} \\ {\rm laser} \ {\rm range} \ {\rm finder} \end{array}$
Scenario	campus (in & outdoor)	office (indoor)	office (indoor)	museum (indoor)
Markov	no	yes	yes	yes
Complexity	144 junctions + 102 turn-junctions for 46 nodes and 100 edges, depends on number of decision points	One state per node (decision point) or per edge (corridor)	for 95 nodes and	for an indoor environ- ment, number of sam-
Memory	low	low	low	huge
Precision	Position estimate given by junction and metric offset	Corridor resolution, no metric information	Markov states provide resolution of 1m (translational), 90° (rotational)	Samples indicate position, only small errors

Summary & Outlook

Probabilistic self-localization based on locomotion

- Minimal sensor equipment
- Suitable for large-scale environments
- Efficient

Future Work

- SLAM
- Integration of additional sensor measurements