Fast and Robust Edge-Based Localization in the Sony Four-Legged Robot League

Thomas Röfer
Matthias Jüngel

Center for Computing Technology (TZI)
Universität Bremen

Dep. of Artificial Intelligence
Humboldt-Universität zu Berlin
Outline of the Talk

- Motivation
- Detecting edges
- Monte-Carlo Localization
 - Sensor model
 - Details
- Experiments
- Localization in real games
- Conclusions
Localization in the Sony Four-Legged Robot League

- Advantages
 - Automatic positioning
 - Sharing perceptions
 - Full support of referee commands
- Challenges
 - Vision-based
 - Directed vision
 - Variable camera position
 - Limited computing power
Localization in the Sony Four-Legged Robot League

- Advantages
 - Automatic positioning
 - Sharing perceptions
 - Full support of referee commands
- Challenges
 - Limited computing power
 - Vision-based
 - Directed vision
 - Variable camera position
The Field
Detecting Edges

- Between field and
 - Border
 - Field lines
 - Goals
 - yellow
 - skyblue
Projection on the Field
Projection on the Field

www.robocup.de/germanteam
Approach
Assigning Observations to Field Model
Sensor Model
Details

- Probability of samples
 - Probability is adapted slowly
 - Separate probabilities for different edge types
 - Samples are randomly moved, weighted by their probabilities
- Sensor resetting
 - Draw samples based on the ratio of their probability and the average probability
 - Replace them by candidate postures that can be derived from observations
- Calculating candidates in advance
 - A large number of random postures is generated
 - Their distance to the edge they are pointing to is determined
 - The postures are indexed by their distance and edge type
Experimental Setup
Experiment 1

- Robot continuously moving (by joystick)
- Approx. 5300 measurements
- Average error < 10.5 cm
 (field size is 420 x 270 cm²)
Experiment 2

- Robot walks to random positions (approx. 70)
- Average error in positioning < 9.5 cm
- Average error in localization < 8.5 cm
Edge-based Localization in Real Games
Improvements since Writing the Paper

- Candidate postures only result from goal points
- Samples are moved in direction of candidate postures, they are not replaced by them
- The speed of this motion depends on the speed of the robot (the faster the robot walks, the slower the samples adapt)
- Samples are also moved according to the assignment of measured points to model points (weighted by the distance to the measured points)
Example
Conclusions

- Fast and robust Monte-Carlo localization
- Using edges between field and border/lines/goals
- Average error < 10.5 cm
- Works in real games

- In RoboCup 2003
 - Played with combined localizer (edges + landmarks)
 - Demonstrated match (GT vs. GT) without landmarks
- In RoboCup 2004
 - Removal of landmarks?
Other Talks by Members of the GermanTeam

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vision 1, 1.1</td>
<td>Matthias Jüngel, Jan Hoffmann, Martin Lötzhc</td>
<td>A Real-Time Auto-Adjusting Vision System for Robotic Soccer</td>
</tr>
<tr>
<td>Thursday 14:30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vision 1, 1.2</td>
<td>Ingo Dahm, Sebastian Deutsch, Matthias Hebbel, André Osterhues</td>
<td>Fully Autonomous Robust Color Classification</td>
</tr>
<tr>
<td>Thursday, 14:55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI 1, 1.2</td>
<td>Andrea Miene, Ubbo Visser, Otthein Herzog</td>
<td>Recognition and prediction of motion situations based on a qualitative motion description</td>
</tr>
<tr>
<td>Thursday, 14:55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AI 2, 2.1</td>
<td>Martin Lötzhc, Joscha Bach, Hans-Dieter Burkhard, Matthias Jüngel</td>
<td>Designing Agent Behavior with the Extensible Agent Behavior Specification Language</td>
</tr>
<tr>
<td>Thursday 16:25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vision 2, 2.3</td>
<td>Thomas Röfer, Matthias Jüngel</td>
<td>Fast and Robust Edge-Based Localization in the Sony Four-Legged Robot League</td>
</tr>
<tr>
<td>Thursday, 17:15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vision 2, 2.4</td>
<td>Kai Hübner</td>
<td>A Symmetry Operator and its Application to the RoboCup</td>
</tr>
<tr>
<td>Thursday, 17:40</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>