Behaving in Space

How Robots Play Soccer

Thomas Röfer

Bremen Institute of Safe Systems

Center for Computing Technology (TZI)

Universität Bremen
RoboCup – The Goal

- By the year 2050, develop a team of fully autonomous humanoid robots that can win against the human world soccer champion team. -
Goals in the Final
Sony Aibo ERS-7

- 20 degrees of freedom (can also be measured)
 - 3 per leg
 - pan and 2x tilt in the neck
 - chin, 2 ears, roll and tilt tail
- CCD camera
 - 416x320 pixels (brightness)
 - 208x160 pixels (color)
- Further sensors
 - 4 ground contact sensors
 - 3 PSD infrared sensors
 - 3 acceleration sensors
- 585 MHz Mips processor
- 802.11b wireless network
30 Seconds in the Life of an Aibo
Typical Image Processing Pipeline

- Camera Image
- Object Recognition
- Segmentation
- Blob Clustering
Systems of Coordinates

- **Camera Position**
 - camera’s system of coordinates → robot’s system of coordinates
 - Method: forward kinematics

- **Robot Position**
 - robot’s system of coordinates → field’s system of coordinates
 - Method: Self-Localization
Images in Robot's System of Coordinates
Prespective-Based Image Processing

Horizon

Horizon-aligned grid
Anchor Points and Specialists

Pattern of a beacon

Ball specialist
Using Gradients

One scanline of the specialist
U-channel on scanline
Size-Based Positions of Percepts

- Egocentric Positions of Percepts
 - direction (from images and camera position)
 - distance (from object size)
Projection-Based Positions of Percepts
Projection-Based Positions of Percepts
Self-Localization – Particle Filter

1. **Update by action**
2. **Update by observation**
3. **Resampling**
Self-Localization – Percepts Used

Goals

Beacons

Goal points

Edges field/wall

Field lines (vert.)

Field lines (horiz.)
Self-Localization – Details

- Probability of samples
 - Probability is adapted slowly
 - Separate probabilities for different edge types
 - Samples are randomly moved, weighted by their probabilities

- Sensor resetting
 - Draw samples based on the ratio of their probability and the average probability
 - Replace them by candidate postures that can be derived from observations

- Calculating candidates in advance
 - A large number of random postures is generated
 - Their distance to the edge they are pointing to is determined
 - The postures are indexed by their distance and edge type
Obstacle and Ball Model

- **Ball Model**
 - Kalman Filter estimates \((x, y, v_x, v_y)\)
 - Communicated positions are only used after a while

- **Obstacle Model**
 - Polar representation of free space
 - Border of free space is labeled by obstacle types
Extensible Agent Behavior Specification Language (XABSL)
XABSL – Options and States

option goalie-playing

- clear ball
- get to ball
- return to goal

stay in goal

- kick
- go to ball
- return to own goal
- position inside goal

option goalie-playing

state get-to-ball

- if
- else

ball seen

- if
- else-if
- else

ball.distance < 15 cm

ball too far away

- clear ball
- get to ball
- return to goal
<option name="goalie-playing" initial-state="stay-in-goal"
 description="goalie playing behavior">
 <state name="get-to-ball">
 <subsequent-basic-behavior ref="go-to-ball"/>
 <set-output-symbol ref="head-control-mode"
 value="search-for-ball"/>
 <decision-tree>
 <if>
 <condition description="ball seen">
 <less-than>
 <decimal-input-symbol-ref
 ref="ball.time-since-last-seen"/>
 <decimal-value value="2000"/>
 </less-than>
 <condition>
 <if>
 <condition description="ball kickable">
 <less-than>
 <decimal-input-symbol-ref
 ref="ball.distance"/>
 <decimal-value value="150"/>
 </less-than>
 </condition>
 </if>
 </condition>
 </if>
 </condition>
 </if>
 </decision-tree>
 </state>
</option>

<transition-to-state ref="clear-ball"/>
</if>
</else-if>
<condition description="ball too far away">
 <greater-than>
 <decimal-input-symbol-ref ref="ball.distance"/>
 <decimal-value value="900"/>
 </greater-than>
</condition>
<transition-to-state ref="return-to-goal"/>
</else-if>
<else>
 <transition-to-state ref="get-to-ball"/>
</else>
</if>
<else>
 <transition-to-state ref="return-to-goal"/>
</else>
</decision-tree>
</state>
</option>
XABSL-Graph of GermanTeam 2004
Dynamic Role Assignment

Roles
- Goalie (defined by rules)
- Striker, Offensive Supporter, Defensive Supporter

Assigning Role „Striker“
- Computed by all robots and sent to teammates:
 \[\text{estimatedTimeToReachBall} = \frac{5 \text{ s/m} \times \text{distanceToBall}}{1.25 \text{ s} \times \angle(\text{ball, opponentGoal}) / \pi} \]
- Minimum of:
 \[\text{estimatedTimeToReachBall} - 0.5 \text{ s} \times \text{isAlreadyStriker} + 2 \times \text{timeSinceBallWasSeenLast} \]

Assigning Role „Offensive Supporter“
- Minimum of:
 \[\text{distanceToOpponentGoalLine} - 0.3 \text{ m} \times \text{isAlreadyOffensiveSupporter} \]
Positioning using Potential Fields
Positioning using Potential Fields
Positioning using Potential Fields
Positioning using Potential Fields
Reactive Kick Selection

Kicking forward Data recorded for left paw kick
Motion Control

- Head Control
 - Symbolic modes
 - Separate XABSL engine
- Walking Engine
 - Egocentric speed vector: \((x, y, \theta)\)
- Getup Engine
 - Getting up after the robot fell down
 - Based on accelerometer measurements
- Wakeup Engine
 - Getting up after the robot was started
- Special Actions
 - Kicks, cheering moves
 - Fixed joint angle sequences
Omni-DIRECTIONAL WALKING

Forward

Sideward

Turning

Omni-directional
Gait Parameters

- Front/Rear locus
 - x, y, z offsets
 - step height
 - tilt
 - ground, lift, air, and lowering phases
- Step
 - size
 - duration
- Rear to Front offsets
 - x speed ratio
 - phase shift
- Body shift
 - x and y ratios
 - phase offset

www.germanteam.org

Colloquium of SFB/TR 8 “Spatial Cognition”, 2004
Target Joint Angles and Actual Joint Angles without Ground Contact
Target Joint Angles and Actual Joint Angles with Ground Contact
Evolutionary Algorithm

Mutation
Fitness
Crossover
Resulting Gait – ERS-210

311 mm/s
Conclusions and Future Work

Conclusions
- RoboCup: compare complex robotics solutions
- Perception
- World modelling
- Behavior control
- Motion control

Future Work
- New field, new problems (larger field, no field walls)
- Integrated, probabilistic world model
 - per robot (Kwok & Fox, 2004)
 - for whole team
- Handling variable lighting...
Questions?