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Abstract—Reversible logic serves as a basis for emerging
technologies like quantum computing and additionally has ap-
plications in low-power design. In particular, since traditional
technologies like CMOS are going to reach their limits in the
near future, reversible logic has been established as a promising
alternative. Thus, in the last years this area started to become
intensely studied by researchers. In particular, how to efficiently
synthesize complex reversible circuits is an important question.
So far, only synthesis approaches are available that rely on
Boolean function representations, like e.g. truth tables or decision
diagrams.

In this paper, we propose the programming language SyReC
that allows to specify and afterwards to automatically synthesize
reversible circuits. Using an existing programming language
for reversible software design as basis, we introduce new con-
cepts, operations, and restrictions allowing the specification of
reversible hardware. Furthermore, a hierarchical approach is
presented that automatically transforms the respective state-
ments and operations of the new programming language into
a reversible circuit. Experiments show that with the proposed
method, complex circuits can be easily specified and synthesized
while with previous approaches this often is not possible due to
the limits caused by truth tables or decision diagrams.

I. INTRODUCTION

In the last decades, great achievements have been made in
the development of computing machines. However, due to the
exponential growth of transistor density and in particular due
to the tremendously increasing power dissipation, researchers
expect that “traditional” technologies like CMOS will reach
their limits in the near future [1]. To further satisfy the needs
for more computational power, alternatives are needed.

Reversible logic marks a promising new direction where all
operations are performed in an invertible manner. This enables
applications e.g. in the domain of low-power design since
reversible circuits might have zero power dissipation [2], [3].
In [4], first reversible circuits driven by their input signals only
(and accordingly without additional power supplies) already
have been implemented. Besides that, also the growing area
of quantum computation [5] established itself as a promising
application of reversible logic. Quantum computers allow to
solve practical relevant problems (e.g. factorization) much
faster than traditional circuits [6], [7]. Since every quantum
operation is inherently reversible, progress in the domain of
reversible logic can be directly applied to quantum logic.

As a result, reversible logic became an intensely studied
research area leading to first approaches for synthesis [8]–[13],
optimization [14], [15], verification [16]–[18], testing [19]–
[21], and even debugging [22]. But so far only simple circuits
have been considered since most of the respective synthesis
approaches still rely on Boolean function descriptions like per-
mutations [8], truth tables [9], binary decision diagrams [13],
positive-polarity Reed-Muller expansion [10], or Reed-Muller
spectra [11]. They do not allow the specification of complex
reversible systems.

However, it can be expected that significantly larger re-
versible or quantum circuits become (physically) realizable

in the near future. Thus, synthesis of reversible logic must
reach a level which allows the description of complex sys-
tems at higher abstractions. For this purpose, programming
languages can be exploited. Considering traditional synthesis,
approaches using languages like VHDL [23], SystemC [24],
or SystemVerilog [25] have been established to specify and
subsequently synthesize circuits. Even if first programming
languages are also available in the reversible domain (see
e.g. [26]–[28]), so far they only have been used to design
reversible software. Similar approaches for reversible circuit
synthesis are still missing.

In this paper, we propose the programming language SyReC
intended to specify and afterwards to automatically synthesize
reversible logic. For this purpose, Janus [28] – an existing
language designed to specify reversible software – is used as
basis. We introduce new concepts as well as operations and
describe restrictions leading to a programming language that
allows the specification of reversible circuits. Afterwards, the
respective steps needed to synthesize a program written in this
language are described. Therefore, a hierarchical approach is
presented that automatically transforms the respective state-
ments and operations of the new programming language into
a reversible circuit. Experiments show that complex circuits
can be efficiently generated using our approach. A comparison
to a recently presented synthesis approach for large reversible
functions shows the advantages of our technique.

The remainder of this paper is structured as follows: Sec-
tion II introduces reversible logic and therewith provides the
basis for the rest of this work. Afterwards, the SyReC pro-
gramming language as well as the new concepts, operations,
and restrictions applied for hardware synthesis are introduced
in Section III. Section IV describes the hierarchical synthe-
sis approach and explains in detail how reversible circuits
specified in SyReC can be generated. Finally, experimental
results and conclusions are given in Section V and Section VI,
respectively.

II. REVERSIBLE LOGIC

To keep the paper self-contained, this section introduces
the basics of reversible functions and reversible circuits. For a
more detailed insight we refer to the respective publications.

Definition 1. A multiple-output function f : Bn → Bm is a
reversible function iff (1) its number of inputs is equal to the
number of outputs (i.e. n = m) and (2) it maps each input
pattern to a unique output pattern.

In other words, each reversible function is a bijection that
perform permutations of the set of input patterns. A function
that is not reversible is termed irreversible. Frequently, (irre-
versible) multi-output Boolean functions should be represented
by reversible circuits. This necessitates the irreversible func-
tion to be embedded [29] into a reversible one which requires
the addition of constant inputs and garbage outputs.
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Fig. 1. Reversible circuit

To realize reversible logic some restrictions must be con-
sidered, i.e. fanouts and feedback are not allowed [5]. This is
reflected in the definition of reversible circuits.

Definition 2. A reversible circuit G over inputs
X = {x1, x2, . . . , xn} is a cascade of reversible
gates gi, i.e. G = g1g2 · · · gd where d is the number
of gates. A reversible gate has the form g(C, T ), where
C = {xi1 , . . . , xik

} ⊂ X is the set of control lines and
T = {xj1 , . . . , xjl

} ⊂ X with C ∩ T = ∅ is the set of target
lines. C may be empty. The gate operation is applied to the
target lines iff all control lines meet the required control
conditions. Control lines and unconnected lines always pass
through the gate unaltered.

In the past, Toffoli and Fredkin gates have been established
as a universal gate library for reversible circuits:
• A Toffoli gate [30] has a single target line xj and

maps the input (x1, x2, . . . , xj , . . . , xn) to the output
(x1, x2, . . . , xi1xi2 · · ·xik

⊕xj , . . . , xn). That is, a Toffoli
gate inverts the target line iff all control lines are assigned
to 1.

• A Fredkin gate [31] has two target lines xj1 and xj2 .
The gate interchanges the values of the target lines iff
the conjunction of all control lines evaluates to 1.

To determine the effort to realize a reversible circuit, the
following cost models are used depending on the addressed
technology:
• Gate count denotes the number of gates the circuit

consists of (i.e. d).
• Quantum cost denotes the effort needed to transform a

reversible circuit to a quantum circuit. Table I shows the
quantum cost for a selection of Toffoli and Fredkin gate
configurations as introduced in [32] and further optimized
in [29] and [33]. As can be seen, gates of larger size are
considerably more expensive than gates of smaller size.
The sum of the quantum cost for all gates defines the
quantum cost of the whole circuit.

• Transistor cost denotes the effort needed to realize a
reversible circuit in CMOS according to [34] (with slight
extensions). The transistor cost of a Toffoli or Fredkin
gate is 8 · s where s is the number of control lines.

Example 1. Figure 1 shows a reversible circuit consisting
of Toffoli and Fredkin gates. The control lines are thereby
denoted by l, while the target lines are denoted by ⊕ (for
Toffoli gates) and × (for Fredkin gates), respectively. The
annotated values illustrate the computation of the respective
gates. This circuit has a gate count of 4, quantum cost of 10,
and transistor cost of 32.

III. THE SYREC LANGUAGE

In this work, we use Janus [28] as basis for the program-
ming language SyReC to specify reversible systems to be
synthesized as circuits. This section briefly reviews the syntax

TABLE I
QUANTUM COST FOR TOFFOLI GATES

NO. OF QUANTUM COST
CONTROL LINES OF A TOFFOLI GATE OF A FREDKIN GATE

0 1 3
1 1 7
2 5 15
3 13 28, if at least 2 lines are

unconnected
31, otherwise

4 26, if at least 2 lines are 40, if at least 3 lines are
unconnected unconnected
29, otherwise 54, if 1 or 2 lines are

unconnected
63, otherwise

5 38, if at least 3 lines are 52, if at least 4 lines are
unconnected unconnected
52, if 1 or 2 lines are 82, if 1, 2 or 3 lines are

unconnected unconnected
61, otherwise 127, otherwise

6 50, if at least 4 lines are 64, if at least 5 lines are
unconnected unconnected
80, if 1, 2 or 3 lines are 102, if 1, 2, 3 or 4 lines are

unconnected unconnected
125, otherwise 255, otherwise

of the Janus language. Afterwards, the new concepts and
operations added to address circuit synthesis are introduced.

A. The Software Language Janus
Janus is a reversible language that is simple but yet powerful

enough to design practical reversible software systems [28].
It provides fundamental constructs to define control and data
operations while still preserving reversibility.

Figure 2 shows the syntax of Janus. Each Janus program
(denoted by P) consists of variable declarations (denoted by D)
and procedure declarations. The variables have non-negative
integer values and are denoted by strings. They can be grouped
as arrays. New variables are initially assigned to 0. Constants
are denoted by c. Each procedure consists of a name (id) and
a sequence of statements (denoted by S) including operations,
reversible conditionals, reversible loops, as well as call and
uncall of procedures (lines 4 to 7 in Figure 2). Variables within
statements are denoted by V .

In the following, we distinguish between reversible as-
signment operations (denoted by ⊕) and (not necessarily
reversible) binary operations (denoted by �). The former ones
assign values to a variable on the left-hand side. Therefore,
the respective variable must not appear in the expression
on the right-hand side. Furthermore, only a restricted set
of assignment operations exists, namely increase (+=), de-
crease (-=), and bit-wise XOR (ˆ=), since they preserve the
reversibility (i.e. it is possible to compute these operations in
both directions). In particular, the bit-wise XOR is of interest
because aˆ=b is equal to an assignment a=b if a is equal to 0.

In contrast, binary operations, i.e. arithmetic (+, *, /, %, */),
bit-wise (&, |, ˆ), logical (&&, ||), and relational (<, >, =,
!=, <=, >=) operations, may not be reversible. Thus, they
can only be used in right-hand expressions which preserve
(i.e. do not modify) the values of the respective inputs. In
doing so, all computations remain reversible since the input
values can be applied to revert any operation. For example,
to specify a multiplication (i.e. a*b) in Janus, a new free
variable c must be introduced which is used to store the
product (i.e. cˆ=a*b is applied). In comparison, to common
(irreversible) programming languages this forbids statements



(1) P ::= D∗ (procedure id S+)+
(2) D ::= x | x[c]
(3) V ::= x | x[E]
(4) S ::= V ⊕= E |
(5) if E then S else S fi E |
(6) from E do S loop S until E |
(7) call id | uncall id | skip
(8) E ::= c | V | (E � E)
(9) ⊕ ::= + | - | ˆ

(10) � ::= ⊕ | * | / | % | */ | & | | | && | || |
(11) < | > | = | != | <= | >=

Fig. 2. Syntax of the software language Janus

(1) P ::= D∗ (procedure id S+)+
(2) D ::= x | x ( c )
(3) V ::= x | x.N:N | x.N
(4) N ::= c | #V
(5) S ::= V <=> V | V ⊕= E |
(6) if E then S else S fi E |
(7) from N do S loop S until N |
(8) for N do S until N |
(9) call id | uncall id | skip

(10) E ::= N | V | (E � E) | (E < N)
(11) ⊕ ::= + | - | ˆ
(12) � ::= ⊕ | * | / | % | */ | & | | | && | || |
(13) < | > | = | != | <= | >=
(14) < ::= << | >>

Fig. 3. Syntax of the hardware language SyReC

like a=a*b. Having this as basis, Janus can be used to specify
reversible programs and execute them in a reversible manner
(i.e. forward and backward).

B. The Hardware Language SyReC
In the following we describe the programming language

SyReC for synthesis of reversible circuits. We used Janus
as basis and extended this language by further concepts
(e.g. declaring circuit signals of different bit-width) and
operations (e.g. bit-access and shifts). Besides that, some
restrictions must be applied (e.g. dynamic loops are forbidden
in hardware). Incorporating all these aspects, a syntax of
a programming language for reversible circuit synthesis as
depicted in Figure 3 results. More precisely, the following
extensions and restrictions have been applied:
• The declaration of variables has been extended so that the

designer can declare variables with different bit-widths
(line 2).

• Arrays are not allowed.
• Operators to access single bits (x.N), a range of bits

(x.N:N), as well as the size (#V) of a variable, respec-
tively, have been added (line 3 and line 4).

• Since loops must be completely unrolled during synthe-
sis, the number of iterations has to be available before
compilation. That is, dynamic loops (defined by expres-
sions) are not allowed (line 7).

• Macros for the SWAP operation (<=>) (line 5) as well
as for the for-loop statement (line 8) have been added1.

1These extensions are not necessarily needed (i.e. they can also be expressed
by the existing operations), but they allow a more intuitive programming of
reversible circuits.

op ( 2 ) x0 x1 x2
procedure a l u
i f ( op = 0) then

x0 ˆ= ( x1 + x2 )
e l s e

i f ( op = 1) then
x0 ˆ= ( x1 − x2 )

e l s e
i f ( op = 2) then

x0 ˆ= ( x1 ∗ x2 )
e l s e

x0 ˆ= ( x1 ˆ x2 )
f i ( op = 2)

f i ( op = 1)
f i ( op = 0)

Fig. 4. SyReC example: ALU

• Further operations used in hardware design (e.g. shifts <)
have been added (line 10 and line 14).

Example 2. Figure 4 shows a simple Arithmetic Logic
Unit (ALU) illustrating the core concept of the resulting
hardware programming language. Thereby, the basic arith-
metic operations can easily be applied. Furthermore, control
variables can be defined with a lower bit-width than data
variables.

In contrast to previous approaches, this allows a much easier
specification of (complex) reversible circuits. Having this, the
next section describes how circuits can be synthesized from
this representation.

IV. SYNTHESIS OF THE CIRCUITS

Using the language introduced above it is possible to specify
reversible circuits on a higher level. As demonstrated by
Example 2 this particularly allows to design complex circuits
in an easier way than e.g. by truth tables or decision diagrams.
Nevertheless, the specified circuits still need to be synthesized.
To this end, we propose a hierarchical synthesis method that
uses existing realizations of the individual operations (i.e. basic
blocks) and combines them so that the desired circuit results.
More precisely, our approach (1) traverses the whole program
and (2) adds cascades of reversible gates to the circuit to be
synthesized for each statement or expression, respectively.

In the following, the individual mappings of the operations
and expressions to the respective reversible cascades are
described in detail. Due to page limitations it is not possible to
give the concrete mappings for all operations of the language.
Thus, we describe the general idea for the different kinds and
give concrete examples where appropriate.

A. Reversible Assignment Operations
As introduced in Section III, reversible assignment opera-

tions include those which are reversible even if they assign a
new value to the variable on the left-hand side of a statement.
In the following, we use the notation depicted in Figure 5(a)
to denote such an operation in a circuit structure2. Solid
lines represent the variable(s) on the right-hand side of the
operation, i.e. the variable(s) whose values are preserved.

The simplest reversible assignment operation is the bit-wise
XOR (e.g. aˆ=b). For Boolean variables, this operation can be

2Figure 5(a) shows the notation for a single bit operation. For larger bit-
widths the notation is extended accordingly.
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Fig. 5. Realization of reversible assignment operations

synthesized by a single Toffoli gate as shown in Figure 5(b).
If variables with a bit-width greater than 1 are applied, then a
Toffoli gate has to be applied analogously for each bit.

To synthesize the increase operation (e.g. a+=b), a modified
addition network is added. In the past, several realizations
of addition in reversible logic have been investigated. In
particular, it is well known that the minimal realization of
a one-bit adder consists of four Toffoli gates (see e.g. [35]).
Thus, cascading the required number of one-bit adders is a
possible realization. But since every one-bit adder also requires
one constant input, this is a very poor solution with respect
to circuit lines. In contrast, heuristic realizations exist that
require a fewer number of additional lines (see e.g. [36]).
Our approach uses a realization with only one additional line
(which additionally can be reused for any further addition
operation). A cascade showing this realization for a 3-bit
addition is depicted in Figure 5(c). Nevertheless, any other
adder realization can be applied as well.

Finally, the mapping for the decrease operation is left
(e.g. a-=b). Here, also the realization from Figure 5(c) is
applied, which is fed with a negated variable value.

B. Binary Operations

Binary operations include operations that are not necessarily
reversible so that its inputs have to be preserved to allow a
(reversible) computation in both directions. To denote such op-
erations, in the following the notation depicted in Figure 6(a) is
used. Again, solid lines represent the variable(s) whose values
are preserved (i.e. in this case the input variables).

Synthesis of irreversible functions in reversible logic is
not new so that for most of the respective operations al-
ready reversible circuit realizations exist. Additional lines with
constant inputs are thereby applied to make an irreversible
function reversible (see e.g. [29]). As an example, Figure 6(b)
shows a reversible cascade that realizes an AND operation.
As can be seen, this requires one additional circuit line
with a constant input 0. Similar mappings exist for all other
operations.

Since binary operations can be applied together with re-
versible assignment operations (e.g. cˆ=a&b), sometimes a
more compact realization is possible. More precisely, addi-
tional (constant) circuit lines can be saved (at least for some
operations), if the result of a binary operation is applied to a
reversible assignment operation. As an example, Figure 6(c)
shows the realization for cˆ=a&b where no constant input
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Fig. 6. Realization of binary operations

is needed but the circuit line representing c is used instead.
However, such a “combination” is not possible for all oper-
ations. As an example, Figure 6(d) shows a two-bit addition
whose result is applied to a bit-wise XOR, i.e. cˆ=a+b. Here,
removing the constant lines and directly applying the XOR
operation on the lines representing c would lead to a wrong
result. This is because intermediate results are stored at the
lines representing the sum. Since these values are reused later,
performing the XOR operation “in parallel” would destroy the
result. Thus, to have a combined realization of a bit-wise
XOR and an addition, a concrete embedding for this case
must be generated. Since finding and synthesizing respective
embeddings for all affected operations and combinations,
respectively, is a non-trivial task, a more detailed consideration
of this aspect is left for future work. So far, constant lines are
applied to realize the respective functionality.

Besides that, while for most of the binary operations (in
particular for the bit-wise, logical, and relational operations)
many realizations already exist (see e.g. [35]), reversible logic
realizations of multiplication (and similar operations, like
modulo) is still subject of current research Thus, Figure 6(e)
briefly shows how multiplication is realized by our synthesis
method. As can be seen, we apply partial products. Consider-
ing one of the factors a, each time a respective bit of this factor
(denoted by ai) is equal to 1, the respective partial product
is added to the product. This allows to reuse the increase
realization introduced in the previous section (see [37] for a
more detailed treatment).

C. Conditional Statements, Loops, Call/Uncall
Finally, the realization of control operations as reversible

cascades is considered. Loops and procedure calls/uncalls can
be realized in a straightforward way. More precisely, loops



if e then
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else
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Fig. 7. Realization of an if-statement

are realized by simple cascading (i.e. unrolling) the respective
statements within a loop block for each iteration. Since the
number of iterations must be available before synthesis (see
Section III), this results in a finite number of statements
which is subsequently processed. Call and uncall of procedures
are handled similarly. Here, the respective statements in the
procedures are cascaded together.

To realize conditional statements (e.g. the one shown in
Figure 7(a)), two variants are proposed. Figure 7(b) shows the
first one, which is realized in three steps:

1) All variables in the then- or else-block, respectively,
which potentially are assigned with a new value (i.e. that
are on the left-hand side of a reversible assignment
operation) are duplicated. This respectively requires an
additional circuit line with constant input 0.

2) The statements in the respective blocks are mapped to
reversible cascades. The duplications introduced in the
last step are thereby applied to intermediately store the
results of the then-block and the original values of the
variables in the else-block, respectively.

3) Depending on the result of the if-statement e, the re-
spective values of the duplicated lines and the original
lines are swapped. More precisely, in the example of
Figure 7(a) the value of a is swapped with its (newly
assigned) duplication iff e evaluates to 1. Analogously,
iff e evaluates to 0 the (newly assigned) value of c is
passed through.

The second realization of a conditional statement is depicted
in Figure 7(c). In contrast to the previous one, here no
duplications (and therewith no additional circuit lines) are
required. Instead, control lines are added to all gates in the
realization of the respective then- and else-block. Thus, the
operations are computed iff the expression e is assigned to 1
or 0, respectively. A NOT gate (i.e. a Toffoli without control
lines) is thereby used to flip the value of e so that the gates
of the else block can be “controlled” as well.

Having both realizations, it is up to the designer which one
should be used during synthesis. Using the first realization
leads to additional circuit lines (particularly in quantum logic
a restricted resource). This is not in case in the second realiza-
tion; however, here due to the additional control lines both the
quantum cost and the transistor cost of the circuit significantly
increase. Besides other aspects, this is also evaluated in the
experiments in the next section.

V. EXPERIMENTS

The proposed synthesis approach for the programming
language SyReC has been implemented in C++. In this section,
we provide experimental results obtained by this approach. In

particular, we evaluate the different realizations of conditional
statements in more detail. Furthermore, we compare the results
obtained by the proposed approach to a recently published
synthesis method based on binary decision diagrams [13].

As benchmarks we use a couple of programs including
a simple arithmetic logic unit (denoted by alu; see also
Figure 4), a program computing the average of 8 or 16 values
(denoted by avg8 and avg16), a logic unit applying bit-wise
operations instead of arithmetic (denoted by lu), as well as an
arbiter with 8 clients (denoted by arb8). Thus, results obtained
by programs including arithmetic (alu, avg8, and avg16) as
well as bit-wise operations (lu and arb8) have been evaluated.
All experiments have been carried out on an AMD DualCore
Athlon 3GHz machine with 32 GB of main memory. The time-
out was set to 500 CPU seconds.

In a first evaluation the effect of different if-statement
realizations is considered in detail. The results are presented in
Table II(a). The first column gives the name of the benchmark
followed by the applied bit-width of data variables (denoted
by BW) and the resulting number of primary inputs (de-
noted by PI). The following columns give the number of
constant input lines (CI), the number of gates (d), the quantum
cost (qc), and the transistor cost (tc) of the circuits obtained
using the if-realization with additional circuit lines (denoted
by IF-STM. W/ ADD. LINES) or without additional circuit lines
(denoted by IF-STM. W/O ADD. LINES), respectively. Finally,
the run-time is reported for both approaches in column TIME.

The results confirm the discussion from the last section. If
additional circuit lines are applied, the respective cost can be
significantly reduced. In comparison to the realization without
additional circuit lines for if-statements, approx. 80% of the
quantum costs and at least for alu and lu more than 50% of
the transistor costs can be saved (this does not hold for the
avg benchmarks since they do not include if-statements). In
contrast, this leads to a significant increase in the number of
constant inputs.

Finally, the results are compared to previous work, namely
the BDD-based synthesis approach proposed in [13]. Here, a
function given as binary decision diagram is used as input.
Thus, we extracted the circuits obtained by our approach as
BDDs and re-synthesized them based on the concepts of [13]3.
The results are given in Table II(b) using the same denotation
as described above. As can be clearly seen, the proposed ap-
proach outperforms the BDD-based synthesis in all objectives:
Circuits with significantly less number of gates, quantum cost,
and transistor cost, respectively, are synthesized in much less
run-time (only the small arb8 is an exception). Moreover, in
particular for the benchmarks including arithmetic (i.e. alu and
awg) for large bit-widths no circuit can be synthesized within
the given time-out. This can be explained by the fact, that
in particular for the multiplication no efficient representation
as BDD exists. Thus, for these examples the BDD-based
approach suffers from memory explosion.

Altogether, SyReC allows the specification of complex
circuits that are hard to describe in terms of a decision diagram
or truth table, respectively. Afterwards, the specified circuits
can efficiently be synthesized.

3A similar comparison to further work (e.g. [9], [10]) was not possible since
due to memory limitations the respective benchmarks cannot be represented
in terms of truth tables which is required by these approaches.



TABLE II
EXPERIMENTAL RESULTS

(a) Applying the programming language SyReC
IF-STM. W/ ADD. LINES IF-STM. W/O ADD. LINES

BENCH BW PI CI d qc tc TIME CI d qc tc TIME

alu 8 26 65 453 2069 5840 0.03s 41 408 11125 13208 0.02s
alu 16 50 121 1345 7377 19856 0.03s 73 1252 40749 45240 0.03s
alu 32 98 233 4473 27785 72464 0.03s 137 4284 155677 166136 0.03s

avg8 8 72 11 405 885 4200 0.01s 11 405 885 4200 0.01s
avg8 16 144 19 861 1853 8872 0.01s 19 861 1853 8872 0.01s
avg8 32 288 35 1773 3789 18216 0.01s 35 1773 3789 18216 0.01s

avg16 8 136 12 754 1654 7832 0.01s 12 754 1654 7832 0.01s
avg16 16 272 20 1602 3462 16536 0.01s 20 1602 3462 16536 0.01s
avg16 32 544 36 3298 7078 33944 0.01s 36 3298 7078 33944 0.01s

lu 8 26 64 164 392 1328 0.02s 40 119 1960 2960 0.02s
lu 16 50 120 308 744 2544 0.02s 72 215 3768 5584 0.02s
lu 32 98 232 596 1448 4976 0.03s 136 407 7384 10832 0.02s

arb8 1 16 37 80 296 640 0.45s 1 24 746 800 0.44s

(b) BDD-based synthesis
BDD-based synthesis

BENCH BW PI CI d qc tc TIME

alu 8 26 768 3560 11196 70792 0.06s
alu 16 50 541099 2842702 9380494 57530752 283.63s
alu 32 98 – – – – >500.00s

avg8 8 72 2933 10449 36581 217240 4.61s
avg8 16 144 – – – – >500.00s
avg8 32 288 – – – – >500.00s

avg16 8 136 7410 25454 89938 532424 9.61s
avg16 16 272 – – – – >500.00s
avg16 32 544 – – – – >500.00s

lu 8 26 111 331 823 5928 0.01s
lu 16 50 215 651 1623 11688 0.03s
lu 32 98 423 1291 3223 23208 0.08s

arb8 1 16 15 49 101 824 0.01s

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed the programming language
SyReC to synthesize reversible circuits. Based on the software
language Janus, we introduced new concepts, operations, and
restrictions allowing the specification of reversible hardware.
A hierarchical approach has been proposed that uses “basic
blocks” to transform the respective statements into cascades of
reversible gates. The steps to synthesize the given program as
a reversible circuit have been described. The experiments show
that using this approach it is possible to efficiently synthesize
complex reversible circuits.

Nevertheless, the resulting circuits still require a notable
amount of additional circuit lines. In particular for quantum
logic (where qubits and therewith the number of lines is
restricted), this might become crucial. Thus, finding better
embeddings of the binary operations is a promising task for
future work.
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