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Abstract—In recent years, research in the domain of reversible
circuit design has attracted significant attention leading to many
different approaches for e.g. synthesis, optimization, simulation,
verification, and test. However, most of the resulting tools are
not publicly available. In this paper, we introduce RevKit, an
open source toolkit that aims to make recent developments in
reversible circuit design accessible to other researchers. There-
fore, a modular and extendable framework is provided which
easily enables the addition of new methods and tools. RevKit
already provides some of the existing approaches for synthesis,
optimization, and verification functionality.

I. INTRODUCTION AND BACKGROUND

The development of computing machines has found great
success in the last decades. Nowadays billions of components
are built on a few square centimeters – and this increasing
trend continues. The number of transistors in an integrated
circuit doubles every 18 months (also known as Moore’s Law).
However, it is obvious that such an exponential growth must
reach its limits in the future. Otherwise, the miniaturization
would reach a level where transistors consist of only single
atoms. Furthermore, power dissipation more and more be-
comes a crucial issue for designing high performance digital
circuits.

To further satisfy the needs for more computational power,
alternatives are needed that go beyond the scope of the
“traditional” (CMOS) technologies. Reversible logic marks a
promising new direction where all operations are performed
in an invertible manner. That is, in contrast to traditional
logic, only bijective operations are allowed implying a re-
versible computation (i.e. the inputs can be obtained from
the outputs and vice versa). This reversibility builds the
basis for emerging technologies that may replace, or at least
enhance, traditional computer chips (e.g. in the domain of low-
power design [11], [2], [4], quantum computation [21], [16],
[27], optical computing [3], DNA computing [25], as well as
nanotechnologies [14]).

The basic concepts of reversible logic are therefore not new
and were already introduced in the 60’s by Landauer [11] and
further refined by Bennett [2] and Toffoli [26]. They observed
that due to the reversibility fanouts and feedback are not
directly allowed in reversible circuits. As a consequence new
libraries of (reversible) gates have been introduced including
e.g. Toffoli gates [26], Fredkin gates [7], and Peres gates [18].
Fig. 1 shows these gates in a cascade. Each gate consists of
control lines (denoted by ) and target lines (denoted by
except for the Fredkin gate where an is used instead). For a
Toffoli gate, the value of the target line becomes inverted, if
all control lines are assigned to 1 while for the Fredkin gate
the target lines are interchanged in this case. The Peres gate is
a cascade of two Toffoli gates. The annotated values in Fig. 1
demonstrate the computation of the respective gates. As can
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Fig. 1. Reversible gates

be seen, the calculation can be done in both directions (i.e. it
is reversible).

Even if this represents the basis for research in the area
of reversible circuits, the topic was not intensively studied by
computer scientists before the year 2000. The main reason for
that may be due to the fact that applications of such circuits
have been seen as “dreams of the future”. However, this
changed with recently made achievements. For example, in the
domain of low-power design, first reversible circuits have been
built which are powered only by their input signals and do
not need additional power supplies (see e.g. [4]). In quantum
computation, factorization has also been solved in polynomial
time whereas only exponential solving methods are known for
traditional circuits (see e.g. [21], [27]). These achievements
(together with others) significantly moved the topic forward
so that nowadays reversible logic is seen as a promising
research area. As a consequence, in the last years computer
scientists started to develop new methods for the design of
reversible circuits. Among others, these include approaches
for synthesis (see e.g. [20], [13], [30]), optimization (see
e.g. [13]), simulation (e.g. [29]), verification (e.g. [28], [8],
[32]), and test (e.g. [19], [17]).

However, most of the resulting methods are not publicly
available1. This often makes the development of new meth-
ods harder since e.g. previous approaches are not available
for comparison. Furthermore, approaches have to be re-
implemented from scratch in order to modify or improve them.
The lack of tools for reversible hardware design makes it hard
for beginners to get involved in the topic.

In this paper we introduce RevKit, an open source toolkit
for reversible circuit design. The motivation behind RevKit
is to make recent developments in the domain of reversible
circuit design accessible to other researchers. Therefore, a
modular and extendable framework is provided which easily
enables the addition of new methods and tools. Besides basic
functionality (like parser and export functions), RevKit already
provides elaborated methods for synthesis, optimization, and
verification. In this sense, RevKit addresses users who simply

1Exceptions are e.g. the RMRLS synthesis approach [10] which is avail-
able at http://www.princeton.edu/∼cad/projects.html or the quantum simulator
QuIDDPro [29] which is available at http://vlsicad.eecs.umich.edu/Quantum/
qp/.



want to apply the framework and its tools as well as developers
who actively want to develop further methods on top of the
framework. For this purpose, RevKit is available online at
http://www.revkit.org.

In the following, RevKit is introduced. Therefore, we
describe the features of the framework from two different
perspectives. First, the users’ view is presented in Section II.
This includes an overview of the currently provided tools and
illustrates how to utilize them. Afterwards, some technical
details are presented in Section III. This particularly addresses
the needs of developers aiming to extend RevKit with their
own tools and algorithms. Note that, in the following, the
technical details are described in a very brief manner. A more
detailed introduction in how to use and how to extend RevKit
is available in a detailed documentation provided online at
www.revkit.org. Finally, Section IV concludes the paper.

II. THE USERS’ PERSPECTIVE

In this section, we summarize the basic tools and algorithms
of RevKit which are available so far. Afterwards, we sketch a
possible application scenario.

A. Available Tools and Algorithms
RevKit provides core functionalities which are needed in

order to work with reversible circuits. This includes read-in
routines for functions and reversible circuits (based on the
RevLib format introduced in [33]), several export functions
(again into the RevLib format, but LATEX and BLIF dumps
are also available), cost calculations, etc. Besides that, the
following approaches are available in RevKit.

Synthesis
• A transformation-based method inspired by the concepts

of [15]
• The BDD-based synthesis method as introduced in [30]
• The KFDD-based synthesis method as introduced in [22]
• The heuristic synthesis with output permutation method

as introduced in [31]
• The ESOP-based synthesis method inspired by the con-

cepts of [6]
• The exact synthesis method as introduced in [9]

Optimization
• The window optimization method as introduced in [23]
• The circuit line reduction method as introduced in [34]

Verification
• The SAT-based equivalence checker as introduced in [32]

Further Methods
• A naı̈ve method to embed irreversible functions into

reversible ones (needed e.g. to synthesize irreversible
functions using the transformation-based method)

• A simple simulation engine (for reversible circuits work-
ing on Boolean values)

• A simple decomposition method that maps a given re-
versible circuit (composed of Toffoli, Fredkin, and Peres
gates) to its equivalent quantum circuit (composed of
NOT, CNOT, V, and V+ gates) inspired by the concepts
of [1] and [12].

All these tools and algorithms are written in C++ and directly
accessible by an API. That is, they can be used in other C++
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Fig. 2. An application scenario

programs. Furthermore, to enable command line usage, all
functions are also exposed as a Python library2. As a result,
commands (or sequences of commands) can easily be specified
and processed using a common Python interpreter. This is
illustrated in the next section.

B. Application Scenario

Fig. 2 shows a possible application scenario that can be
processed by RevKit. An irreversible function (given in PLA-
format) is synthesized as a reversible circuit. Therefore, two
different approaches are applied, namely the BDD-based syn-
thesis method as well as the transformation-based method, re-
spectively. Since the latter approach only works for reversible
functions, the irreversible function needs to be embedded first
(leading to a reversible specification). In contrast, the BDD-
based method tends to produce circuits with a large number of
circuit lines. Thus, the respective optimization approach is to
improve the result. Finally, both resulting circuits are checked
for equivalence in order to verify the correctness of the results.

To process the respective steps in RevKit, the Python code
depicted in Fig. 3 can be used. After importing the RevKit
library (line 2), first an empty reversible circuit is initialized
(line 5). Then, the BDD synthesis approach is called in order
to realize a circuit representing the function specified in the
given PLA-file (line 6). Afterwards, the resulting circuit is
optimized (line 7). Similar steps are performed for the second
flow (lines 9–14). Finally, both resulting circuits are checked
for equivalence (line 17).

As can be seen, the respective commands can be invoked
in a very intuitive manner. Furthermore, the user can decide
either to separately enter all these commands into a shell or
to merge them as a corresponding Python script.

III. THE DEVELOPERS’ PERSPECTIVE

Besides providing recent tools and algorithms, RevKit also
aims to support researchers in the development of new or
improved methods for reversible circuit design. To this end,

2Therefore, the Boost.Python library was utilized. For further information
visit http://www.boost.org/doc/libs/1 42 0/libs/python/doc/index.html



 #!/usr/bin/python
 from revkit import ∗


 # BDD based Synthesis
 c bdd = circuit()
 bdd synthesis(c bdd, ”function.pla”)
 line reduction(c bdd)


 # Transformation based Synthesis
 c tbs = circuit()
 tt = binary truth table()
 read pla(tt, ”function.pla”)
 embed truth table(tt)
 transformation based synthesis(c tbs, tt)


 # Check equivalence
 print ”Equal?”, equivalence check(c bdd, c tbs)

Fig. 3. Python code for the design flow depicted in Fig. 2

RevKit is based on a very modular and extendable framework
which is introduced in more detail in this section. First, the
architecture of RevKit is thereby described followed by a
brief discussion of applied design concepts. Afterwards, it is
illustrated, by means of an example, how new approaches can
be added to the framework.

A. Architecture and Design Concepts

The architecture of RevKit is briefly illustrated in Fig. 4.
As can be seen, RevKit consists of three main parts:

• the core, which provides data-structures (e.g. to store
functions or circuits) and basic functionality (like pars-
ing routines, export functions, cost calculations, circuit
modifications) which can be used by every algorithm,

• the respective approaches and methods for reversible cir-
cuit design (e.g. synthesis, optimization, or verification),
and

• the different applications built on top of the framework
(e.g. the generic usage by means of the Python bindings
or a concrete application that combines some algorithms
in a certain way).

Additionally, RevKit makes use of third-party libraries like
e.g. the Colorado University Decision Diagram Package
(CUDD) [24], the SAT solver MiniSAT [5], and some C++-
libraries.

The core and the corresponding algorithms form the main
implementation of the framework. The respective algorithms
are completely independent from each other, but rely on
generic interfaces. In doing so, it is possible to utilize existing
methods without a detailed treatment of them. For example, if
a new optimization approach based on re-synthesis is added,
the respective synthesis calls would be invoked by the generic
interface. At run-time (or in a concrete application), the re-
spective synthesis approach can then be chosen by parameters
(denoted by the dashed arrow in Fig. 4). This enables a
huge flexibility since the new optimization approach does not
only rely on one single synthesis method, but can exploit
all available ones. This also includes synthesis approaches
that will be added in the future. Furthermore, this modular
structure (together with the interfaces) has the great advantage
that newly added methods do not affect already implemented
functionality. In fact, even removing one approach will not
affect the overall framework from compiling and operating.

Applications (command line, tools, . . . )

Core (data-structures, helper functions, . . . )
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Fig. 4. Architecture of RevKit

Besides that, being prepared for future developments was
an important design criterion during the implementation of
RevKit. This can be illustrated very well by the support of
the respective gate libraries for the considered circuits. So far,
RevKit supports the established Toffoli gate, the Fredkin gate,
and the Peres gate as well as the quantum V gate and the
quantum V+ gate. However, in the future other gate types
may be used. This would not only affect the data-structures of
RevKit, but would also have implications for many approaches
like simulation or verification. In order to keep RevKit flexible,
generic structures are applied as well. More precisely, a
generic data-structure including a so called target tag is used.
These target tags can be defined separately without modifying
the core of the framework. Having these target tags, new gate
types can be easily supported by extending or overriding the
concerned methods. For example, in the case of simulation,
only the treatment of a single gate has to be extended while
the overall simulation engine can remain unaltered.

The usage of these design concepts ensures a high ex-
tendability of the framework. Furthermore, several scripts
are provided to aid developers in creating new algorithms
from scratch. In particular, they generate basic code skeletons
in order to allow an easy integration of new approaches
and to make existing algorithms accessible. The next section
illustrates this by means of an example.

B. Adding a New Approach to RevKit
Fig. 5 shows the complete source code of an optimization

approach that can be added to RevKit in this form. In fact, a
window optimization approach is thereby realized, where sub-
circuits are considered from left to right. In each iteration, the
currently considered sub-circuit is re-synthesized. If a sub-
circuit with smaller cost results, the newly generated sub-
circuit is substituted with the original one.

In the first lines of Fig. 5, the respective parameters are
given, i.e. the resulting circuit (circ), the original circuit
(base), and some settings (settings), which are parsed into
local variables in lines 4–7. As can be seen, the simulation
and the synthesis approach are passed by settings and stored
in respective variables. As discussed above, this employs a
generic interface, i.e. no concrete simulation or synthesis
approach is invoked but defined from outside when calling
the window optimization algorithm. Then, the original circuit
is traversed from left to right (line 10) and a sub-circuit of a
certain size (defined in the settings) is extracted and stored in s
(lines 12–16). Afterwards, the function of the considered sub-
circuit is extracted (lines 18–19) and passed to the synthesis
approach (lines 21–22). Finally, the costs of the sub-circuits



 bool window optimization(circuit& circ, const circuit& base,
 properties::ptr settings)
 {
 unsigned window length = get(settings, ”window length”);
 simulation func simulation = get(settings, ”simulation”);
 truth table synthesis func synthesis = get(settings, ”synthesis”);
 cost function cf = get(settings, ”cost function”);


 unsigned pos = 0u;
 while (pos < base.num gates())
 {
 unsigned length = std::min(
 window length, base.num gates() − pos);
 unsigned to = pos + length;


 subcircuit s(base, pos, to);


 binary truth table spec;
 circuit to truth table(s, spec, simulation);


 circuit new part;
 bool ok = synthesis(new part, spec);


 bool cheaper = ok && costs(new part, cf) < costs(s, cf);


 append circuit(circ, cheaper ? new part : s);


 pos = to;
 }


 return true;
 }

Fig. 5. Sources for a simple optimization approach

are compared in line 24 (using a cost function again specified
in the settings). If the newly synthesized sub-circuit is cheaper
than the original one, then this new one is appended to the
resulting circuit. Otherwise, the original sub-circuit is used
(line 26).

As can be seen, using RevKit this approach can be imple-
mented in a very compact and straight-forward way. Existing
approaches (in this case synthesis methods) are utilized. Fur-
thermore, the resulting approach is very flexible since both,
the synthesis method and the considered cost function, can be
arbitrarily selected.

IV. CONCLUSIONS

In this paper, we introduced RevKit, a toolkit for reversible
circuit design. The aim of RevKit is to make recent approaches
in this domain publicly available as well as to provide a
flexible and easily extendable framework for future develop-
ments. RevKit is online available at http://www.revkit.org. Any
feedback is welcome via revkit@informatik.uni-bremen.de.
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[5] N. Eén and N. Sörensson. An extensible SAT solver. In SAT 2003,
volume 2919 of LNCS, pages 502–518, 2004.

[6] K. Fazel, M. Thornton, and J. Rice. ESOP-based Toffoli gate cascade
generation. In Communications, Computers and Signal Processing,
2007. PacRim 2007. IEEE Pacific Rim Conference on, pages 206 –209,
2007.

[7] E. F. Fredkin and T. Toffoli. Conservative logic. International Journal
of Theoretical Physics, 21(3/4):219–253, 1982.

[8] S. Gay, R. Nagarajan, and N. Papanikolaou. QMC: A model checker
for quantum systems. In Computer Aided Verification, pages 543–547,
2008.

[9] D. Große, R. Wille, G. W. Dueck, and R. Drechsler. Exact multiple
control Toffoli network synthesis with SAT techniques. IEEE Trans. on
CAD, 28(5):703–715, 2009.

[10] P. Gupta, A. Agrawal, and N. K. Jha. An algorithm for synthesis of
reversible logic circuits. IEEE Trans. on CAD, 25(11):2317–2330, 2006.

[11] R. Landauer. Irreversibility and heat generation in the computing
process. IBM J. Res. Dev., 5:183, 1961.

[12] D. Maslov and G. Dueck. Improved quantum cost for n-bit Toffoli
gates. Electronics Letters, 39(25):1790 – 1791, 11 2003.

[13] D. Maslov, G. W. Dueck, and D. M. Miller. Toffoli network synthesis
with templates. IEEE Trans. on CAD, 24(6):807–817, 2005.

[14] R. C. Merkle. Reversible electronic logic using switches. Nanotechnol-
ogy, 4:21–40, 1993.

[15] D. M. Miller, D. Maslov, and G. W. Dueck. A transformation based
algorithm for reversible logic synthesis. In Design Automation Conf.,
pages 318–323, 2003.

[16] M. Nielsen and I. Chuang. Quantum Computation and Quantum
Information. Cambridge Univ. Press, 2000.

[17] K. N. Patel, J. P. Hayes, and I. L. Markov. Fault testing for reversible
circuits. IEEE Trans. on CAD, 23(8):1220–1230, 2004.

[18] A. Peres. Reversible logic and quantum computers. Phys. Rev. A,
(32):3266–3276, 1985.

[19] I. Polian, T. Fiehn, B. Becker, and J. P. Hayes. A family of logical fault
models for reversible circuits. In Asian Test Symp., pages 422–427,
2005.

[20] V. V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes. Synthesis of
reversible logic circuits. IEEE Trans. on CAD, 22(6):710–722, 2003.

[21] P. W. Shor. Algorithms for quantum computation: discrete logarithms
and factoring. Foundations of Computer Science, pages 124–134, 1994.

[22] M. Soeken, R. Wille, and R. Drechsler. Hierarchical synthesis of
reversible circuits using positive and negative Davio decomposition. In
Workshop on Reversible Computation, 2010.

[23] M. Soeken, R. Wille, G. W. Dueck, and R. Drechsler. Window
optimization of reversible and quantum circuits. In IEEE Symposium
on Design and Diagnostics of Electronic Circuits and Systems, 2010.

[24] F. Somenzi. CUDD: CU Decision Diagram Package Release 2.3.1.
University of Colorado at Boulder, 2001.

[25] H. Thapliyal and M. B. Srinivas. The need of DNA computing:
reversible designs of adders and multipliers using Fredkin gate. In SPIE,
2005.

[26] T. Toffoli. Reversible computing. In W. de Bakker and J. van Leeuwen,
editors, Automata, Languages and Programming, page 632. Springer,
1980. Technical Memo MIT/LCS/TM-151, MIT Lab. for Comput. Sci.

[27] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H.
Sherwood, and I. L. Chuang. Experimental realization of Shor’s quantum
factoring algorithm using nuclear magnetic resonance. Nature, 414:883,
2001.

[28] G. F. Viamontes, I. L. Markov, and J. P. Hayes. Checking equivalence
of quantum circuits and states. In Int’l Conf. on CAD, pages 69–74,
2007.

[29] G. F. Viamontes, I. L. Markov, and J. P. Hayes. Quantum Circuit
Simulation. Springer, 2009.

[30] R. Wille and R. Drechsler. BDD-based synthesis of reversible logic for
large functions. In Design Automation Conf., pages 270–275, 2009.

[31] R. Wille, D. Große, G. Dueck, and R. Drechsler. Reversible logic
synthesis with output permutation. In VLSI Design, pages 189–194,
2009.

[32] R. Wille, D. Große, D. M. Miller, and R. Drechsler. Equivalence
checking of reversible circuits. In Int’l Symp. on Multi-Valued Logic,
pages 324–330, 2009.

[33] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler. RevLib:
an online resource for reversible functions and reversible circuits. In
Int’l Symp. on Multi-Valued Logic, pages 220–225, 2008. RevLib is
available at http://www.revlib.org.

[34] R. Wille, M. Soeken, and R. Drechsler. Reducing the number of lines
in reversible circuits. In Design Automation Conf., 2010.


