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1. Introduction

RevKit is an open source toolkit aimed to make recent developments in the domain
of reversible circuit design accessible to other researchers. Therefore, RevKit provides
core functionality (like parsers, export functions, cost calculations, etc.), but also elabo-
rated methods for synthesis, optimization, and verification of reversible (and quantum)
circuits. More precisely, the following approaches are available in RevKit.
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Synthesis

¢ A transformation-based method inspired by the concepts of [6]
e The BDD-based synthesis method as introduced in [9]

The KFDD-based synthesis method as introduced in [7]

The heuristic synthesis with output permutation method as introduced in [10]

The ESOP-based synthesis method inspired by the concepts of [2]
e The exact synthesis method as introduced in [3]
Optimization
e The window optimization method as introduced in [8]
e The circuit line reduction method as introduced in [13]
Verification
e The SAT-based equivalence checker as introduced in [11]

Further Methods

e A naive method to embed irreversible functions into reversible ones (needed
e.g. to synthesize irreversible functions using the transformation-based method)

e A simple simulation engine (for reversible circuits working on Boolean values)
e A simple decomposition method that maps a given reversible circuit (composed

of Toffoli, Fredkin, and Peres gates) to its equivalent quantum circuit (composed
of NOT, CNOT, V, and V+ gates) inspired by the concepts of [1] and [4].
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This document provides a manual describing how to apply the provided approaches
and core functionalities of RevKit!. The main aspects are thereby kept brief, but are
illustrated by means of examples.

In order to invoke approaches, RevKit uses a command line interface enabling an
easy and flexible access to the functions and algorithms in the framework. This inter-
face allows to create, modify, and display circuits as well as to call the above mentioned
approaches. Additionally, to a certain degree it is also possible to extend the framework
with new functionality (even if this is not the main intention of the interface). The in-
terface itself is based on the Python programming language. As a result, commands (or
sequences of commands) can easily be specified and processed using a common Python
interpreter.

In the following, the usage of RevKit using its command interpreter is described as
follows: First, how to get and how to install RevKit is shown, respectively. Section 3
provides a brief introduction into the usage of the basic functionality of RevKit fol-
lowed by some more advanced examples in Section 4. Finally, the last sections provide
the documentation of all data-structures and functions supported by the interpreter so
far (including synopsis, examples, etc.).

2. Download and Installation

RevKit can be downloaded from the www.revkit.org website. Opening a Bash shell and
assuming that the file revkit-1.0.tar.gz is in the current working directory, RevKit can be
compiled using the following command.

> tar xvfz revkit—1.0.tar.gz

> cd revkit—1.0

> sudo apt—get install build—essential cmake python—dev ipython python—qt4
> ./build.sh —DBUILD_BINDINGS=ON

The build.sh script will download necessary libraries and compile the source code. En-
abling the BUILD_BINDINGS option ensures, that the Python interface is compiled. Fur-
thermore options that concern the developers’ perspective are described in the develop-
ers’ documentation and in the README file, respectively. Note that the third command
installs required dependencies using the distribution’s package manager. This com-
mand used in the example will only work with Ubuntu-based systems. Requirement-
installation commands for other distributions can be taken from the README file.

After building RevKit, it can be started by invoking the scripts in the tools directory
or by entering ipython followed by

from revkit import *

'For a description of how to extend RevKit with own approaches or how to integrate RevKit in own
C++-projects, respectively, we refer the reader to the developers’ documentation. The developers’
documentation (including an API) is provided by means of doxygen in the sources of RevKit as well
as on http:/ /www.revlib.org.
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How to enter the commands is in the scope of this document. To get an overview of all
available commands, type

revkit_commands()

into the python shell.

c
.9
-
A
“©
+—
()]
=
o
c
(gv]
Be)
[g0]
9
c
=
o
(@)
fo\




RevKit — User Manual

3. Getting Started

After the installation, RevKit is fully functional and ready to use. In this section, how to
apply the most important functions is briefly described. This should provide a starting
point to become familiar with the framework and the syntax of the command line inter-
face. Using this as a basis, all remaining functionality can be similarly applied. The last
sections of this documentation provide the respective documentation on that. Besides
that, Section 4 gives some further examples on more advanced application scenarios.

3.1. Using Approaches

When using a standard approach as for example the exact synthesis [3], it is not neces-
sary to start the Python shell and enter the respective commands manually. For these
purposes ready-to-use scripts, so called tools, are provided in the homonymous folder
tools. Given a RevLib specification file called function.spec, the circuit can be obtained
and written into the file circuit.real using the following command

> ./tools/exact_synthesis.py ——filename function.spec ——realname circuit.real

There are further options which can be passed to the exact_synthesis.py tool. They can
be listed using the help option:

> ./tools/exact_synthesis.py —help

For each approach implemented in RevKit a corresponding script is available in the
tools folder. Call them using the help option to learn more about their usage.

In the tools folder, there is also a script called viewer.py, which displays circuits and its
truth table. It is possible to open a RevLib realization file by adding it as the argument
or with the corresponding menu entry in the application.

3.2. Creating a circuit

How to create a circuit using RevKit is described by means of Multiple Control Toffoli
gates (MCT) in the following. Therefore, four steps are performed:

1. Importing the the revkit module,
2. declaring a circuit including 3 lines,
3. adding the respective Toffoli gates to the circuit, and

4. printing the circuit in ASCII format to the standard output?.

This can be performed using the following Python code:

“Note that there is a special function print_function, which can be used to print the circuit to the stan-
dard output accepting more options to change the appearance. More information can be get from the
reference in the remainder of this document
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1 #!/usr/bin/python
from revkit import

circ = circuit ( 3 )

6 append._toffoli( circ, [2], 1)
7 append_toffoli( circ, [0, 1], 2)
8 append_toffoli( circ, [1, 2], 0)
o append_toffoli( circ, [0, 1], 2)
10 append_toffoli( circ, [2], 1)
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12 print circ

The second parameter of the append_toffoli function gives thereby a list of indices de-
noting the control line locations, while the last parameter gives the index of the target
line. All lines are thereby counted starting with 0, whereby 0 denotes the top line.

3.3. Adding Gates

After getting to know about adding gates in general, in the following example, a circuit
is created with different methods, i.e. using different gate types and positions where to
insert the corresponding gate. Therefore,

1. An empty circuit with 5 lines is created,

2. Names for the input and output signals of the circuit are set.

3. A CNOT Gate with control at line 2 (counted from 0) and target at line 3 is added,
4. AV Gate (control on 0, target on 1) is prepended (added in the front of the circuit),

5. A Fredkin Gate with controls on 0 and 1 and targets 2 and 4 is appended at the
end of the circuit,

6. A V+ Gate is inserted before the second gate (second parameter) with control on
1 and target on 2,

7. ANOT Gate is prepended at the beginning of the circuit,

8. A Toffoli gate with controls on 0, 1, 2, and 3 and target on 4 is added at the end of
the circuit,

9. The IXTEX 2¢ code for drawing the circuit (using TikZ) is printed. Thereby the
width between gates is adjusted.

This leads to the following circuit:
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1 % 01
i V] 02
i3 D 03
iy NP 04
i5 U~ 05

#!/usr/bin/python
from revkit import

circ = circuit ( 5 )
CirC.inputS — [ Iliill/, ”i2”, /li73//’ /Ii74lll ”i,5” ]
circ .outputs = [ “0-1”, "0-2”, 03", 04", 705" ]

append_cnot( circ, 2, 3 )
prepend_v(circ, 0, 1)
append_fredkin( circ, [0, 1], 2, 4)
insert_vplus( circ, 2, 1, 2)
prepend_not( circ, 2 )

append_toffoli( circ, [0, 1, 2, 3], 4)

print create_image( circ, elem width =0.75)

3.4. Reading and Writing a Circuit from a File

Instead of manually creating circuits, RevKit also supports circuit descriptions given
in the RevLib format (see [12] for more information on RevLib and the supported for-
mats). The following example demonstrates how a circuit given in this format can be
imported, modified, and finally re-stored in a file. More precisely, the following code
shows how

1. an empty circuit is created,

2. the RevLib realization file is parsed,

3. the circuit is modified (here, the gates are simply reversed), and
4.

the circuit is re-stored to another file.

#!/usr/bin/python
from revkit import *

circ = circuit ();

read _realization ( circ, ” circuit.real”)
reverse_circuit ( circ )

write_realization ( circ, ” circuit —copy.real”)
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3.5. lterating through the Gates of a Circuit

Having a circuit available, RevKit provides functions in order to work with it. As an
example, the following code shows how to iterate through the gates of circuit using the
Python for ...in loop. For each gate the number of its control lines is printed to the
standard output. Therefore,

1. an empty circuit is created,
a RevLib file is parsed,

every gate is traversed from left to right, and

L

for each gate the number of its control lines is printed.

#!/usr/bin/python
from revkit import *

circ = circuit ()
read _realization ( circ, ” circuit .real”)

for g in circ.gates:
print “Gate_has”, g.num_controls, “controls.”

3.6. Calling an approach

Having the basic functionality introduced so far, the main purpose of RevKit is to use
the approaches e.g. for synthesis, optimization, verification, etc. This is exemplarily de-
scribed in the following by means of the transformation based synthesis method (orig-
inally introduced in [6]).

In general, all approaches can be invoked using a generic signature of the respective
functions. Usually, the first parameter denotes thereby the variable to which the result
should be assigned (e.g. in the case of a synthesis approach, a variable representing the
generated circuit). The following parameters denote all data, which might be required
by the respective approach. In the case of the transformation based synthesis, this is a
truth table description of the function to be synthesized. Finally, optional parameters
can be delivered. If not, these parameters are initialized with default values. In case of
a successful run, the return value of the respective functions is a dictionary (Python type
dict) containing statistical data collected by the algorithm. Otherwise, the return value
is a string containing an error message.

The following code shown the call of the transformation based synthesis with default
parameters only.

#!/usr/bin/python
from revkit import *
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circ = circuit ()
spec = binary_truth_table ()
read_specification ( spec, ”function.spec”)

transformation_based_synthesis( circ, spec )

The function has an optional parameter bidirectional, which enables a special configura-
tion of the approach (see Section C.3 for more details). By default, this option is enabled
(i.e. the respective parameter is set to True). However, as the following code shows, this
configuration can be easily modified.

#!/usr/bin/python
from revkit import

circ = circuit ()
spec = binary_truth_table ()
read_specification ( spec, 'function.spec’ )

transformation_based_synthesis( circ, spec, bidirectional = False )

A more detailed documentation of all parameters (also denoted by settings) can be
found in the last sections of this manual (e.g. in case of the transformation based ap-
proach in Section C.3). These parameter always can be applied in every order after the
mandatory parameters.

Besides the settings, there are also statistical variables, denoted by statistics in the
following. In the case of the transformation based algorithm, the only statistical infor-
mation is the run-time. In the following example, this statistic should be printed after
the execution of the approach. The value is thereby assigned to a Python dict variable.
It can be accessed by the name of the statistical parameter which are specified in the
documentaion for each approach as well. However, in the case the execution of the
approach fails, a string containing an error message is returned and, thus, the statis-
tical values cannot be accessed. Thus, we have to check first whether the algorithm
succeeded.

#!/usr/bin/python
from revkit import

circ = circuit ()
spec = binary_truth_table ()
read_specification ( spec, ”function.spec” )

r = transformation_based_synthesis( circ, spec, bidirectional = False )
if type(r) ==dict: # Success

print “Runtime”, r[“runtime”], “seconds.”
else: # Fail
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print r

3.7. Displaying a Circuit

RevKit contains some basic GUI functionality. As described above, a circuit can be
printed to the standard output using Python’s print or the print_circuit command. Ad-
ditionally, RevKit provides functions to visualize a circuit. The following example
demonstrates how to use the GUI functions. Therefore,

1. a circuit is read from a RevLib realization file,
2. the GUlI is initialized (needs to be done only once per session),

3. a window (represented by the variable w) displaying the circuit is created and
shown, and

4. an input pattern is assigned to the circuit in order to simulate it (in this example,
it is assumed that the circuit has three lines).

#!/usr/bin/python
from revkit import

circ = circuit ()
read realization ( circ, ” circuit.real” )

init_gui ()

w = display _circuit ( circ )
w.simulate( [1,0,0] )

It is possible to zoom in and out into the circuit using the mouse wheel.

In the tools folder, there is a script called viewer.py, which encapsulates the display circuit
behavior in an application. It is possible to open a RevLib realization file by adding it as
the argument or with the corresponding menu entry in the application.

3.8. Miscellaneous

In this section, some tips in the usage of RevKit with the IPython interpreter are given.
As already mentioned above, all available data structures and commands can be listed

by entering

revkit_commands()

into the Python interpreter. To get the synopsis and some documentation of a com-
mand, the name of the command followed by a question mark can be entered, e.g.

10
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swop?

Entering two question marks will print out the Python source code implementation of
the command:

swop??

4. Advanced Examples

4.1. A Stand-alone Program

This section illustrates how to build a stand-alone program (also denoted as tool) using
RevKit in combination with Python. As an example, the transformation-based synthe-
sis approach is used.

First, the Python header is set up, and the revkit as well as the sys libraries are loaded.
The latter is used for accessing the command line parameters.

#!/usr/bin/python
from revkit import
import sys

Note that the sys library is not loaded into the global namespace. Now, the program
options are set up. Therefore, different methods are available (for a comprehensive
overview, see the reference in the remainder of this user guide). In the following, we
need a parameter for providing a specification file to read from and a parameter for
providing a realization file to write to. Furthermore, two user defined options are given.
The first one is used to enable an ASCII print out and the second one to choose if the
bidirectional approach for the transformation based synthesis should be used or not.

opts = program_options()
opts.add_read_specification_option() \
.add_write_realization_option() \

.add_option( "print”, ”prints_the._circuit” ) \
.add_option( “bidirectional”, True, ”Bidirectional .approach” )

The methods for adding program options can be added successively, but note that in
the end of each line a backslash has to be written, since there is no end of statement
character in Python. The parameter for controlling the bidirectional flag comes with a
default value, i.e. True.

After all parameters are set up, they have to be parsed and checked if they are entered
correctly. This is done with the methods parse and good, respectively.

opts.parse( sys.argv )

if not opts.good():
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print opts
exit ()

The parameter for parse is sys.argy, i.e. the argument values from the command line. It
checks, if the names of the parameters have been correctly entered and if values for all
mandatory parameters have been provided. If the method good fails, a string for the
usage of the program options is printed to the standard output and the program quits.

For the synthesis function, an empty circuit and binary truth table is required. The
truth table should be parsed from the given program option.

circuit circ;
binary_truth_table spec;

read_specification ( spec, opts.read_specification_filename () )

After that, we are ready to call the synthesis function. The parameter to enable or
disable the bidirectional approach is thereby directly taken from the program options
using the [] operator. Since we defined a default value for this parameter, it is assured
that it yields a valid value. The key is the same string which was given by the call of
add_option in line 8.

res = transformation_based_synthesis( circ, spec, \
bidirectional = opts[”bidirectional”’] )

The result of the algorithm is saved in the variable res. As mentioned above, if the
algorithm failed, res is a string. Otherwise, it is a Python dictionary (dict) with statistical
information. Thus, first it is checked, whether the algorithm succeeded. If not, the error
message is printed and the program quits.

if type(r) ==str:
print r
exit ()

However, if the functional call succeeded, first it should be checked, whether the circuit
should be printed to the standard output. This can be controlled using the program
option print. Whether a program option is set or not can be checked with the method
is_set.

if opts.is_set ( “print” ):
print circ

Then, it should be checked whether the circuit realization should be dumped to a
RevLib file. Since a predefined method of program_options was used to add this op-
tion, there exists a predefined option for checking and reading the value of that option
as well.

if opts. is_write_realization_filename_set ():
write_realization ( circ, opts.write_realization_filename () )

12
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Finally, statistical information of the circuit as well as of the synthesis process (e.g. the
run-time)is printed to the standard output.

27 print_statistics ( circ, res[”runtime”])
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A. Core Data Structures

A.1l. Gate

The class gate represents a gate in a circuit. It is a collection of control and target lines.
Furthermore, a distinct type is set to each gate. Usually, gates are added using helper
functions, e.g. append_toffoli.

Constructors

gate() Initializes an empty gate
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Properties

controls Line iterator, allows the use of a for ... in loop (read-only)
targets Line iterator, allows the use of a for . . . in loop (read-only)

size Size of the gate, which is the sum of number of control lines and target lines
(read-only)

num_controls Number of control lines (read-only)
num_targets Number of target lines (read-only)
type Type of the gate, which can be gate_type.toffoli, gate_type.peres, gate_type.fredkin,
gate_type.peres, gate_type.v, and gate_type.vplus
Methods
add_control(/) Adds a control at line [
remove_control( /) Removes the control at line /
add_target(/) Adds a target at line [

remove_target(/) Removes the control at line [

A.2. Circuit

A circuit is the central data structure in the RevKit framework. It can be seen as a
container of lines. Furthermore, it has properties for meta-data information such as
names of the inputs, declaration of constant inputs, etc. A sub-circuit is also a circuit,
shares the same data structure, and, thus, the same properties and operations. It is
created with the subcircuit constructor.

Constructors
circuit() Initializes an empty circuit with 0 lines

circuit( n ) Initializes an empty circuit with 7 lines

subcircuit( base, from, to ) Initializes a sub-circuit with base as circuit basis, includ-
ing the gates from to to, where to is excluded

14
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subcircuit( base, from, to, filter ) Initializes a sub-circuit with base as circuit basis,
including the gates from to to, where to is excluded. Furthermore, the lines
are restricted to the indices in the list filter

Properties
lines Number of lines
num_gates Number of gates (read-only)
gates Gate iterator, allows the use of a for .. . in loop (read-only)

inputs Input labels
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outputs Output labels
constants Determines constant inputs, i.e. a list which assigns the values True,
False, or None to each input

garbage Determines garbage outputs, i.e. a list which assigns the values True or
False to each output

circuit_-name Name of the circuit

filter The filter is a list [s,f]. In the case the circuit is a sub-circuit and restricted
by its lines, then s is the number of lines of the base circuit and f is the set of
lines present in the sub-circuit. Otherwise, s is 0 and f is empty

Methods

append_gate( g ) Appends gate ¢

prepend_gate( g ) Prepends gate ¢

insert_gate( n, g ) Inserts gate ¢ in front of the gate at position n

remove_gate_at( 7 ) Removes the gate at position n

is_subcircuit() Returns whether circuit is a sub-circuit or not

[n] Accessor Gets the n-th gate, counting from 0 (read-only)

Example

Two different methods for iterating through the gates.
#!/usr/bin/python

circ = circuit ()
read _realization( circ, ’ circuit.real” )

for g in circ:
print g.num_controls()

for i in range(0, circ.num_gates):
print circ[i ]. num_controls()

15
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A.3. Truth Table

As truth table, the user interface of RevKit provides a binary_truth_table containing
Boolean values only.

Constructors

binary_truth_table() Initializes an empty binary truth table, working on the val-
ues True, False, and None (don't care)

Properties

entries Entry iterator, allows the use of a for .. . in loop (read-only)

num_inputs Number of input variables. The value initially is 0 and is determined
after the first call of add_entry() (read-only)

num_outputs Number of output variables. The value initially is 0 and is deter-
mined after the first call of add_entry() (read-only)

permutation Current output permutation, i.e. a list with the numbers from 0 to
n — 1, where n is the number of primary outputs. The permutation can also
be changed with permute()

inputs Input labels
outputs Output labels

constants Determines constant inputs, i.e. a list which assigns the values True,
False, or None to each input

garbage Determines garbage outputs, i.e. a list which assigns the values True or
False to each output

Methods

add_entry( in, out ) Adds an entry with inputs in and outputs out. The first call
determines the number of input and output variables. Afterwards, the size
of in and out must be conform to them

clear() Clears the truth table, including all meta-data and number of inputs and
outputs

permute() Permutes the output variables. Returns False when no more new per-
mutation can be set

Example

Iterating through the entries of a specification.

#!/usr/bin/python

spec = binary_truth_table ()
read_specification ( spec, ”function.spec” )

16
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5 for entry in spec.entries:
print entry [0], “maps_to”, entry[1]
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B. Core Functions

B.1. Basic Functions
Adding Circuits

append _circuit( circ, src)

Appends the circuit src to the circuit circ.

prepend_circuit( circ, src)

Inserts the circuit src at the beginning of circuit circ.

insert_circuit( circ, pos, src )

Inserts the circuit src before gate with index pos of the circuit circ. The index is
counted from 0.

Adding Gates

append_toffoli( circ, controls, target)
Appends the Toffoli gate with control lines in the list controls and target line on
target to the circuit circ.

append_fredkin( circ, controls, target1, target2)
Appends the Fredkin gate with control lines controls and target lines target1, tar-
get2 to the circuit circ.

append_peres( circ, control, target1, target2)
Appends the Peres gate with control line control and target lines target1, target2 to
the circuit circ.

append_cnot( circ, control, target)
Appends the CNOT gate with control line control and target line target to the cir-
cuit circ.

append_not( circ, target)
Appends the NOT gate with target line target to the circuit circ.

append_v( circ, control, target)

Appends the V gate with control line control and target line target to the circuit
circ.

append_vplus( circ, control, target)

Appends the V+ gate with control line control and target line target to the circuit
circ.

18
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prepend_toffoli( circ, controls, t
Prepends the Toffoli gate with control lines controls and target line target to the
circuit circ.

prepend_fredkin( circ, controls, target1, target2)
Prepends the Fredkin gate with control lines controls and target lines target1, tar-
get2 to the circuit circ.

prepend_peres( circ, control, target1, target2)
Prepends the Peres gate with control line control and target lines target1, target2 to
the circuit circ.

prepend_cnot( circ, control, target)
Prepends the CNOT gate with control line control and target line target to the
circuit circ.

prepend_not( circ, target)

Prepends the NOT gate with target line target to the circuit circ.

prepend_v( circ, control, target)
Prepends the V gate with control line control and target line target to the circuit
circ.

prepend_vplus( circ, control, target)
Prepends the V+ gate with control line control and target line target to the circuit
circ.

insert_toffoli( circ, n, controls, t
Inserts the Toffoli gate with control lines controls and target line target to the circuit
circ.

insert_fredkin( circ, pos, controls, target1, target2)
Inserts the Fredkin gate with control lines controls and target lines target1, target2
to the circuit circ at position pos.

insert_peres( circ, pos, control, target1, target2)
Inserts the Peres gate with control line control and target lines target1, target? to
the circuit circ at position pos.

insert_cnot( circ, pos, control, target)

Inserts the CNOT gate with control line control and target line target to the circuit
circ at position pos.
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insert_not( circ, pos, target)

Inserts the NOT gate with target line target to the circuit circ at position pos.

insert_v( circ, pos, control, target)
Inserts the V gate with control line control and target line target to the circuit circ
at position pos.

insert_vplus( circ, pos, control, target)

Inserts the V+ gate with control line control and target line target to the circuit circ
at position pos.

Circuit Lines

add_line_to_circuit( circ, input, output, is_control = None, is_garbage = False )

Adds a line to the circuit.

control_lines( g )

Returns a list of the control lines of g.

target_lines( g )

Returns a list of the target lines of g.

find_non_empty_lines( circ_or_gate, begin = None, end = None )
Returns the non empty lines in a circuit(range) or gate. The first parameter can be
a circuit or a gate. If the first paramater is a circuit, then the gates can be selected
by a range from begin to end (exclusive).

find_empty_lines( circ_or_gate, begin_or _line_size = None, end = None )

Returns the empty lines in a circuit, a circuit range, or a gate. The first parameter
can be a circuit or a gate. If the first paramater is a circuit, then the gates can
be selected by a range from begin (begin_or_line_size parameter) to end (exclusive).
If the first parameter is a gate then the second parameter is used to specify the
number of lines in the gate.

Copying, Modifying and clearing circuits

clear_circuit( circ )

Clears the circuit circ completely, i.e. gates, lines, and meta-data are deleted. The
object is still valid.

circuit_to_truth_table( circ, spec )

Generates the truth table for the circuit circ.
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copy_circuit( src, dest )

Copies all relevant data including lines, gates, and meta-data from src to dest.

copy_metadata( base, circ)

Copies data from a specification or circuit base including inputs, outputs, garbage
lines and constant lines to the circuit circ.

reverse_circuit( src [, dest] )
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Reverses the circuit src and write the result into dest, if given. Otherwise the circuit
is reversed in-place.

expand_circuit( sub, circ)

Expands the sub-circuit sub by the lines of its base circuit and copies the result to
circ.

Truth Table Information and Modification

fully_specified( spec )
Returns True, if spec is a fully specified truth table. Otherwise False.

extend_truth_table( spec )

Removes the Don’t Cares Values of a binary truth table spec.

B.2. Input/Output
Creating Images
create_image( circ, generator = create_tikz_settings(), elem_width = 0.5, elem_height =

0.5, line_width = 0.3, control_radius = 0.1, target_radius = 0.2))

Creates an image from circ and prints out the code to generate the image, e.g. IXTEX.
The target code can be specified using the generator parameter. In the default case,
the output is TikZ code for IXTEX. Another possible generator is create_pstricks_settings.
Furthermore layout options can be specified with the remaining parameters.

Printing a circuit to console

print_circuit( circ, print_inputs_and_outputs = False, print_gate_index = False,
control_char ="*', line_char ="', gate_spacing = 0, line_spacing = 0)

Prints the circuit circ as an ASCII representation to the console. The remaining
parameters can adjust the appearance.
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Printing statistics

print_statistics( circ, runtime = -1.0, main_template ="...”, runtime_template ="...” )

Prints statistics of circ to the console. If runtime is not -1.0 it is printed as well. For
more information about the templates, we refer to the corresponding entry in the
API of the developers” documentation.

Reading and writing circuits and specifications
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read_realization( circ, filename)

Read-in routine for RevLib realization files. The circuit circ has to be empty.

write_realization( circ, filename, version = "1.0’, header = "This file has been generated
using RevKit (www.revkit.org)”)

Dumps the circuit circ as RevLib realization file called filename.

read_specification( spec, filename)
Read-in routine for RevLib specification files. The binary truth table spec has to be
empty.

write_specification( spec, filename, version = "1.0’, header = "This file has been gener-
ated using RevKit (www.revkit.org)’, output_order =[] )

Dumps the binary truth table spec as RevLib specification file called filename. Using
output_order the order of the outputs can be changed. If specified, the length of the
list has to match the number of outputs and all indices must be contained in the
list.

read_pla( spec, filename, extend = True ) Read-in routine for PLA specification files. The
binary truth table spec has to be empty. The PLA gets extended using extend_truth_table
automatically. This behavior can be disabled by setting extend to False.

write_blif( circ, filename, tmp_signal_name = "tmp” )

Dumps the circuit circ as BLIF circuit to a file called filename.

B.3. Utilities
Cost Functions

costs( circ, cost_function )

Returns the costs for the circuit circ base on the costs function cost_function, which
can be either gate_costs(), quantum_costs(), transistor_costs(), or line_costs().
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Program Options

Constructors
program_options() Initializes an instance of type program_options which has ini-
tially only the help option.
Methods
add_costs_option() Adds an option costs to specify a cost function.

add_read _specification_option() Adds a mandatory option filename to specify a
RevLib specification to read from. If this method was called, add_read_realization_option
cannot be called anymore.
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add_read_realization_option() Adds a mandatory option filename to specify a RevLib
realization to read from. If this method was called, add_read_specification_option
cannot be called anymore.

add_write_realization_option() Adds an option realname to specify a RevLib real-
ization to read to.

add_numeric_option( name, description ) Adds an option getting a numeric value
without a default value having the name name and a description description.

add_double_option( name, description ) Adds an option getting a floating number
value without a default value having the name name and a description de-
scription.

add_option( name, description ) Adds an option getting a string value without a
default value having the name name and a description description.

add_option( name, default_value, description ) Adds an option with a default value.
The corresponding type can be determined from the default value, which
can be either numeric or a string.

costs() Returns the selected costs function, if a respective option was added.

good() Evaluates to True, iff all mandatory options were specified and the help
option was not requested.

is_set( name ) Returns True, if the option with name name was set as argument.
parse( arguments ) Parses the program arguments, usually in sys.argv.

read_realization_filename() Value of the filename (as realization) option, if speci-
fied.

read_specification_filename() Value of the filename (as specification) option, if spec-
ified.
write_realization_filename() Value of the realname option, if specified.

is_write_realization_filename_set() Returns True, iff the realname option is set as
an argument.
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[name] Accessor Returns the value of the option with name name, if specified
(read-only)
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C. Synthesis

C.1. Synthesis with Boolean Decision Diagrams

This algorithm implements the BDD based synthesis approach based on [9]. It supports
complemented edges, different re-ordering strategies and the generation of both, Toffoli
and elementary quantum gates.

The function representation can be read from a BLIF or PLA file-name. Thereby the
extension is used to determine the file type, so it has to be ensured that a BLIF file has
the extension *.blif and a PLA file has the extension *.pla, respectively.

Synopsis

bdd_synthesis (circ, filenamel[, ...])

circ An empty circuit, which is filled with gates by the algorithm
filename A file which contains a function described as PLA or BLIF

Settings for the algorithm:

complemented_edges Specifies whether complemented edges should be used by
the BDD. The default value is True.

reordering The reordering strategy for choosing the variable ordering. The de-
fault value is 4.

dotfilename If this string is specified, i.e. if it is not empty, then a graph repre-
sentation of the BDD in DOT format is written to that file-name.

infofilename 1If this string is specified, i.e. if it is not empty, then information
about the generated BDD are dumped to that file-name.
Statistical information for the algorithm:
runtime Run-time used by the synthesis algorithm

node_count Number of nodes of the generated BDD

Example

The following example creates a circuit using the BDD synthesis approach and dumps
the BDD as a graph. Using dot, the graph can be displayed with the command
cat /tmp/test.dot | dot -Tpng | display

#!/usr/bin/python

from revkit import *

circ = circuit ()
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5

6 bdd_synthesis(circ, "function.pla’, dotfilename ="/tmp/test.dot’)
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C.2. Synthesis with Kronecker Functional Decision Diagrams

This synthesis approach constructs KFDDs from a given functional representation in
PLA or BLIF and constructs a reversible circuit by constructing cascades for every node
type as proposed in [7]. Thereby, re-ordering strategies as well as different decomposi-
tion types can be used.

Synopsis

kfdd_synthesis (circ, filename[, ...])

circ An empty circuit, which is filled with gates by the algorithm
filename A file which contains a function described as PLA or BLIF

Settings for the algorithm:

default_decomposition The default decomposition type (Shannon = 0, positive
Davio = 1, negative Davio = 2) used when initially constructing the KFDD.
The default value is 0.

reordering The reordering strategy for choosing the variable ordering. The de-
fault value is 0.

sift_factor Sets a factorial limit for the growth during a siftprocess cause although
the outcome will be improved, during sifting the KFDD might explode if not
kept at bay. Suggested values are in between 2 and 3. The default value is
2.5

sifting_growth_limit This parameter (possible values are 'r' for relative and 'a’
for absolute) determines whether the given sift-factor should be treated as
relative or absolute growth limit. In the case of a relative treatment, after
each repositioning of a sifting variable the comparison size for the growing
is actualized. In the case of an absolute treatment, the comparison size is the
intial size of the KFDD for the complete sifting process. The default value is

a.

sifting_method Sets the kind of choice for the next sifting candidate. Possible
values and their meaning are listed in the following table:

Method Description
'r' (Random)  The random selection was introduced for comparison reasons.
'i" (Initial) The sifting variables are chosen in the order given before the sifting

procedure starts.
'g’ (Greatest)  Chooses the variable in the level with the largest number of nodes.
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'I' (Loser first) Although the complete sifting process will reduce the number of
DD-Nodes (or at least keep the same size if no improvement can be
done) after each repositioning of a sifting variable there will occa-
sionally be some levels that grow. The loser first strategy chooses
the next sifting candidate as the variable in the level with the least
increase in size.

'v' (Verify) Calculates the number of node eliminations due to the reduction
rules of OKFDDs if a variable is repositioned in a specific level. It
then chooses the best position according to the highest count result.
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The default value is 'v'.

dotfilename If this string is specified, i.e. if it is not empty, then a graph repre-
sentation of the KFDD in DOT format is written to that file-name.
Statistical information for the algorithm:
runtime Run-time used by the synthesis algorithm

node_count Number of nodes of the generated BDD

Example

The following example synthesizes a circuit using the KFDD synthesis approach. The
negative Davio decomposition is used as the default in the construction process.

v #!/usr/bin/python
from revkit import *

N

circ = circuit ()
kfdd_synthesis( circ, "function.pla’, default_.decomposition =2)

(@2 BTNV}
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C.3. Transformation-based Synthesis

This transformation based synthesis algorithm is based on [5]. The idea is to traverse
the truth table rows from top to bottom and add gates to the circuit to obtain the iden-
tity. In the paper, two strategies were proposed, a basic approach adding gates in the
end of the circuit and a bidirectional approach also adding gates in the beginning which
can lead to fewer costs. Both approaches are implemented in this algorithm.

Synopsis

transformation_based_synthesis (circ, spec[, ...])

circ An empty circuit, which is filled with gates by the algorithm
spec A fully specified binary truth-table which is basis for the synthesis algorithm

Settings for the algorithm:

bidirectional Determines whether the bidirectional approach should be used or
not. The default value is True

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

Example

The following example synthesizes two reversible circuits using the function described
in the file function.spec. First, the basic approach is applied and afterwards the bidirec-
tional extension is enabled.

circl = circuit ()
circ2 = circuit ()

spec = binary_truth_table ()
read_specification (spec, ’function.spec”)

# bidirectional approach
transformation_based_synthesis(circl, spec)

# no bidirectional approach
transformation_based_synthesis(circ2, spec, bidirectional = False)
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C.4. Exact Synthesis using Boolean Satisfiability

Synthesizes a minimal circuit (with respect to the number of gates) using the SAT-based
exact synthesis approach as presented in [3].

Synopsis

exact_synthesis (circ, spec[, ...])

circ An empty circuit, which is filled with gates by the algorithm
spec A fully specified binary truth-table which is basis for the synthesis algorithm

Settings for the algorithm:

solver The solver to be used in the approach. The default (and currently only
available) value is MiniSAT.

max_depth The maximal considered circuit depth. The default value is 20.

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

Example
In the following example, a circuit is synthesized using Boolean Satisfiability.

#!/usr/bin/python
from revkit import *

binary_truth_table ()
circuit ()

spec
circ

read_specification ( spec, “function.spec” )
exact_synthesis( circ, spec )
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C.5. ESOP-based Synthesis

This algorithm implements the ESOP based synthesis approach as introduced in [2].
The basic approach, where each input signal requires to line for its positive and neg-
ative polarity version, can be enabled by setting the setting separate_polarities to True.
If one line is used for both polarities, which is the default case, a functor can be spec-
ified to reorder the cubes in order to minimize inverter gates. Two functors are pro-
vided which are, no_reordering which keeps the initial order from the truth table, and
weighted_reordering which is proposed in [2] as reordering strategy.

Synopsis

esop_synthesis (circ, filename[, ...])

circ An empty circuit, which is filled with gates by the algorithm
filename A file which contains a function described as ESOP cubes

Settings for the algorithm:

separate_polarities If True, the basic approach using two circuit lines for each
input variable is used. Furthermore, in that case, no reordering functor has
to be specified. The default value is False.

reordering Function for reordering the cubes to obtain a better result by using
less NOT gates. The default value is weighted_reordering with default values.

garbage_name A string for the name of the garbage outputs which are possible
created during embedding. The default value is 'g’.

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm
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C.6. Truth Table Embedding

This algorithm takes an irreversible (incompletely) specified truth table, for example
using read_pla and embeds it into a reversible specification. Thereby necessary garbage
and constant lines are added. The function is always embedded using the 0 values
of the constant lines and the method which is used is the "Greedy Method” applying
possible assignments by the minimal hamming distance.

Synopsis

embed_truth_table (spec, base[, ...])

spec A truth table which will be created by this algorithm. Can be the same as base.
base The base truth table which is irreversible.

Settings for the algorithm:

garbage_name A string for the name of the garbage outputs which are possible
created during embedding. The default value is 'g'.

output_order The initial has a number of output variables, say n, the initial order
of them is [0,...,n — 1], i.e. the i-th variable is initially in the i-th column.
However, with embedding garbage lines are possibly added, say | garbage
lines. Usually, the garbage lines are appended to the output columns, i.e. the
initial order of the output variables will not change. To change this behavior
a list of indices can be specified. The list must have n different elements with
the values from 0 to (n 4 g — 1) or the list is empty meaning that the output
order will remain the same. The default value is the empty list.

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

Example

In this example the AND function is specified manually and then embedded to be re-
versible. Finally the reversible specification is synthesized using the transformation
based synthesis.

#!/usr/bin/python
from revkit import *

spec = binary_truth_table ()

spec.add_entry( [False, False], [False] )
spec.add_entry( [False, True], [False] )
spec.add_entry( [True, False], [False] )

32



RevKit — User Manual

spec.add_entry( [True, True], [True] )
embed_truth_table( spec, spec )
circ = circuit ()

transformation_based_synthesis( circ, spec )
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C.7. Synthesis with Output Permutation

This is an implementation of the SWOP (Synthesis with Output Permutation) synthesis
approach as introduced in [10]. Thereby it is generic and can be used with every truth
table based synthesis approach, which gets a circuit and a truth table as parameters.

Synopsis

swop (circ, spec[, ...])

circ An empty circuit, which is filled with gates by the algorithm
spec A fully specified binary truth-table which is basis for the synthesis algorithm

Settings for the algorithm:

enable This parameter enables the output permutation. Thus, when this param-
eter is False, the algorithm behaves the same as calling the chosen synthesis
algorithm once. Therewith, embedding a synthesis algorithm in the swop al-
gorithm enables three configurations: no swop (enable is False), heuristic and
exhaustive (enable is True in combination with the exhaustive parameter). The
default value is True.

exhaustive If this parameter is True, then all permutations are checked, otherwise
the a good permutations is heuristically determined by sifting the permu-
tations. The complexity of the SWOP algorithm (not considering the used
synthesis approach) is O(2") if this parameter is True, and O(n?) if this pa-
rameter is set to False. The default value is False.

synthesis A functor to the default synthesis approach which is used. The functor
is of type truth_table_synthesis_func. The default value is
transformation_based_synthesis_func().

cost_function A pointer to a cost function, which is used is criteria to minimize
the circuit. The default value is gate_costs().

stepfunc A function which gets called after each iteration of the SWOP algorithm.
The functor is of type swop_step_func. The default value is an empty function.

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

Example

In the following example the SWOP synthesis is used with a modified transforma-
tion based synthesis (using the non bidirectional approach) and a step function, which
counts the number of iterations in a global variable named counter.

34



RevKit — User Manual

#!/usr/bin/python
from revkit import

circ = circuit ()
spec = binary_truth_table ()

counter = 0
read_specification (spec, "function.spec’)
tbs = transformation_based_synthesis_func(bidirectional = False)
def step ():
global counter

counter +=1

swop(circ, spec, synthesis = tbs, stepfunc = swop_step_func.from_callable(step))
print counter, ’ iterations _were_performed’
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C.8. Quantum Decomposition

This algorithm decomposes a reversible circuit into a quantum circuit based on the
work of [1] and [4]. The resulting circuits do not necessarily coincide with the quantum
costs calculated by quantum_costs(), since some further optimizations are not consid-
ered yet.

Synopsis

quantum_decomposition (circ, base[, ...]1)

circ An empty circuit, which will be filled with quantum gates by the algorithm.

base The base circuit, containing reversible gates which needs to be decomposed. This
circuit will not be changed by the algorithm.

Settings for the algorithm:

helper_line_input In some cases a helper line is introduced by the algorithm (see
above). This string specifies the input name for the helper line. The default
value is 'w'.

helper_line_output In some cases a helper line is introduced by the algorithm (see
above). This string specifies the output name for the helper line. The default
value is 'w'.

gate_decomposition This parameter is a gate_decomposition_functor which decom-
poses a single gate and adds it to the quantum circuit. This fuctor is called
by the algorithm for every gate. The default value is standard_decomposition,
which implements the above described decomposition techniques.

Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

Example

The following example decomposes the Toffoli gate as its quantum cascade and writes
it to another realization file.

i #!/usr/bin/python

> from revkit import

‘4 circ = circuit (3)
5 append_toffoli(circ, [0,1], 2)

7 quancirc = circuit ()
8 quantum_decomposition(quancirc, circ)
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9
10 write_realization (quancirc, ’ circuit . real”)
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D. Optimization

D.1. Window Optimization

This algorithm implements the window optimization approach as presented in [8]. The
implementation is very generic and depends heavily on the functors defined in settings.
In a loop, a new window is selected using the select_window setting, and in case a
window was found, the optimization approach using the optimization setting is applied.
The resulting new window is compared to the extracted one using the cost metric
defined in the cost_function setting.

Synopsis

window_optimization (circ, base[, ...])

circ An empty circuit, which is filled with gates by the algorithm by optimizing base.
base The base circuit which should be optimized.

Settings for the algorithm:

select_window A functor which selects the window which should be considered
for local optimization. The default value is shift_window_selection_func with
default parameters.

optimization A functor which optimizes the window. The default value is resyn-
thesis_optimization_func with default parameters.

cost_function A pointer to a cost function, which is used is criteria to minimize
the circuit. The default value is gate_costs().
Statistical information for the algorithm:

runtime Run-time used by the synthesis algorithm

Example

In this circuit a circuit is read from a realization file and afterwards first optimized using
shift window selection with a window length of 7 and an offset of 3. Finally, the circuit
is again optimized using the line window selection scheme and quantum costs as cost
criteria.

#!/usr/bin/python

from revkit import

circ = circuit ()
read _realization (circ, ’ circuit .real”)
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opt_circl = circuit ()
window_optimization(opt._circl, circ, \
select_window = shift window_selection_func(window_length = 7, offset = 3))

opt_circ2 = circuit ()
window_optimization(opt_circ2, opt_circl, \
select_window = line_-window _selection_func(), cf = quantum_costs())
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D.2. Line Reduction

This algorithm implements the approach presented in [13]. Windows are found and re-
synthesized such that an output of that window is always returning a constant value,
so that it can be used as replacement for another constant input line, often introduced
by hierarchical synthesis methods.

Synopsis

line reduction (circ, basel[, ...1)

circ An empty circuit, which is filled with gates by the algorithm by optimizing base.
base The base circuit which should be optimized.

Settings for the algorithm:

max_window_lines Number of lines the selected windows can have initially. The
default value is 6.

max_grow_up_window_lines When the truth table is not reversible, obtained by
a window with max_window_lines lines, then the number of lines can be in-
creased up at most this value. The default value is 9.

window_variables_threshold The possible window inputs are obtained by simu-
lating its cone of influence. It is only simulated if the number of its primary
inputs is less or equal to this value. The default value is 17.

simulation Simulation function used to simulate values inside the windows and
inside the cone of influence. The default value is simple_simulation_func().

window_synthesis Functor used to re-synthesize the window. It only has to em-
bed and synthesize the window. It is preferred to use embed_and_synthesize,
whereby the parameters can be adjusted to use different synthesis algorithms.
The default value is embed_and_synthesize() with default parameters.

Statistical information for the algorithm:
runtime Run-time used by the synthesis algorithm
num_considered_windows Number of windows, which were considered in total.

skipped_max_window_lines Number of skipped windows due to maximum num-
ber of allowed primary inputs to be simulated, see window_variables_threshold.

skipped_ambiguous_line Number of skipped windows due to irreversible speci-
fication.

skipped_no_constant_line Number of skipped windows in the case that no con-
stant line can be found for a garbage line.

skipped_synthesis_failed Number of skipped windows in the case that the syn-
thesis of the window failed.
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Example

First the line are reduced using the standard settings, meaning that the transforma-
tion based synthesis is exploited. Afterwards, line reduction is applied using the exact
synthesis. To keep the number of window lines small when using the exact synthesis
approach, the value for max_grow_up_window_lines is adjusted.

#!/usr/bin/python
from revkit import *

circ = circuit ()
read _realization (circ, ’ circuit .real”)

Ir_circl = circuit ()
line_reduction( Ir_circl , circ)

Ir_circ2 = circuit ()
window _optimization(lr_circ2, circ, \

max_grow_up-window_lines = 6, \
window_synthesis = embed_and_synthesize( synthesis = exact_synthesis_func() ) )

E. Verification
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