
Using Online Learning to Analyze the
Opponents Behavior

Ubbo Visser and Hans-Georg Weland

TZI - Center for Computing Technologies, University of Bremen
Universittsallee 21-23, D-28334 Bremen, Germany

{visser|weland}@tzi.de
http://www.virtualwerder.de/

Abstract. Analyzing opponent teams has been established within the
simulation league for a number of years. However, most of the analyz-
ing methods are only available off-line. Last year we introduced a new
idea which uses a time series-based decision tree induction to generate
rules on-line. This paper follows that idea and introduces the approach
in detail. We implemented this approach as a library function and are
therefore able to use on-line coaches of various teams in order to test the
method. The tests are based on two ’models’: (a) the behavior of a goal-
keeper, and (b) the pass behavior of the opponent players. The approach
generates propositional rules (first rules after 1000 cycles) which have to
be pruned and interpreted in order to use this new knowledge for one’s
own team. We discuss the outcome of the tests in detail and conclude
that on-line learning despite of the lack of time is not only possible but
can become an effective method for one’s own team.

1 Introduction

The standard coach language provides the on-line coaches in the RoboCup soccer
simulation league with a possibility to rapidly change the behavior of his team.
In addition, its existence allows a competition between coaches. In order to
achieve a successful coaching, a lot of information about the opponent has to be
collected, to which the coach can react and change his own team according to
the opponent. For this reason several methods have been introduced in the past
to analyze on-line and to adapt to the opponents. These papers demonstrated
how to recognize team formation [Visser et al., 2001] or how to adapt to play
situations [Riley and Veloso, 2002]. [Drücker et al., 2002] showed the idea and a
first prototype of the method presented in this paper.

Very important aspects of the behavior of a soccer team are the goalkeeper
and the pass behavior.

A pass is a frequent event within a soccer game. It allows the team passing to
move the ball across a great distance in a short time and to defeat the opposing
defenders. Thus, successful passing can be a great advantage. On the other hand,
a pass is always a risk. When the ball is passing it moves without being guarded
by a team member who could change the direction of the ball, if necessary. This

gives the opposing players the possibility to intercept the pass. These intercepted
passes are a certain disadvantage. When a team is passing less successful in
certain situations than in others, it makes sense for the opposing team to try to
create these situations as often as possible. However, in order to do this, it must
be known which factors lead to these mistakes.

Therefore, analyzing the goalkeeper the moment when he leaves the goal is
of special interest. A possibility to play around him or to reach a point near the
goal while he does not attack the forwards, produces great chances to score. It
is important to know which factors have led to the players’ decision. Also, it
is important to know the threshold where they react in a certain way. Thus, it
is crucial to use a method that is not hampered by pre-discreeted values but
does the discreetization itself. As the outcome of such a method should directly
be used by the on-line coach, the results require a certain form. They should
be employed to generate instructions for the players. For these constraints the
time series-based decision tree induction described in [Boronowsky, 2001] seems
suitable. As this method operates with continuous-valued time series, a pre-
discreetization of the data is not required. The method finds the split points and
therefore the thresholds where the analyzed player act.

2 Time series-based decision tree induction

This method consists of a entropy minimization heuristic that only has to be
calculated for certain points as opposed to C4.5[Quinlan, 1993] where all possible
split points are calculated. This is an important advantage to other decision tree
algorithms. Due to the great amount of possible split points, the calculation
effort can be very high with continuous data.

The basic ideas for the optimization of the method we use are similar to
those of ID3 and C4.5 described in [Fayyad and Irani, 1992]. It shows that the
entropy minimization heuristic can only be minimal at the so-called boundary
points. A boundary point is a point within the range of a certain attribute whose
neighbors belong to two different classes. Thus, the range of an attribute holds
for a boundary point T , and

A(e1) < T < A(e2). (1)

E1, e2 ∈ S belong to the set of all samples S, A(e) is the attribute value of e and

¬∃e3 ∈ S : A(e1) < A(e3) < A(e2) (2)

where e1 and e2 belong to disjunctive classes.
This approach already leads to a noticeable increase in efficiency given ap-

propriate samples. If the samples include overlapping classes the increase of
efficiency ends. There are boundary points in the overlapping area in such cases.
The calculation then has to be done for all these points because the entropy min-
imization heuristic can be minimal for all of them. In RoboCup environments
such overlapping areas cannot be ruled out.

It can be shown though that for continuous equal distributions the entropy
minimization heuristic can only be minimal at so-called true boundary points.
True boundary points are those boundary points that are located at the bound-
aries of the interval of one class assignment. When a continuous equal distri-
bution can be reached, the number of interesting points can be reduced and
therefore the calculations. This leads to an significant increase in efficiency.

Since this decision tree induction does not work on a set of examples but on
time series, the calculation of the optimal split point does not depend on the
amount of examples belonging to a certain class. Instead, it depends on the time
interval of such an assignment. Instead of freq(Cj , S) and |S| the interesting
issues are

– the duration of the assignment of the time series smaller than the split point
y to a class Cj timeCj (y),

– the duration of the assignment of the time series above the split point
timeCj (y), and

– the total duration of the assignment to one class tmaxCj .

Thus, there isn’t an assignment to a class for every single sample, but there
is a qualitative abstraction to one or a combination of multiple time series.
This defines which time intervals are assigned to which class. Figure 1 shows an
example of a qualitative abstraction of a time series. It shows the behavior of a
goalkeeper. At time tbegin the distance between the keeper and the goal remains
stable. At time t1 the distance increases which means that he leaves the goal.
This state holds until time t2. The function will be abstracted to class Bstays

and Cleaves accordingly.

Fig. 1. Qualitative abstraction of the behavior of a goalkeeper

For partial linear measured value gradients it can be shown that the entropy
minimization heuristic can be calculated efficiently [Boronowsky, 2001]. This is
based on the characteristic that the duration of a class assignment timec(y) for
partial linear measured value gradients can be described by linear functions.
Such linear durations of class assignments are continuously equally distributed.
Thus, the correlation between a continuous equal distribution and an entropy
minimization heuristic, as described above, can be used.

It is therefore possible to perform an efficient decision tree induction for con-
tinuous valued time series, if these time series consist of partial linear functions.
As it cannot be assumed that such partial linear measured value gradients are
found, they must be adapted in an appropriate way. This is done by an ap-
proximation of the continuous measured values by partial linear functions. As
an approximation does not exactly equal the original function an approximation
error occurs. This error should be as small as possible, especially at the split
points. In general, one can achieve a better approximation by increasing the
number of linear functions. On the other hand, this leads to a higher number
of potential split points. Thus, the reduction of the approximation error leads
to a loss of efficiency. Although, certain points seems to be very important and
should therefore be used as boundary points for the linear functions. These are

– the start and end of the used time series
– the times of a change in the class assignment
– the extreme values of the measurement course

It makes sense to use the start and end of the time series because this is
the only way to represent the whole series. By using the points where the class
assignment changes as boundary point for the linear approximations, a linear
function is always assigned to exactly one class. This makes the calculations
of the duration of class assignments easier. The extreme values are interesting
because they give the option to find a split point, which separates the time series
in such a way that the complete series assigned to one class is under or above
this split point.

With these partial linear functions the entropy minimization heuristic only
need to be calculated for the boundary points of the linear functions because it
can only be minimal at these points. Fig.2 shows an approximation with four
boundary points (1-4) and the according four points for potential horizontal
splitting (y1-y4). To calculate the entropy, the information contents of the du-
ration of class assignments and (info(y)) an above (info(y)) the potential split
point has to be calculated.

info(y) = −
∑
i∈C

timei(y)∑
k∈C timek(y)

ln

(
timei(y)∑

k∈C timek(y)

)
(3)

info(y) has to be calculated in the analogue, by changing time(y) to time(y).
The entropy can be calculated by

entropy =
∑

i∈C timei(y)info(y) +
∑

i∈C timei(y)info(y)∑
i∈C tmaxi

(4)

This calculation must be done for all boundary points in all time series.
At the point where the results are minimal the according time series is split
horizontally. All the others are split vertically at certain points. These points
are those where the horizontally splitted time series crosses the value by which
it is split. The result is that two new time series are created for every existing
time series. One consists of those time intervals in which the horizontal splitted
series is greater than the split threshold and the other of those where it is not.
This process is then repeated with the two new sets until a certain end criterion
is reached.

Fig. 2. Partial linear approximation
with potential points for horizontal
splitting

The ending criterion cannot be the
number of correct classified examples as
used in regular supervised symbolic ma-
chine learning techniques. As it is a time
series-based method the ending criterion
should be the correct classified time in-
tervals.

At the splitting of the time series the
approximation error has to be considered.
If the splitting is only calculated by the
approximations and not on the basis of
real functions there can be errors in the
horizontal as well as in the vertical split-
ting. At the horizontal splitting the ap-
proximation can be different from the real
value on the time axis and at the vertical
there can occur an error on the ordinate.
This can be prevented by adapting the ap-
proximation in a suitable way. Therefore,

all points are added to the approximation that should be split horizontally where
the real functions crosses the threshold y. To the other approximations new
points are added at all vertical split points.

3 Preprocessing of the used data

In order to use the method in an online-coach it has to be defined what should
be analyzed and which data should be used for it. In this paper we focus on two
scenarios:

1. We analyze the moment when the goalkeeper leaves the goal.
2. We analyze the pass behavior of opponent players

In order to do this a suitable qualitative abstraction must be found. It defines
which time intervals are assigned to which class, e.g. if the goalkeeper leaves the

goal or if he stays on the line. This leads to the problem that the things that
should be learned are not always directly included in the data provided by the
soccer server. Therefore, the given data have to be combined or even an element
of guessing has to be included. It is important to note that we can only analyze
what is happening and that we cannot recognize the player’s intention.

The result of this method always depends on the abstraction. If the abstrac-
tion is not correct something different is learned. A slight error in the abstraction
of the goalkeeper could lead to a tree that has learned the movement of the goal-
keeper rather than when he is leaving the goal. These results cannot be used
correctly to improve the behavior of a team.

In order to use a decision tree algorithm it is necessary to choose suitable
attributes from which the tree is built. It is essential that these attributes rep-
resent those values that are important for the decisions of the opponent player.
If they are not represented in the attributes the behavior cannot be learned.

3.1 Analysing Goalkeeper Behavior

Fig. 3. Cone from ball to both sides
of the goal and some positions of op-
ponent players (1-3) as attributes for
the learning process

In the analysis of the goalkeeper’s behav-
ior the moment when he leaves the goal
is of special interest, because this is when
the goal becomes vacant. Thus, a qual-
itative abstraction is chosen which rep-
resents this behavior. The movements of
the goalkeeper are represented in three
classes, (a) goalkeeper stays in goal, (b)
goalkeeper leaves goal and (c) goalkeeper
returns to goal. This calculation is based
upon the movement of the goalkeeper to-
wards the ball. If he moves towards the
ball he leaves the goal, and if he goes away
from the ball he returns to the goal. In all
other cases he stays in the goal. This is
not always correct in relation to the goal,
but it represents what should be learned.
The movement vector of the goalkeeper
and the position of the ball are used to
compute the abstraction. The length of
the movement vector gives the speed, and
the angle between the movement vector
and a vector from the goalie to the ball
are used for the direction.

As described above, suitable at-
tributes must be chosen. These attributes
should include those that are used by the
analyzed goalkeeper to make his decisions. The position of the ball seems to
be very important. It will be the major aspect in the goalkeeper’s decisions.

Murray [Murray, 1999] even describes a goalkeeper whose decisions are totally
based upon the ball position. Because of the relative view of the goalie and the
abilities of our own players, the relative distance of the ball to the goal and the
goalkeeper seems more interesting than its absolute position. Another interest-
ing fact are the positions of the other players (see figure 3). Especially those
who can directly interfere in a possible shot at the goal. Particularly the players
within the penalty area are relevant to the goalkeeper because of his ability to
catch the ball. This is why he may react differently to players in this area. Thus,
the number of forwards and defenders in the penalty area is used to analyze the
goalkeeper.

Very important for a goalkeeper is the question whether the opposing ball
carrier can run and shoot at the goal without being attacked by a defender. In
these cases a goalkeeper should leave the goal and run towards the ball carrier
to prevent him from shooting into a free corner of the goal. Hence, the defenders
within a cone from the ball to the sides of the goal (figure 3), which are likely
to intercept the ball, are used as an attribute for the decision tree.

3.2 Analysing Passes

In order to analyze the pass behavior, a qualitative abstraction and some input
values have to be found. This leads to some problems owing to the kind of the
present data. The coach only knows the positions and movements of all players
and of the ball, but not whether a player kicks the ball or not and in which
direction the ball was kicked. Therefore, it is impossible to see in the data given
by the soccer server who kicked the ball or even if the ball was passed at all.

However, because there are certain rules describing the changes in speed and
direction of the ball, it can be calculated from the movement of the ball whether
it was kicked or not. Without being kicked by a player the ball cannot gather
speed. The same applies to a sudden stop. In both cases a player must have sent
a kick command.

This does not apply to a change of direction. A direction change could also
happen as a result of a collision with a player. Thus, it cannot be verified that the
ball was kicked when it changes its direction. A bigger problem is the question
who kicked the ball. Suppose the ball is within the kickable area of one player
and one of the events described above happens at the same time. Then, only that
player can be the one who kicked the ball. But if the ball is in the kickable area
of several players it cannot be determined who kicked it. It also is not possible to
tell which intention the player had when he kicked the not be told. On the other
hand, it makes no difference to a team whether it gets the ball by intercepting a
pass, by dribbling, or by a goal shot. If a team can provoke situations that lead
to an interception always has an advantage.

These considerations lead to a qualitative abstraction based upon two kick
events. Every kick event is compared with the prior one. It is important which
players did the two kicks. The qualitative abstraction assigns these events into
four classes:

– pass between two opponents,
– opponent dribbles,
– pass of an opponent was intercepted, and
– team-mate kicked the ball.

A kick command is supposed to have happened if the ball gathers speed or is
suddenly stopped. The player who is next to the ball is assumed to have kicked.

Fig. 4. A passing situation, attributes
are positions of the opponent players,
surrounding of the ball carrier (e.g. dis-
tance and directions of nearest player)

When defining which data should
be used as attributes for the learn-
ing method one has to take into ac-
count that the method has to find out
what the player does. Therefore, it is
important to use the values used by
the player while making decisions. The
surroundings of the ball carrier are of
special significance for the analysis of
pass behavior, especially the distances
and directions of the nearest players
(see figure 4). It makes no sense to use
absolute positions because the player
only gets local information and is likely
to make his decisions based on relative
values, as given to him by the server.
Also, players far away from the ball
carrier are of no importance. The ball
carrier does not see them well, maybe
not at all, and a pass across a very long
distance is a high risk. Thus it is un-
likely that such players play an impor-
tant part in the decisions of the passer.

While calculating the angles to the other players, it has to be taken into
account that in soccer it is more important whether a player is located towards
the middle of the field or towards the sideline than to the right or to the left. If
e.g. the ball carrier is attacked from his left side it has a different meaning to
him whether he is on the right or on the left side of the field. If he is on the right
the defender blocks his way to the goal and pushes him towards the sideline. On
the other hand, if he is on the left side the defender attacks him from the sideline
and the way towards the goal is free. This applies even more in the simulation
league because there are only physical differences between the players if a team
uses the optional heterogeneous players. And all players can kick the ball to the
left as well as to the right. This is why all angles on one half of the field are
flipped horizontally. As a result, all passes to the middle have a similar angle
and can be represented by the decision tree in the same branch.

Another aspect is the horizontal position of the passing player. The pass
behavior may change depending on how far the ball carrier is away from his goal
line. E.g. a pass played directly in front of the own goal carries a high risk of

being intercepted, thus leading to a good scoring position for the opponent, while
a pass in front of the opposing goal may give team-mates the chance to score.
Additionally, some parts of a team may pass with a higher risk than others.
VirtualWerder 00/01 does take this differences into account. The defenders play
as securely as possible while the forwards sometimes even pass into the penalty
area without knowing whether anybody is there.

In both cases, goalkeeper and pass behavior, the decision tree algorithm is
used every 1000 cycles to generate rules about the opponent’s behavior.

4 Results

To test the quality of the method several test games were played with different
teams of last year’s competition. VirtualWerder, Robolog Koblenz and Karlsruhe
Brainstormers were used to evaluate the implemented algorithm. Robolog was
used because, in contrary to most other teams, it is logic- based. The were chosen
because they represent a reactive team and because they finished second in the
last competition.For technical reasons, Tsinghuaeolus, the world champion, could
not be used. It is a Windows-based team while the computers available for the
tests where Linux computers. The binaries of FC Portugal were not available at
the time of the tests.

4.1 Goalkeeper

To analyze the goalkeeper a qualitative abstraction was used based upon the
movement of the goalkeeper, as described above, and six time series. Here are
the time series:

– Series 0 - distance ball goalkeeper
– Series 1 - speed of the ball
– Series 2 - distance ball goal
– Series 3 - number of defenders within the penalty area
– Series 4 - number of forwards within the penalty area
– Series 5 - number of defenders that may intercept a direct shot at the goal

After 1000 cycles the decision tree is computed for the first time, based on
data shown in table 1.

Table 1. Typical input data for the learning algorithm w.r.t. a goalkeeper

Series 0 Series 1 Series 2 Series 3 Series 4 Series 5 Class

1 50 0 52.5 1 0 3 0
2 50 0 52.5 1 0 3 0
3 50 0 52.5 1 0 3 0
...

...
...

...
...

...
...

...
1000 88.1415 0.487918 90.3164 1 0 0 1

For the tests with respect to the analysis of the goalkeeper ten test games
where played with

– Robolog vs Brainstormers
– Robolog vs VirtualWerder

Fig. 5. The Brainstormers goalkeeper in a game against Robolog

Fig. 6. The VirtualWerder goal-
keeper in a game against Robolog

In the first constellation, both goal-
keepers were analyzed, and in the second,
for technical reasons, only the one from
Virtual Werder.

The rules concerning the Brainstorm-
ers’ goalkeeper are shown in figure 5. We
see that the goalkeeper reacts at different
distances to the ball (series 0) depending
on the number of attackers in the penalty
area (series 4). This change in the distance
was often noticed but sometimes it de-
pended on the number of defenders in the
penalty area. However, this might be the
same because both sounds like a break-
away.

The tests with the VirtualWerder
goalkeeper revealed noticeable longer
rules than with the two other goalkeepers.
One possible explanation is that the Vir-
tualWerder field players cannot keep the
ball out of their penalty area and there-
fore the goalkeeper needs often to react.
As this leads to more changes between the
classes, he can be better analyzed or he
may have a more complex behavior than

the others. The rules in figure 6 reflect a part of the behavior of the VirtualW-
erder goalkeeper in a game against Robolog. The rules show that the goalkeeper
changes his behavior depending on the number of defenders in the penalty area
(series 3). The first rule reveals that he stays in the goal if there are no defenders
present. While the second and third shows that if there are one to four defenders
(rules 2 and 3,) he makes his decision based on the speed of the ball (series 1)
and the distance from the ball to him. Having more than four defenders within
the penalty area (rules 4 and 5,) the decision is based on the distance of the ball
to the goal (series 2).

The decision tree method does not produce interesting results about the
goalkeeper if there are not enough scenes where he reacts. This can happen if
the opponent is too strong for the team of the coach. It may happen that one
team is not able to bring the ball into the opposing penalty area. Sometimes
teams even have problems to cross the middle line. In these cases the goalkeeper
does not have to act often enough to be analyzed, or maybe he doesn’t act at all.
In such cases the method only delivers one rule saying that the goalie doesn’t
move at all. But this is no problem, because if the goalkeeper needs not to act it is
not an advantage to know what he would do if he had to. At first the other parts
of the play have to be improved. If this is possible fast enough there might be
enough information to analyze the goalkeeper later on when there is a possibility
to draw an advantage out of this knowledge. This problem was revealed by the
tests with VirtualWerder. This team was not able to produce enough pressure
on the other two teams to produce enough goalkeeper-scenes. Thus, there were
no sensible results about the other teams from these games.

4.2 Pass

According to the reflections in 3.2 ten time series had been chosen as attributes
to analyze the pass behavior.

– Series 0 - distance to the next opponent
– Series 1 - angle to the next opponent
– Series 2 - distance to the second next opponent
– Series 3 - angle to the second next opponent
– Series 4 - distance to the next team-mate
– Series 5 - angle to the next team-mate
– Series 6 - distance to the second next team-mate
– Series 7 - angle to the second next team-mate
– Series 8 - side of the passer
– Series 9 - x-position of the ball

The distances and angles are always relative to the ball carrier because he
makes his decisions based on his own perceptions. Because of the reasons de-
scribed above, the angles are horizontally flipped in one half of the field, hence,
the angles towards the middle of the field are always negative while the angles
towards the sidelines are positive. After 1000 cycles the rules are generated from
data shown in table 2.

Table 2. Typical input data for the learning algorithm w.r.t a pass

Series 0 Series 1 Series 2 Series 3 Series 4 . . . Series 9 Class

1 9.01388 -2.33172 10.5 -1.5708 10.1623 . . . 0 0
2 9.01388 -2.33172 10.5 -1.5708 10.1623 . . . 0 3
3 9.01388 -2.33172 10.5 -1.5708 10.1623 . . . 0 3
...

...
...

...
...

... . . .
...

...
1000 7.93404 0.904754 8.04407 1.64693 8.92419 . . . -35.3793 1

The first tests showed that a pass is a frequent event, but owing to the short
period of time of the actual passing, the total duration of the ’passing classes’ is
too short. In less than 10% of the time an actual pass is happening. But this is
not sufficient to produce good results.

To get rules about the behavior of the opponent from such a rare event with
the described decision tree method no error-based pruning can be done. Splitting
the samples into the two not-passing classes dribbling and ball with the other
team, leads to rules which are in more than 90% correct. With these values the
error used to end the decision tree algorithm must be noticeably smaller than
10%.

Fig. 7. The passing behavior of the Brain-
stormers in a game against Robolog

However, if the according
threshold is set to such a low value
problems of overfitting occur.
This means that the necessary
generalization is lost and the tree
exactly learns the samples given to
the algorithm. But this is not what
we want because the results should
be used to adapt the own team
to the opponent. Overfitted rules
describe how the opponent has
acted in special situations but not
how his general behavior operates.
This cannot be used to predict the
future behavior of the opponent.
Thus, another way to improve the
results must be found.

The results of a learning algo-
rithm can also be changed by mod-
ifying the input values. In this case
the problem is obviously the quali-

tative abstraction. It does not assign enough pass classes. This is a result of the
shortness of the pass event. So if there would be a possibility to increase the du-
ration of such an event this should improve the results noticeably. A close look at
the game reveals that the positions of the players does not change much between
two cycles, thus the environment short before and after the pass is very similar

to the one at the pass itself. Hence, they can also be assigned to the same pass
class. As a result the pass event is not longer analyzed, but the situation leading
to a pass. If the two cycles before and after the actual event are also assigned to
the class, the decision tree can be built without the overfitting problem.

To test the method on passes again Robolog Koblenz, Karlsruhe Brainstorm-
ers and VirtualWerder were used. Again, ten games were played between Robolog
and Brainstormers, VirtualWerder and Robolog and VirtualWerder and Brain-
stormers. The game Robolog against Brainstormers revealed for the pass be-
havior of the Brainstormers rules as in figure 7. The first rule showed that the
Brainstormers had problems if they were attacked by two players (series 0 < 0.9,
series 2 < 3.6). In this case they always lost the ball. But if the second opponent
was more than 3.6m away they only lost the ball 12% of the time. The small
value used to split series 0 shows that the Brainstormers react very late. The
ball is already in the kickable area of the attacker.

In the ten games between Robolog and Brainstormers there were always
similar values in the rules, but not all at all times and not in the same order.
Although very similar rules to those above could be found in the half of all
games, the values just differed slightly .

Fig. 8. The passing behavior of Robolog in
a game against Brainstormers

While analyzing the passing be-
havior of Robolog, the coach found
rules like in figure 8. These rules
reveal that Robolog tends to lose
the ball if one of their own play-
ers is near to the ball carrier (se-
ries 4 < 0.5m) except if the at-
tacker is coming from behind (se-
ries 1 < -1.36), in this case they are
passing very successfully to a team
mate. The problem of two Robolog
player close to each other was re-
vealed in nearly every game. It was
found in the games against Virtu-
alWerder as well.

The tests with analyzing passes
also showed that the difference in
the quality of the teams influences
the results. It is, however, not nearly as great as with the goalkeeper where
it could happen that a goalkeeper did not have to move during a whole game
which made an analysis of his behavior impossible. It is not as obvious with
the passes because even with a weak opponent all teams still passed. Though
VirtualWerder could not put much pressure on the Brainstormers there were
only few interceptions and thus they have only seldom appeared in the results.

4.3 Related Work

Similar work has be done by Raines and colleagues (1999). They describe a pro-
gram called ISAAC for off-line analysis that uses C5.0 and pattern matching
to generate rules about the success of individual players and team cooperation
in certain key events. Key events are events which directly effect the result of
the game. The only one used in ISAAC is a shot at the goal. These events are
analyzed, similar to the approach in this paper, with a decision tree algorithm.
However, ISAAC has to be is used off-line, thus the program is not able to
support real-time conditions. The team cooperation is analyzed by a pattern
matching algorithm. This patterns are kicks of the ball by certain players which
lead to a goal. The rules produced by ISAAC are intended support the develop-
ment of the analyzed team. Therefore, they show how successful the team is in
certain situations but not in which situations the players show which reaction.

An other off-line approach is described in [Wünstel et al., 2000], it uses self
organizing maps to analyze the players movement and the players movement in
relation to the ball. The trained map can be used to determine which kind of
movement is done how often in a game. The results of this method show which
kind of movements a player performs, but not in which situations he is doing so.

In the RoboCup 2000 the VirtualWerder coach [Visser et al., 2001] analyzed
the opponent with an artificial neuronal network. The network was trained from
log-files, from past competitions, to recognize 16 different team formations. To
react on the opposing formation the coach was able to change the behavior of
his own players.

Riley and Veloso (2002) use a set of pre-defined movement models and com-
pare these with the actual movement of the players in set play situation. In new
set play situations the coach uses the gathered information to predict the op-
ponent agent’s behavior and to generate a plan for his own players. The main
difference to the approach described in this paper is that they analyze the move-
ment of all players in set play situations, while the decision tree approach an-
alyzes certain behaviors of single players and how successful they are in these
situations.

5 Conclusion and future work

We showed that on-line learning is possible in time-critical environments as
demonstrated in the simulation league. The idea is to see an object in the game as
a time series. We applied a qualitative abstraction of those time series and used a
new approach which is able to discreetize the time series in a way that the results
are useable for symbolic learning algorithms. We implemented the approach
and ran various tests in real games. We were using two scenarios to analyze
the behavior of the goalkeeper and the pass behavior of opponent players. The
discussion indicated that the knowledge derived from our approach is valuable
and can be used for further instructions to players of the analyzed team. At
present, results are generated every 1000 cycles, however, this depends on the
situation to be analyzed.

At the moment we are developing our on-line coach in a way that he can
use the results of the described approach and give instructions to his players.
In order to use the collected rules and get advantage from them they still need
to be processed in order to generate advice and to transmit it through the
standard coach language to the players. For this purpose the rules should be
refined. This process should e.g. reduce the number of attributes in a rule. One
attribute should occur in one rule more than twice to mark a range of a value.
Additionally, rules which cannot be transformed into advice for the own team
can be deleted. The approach is very promising and we hope that first results
can be seen on-line at the competitions in June.

If we try to generalize our approach the following statements can be made.
Firstly, the proposed minimization heuristic has been successfully applied in
a scenario for a qualitative substitution of sensors [Boronowsky, 2001]. It has
been shown that qualitative cohesions between measurement-value time series
are generally valid and that these cohesions can be discovered by automatic
knowledge extraction procedures. The heuristic was also employed with respect
to a qualitative analysis of a technical system. The scenario is purification of
sewage water under experimental conditions dealing with two regulation circuits.
They are regulating the pH value and the oxygen content. The results show that
the regulation of both the pH value and the oxygen content can be modelled
qualitatively.

Secondly, the method can be used to generate more rules skipping pruning
techniques. Usually the amount of generated rules have to be decreased in order
to derive comprehensible rules. This can done with the help of pruning methods
while creating the decision tree. There are also ideas of how to automatically
reduce the number of rules after being generated. This is investigated currently
in a project and is subject of a masters thesis. However, sometimes pruning is
not an option at all, e.g. if the number of generated rules are to small. In this
case, we would be able to skip the pruning methods and therefore generate more
rules. These rules should then enable a domain expert to either verify given
hypothesis or producing hypothesis about a certain domain.

References

[Boronowsky, 2001] Boronowsky, M. (2001). Diskretisierung reellwertiger Attribute mit
gemischten kontinuierlichen Gleichverteilungen und ihre Anwendung bei der zeitrei-
henbasierten Entscheidungsbauminduktion. PhD thesis, Department of Mathematics
and Computer Science, University of Bremen, St. Augustin.

[Drücker et al., 2002] Drücker, C., Hübner, S., Visser, U., and Weland, H.-G. (2002).
“as time goes by” - using time series based decision tree induction to analyze the
behaviour of opponent players. In RoboCup-01, Robot Soccer World Cup V, Lecture
Notes in Computer Science, Seattle, Washington. Springer-Verlag. in print.

[Fayyad and Irani, 1992] Fayyad, U. and Irani, K. (1992). On the handling of
continuous-valued attributes in decision tree generation. In Machine Learning, vol-
ume 8, pages 87–102.

[Murray, 1999] Murray, J. (1999). My goal is my castle – die höheren fähigkeiten eines
robocup-agenten am beispiel des torwarts.
http://www.uni-koblenz.de/ag-ki/ROBOCUP/PAPER/papers.html.

[Quinlan, 1993] Quinlan, J. (1993). C4.5 Programs for Machine Learning. Morgan
Kaufmann.

[Raines et al., 1999] Raines, T., Tambe, M., and Marsella, S. (1999). Automated as-
sistants to aid humans in understanding team behabiors. In Veloso, M., Pagello, E.,
and Kitano, H., editors, Proceedings of the Third International Workshop on Robocup
2000, Robot Soccer World Cup IV, volume 1856 of Lecture Notes in Computer Sci-
ence, pages 85–102, Stockholm, Sweden. Springer-Verlag.

[Riley and Veloso, 2002] Riley, P. and Veloso, M. (2002). Recognizing probabilistic
opponent movement models. In RoboCup-01, Robot Soccer World Cup V, Lecture
Notes in Computer Science, Seattle, Washington. Springer-Verlag. in print.

[Visser et al., 2001] Visser, U., Drcker, C., Hbner, S., Schmidt, E., and Weland, H.-
G. (2001). Recognizing formations in opponent teams. In Stone, P., Balch, T.,
and Kraetschmar, G., editors, RoboCup 2000, Robot Soccer World Cup IV, volume
2019 of Lecture Notes in Computer Science, pages 391 – 396, Melbourne, Australia.
Springer-Verlag.

[Wünstel et al., 2000] Wünstel, M., Polani, D., Uthmann, T., and Perl, J. (2000).
Behavior classification with self-organizing maps. In Stone, P., Balch, T., and
Kraetschmar, G., editors, RoboCup 2000, Robot Soccer World Cup IV, volume 2019 of
Lecture Notes in Computer Science, pages 108–118, Melbourne, Australia. Springer-
Verlag.

