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Abstract— This paper presents a fast approach for vision-based
self-localization in RoboCup. The vision system extracts the features
required for localization without processing the whole image and is a
first step towards independence of lighting conditions. In the field of
self-localization, some new ideas are added to the well-known Monte-
Carlo localization approach that increase both stability and reactivity,
while keeping the processing time low.

I. I NTRODUCTION

THE Sony Four-Legged Robot League is one of the of-
ficial leagues in RoboCup. In a match, two teams of

four robots each compete against each other on a field of
approximately5× 3 m2 in size. All teams consist of robots
of the same type, i. e. the Sony Aibo ERS 210 (cf. Fig. 1b).
The Aibo is a four-legged robot with 20 degrees of free-
dom, a color camera, and more than 30 further sensors.
The specialty of the league is that, on the one hand, the
movements of the robots are the most complex in RoboCup
so far, and on the other hand, an on-board camera is the
most central sensor. As the robots are only equipped with
a 200 MHz processor, all algorithms used, e. g. for image-
processing or self-localization, have to be highly efficient
to run in real-time.

II. GRID-BASED V ISION

As the main sensor of the robot is a camera, all objects on
the RoboCup field are color coded. There are two-colored
flags for localization (pink and either yellow, green, or sky-
blue), the two goals are of different color (yellow and sky-
blue), the ball is orange (as in all RoboCup leagues), and
the robots of the two teams wear tricots in different colors
(red and blue).

A very common preprocessing step for vision-based ob-
ject recognition in such scenarios is color segmentation us-
ing color tables, e. g. [1], [2]. Such methods directly map
colors to color classes on a pixel by pixel basis, which has
some crucial drawbacks. On the one hand, the color map-
ping has to be adapted when the lighting conditions change,
on the other hand, the mapping results in a loss of informa-
tion, because the membership of a pixel in a certain class is
a yes/no decision, ignoring the influences of the surround-
ing pixels. Some researchers try to overcome these limi-
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a) b)

Fig. 1. Images taken by the robot’s camera. a) Pink-yellow flag and the
horizon-aligned grid. The U-channel of the part of the image near the flag
is shown as height map in figure 2d. b) Skyblue goal and Sony Aibo robot.

tations [3], but the solutions are too slow to work under
real-time conditions on a robot such as the Aibo.

In this paper a method is presented to detect features in
images very quickly without color calibration.

A. Approach

The key ideas of the image-processing method presented
in this paper are that speed can be achieved by avoiding
to process all pixels of an image, and a certain indepen-
dence of the lighting conditions can be reached by focus-
ing on contrast patterns in the three different color chan-
nels. In case of the Aibo, the camera takes YUV-images.
From these images, objects such as flags, goals, and field
lines have to be extracted. For such a feature extraction,
a high resolution is only needed for far away and thus
small objects, but such far away objects cannot appear any-
where in an image, instead they will be close to thehorizon.
The horizon is the intersection of the plane parallel to the
ground on the height of the robot’s camera and the projec-
tion plane. Following this approach, only regions near the
horizon need to be scanned at high resolution, while the
rest of the image can be searched using a relatively wide
spaced grid (cf. Fig. 1a).

The position of the horizon in the image can be calcu-
lated from the rotation of the head and the rotation of the
body. The roll and tilt of the body are estimated from the
readings of the robot’s acceleration sensors indicating the
direction of the gravity, while the rotation of the head is de-
termined from the angles of the three head joints (tilt, pan,
and roll).
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Fig. 2. Detection of flags. a) Pink-yellow flag. b) Pink-green flag. c) Pink-
skyblue flag. d) U-channel of a pink-yellow flag as height map

B. Flags and Goals

To detect the flags in the image the vertical grid lines are
scanned from top to bottom. During this scan the increase
and decrease of the values of the two color channels con-
taining information about the hue (U- and V-channel) is ob-
served. Each position on the grid line with a large or a very
large increase or decrease in one of the channels is marked
with a change marker(up, UP, down, DOWN). This leads
to a characteristic sequence of change markers for each grid
line. Each flag is characterized by a3×2 patterncontaining
the expected change markers at the upper edge of the flag
at the color change inside the flag and at the lower edge of
the flag for both color channels (cf. Fig. 2). Thus a simple
pattern matching algorithm is sufficient to detect all flags.

Flags and goals found in an image are represented by
the four angles describing their bounding rectangle (top,
bottom, left, and right edge) in a system of coordinates that
is parallel to the field. The angles to the top and the bottom
of the flag are determined from the positions of the first and
the last change markers of that flag. To determine the angles
to the left and the right edge of the flag, a new scan parallel
to the horizon is started from the center of the section with
higher contrast to the background, i. e. the pink one, in both
directions. The first large decrease in the U-channel on this
scan line marks the “end” of the flag and provides a point
on a vertical edge.

As goals are coded with only one color they are charac-
terized by a2 × 2 patterncontaining the expected change
markers at the upper and lower edges for both color chan-
nels. As such small patterns sometimes might match at
noise in the image, all matches at the vertical scan lines
are compared horizontally to filter the errors. This also pro-
vides the leftmost and the rightmost scan line intersecting

a) b)

Fig. 3. Detection of lines. a) Three types of lines: field/goal, field/border,
and field/line. b) The vertical scan lines are scanned from top to bottom.
White pixels: increase in Y-channel, black pixels: decrease in Y-channel.

the goal. The exact horizontal extension of the goal is deter-
mined with two more horizontal scans near these scan lines.
The angles to the top and the bottom of the goal are deter-
mined from the positions of the first and the last change
markers of that goal; the angles to the left and the right
edges result from the pixels found on the vertical edges.

C. Lines

Four different types of lines can be detected on the
RoboCup field: edges between the skyblue goal and the
field, edges between the yellow goal and the field, edges be-
tween the border and the field, and edges between the field
lines and the field (cf. Fig. 3a). The key idea of the method
presented here is not to actually extractlines from the im-
age, butpixels on linesinstead. This approach is faster and
more robust against misinterpretations, because lines are
often partially hidden either by other robots or due to the
limited opening angle of the camera.

To find pixels on edges, in the image vertical lines having
a distance of five pixels to one another are scanned from
top to bottom following the method described in [4] (cf.
Fig. 3b). In contrast to this method no color classification
is applied. As the green of the field is very dark, all edges
are characterized by a big difference of the Y-channel of
adjacent pixels. An increase in the Y-channel followed by
a decrease is an indication for an edge.

If the color above the decrease in the Y-channel is sky-
blue or yellow, the pixel lies on an edge between a goal and
the field. The differentiation between a field line and the
border is a bit more complicated. In most of the cases the
border has a bigger size in the image than a field line. But
a far distant border might be smaller than a very close field
line. For that reason the pixel where the decrease in the Y-
channel was found is assumed to lie on the ground. With
the known height and rotation of the camera the distance to
that point is calculated by projecting it to the ground plane.
The distance leads to expected sizes of the border and the
field line in the image. For the classification these sizes are
compared to the distance between the increase and the de-
crease of the Y-channel in the image. The projection of the
pixels on the field plane is also used to determine their rel-



ative position to the robot.

III. SELF-LOCALIZATION IN ROBOCUP

An approach to self-localization is the so-called Monte-
Carlo localization (MCL) by Foxet al. [5]. It is a proba-
bilistic method, in which the current location of the robot
is modeled as the density of a set of particles (cf. Fig. 5a).
Each particle can be seen as the hypothesis of the robot
being located at that position. Therefore, such particles
mainly consist of a robot pose(x, y, θ), i. e. a vector rep-
resenting the robot’sx/y-coordinates and its rotationθ.

In many implementations, MCL was used on robots
equipped with distance sensors such as laser scanners or
sonar sensors, e. g. in the original one [5]. Only in a few ap-
proaches, vision is used for self-localization [6], [7]. Self-
localization in RoboCup is different, because the area the
robots can be located at is relatively small, i. e. the field, but
in that area the position of the robots has to be determined
quite precisely to allow different robots of the same team to
communicate about objects on the field, and to follow some
location-based rules of the game. Odometry is very unreli-
able, because the robots walk, and they tend to push each
other around. As the Aibo is equipped with a sensor with a
narrow opening angle of 58◦, only a few objects usable for
self-localization can be seen at once, and sometimes mis-
readings are in the majority. The method presented here
takes these circumstances into account.

A. Monte-Carlo Localization

A Markov-localization method requires both a motion
model and an observation model. The motion model ex-
presses the probability for certain actions to move the robot
to certain relative positions. The observation model de-
scribes the probability for taking certain measurements at
certain locations.

The localization approach works as follows: first, all par-
ticles are moved according to the motion model of the pre-
vious action of the robot. Then, the probabilitiespi are de-
termined for all particles on the basis of the observation
model for the current sensor readings. Based on these prob-
abilities, the so-calledresamplingis performed, i. e. mov-
ing more particles to the locations of samples with a high
probability. Afterwards, the average of the probability dis-
tribution is determined, representing the best estimation of
the current robot pose. Finally, the process repeats from the
beginning.

The rest of this section will describe all these steps ex-
cept from the observation model. This is described in two
different versions in the sections IV and V.

B. Motion Model

The motion model represents the effects of actions on
the robot’s pose. First of all, an odometry position is main-
tained that is derived from the motions performed (gaits,

kicks, etc.). As this value is only a rough estimate, in ad-
dition a random error∆error is assumed that depends on
the distance travelled and the rotation performed since the
last self-localization. For each sample, the new pose is de-
termined asposenew = poseold + ∆odometry + ∆error.
Note that the operation+ involves coordinate transforma-
tions based on the rotational components of the poses.

C. Resampling

In the resampling step, the samples are moved according
to their probabilities. There is a trade-off between quickly
reacting to unmodeled movements, e. g., when the referee
displaces the robot, and stability against misreadings, re-
sulting either from image processing problems or from the
bad synchronization between receiving an image and the
corresponding joint angles of the head. Therefore, resam-
pling must be performed carefully. One possibility would
be to move only a few samples, but this would require a
large number of particles to always have a sufficiently large
population of samples at the current position of the robot.
The better solution is to limit the change of the probability
of each sample to a certain maximum. Thus misreadings
will not immediately affect the probability distribution. In-
stead, several readings are required to lower the probability,
resulting in a higher stability of the distribution. However,
if the position of the robot was changed externally, the mea-
surements will constantly be inconsistent with the current
distribution of the samples, and therefore the probabilities
will fall rapidly, and resampling will take place.

The filtered probabilityp′ is calculated as

p′new =

 p′old + 0.1 if p > p′old + 0.1
p′old − 0.05 if p < p′old − 0.05
p otherwise.

(1)

Resampling is done in two steps: First, the samples are
copied from the old distribution to a new distribution. Their
frequency in the new distribution depends on the probabil-
ity p′i of each sample, so more probable samples are copied
more often than less probable ones, and improbable sam-
ples are removed. In a second step that is in fact part of the
next motion update, the particles are moved locally accord-
ing to their probability. The more probable a sample is, the
less it is moved. This can be seen as a probabilistic random
search for the best position, because the samples that are
randomly moved closer to the real position of the robot will
be rewarded by better probabilities during the next observa-
tion update steps, and they will therefore be more frequent
in future distributions. The samples are moved according to
the following equation:

posenew = poseold +

 ∆trans(1− p′)× rnd
∆trans(1− p′)× rnd
∆rot(1− p′)× rnd

 (2)

rnd returns random numbers in the range[−1 . . . 1]. Typi-
cal values used for∆trans and∆rot are 10 cm and 30◦.



D. Estimating the Pose of the Robot

The pose of the robot is calculated from the sample dis-
tribution in two steps: first, the largest cluster is determined,
and then the current pose is calculated as the average of all
samples belonging to that cluster. To calculate the largest
cluster, all samples are assigned to a grid that discretizes
the x-, y-, andθ-space into10 × 10 × 10 cells. Then, it
is searched for the2 × 2 × 2 sub-cube that contains the
maximum number of samples. All samples belonging to
that sub-cube are used to estimate the current pose of the
robot. Whereas the meanx- andy-components can directly
be determined, averaging the angles is not straightforward,
because of their circularity. Instead, the mean angleθrobot

is calculated as:

θrobot = atan2

(∑
i

sin θi,
∑

i

cos θi

)
(3)

IV. L ANDMARK -BASED SELF-LOCALIZATION

Instead of using the distances and directions to the land-
marks in the environment, i. e. the flags and the goals, this
localization approach only uses the directions to the ver-
tical edges of the landmarks. The advantage of using the
edges for orientation is that one can still use the visible
edge of a landmark that is partially hidden by the image
border. Therefore, more points of reference can be used per
image, which can potentially improve self-localization.

A. Flags and Goals

The image-processing described in section II determines
bearings on the edges of flags and goals. These have to
be related to the assumed bearings from hypothetical posi-
tions. To determine the expected bearings, the camera po-
sition has to be determined for each particle first, because
the real measurements are not taken from the robot’s body
position, but from the location of the camera. From these
hypothetical camera locations, the bearings on the edges
are calculated. As the flags are cylinders, the edges of the
flags seen are the tangents to these cylinders starting in the
camera center. In case of the goals, their front posts are
used as points of reference. As the goals are colored on the
inside, but white on the outside, the left and right edges of
the colored area even correlate to the posts if the goal is
seen from the outside.

B. Probabilities

The observation model only takes the bearings on the
edges into account that are actually seen, i. e., it is ignored
whether the robot hasnot seen a certain edge that it should
have seen according to its hypothetical position and the
camera pose. Therefore, the probabilities of the particles
are only calculated from the similarities of the measured
angles to the expected angles. Each similaritys is deter-
mined from the measured angleωseen and the expected an-

gle ωexp for a certain pose by applying a sigmoid function
to the difference of both angles:

s(ωseen, ωexp) =

{
e−σd2

if d < 1
e−σ(2−d)2 otherwise

whered = |ωseen−ωexp|
π

(4)

A typical value forσ is 50. The probabilityp of a certain
particle is the product of these similarities:

p =
∏

ωseen

s(ωseen, ωexp) (5)

C. Inserting Calculated Samples

Landmark-based self-localization allows some samples
to be moved to calculated positions. This approach follows
the sensor resettingidea of Lenser and Veloso [8], and it
can be seen as the small-scale version of the Mixture MCL
by Thrunet al. [9]: on the RoboCup field, it is often possi-
ble to directly determine the position of the robot from the
bearings on landmarks. The only problem is that these po-
sitions are not always correct, because of misreadings and
noise. However, if a calculated position is inserted into the
distribution and it is correct, it will get high probabilities
during the next observation steps and the distribution will
cluster around that position. In contrast, if it is wrong, it
will get low probabilities and will be removed very soon.
Therefore, calculated positions are only position hypothe-
ses, but they have the potential to speed up the localization
of the robot.

Two methods were implemented to calculate possible
robot positions. They are used to fill a buffer ofposition
templates. The first one uses a short term memory for the
bearings on the last three flags seen. From the buffer and
the actual bearings on goal posts, all combinations of three
bearings are used to determine robot positions by triangu-
lation. The second method only employs flags and goals
currently seen. It uses all combinations of a landmark with
reliable distance information, i. e. a flag, and a bearing on
a goal post or a flag to determine the current position. For
each combination, one or two possible positions can be cal-
culated.

The samples in the distribution are replaced by positions
from the template buffer with a probability of1− p′i. Each
template is only inserted once into the distribution. If more
templates are required than have been calculated, random
samples are employed.

V. L INES-BASED SELF-LOCALIZATION

The previous observation model uses the colored flags
and goals for self-localization. However, there are no flags
on a real soccer field, and as it is the goal of the RoboCup
initiative to compete with the human world champion in
2050, it seems to be a natural thing to develop techniques
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Fig. 4. Distances from lines. Distance is visualized as thickness of dots.
a) Field lines. b) Border. c) One goal. d) The other goal.

for self-localization that do not depend on artificial clues.
Therefore, a method to use the field lines to determine the
robot’s location on the field is currently under development,
i. e. the approach only differs in the observation model from
the one described in section IV.

A. Approach

The localization is based on the pixels on lines deter-
mined by the image-processing system (cf. Sect. II-C).
Each pixel has a line type (field, border, yellow goal, or
blue goal), and by projecting it on the field, a relative offset
from the body center of the robot is determined. Note that
the calculation of the offsets is prone to errors because the
pose of the camera cannot be determined precisely. In fact,
the farther away a point is, the bigger the errors will be.

The projections of the pixels are used to determine the
probability of each sample in the Monte-Carlo distribution.
As the positions of the samples on the field are known, it
can be determined for each sample, where the measured
points would be located on the field if the position of the
sample would be correct. For each of these points in field
coordinates, it can be calculated, how far the closest point
on a real field line of the corresponding type is away. The
smaller the deviation between a real line and the projec-
tion of a measured point from a hypothetic position is, the
more probable the robot is really located at that position.
However, the probability also depends on the distance of
the measured point from the robot, because farther points
will contain larger measurement errors, i. e. deviations of
farther away points should have a smaller impact on the
probability than deviations of closer ones.

B. Optimizations

Calculating the probability for all points on lines found
and for all samples in the Monte-Carlo distribution would
be a costly operation. Therefore the number of points is
fixed (e. g. to ten), and these points are selected by ran-
dom, but according to the following criteria: on the one
hand, it is tried to select the same number of points from
each line type, because points belonging to border lines and
field lines are more frequent, but the points belonging to the
goals determine the orientation on the field, because the
field is mirror symmetric without the goals. On the other
hand, closer points are chosen with a higher probability
than farther away points because their measurements are
more reliable.

Calculating the smallest distances of a small number of
points to the field lines is still an expensive operation if it
has to be performed for, e. g., 200 samples. Therefore, the
distances are pre-calculated for each line type and stored in
two-dimensional lookup tables with a resolution of 2.5 cm
(cf. Fig. 4). That way, the distance of a point to the closest
line of the corresponding type can be determined by a sim-
ple table lookup. Therefore, the method is computationally
not slower than landmark-based Monte-Carlo localization.

However, there is a drawback in lines-based self-
localization. It is not possible to directly calculate positions
from the points on lines, i. e. a sensor resetting localization
cannot be performed (cf. Sect. IV-C). However, this short-
coming is partially compensated by the fact that field lines
are seen more often than flags.

VI. RESULTS

The image-processing system presented in this paper
was used in many RoboCup games of the GermanTeam in
the Sony Four-Legged Robot League. Figure 1b shows a
typical example of a detected goal, while figure 3a illus-
trates the results of line recognition.

Figure 5 depicts some examples for the performance of
the landmarks-based self-localization using 100 samples.
The experiments shown were conducted with SimRobot
[10], [11]. The results demonstrate how fast the approach is
able to localize and re-localize the robot. At the RoboCup
2002, the method also proved to work on real robots. For
instance, before the beginning of a game the robots of the
GermanTeam were just started somewhere on the field, and
then—while still many people were working on the field—
they autonomously walked to their initial positions. In addi-
tion, the self-localization worked very well on fields with-
out an outer barrier, i. e. without a white background behind
the flags and the goals.

The self-localization using lines is still in an experimen-
tal state. At the moment, experiments have only been per-
formed in the simulator, but their results are quite promis-
ing. Figure 6 shows an experiment conducted with 200
samples. The method is always able to find the position of
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Fig. 5. Distribution of the samples during landmark-based localization
while turning the head. The bright robot body marks the real position of
the robot, the darker body marks the estimated location. a) After the first
image processed (40 ms). b) After eight images processed (320 ms). c) Af-
ter 14 images (560 ms). d) After 40 images (1600 ms). e) Robot manually
moved to another position. f) 13 images (520 ms) later.

the robot, but it takes longer than the landmark-based lo-
calization. In addition, the mirror symmetry of the field is
a problem. In figure 6b, the method first selects the wrong
side of the field. However, when a goal comes into view,
the position flips over to the correct side (cf. Fig. 6c), and it
remains stable. Figures 6e and 6f demonstrate that the ap-
proach is also capable of re-localization after the robot was
moved manually.

VII. C ONCLUSIONS

This paper presents two approaches for vision-based
self-localization in RoboCup. They are based on a vision
system that extracts features without processing whole im-
ages, and that has reached a certain independence of light-
ing conditions. One method uses landmarks for localiza-
tion, the other is based on field lines. Both approaches are
variants of the well known Monte-Carlo localization. While
using only a small number of samples, they increase the sta-
bility of the localization by a slow adaptation of the prob-
abilities of the samples, and they speed up and increase
the precision of the localization by a so-called probabilistic
search that moves samples locally dependent on their prob-
abilities. This results in a fast, reactive, and precise self-
localization of the robot.
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