
Clone Detection Using DMS® as a Universal Analysis Engine

Ira D. Baxter
Semantic Designs (SD), Inc.

idbaxter@semanticdesigns.com

Abstract

Practical clone detection using Abstract Syntax
Trees [1] requires robust parsers for targeted source
languages. A consistent theme of SD's DMS® Software
Reengineering Toolkit [2] is amortization of
construction cost of software engineering tools by use
of shared infrastructure containing typical language
processing services, such as parsing, prettyprinting,
tree construction, control and data flow analysis, and
source-to-source transformations. SD's CloneDR™
tool leverages DMS's facilities for use across multiple
languages, for a variety of clone detection, reporting,
and removal purposes. It also places demands on such
infrastructure to meet its special needs, but such
demands are typical of the needs of other program
analysis and change tools. We intend to leverage the
mutual dependency to grow both capabilities.

1. Status

The CloneDR [3] tool uses DMS language
definition tools driving its GLR parsing engine as its
source of abstract syntax trees, enabling its application
to a wide variety of languages (C, C++, C#, Java, PHP,
COBOL, Verilog, etc.) The generic clone detection
engine is completely parameterized by the language
definition. Consequently a CloneDR can be configured
for each new DMS grammar in about an hour.

The CloneDR constructs reports about detected
clone sets and their generic abstractions by using the
DMS AST prettyprinter to normalize the format of the
displayed clones to ease readability.

Batch clone removal for C and COBOL have been
implemented using DMS transforms on the abstraction
tree to generate an AST for a preprocessor macro and
substituting a macro invocation at the clone site.

The parallel programming language, PARLANSE,
underlying DMS is used by the generic detection
algorithm to help minimize detection time. We plan to
implement parsing many files in parallel soon.

2. Issues and Directions

Real parsing problems remain, such as dialects
(handled reasonably by DMS), preprocessing
(realistically requiring parsing of source code without
expansion), and nested languages (requiring
composition of parsing engines).

While a+b is always syntactically a clone of x+y,
one could construct more believable clones by insisting
that clones process similar data types, e.g., both
expressions are processing strings or numbers, but not
a mixture. We expect to leverage DMS's symbol tables
constructed by DMS language front ends to enable this.

For scale, faster clone detection is always desired.
We are likely to reimplement CloneDR using suffix
trees [4], but still leverage the parallelism.

Practical clone removal requires means to
interactively select possible language-specific
abstractions and carry out sophisticated lifting
transformations. DMS's recent acquisition of
sophisticated control and data flow analysis machinery
[3] should enable this.

To do any clone removal, compiler-like parsing and
analysis will surely be needed. This calls into question
the real utility of string/token based clone detectors.

10. References

[1] Baxter, I., Yahin, A., Moura, L., Sant‘Anna, M., and
Bier, L. “Clone Detection Using Abstract Syntax Trees”.
Proceedings of the International Conference on Software
Maintenance, 1998, IEEE Press.

[2] Baxter, I., Pidgeon, P., and Mehlich, M. 2004. “DMS:
Program Transformations for Practical Scalable Software
Evolution”. Proceedings of the International Conference on
Software Engineering, 2004, IEEE Press.

[3] www.semanticdesigns.com. Company Website.

[4] Falke, R, Koschke, R. and Frenzel, P. “Empirical
Evaluation of Clone Detection Using Syntax Suffix Trees”.
Empirical Software Engineering, 2008.

http://www.semanticdesigns.com/

	1. Status
	2. Issues and Directions
	10. References

