
Generation of Families of Similar Programs by Analogy

Ruben Heradio, Jose Antonio Cerrada, Ismael Abad, Carlos Cerrada
Dpto. de Ingenieria de Software y Sistemas Informaticos

Universidad Nacional de Educacion a Distancia
Juan del Rosal 16, E–28040, Madrid, Spain

(rheradio|jcerrada|iabad|ccerrada)@issi.uned.es

Code Generation is an increasing popular technique for
implementing families of similar software products, where
the code is automatically synthesized from abstract specifica-
tions written in Domain Specific Languages (DSLs) [2]. DSL
compilers usually work as any general purpose language
compiler: analyzing the source code and (a) synthesizing
the final code from scratch or (b) transforming the source
code into the final code. Hence, when a DSL compiler is
developed the next paradox usually comes up. A DSL is a
specialized, problem-oriented language. From the point of
view of the DSL user, it is interesting that the DSL is as
abstract as possible (supporting the domain terminology and
removing the low-level implementation details). On the other
hand, from the point of view of the compiler developer, the
DSL abstraction makes harder to build the compiler. That
is, the further DSL specifications are from the final code,
the more difficult is to transform them into final code.

We propose to solve this paradox by taking advantage
of a common property to DSL compilers: the big amount
of software clones shared by the products1. When similar
products are written in an unsystematic way, programmers
reuse pieces of code by copying and pasting, i.e., selecting
exemplars of code that are manually adapted and composed
to create the new code. In order to reduce the development
costs of DSL compilers, we propose to systematize and
automatize the code generation by copying and pasting.
Thus, instead of synthesizing the final code from scratch
or transforming a distant input specification, we suggest to
obtain the final products adapting a previously developed
domain product to satisfy the input DSL specifications. We
will refer to this initial product as the domain exemplar.

Template languages use implicitly this approach, since a
text template can be viewed as a piece of an exemplar with
“holes”. The exemplar code that is common to all the domain
products is maintained in the template, whereas the variable
code is replaced by holes, that are filled with metacode
which specifies how code must change. Unfortunately, code
and metacode are strongly coupled in templates. Indeed, as
argued in [3], some domain variability should be imple-
mented as crosscutting concerns. When a template engine

1. Note that domain product commonalities are the main reason to
develop the products jointly as a family, instead of one by one.

does not support Aspect Oriented Programming, templates
may suffer metacode tangling (multiple variable concerns
implemented simultaneously in a template) or metacode
scattering (a variable concern implemented in multiple tem-
plates).

To overcome the templates coupling problem, the meta-
code should be kept out of the exemplar code. In this case,
the exemplar might be processed at:
• lexical level, using regular expressions. Unfortunately,

though regular expressions can manage text in an agile
way, they have serious limitations because are internally
implemented as state machines without memory and
cannot manage nested or balanced constructs.

• syntactical level, using a metaparser or a transforma-
tion language. However, in most cases the simplicity
of the exemplar changes does not justify to waste
time either defining the exemplar language grammar
or working with Abstract Syntax Trees.

We propose an intermediate solution, the Exemplar Flex-
ibilization Language (EFL) [1], that provides new operators
to overcome the regular expressions limitations. EFL also
supports the integration with parsers to manage marginal
complex exemplar modifications. In addition, EFL supports
the implementation of crosscutting generators, that manage
variability scattered over the exemplar, and the decomposi-
tion and combination of generators.

References

[1] Heradio Gil, R. Metodologia de desarrollo de software
basada en el paradigma generativo. Realizacion mediante la
transformacion de ejemplares. Ph. D. Thesis, Departamento
de Ingenieria de Software y Sistemas Informaticos de la
UNED, Spain, April 2007.

[2] Pohl C. et al. Survey of existing implementation techniques
with respect to their support for the requirements identified
in M3.2. AMPLE Consortium, Version 1.2, 7/30/2007. URL:
http://ample.holos.pt

[3] Voelter, M.; Groher, I. Product Line Implementation using
Aspect-Oriented and Model-Driven Software Development.
11th International Software Product Line Conference (SPLC
2007).

