Term Rewriting Systems

Friederike Jolk

Universität Bremen
WS 2005/06
Seminar “Transformationen”

9.12.2005
Basic Notions
 Signature and Terms
 Subterms and Transformed Terms

Reductions
 Identities and Reduction Relations
 Substitutions

Term Rewriting Systems
 Rewrite Rules and Term Rewriting Systems
 Properties
Basic Notions

- Signature Σ – set of function symbols
- Arity n, associated to an $f \in \Sigma$
- X – set of variables
- Term $T(\Sigma, X)$ – set of terms over Σ and X

```
data Term = V Char | T Char [Term]
```

- $Var(t)$ – set of variables occurring in Term t
 - obviously $Var(t) \subseteq X$
Basic Notions (cont’d)

- Positions $\text{Pos}(t)$ – set of positions of term t

```haskell
pos :: Term -> [String]
pos V x = []
pos T f ts = [] ++ [(show i) ++ p | i <- [1..n],
    t <- ts, p <- pos t, index t ts == i-1 ]
where n = length ts
    index t ts = findIndex (==t) ts
```

- Subterm $t \mid_p$ – subterm at position p
- Transformed Term $s[t]_p$ – term obtained from s by replacing the subterm $s \mid_p$ by t
Basic Notions
 Signature and Terms
 Subterms and Transformed Terms

Reductions
 Identities and Reduction Relations
 Substitutions

Term Rewriting Systems
 Rewrite Rules and Term Rewriting Systems
 Properties
Reduction Relations

- **Identity** $(t_1, t_2) \in T(\Sigma, X) \times T(\Sigma, X)$
 - usually denoted by $t_1 \approx t_2$
 - may be read bi-directional

- **Relation** $\rightarrow: A \times B$
 - $\rightarrow (a, b)$ usually denoted by $a \rightarrow b$ for $a \in A, b \in B$
 - considered as directed

- **Reduction Relation** $\rightarrow_E \subseteq T(\Sigma, X) \times T(\Sigma, X)$
 - stepwise “decrease” of something, e.g. number of variables
Substitution

- of a Variable: \(\sigma : X \rightarrow T(\Sigma, X) \)

\[
\text{substVar :: Subst} \rightarrow \text{Char} \rightarrow \text{Term} \\
\text{substVar} [] x = V x \\
\text{substVar} ((y,t):ts) x \mid (x == y) = t \\
\mid \text{otherwise} = \text{substVar} ts x
\]

- extended to a Term: \(\hat{\sigma} : T(\Sigma, X) \rightarrow T(\Sigma, X) \)

\[
\text{substTerm :: Subst} \rightarrow \text{Term} \rightarrow \text{Term} \\
\text{substTerm} s (V x) = \text{substVar} s x \\
\text{substTerm} s (T f ts) = T f (\text{map} (\text{substTerm} s) ts)
\]
Basic Notions
 Signature and Terms
 Subterms and Transformed Terms

Reductions
 Identities and Reduction Relations
 Substitutions

Term Rewriting Systems
 Rewrite Rules and Term Rewriting Systems
 Properties
A rewrite rule is

- an identity \((t_1, t_2)\) where
 - \(t_1 \notin X\), i.e. \(t_1\) not a variable
 - \(\text{Var}(t_2) \subseteq \text{Var}(t_1)\), i.e. no new variables added
- denoted by \(t_1 \rightarrow t_2\)

A term rewriting system is

- a set of rewrite rules
Terminology

- t reducible: $\exists s: t \rightarrow s$
- t in normal form: t not reducible
 - if t has a uniquely determined normal form, it is denoted by $t \downarrow$
- s, t joinable: $\exists u: s \rightarrow^* u \leftarrow^* t$
 - denoted by $s \downarrow t$
A reduction \rightarrow is called

- confluent: $t_1 \leftarrow^* s \rightarrow^* t_2 \Rightarrow t_1 \downarrow t_2$
- terminating: no infinite descending chain $t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow \ldots$
- normalizing: every t has a normal form, i.e. at least one normal form
- convergent: confluent and terminating
- Church-Rosser: $s \leftrightarrow^* t \Leftrightarrow s \downarrow t$
Conclusions

If a reduction \(\rightarrow \) is

- confluent \(\iff \) Church-Rosser
- confluent \(\Rightarrow \) every \(t \) has at most one normal form
- terminating \(\Rightarrow \) normalizing
- terminating and confluent \(\Rightarrow \exists \) exactly one normal form

Theorem:
A reduction \(\rightarrow \) is terminating and confluent:
\(s \leftrightarrow^* t \Rightarrow s \downarrow= t \downarrow \)