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Abstract. A one-counter automaton is a pushdown automaton over a singleton stack alphabet. We
prove that the bisimilarity of processes generated by nondeterministic one-counter automata (with no
ε-steps) is in PSPACE. This improves the previously known decidability result (Jančar 2000), and
matches the knownPSPACE lower bound (Srba 2009). Moreover, we provePTIME-completeness of
regularity of one-counter processes (i.e., their finiteness up to bisimilarity).

1 Introduction

Among the different notions of behavioral equivalences thenotion of (strong)bisimulationplays an im-
portant rôle (cf, e.g., [13]). For instance, various logics can be characterized as the bisimulation-invariant
fragment of richer logics. A famous theorem due to van Benthem states that the properties expressible in
modal logic coincide with the bisimulation-invariant properties expressible in first-order logic [25]. Similar
such characterizations have been obtained for the modalµ-calculus [6] and for CTL∗ [14]. Another impor-
tant notion isweak bisimulationthat generalizes strong bisimulation by allowing distinguishedε-moves in
the transitions that allow to mimic internal behavior.

There are numerous further notions of equivalences. For more a more detailed treatment of the different
behaviorial equivalences in the context of concurrency theory we refer to [26].

Hence it is natural to formulate the(weak/strong) bisimilarity problem, i.e. to decide if two given states
of a given transition system are weakly/strongly bisimilar. Onfinite transition systemsboth weak and strong
bisimilarity is well-known to be complete for deterministic polynomial time [1].

In the last twenty years a lot of research has been devoted to checking behavioral equivalence of infinite-
state systems, see [20] for an up-to-date record. In the setting of infinite-state systems, see also [11] for
Mayr’s classification of infinite-state systems, the situation is less clear. There are numerous classes of
infinite-state systems for whichdecidabilityof bisimilarity is not known. Two such intricate open prob-
lems are (i) weak bisimilarity on basic parallel processes (a subclass of Petri nets) and (ii) bisimilarity of
PA/PAD. On the positive side we mention an important result by Sénizergues who shows that bisimilarity
on equational graphs [17] (a slight generalization of pushdown graphs) is decidable. See also in Stirling’s
unpublished paper [22] for a shorter proof of this by using ideas from concurrency theory.

When focussing on thecomputational complexityof bisimilarity checking of infinite-state systems for
which this problem is decidable, the sitution becomes even worse. There are only very few classes for which
the precise computational complexity of checking bisimilarity is known. For instance, when coming back
to the above-mentioned positive results by Sénizergues/Stirling concerning (slight extensions of) pushdown
graphs, a primitive recursive upper bound is not yet known. To mention one of the few results on infinite
systems where the upper and lower complexity bounds match, we refer to [8], where it is shown that
bisimilarity on basic parallel processes isPSPACE-complete.

In this paper we study the computational complexity of deciding strong bisimilarity over processes
generated by one-counter automata. One-counter automata are pushdown automata over a singleton stack
alphabet. In recent years, one-counter automata have gained interest in the verification community, see for
example [2, 4, 5, 3, 23]. On one-counter processes weak bisimilarity is shown to be undecidable in [12] via
a reduction from the emptiness problem of Minsky machines.

For strong bisimilarity the third author established decidability in [7], however without providing any
precise complexity bounds. In an unpublished article [27] Yen analyses the approach of [7] and is able to
derive a triply exponential space upper bound from it. APSPACE lower bound for bisimilarity is proven by
Srba [21]. This lower bound already holds over one-counter automata that cannot test for zero and whose
actions can moreover be restricted to bevisible (so calledvisibly one-counter nets), i.e. that the label of



the action determines if the counter is incremented, decremented, or not modified respectively. For visibly
one-counter automata it is proven in [21] that strong bisimilarity is in PSPACE via a reduction the model
checking problem of the modalµ-calculus over one-counter processes [18]. For bisimilarity on general
one-counter processes, in particular when dropping the visibility restriction, the situation is surely more
involved.

The main main result of this paper is that we close the complexity gap for bisimilarity on one-counter
processes from above and hence establishPSPACE-completeness. We provide a nondeterministic proce-
dure implementable in polynomial space which generates a bisimulation relationon-the-fly. In a nutshell,
for checking bisimilarity for a given pair(p(m), q(n)) of processes, the output of our procedure is ei-
ther (i) surely bisimilar, (ii) surely non-bisimilar, or (iii) it cannot make any sure statement and declares
the currently checked pair of processes as acandidate. Our algorithm needs in fact only polynomial time
for making sure answers (i) and (ii). For checking if a candidate pair is bisimilar our procedure guesses
the bisimilarity status of pairs of processes that are closein a polynomially bounded neighborhood of
(p(m), q(n)). We establish correctness of our procedure by proving that we need to postpone candidate
checking only for exponentially many steps.

Another natural problem we consider is decidingregularity (with respect to bisimulation) which asks
if, for a given a one-counter process, there is a state of somefinite system that is bisimilar to it. Decidability
of this problem was proven in [7] and according to [21] it follows from [1] and [19] that the problem is also
hard forP. We prove that regularity isP-complete and hence give a new upper bound and a simpler lower
bound proof than the one that one obtains by combining [1] and[19].

This paper is organized as follows. In Section 2 we introducebasic notation and define the algorithmic
problems that we are interested in. ThePSPACE upper bound for bisimilarity of one-counter processes is
proven in Section 3. However, the proofs of some of the technical lemmas in Section 3 are postponed to
Section 4 and Section 5. Our results on regularity checking of one-counter proceeses are proven in Section
6.

2 Definitions

Let N denote the set of nonnegative integers{0, 1, 2, . . .}, andZ the set of all integers. For eachi, j ∈ Z

we define[i, j] = {k ∈ Z | i ≤ k ≤ j} and[j] = [1, j]. Given a setX , by |X | we denote its cardinality.

Transition systems. A (labeled) transition systemis a tripleT = (S,A, {
a

−→| a ∈ A}), whereS is a set
of states, A is a set ofactions, and

a
−→⊆ S × S is a set ofa-labeledtransitionsfor each actiona ∈ A.

We define−→=
⋃

a∈A

a
−→ and prefer to use the infix notations1

a
−→ s2 (resp.s1 −→ s2) instead of

(s1, s2) ∈
a

−→ (resp.(s1, s2) ∈−→). We say thatT is finite if S andA are finite; we then define thesizeof
T as|T | = |S| + |A| +

∑

a∈A
|

a
−→|.

Bisimulation equivalence. Let T = (S,A, {
a

−→| a ∈ A}) be a transition system. A binary relation
R ⊆ S × S is bisimulationif for each(s1, s2) ∈ R the followingbisimulation conditionholds:

– for eachs′1 ∈ S and eacha ∈ A, wheres1
a

−→ s′1, there is somes′2 ∈ S such thats2
a

−→ s′2 and
(s′1, s

′
2) ∈ R, and

– for eachs′2 ∈ S and eacha ∈ A, wheres2
a

−→ s′2, there is somes′1 ∈ S such thats1
a

−→ s′1 and
(s′1, s

′
2) ∈ R.

We say that statess1 ands2 arebisimilar, abbreviated bys1 ∼ s2, whenever there exists a bisimulationR
such that(s1, s2) ∈ R. We observe that bisimilarity is an equivalence relation onS. We note that the union
of bisimulations is a bisimulation and that∼ is the maximal bisimulation onS. Bisimilarity is naturally
defined also between states of different transition systems(by considering their disjoint union).
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One-counter automata. A one-counter automaton (OCA)is a tupleM = (Q,A, δ0, δ>0), whereQ is a
finite non-empty set ofcontrol states, A is a finite set of actions,δ0 ⊆ Q×{0, 1}×A×Q is a finite set ofzero
transitions, andδ>0 ⊆ Q×{−1, 0, 1}×A×Q is a finite set ofpositive transitions. We note that there are no
ε-steps inM . Thesizeof a one-counter automaton is defined as|M | = |Q|+ |A|+ |δ0|+ |δ>0|. Each one-
counter automatonM = (Q,A, δ0, δ>0) defines the transition systemTM = (Q × N,A, {

a
−→| a ∈ A}),

where(q, n)
a

−→ (q′, n+i) if and only if eithern = 0 and(q, i, a, q′) ∈ δ0, orn > 0 and(q, i, a, q′) ∈ δ>0.

We will also denote this by(q, n)
(q,i,a,q′)
−−−−−→ (q, n+ i) and furthermore extend this relation tosequences of

transitionsin the obvious way. We define−→=
⋃

a∈A

a
−→.

A one-counter netis a one-counter automaton, whereδ0 ⊆ δ>0. State(q,m) of TM , also calledone-
counter process, will be usually written asq(m). Elements ofδ0 ∪ δ>0 are calledtransitions. Without
formalities we use the natural notions like apathp(m)

σ
−→ q(n) whereσ is asequence of transitions.

Decision problems.We are particularly interested in the following two decision problems.

BISIMILARITY OF ONE-COUNTER PROCESSES

INPUT: A one-counter automatonM with two one-counter processesp0(m0) andq0(n0) of TM ,
where bothm0 andn0 are given in binary.

QUESTION: p0(m0) ∼ q0(n0)?

We say that aone-counter processq(n) is∼-regular (or finite up to bisimilarity) if there is a finite transition
system with some states such thatq(n) ∼ s.

∼REGULARITY OF ONE-COUNTER PROCESSES

INPUT: A one-counter automatonM and a one-counter processp0(m0) of TM , wherem0 is given
in binary.

QUESTION: Is p0(m0) ∼-regular?

Stratified bisimilarity and finite transition systems Given a transition systemT = (S,A, {
a

−→| a ∈
A}), onS we define the family ofi-equivalences,i ∈ N, ∼0 ⊇∼1 ⊇∼2 ⊇ · · · as follows. We put∼0=
S × S, and we haves1 ∼i+1 s2 if the following two conditions hold:

– for eachs′1 ∈ S, a ∈ A, wheres1
a

−→ s′1, there is somes′2 ∈ S such thats2
a

−→ s′2 ands′1 ∼i s
′
2 ;

– for eachs′2 ∈ S, a ∈ A, wheres2
a

−→ s′2, there is somes′1 ∈ S such thats1
a

−→ s′1 ands′1 ∼i s
′
2 .

The following proposition is an instance of the result for image finite systems [13].

Proposition 1. On states ofTM we have∼ =
⋂

i≥0 ∼i.

Standard partition arguments imply the following proposition [10, 16].

Proposition 2. Given a finite transition systemF = (Q,A, {
a

−→| a ∈ A}), wherek = |Q|, we have
∼k−1 =∼k =∼ onQ. Moreover, (the partition ofQ corresponding to)∼ can be computed in polynomial
time.

3 A PSPACE upper bound for bisimilarity

In this section we prove that bisimilarity of one-counter processes is inPSPACE. If the context does not
indicate otherwise, in what follows we (often implicitly) assume a fixed one-counter automatonM =
(Q,A, δ0, δ>0), usingk for |Q|.

We proceed in five steps.
In Section 3.1 we show that when comparing a one-counter processesp(m) with states of theunderlying

finite transition systemof M (where the control states ofM are the states and we haveq
a

−→ q′ if in M

3



there is ana-labeled positive transition fromq to q′), one can already gain some information concerning
bisimilarity. In particular, inspired by [7], we prove thatthere is a polynomial-time computable set of
incomparable processesthat are useful to proving that certain pairs of processes are surely bisimilaror
surely non-bisimilar. A necessary condition for two processes to be bisimilar it that their minimal distances
to any incomparable process are the same.

In Section 3.2 we prove that for each processq(n), wheren is sufficently large, already the residue
class modulo an exponentially large number determines ifq(n) can reach some incomparable process.
Moreover, if the minimal distance fromq(n) to an incomparable process is finite, then we prove that this
distance can be expressed asα · n+ β, whereα andβ are rationals which can take only few values.

We call the pairs of one-counter processes that are neither surely bisimilar nor surely non-bisimilar
candidates. We prove in Section 3.3 that candidates lie either in a smallinitial area or in few thin belts.

In Section 3.4 we view the (bisimulation) relations betweenone-counter processes from a different
angle by regardingcolorings, which are simply mappings fromQ × Q × N × N → {◦, •}. We call such
a coloring locally consistent, if it does not violate the bisimulation condition with respect to the transition
systemTM . Hence, there is a natural one-to-one correspondence between locally consistent colorings and
bisimulations. Then we prove a characterization of bisimilarity of one-counter processes: Two one-counter
processesp(m) andq(n) are bisimilar if and only if there is a coloringχ that maps(p, q,m, n) to • and
that is locally consistent only in some exponentially sizedsubset ofQ×Q× N × N.

We implement the characterization of bisimilarity given inSection 3.4 in Section 3.5: We guess such
a suitable coloring and check local consistency. However, anaı̈ve implementation would only yield a
NEXPTIME upper bound. For proving implementability inPSPACE, we employ the result obtained in
Section 3.3, namely that the actual guessing only needs to bedone for candidate pairs: they in a small
initial area or in in few thin belts.

The proofs of some lemmas of this section are postponed to later sections. We will prove precise bounds
and give explicit polynomials. Therefore, we decided to list all constantsc1 < c2 < c3 < c4 < c5 that
appear in the rest of the paper below:

c1 = 4

c2 = 7c1 = 28

c3 = 2c2 = 56

c4 = 4c3 = 224

c5 = 4c4 = 896

3.1 The underlying finite transition systemFM and the set INC

We start by observing that if the counter value is large, thenM behaves, for a long time, like a (nondeter-
ministic) finite transition system; this is expressed by thefollowing proposition. ByFM we denote thefinite
transition system underlyingM ; we putFM = (Q,A, {

a
−→| a ∈ A}), where

a
−→= {(q1, q2) ∈ Q × Q |

∃i : (q, i, a, q′) ∈ δ>0}. (FM thus behaves as if the counter is positive, ignoring the counter changes.) In
what follows,p, q, r ∈ Q are viewed as control states ofM or as states ofFM , depending on context.

Proposition 3. p(m) ∼m p . (Herep(m) is a state ofTM , whilep is a state ofFM .)

This implies, e.g., that ifp 6∼ q (i.e.,p 6∼k q) andm,n ≥ k, thenp(m) 6∼k q(n) (and thusp(m) 6∼ q(n)).
If p ∼ q then we can havep(m) 6∼ q(n), due to the possibility of reaching zero. For making this more
precise, we define the following set (as in [7]).

INC = { r(ℓ) | ∀q ∈ Q : r(ℓ) 6∼k q } .

The configurations in INC areincompatible withFM in the sense that they are not bisimilar uptok moves
with any state ofFM . The next proposition is straighforward.

Proposition 4. If r(ℓ) ∈ INC thenℓ < k. Moreover, INC can be constructed in polynomial time.
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Let p(m) andq(n) be processes. Let us define thedistancebetweenp(m) andq(n) as dist(p(m), q(n)) =
min{i ≥ 0 | p(m) −→i q(n)}. It is obvious that ifp(m), q(n) are bisimilar then they must agree on the
distance to INC; this is formalized by the next lemma. We define

dist(p(m)) = min{dist(p(m), r(l)) | r(l) ∈ INC}

as the length of the shortest distance to some process in INC.Note that we put dist(p(m)) = ω if INC is
unreachable fromp(m), denotedp(m) 6−→∗ INC.

Lemma 5. If p(m) ∼ q(n) then dist(p(m)) = dist(q(n)).

The next lemma clarifies the opposite direction in the case ofinfinite distances.

Lemma 6. If dist(p(m)) = ω thenp(m) ∼ r for somer ∈ Q. Thus if dist(p(m)) = dist(q(n)) = ω then
p(m) ∼ q(n) if and only if there is somer ∈ Q such thatp(m) ∼k r ∼k q(n).

Proof. Firstly, we prove that the relation

R = {(q1(n1), q2(n2)) | q1(n1) ∼k q1(n2), dist(q1(n1)) = dist(q2(n2)) = ω}

is a bisimulation. For this, let(q1(n1), q2(n2)) ∈ R and assumeq1(n1)
a

−→ q′1(n
′
1) for somea ∈ A.

Since in particularq1(n1) 6∈ INC there is somer ∈ Q such thatq1(n1) ∼k r. Furthermore there is
somer′ ∈ Q and someq′2(n

′
2) such thatq2(n2)

a
−→ q′2(n2) satisfyingq′1(n

′
1) ∼k−1 r

′ ∼k−1 q
′
2(n

′
2).It

follows q′1(n
′
1) ∼k r

′ ∼k q
′
2(n

′
2) by Proposition 2. Thus(q′1(n

′
1), q

′
2(n

′
2)) ∈ R as desired. The case when

q2(n2)
a

−→ q′2(n
′
2) for somea ∈ A can be proven analogously.

Secondlly, sinceR is a bisimulation and dist(p(m)) = dist(q(n)) = ω we can deduce

p(m) ∼ q(n) ⇔ (p(m), q(n)) ∈ R ⇔ p(m) ∼k q(n) ⇔ ∃r ∈ Q : p(m) ∼k r ∼k q(n).

⊓⊔

In Subsection 3.2 we look in more detail at the functiondist(p(m)), which provides a useful constraint
on bisimilar pairs. But before that, we partition the set(Q × N) × (Q × N) into three categories. We say
that a pair(p(m), q(n)) is

– surely-positiveif p(m) ∼k q(n) anddist(p(m)) = dist(q(n)) = ω

(and thus surelyp(m) ∼ q(n) by Lemma 6),
– surely-negativeif p(m) 6∼k q(n) or dist(p(m)) 6= dist(q(n))

(and thus surelyp(m) 6∼ q(n)),
– candidateotherwise, i.e., ifp(m) ∼k q(n) anddist(p(m)) = dist(q(n)) < ω.

In the following, let SURE = SUREPOS∪SURENEG denote the union of all surely positive pairs SUREPOS

and all surely negative pairs SURENEG. By CAND we denote the set of candidates. Without risk of con-
fusion, we will treat pairs of processes〈p(m), q(n)〉 as the four-tuple(p, q,m, n) ∈ Q×Q × N × N and
vice versa.

Lemma 7. Membership inSUREPOS andSURENEG is decidable in polynomial time. Moreover, for each
(p, q,m, n) ∈ SURE membership inSUREPOS is determined already byp, q and the residue classes ofm
and ofn modulo LCM[k], providedm,n > c3k

6.

Proof. The lemma follows immediately from Lemma 8 and from the fact that membership in∼k obviously
decidable in polynomial time. ⊓⊔
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3.2 On distances to INC

The goal of this this section is to extract more information from states that have the same distance to

INC. We prove that for statesp(m), wherem is sufficiently but polynomially large, dist(p(m))
?
= ω is

determined already by the residue class ofm modulo some exponentially big number andp. Moreover,
we have that dist(p(m)) < ω implies that dist(p(m)) is preciselyαi · m + βi for rationalsαi andβi,
whose denominator is in{1, . . . , k} and that moreover only depend on the statep and onm’s residue class
i modulo some exponentially bounded number.

Before me make this statement more precise, let us introducesome more notation. Let LCM[k] be the
least common multiple of the numbers1, . . . , k. Nair proved in [15] that2k ≤ LCM[k] ≤ 4k in casek ≥ 9.
A ratio is a fractionα = a

b
, where1 ≤ a ≤ b ≤ k.

Lemma 8. For everyq ∈ Q and every0 ≤ i < LCM[k] there exists some ratioα = α(q, i) and some
offsetβ = β(q, i) ∈ Q with |β| ≤ c3k

4 such that for everyn > c3k
6 withn ≡ i mod LCM[k] the following

two statements hold:

(1) The residue classi determines if dist(q(n)) = ω.
(2) If dist(q(n)) < ω, then dist(q(n)) = α · n+ β.

Moreover dist(q(n)) is computable in polynomial time (even) whenn is given in binary.

Section 4 is devoted to proving Lemma 8.

3.3 Candidates lie in some small initial square and then in few thin belts

An area is a setB ⊆ N × N of points. ByB = N × N \ B we denote thecomplementof B. Let
B>z = {(x, y) ∈ B | x, y > z} for eachz ∈ N.

For each point(x, y) ∈ N×N, let cube(x, y) = {(x′, y′) ∈ N×N : |x−x′| ≤ 1 and|y−y′| ≤ 1}. We
define cube(B) = {cube(x, y) | (x, y) ∈ B}. Two areasB1, B2 are calledindependentif cube(B1)∩B2 =
∅ (or equivalentlyB1 ∩ cube(B2) = ∅). Observe that in particular independent areas are disjoint.

A slopeis a rationalµ ∈ Q such thatµ = a
b

for somea, b ∈ [k2]. Let c4 = 4c3. For each slopeµ let
B(µ) be thebeltcorresponding toµ be the following area:

B(µ) =
{
(x, y) ∈ N × N | µ · x− c4k

4 ≤ y ≤ µ · x+ c4k
4
}

Note that there are at mostk4 slopes/belts.
Let B =

⋃

µB(µ) denotebelt area, i.e. the union of all areas covered by belts. The following lemma
states that candidates lie in some initial polynomially-sized square or in the belt area. A visualization of the
following lemma is given by Figure 1. Let us definec5 = 4c4.

Lemma 9. CAND ⊆ Q×Q× ([c5k
10]2 ∪ B).

Proof. The lemma follows from the following two statements:

(1) If dist(p(x)) = dist(q(y)) < ω andx, y > c4k
8, then(x, y) ∈ B(µ) for someµ.

(2) Assume dist(p(x)) = dist(q(y)) and either (i)0 ≤ x ≤ c4k
8 andy > c5k

10 or (ii) x > c5k
10 and

0 ≤ y ≤ c4k
8. Then dist(p(x)) = dist(p(y)) = ω.

For point (1) let us fixp, q ∈ Q andx, y > c4k
8 such that dist(p(x)) = dist(q(y)) < ω. Let i (resp.j) be

be residue class ofx (resp.y) modulo LCM[k]. By Lemma 8 there are ratiosα(p, i) andα(q, j) and offsets
β(p, i) andβ(q, j) with |β(p, i)|, |β(q, j)| ≤ c3 · k4 such that

dist(p(x)) = α(p, i) · x+ β(p, i) and dist(q(y)) = α(q, j) · y + β(q, j)

Since dist(p(x)) = dist(q(y)) we have

y =
α(p, i) · x+ β(p, i) − β(q, j)

α(q, j)
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which impliesy = µ ·x+d, where whereµ = α(p,i)
α(q,j) andd = β(p,i)−β(q,j)

α(q,j) . Moreover we have|d| ≤ c4k
4.

Thus(x, y) ∈ B(µ).
For point (2) we prove the implication only for assumption (i). The case for assumption (ii) can be

proven analogously. Let assume0 ≤ x ≤ c4k
8 andy > c5k

10. Assume by contradiction dist(p(x)) =
dist(q(y)) < ω. On the one hand, it follows from Lemma 8

dist(p(x)) ≤ k · x+ c3k
4 ≤ c4k

9 + c3k
4 ≤ 2c4k

9.

On the other hand, sincey > c5k
10 > c3k

6 we have by Lemma 8

dist(q(y)) ≥
1

k
· y − c3k

4 > c5k
9 − c3k

4 = 4c4k
9 − c3k

4 > 2c4k
9.

Thus dist(p(x)) < dist(q(y)), a contradiction. ⊓⊔

The following lemma states that different belts are independent once we are outside some polynomially
large initial area.

Lemma 10. B(µ)>c5k8 andB(µ′)>c5k8 are independent providedµ 6= µ′.

Proof. It suffices to prove that for all slopesµ, µ′ with µ′ 6= µ and allx > c5k
8 we have

µ′ > µ ⇒ µ · x+ c4k
4 + 1 < µ′ · x− c4k

4 − 1 and

µ′ < µ ⇒ µ′ · x+ c4k
4 + 1 < µ · x− c4k

4 − 1.

We only treat the caseµ′ > µ, the caseµ′ < µ can be proven analogously. Observe that1
k4 ≤ µ′ − µ. The

desired inequality follows by deducing fromc5k8 < x the following:

c5k
4 < (µ′ − µ) · x ⇒ µ · x+

c5

2
k4 < µ′ · x−

c5

2
k4 c5=4c4⇒ µ · x+ c4k

4 + 1 < µ′ · x− c4k
4 − 1

⊓⊔

3.4 Interpretation of ∼ in terms of colorings

A coloring is a mappingχ : Q × Q × N × N → {•, ◦}. Note that each coloring gives rise to a binary
relation on the one-counter processes generated byM . Conversely each binary relation on the set of one-
counter processes gives rise to a coloring. We define thebisimulation coloringχM that corresponds to the
bisimilarity relation∼ of M as expected:

χM (p, q, x, y) =

{

• if p(x) ∼ q(y)

◦ otherwise
for eachp, q ∈ Q andx, y ∈ N

Let χ be a coloring. We call the tuple(p, q, x, y) ∈ Q × Q × N × N is locally consistentwhenever
χ(p, q, x, y) = • implies the bisimulation conditions, i.e.

(1) If p(x)
a

−→ p′(x′) for somep′(x′), thenq(y)
a

−→ q′(y′) for someq′(y′) with χ(p′, q′, x′, y′) = •.
(2) If q(y)

a
−→ q′(y′) for someq′(y′), thenp(x)

a
−→ p′(x′) for somep′(x′) with χ(p′, q′, x′, y′) = •.

We callχ locally consistentif χ locally consistent for every element ofQ × Q × N × N. Note that
p(x) ∼ q(y) if and only if there is some locally consistent coloringχ such thatχ(p, q, x, y) = •. The next
lemma establishes a characterization of bisimilarity of one-counter processes in terms of colorings. In a
nutshell, it says for proving bisimilarity of two one-counter processesp(x) andq(y) it is sufficient to look
at a coloringχ that agrees withχM on the sure pairs, that satisfiesχ(p, q, x, y) = •, and that is locally
consistent only in an exponentially-sized area.

7



c5k
10

c5k
10

(q1, q1)
(q1, q2)
. . .

(qk, qk)

x

y

Fig. 1. Candidates lie in some initial square and then in independent belts

Lemma 11 (Characterization of bisimilarity). We havep0(x0) ∼ q0(y0) if and only if there is some
coloringχ such that

(1) χ agrees withχM on SURE,
(2) each element ofQ×Q× [0, Ω]2 is locally consistent, and
(3) χ(p0, q0, x0, y0) = •.

whereΩ = x0 + 2c5k
10 + 2c5k6

· (LCM[k2])2.

Lemma 11 can be seen as the core of the correctness proof of ourpolynomial space procedure that we
provide in the next section. Lemma 11 is proven in Section 5.

3.5 The polynomial space procedure

Theorem 12. Bisimilarity of one-counter processes isPSPACE-complete.

Proof. ThePSPACE lower bound for this problem was proven by Srba in [21].
For thePSPACE upper bound, let us fix some one-counter automatonM = (Q,A, δ0, δ>0) with k =

|Q| and two one-counter processesp0(x0) andq0(y0) of TM . We now use the characterization ofp0(x0) ∼

q0(y0) given by Lemma 11. LetΩ = x0 + 2c5k
10 + 2c5k6

· (LCM[k2])2 be the natural from Lemma 11.
We demonstrate that we can check the existence of some coloringχ that satisfies conditions (1), (2) and
(3) of Lemma 11 in polynomial space. Note that point (1), i.e.checking ifχ agrees withχM on the set
SURE of sure pairs can be solved even in polynomial time by Lemma 7.Let us explain how to decide in
polynomial space if point (2) holds, i.e. ifχ is locally consistent on allQ×Q×Ω2. Sinceχ’s coloring on
SURE is decidable in polynomial time, it suffices to guessχ’s coloring CAND insideQ×Q× [0, Ω+1]2.
Note that we cannot guess simply all ofχ’s colors inside[0, Ω + 1]2 at once, since there are exponentially
many such colors to be guessed. This would lead to aNEXPTIME upper bound only. Instead, we guess
these colors on-the-fly. For this, it will be useful to view the set CAND of all candidate pairs as the union

CAND = CAND0 ∪ CAND1 ∪ CAND2 ∪ · · ·

8



where CANDi contains thecandidate pairs at vertical leveli, i.e. the pairs〈p(x), q(y)〉 ∈ CAND with
x = i. By Lemma 9 we know that CAND⊆ Q × Q × ([0, c5k

10]2 ∪ B). SinceB was the union of all
belt areas and since there are at mostk4 belts of thickness2c3k4 + 1 each, we obtain that CANDi is
polynomially bounded for eachi ≥ 0.

For each setC ⊆ Q×Q×N×N, define cube(C) = {〈p′(x′), q′(y′)〉 | ∃〈p(x), q(y)〉 ∈ C : (x′, y′) ∈
cube(x, y)} to be the neighbors ofC that can influence the bisimilarity condition of members ofC. Our
nondeterministic algorithm is depicted in algorithm environment 1.

Algorithm 1 Checking ifp0(x0) ∼ q0(y0) via some locally consistent coloring insideQ×Q× [0, Ω]2

1: for all i = 1 up toΩ do
2: Guessχ’s colors on CANDi−1,CANDi and CANDi+1 if not already guessed
3: Check local consistency for each(p, q, x, y) ∈ cube(CANDi) with x = i.
4: Forgetχ’s colors on CANDi−1 but notχ(p0, q0, x0, y0) if inside.
5: end for
6: return χ(p0, q0, x0, y0) = •.

It is clear that we can implement Algorithm 1 in polynomial space. ⊓⊔

4 Proof of Lemma 8

Let Γ = Q × {−1, 0, 1} × A × Q be the set of all possible transitions of our one-counter automatonM .
Let s, t and be states inTM . A path inTM from s to t is a finite sequence of transitionsσ = γ1 · · · γl

such thatq0(n0)
γ1

−→ q1(q1) · · ·
γl−→ ql(nl) with q0(n0) = s andql(nl) = t. By |σ| = l we denote the

lengthof σ. We callσ minimal, if the length of every path froms to t is at least|σ|. We also denote this
by dist(s, t) = |σ|. We callσ positiveif ni > 0 for eachi ∈ [0, l] andzerootherwise. A pathσ is called
elementary cycleif it induces an elementary cycle in the control state setQ. Such a cycle has length at most
|Q|, and its effect on the counter value is non-zero and thus in{−|Q|,−|Q|+ 1, . . . , |Q|}.

We note that the following Lemma from [24] was proven in the context ofdeterministicone-counter
automata (withε-steps) but the lemma obviously applies to our nondeterministic case as well (since we can
view the transitions themselves as the actions). Lemma 2 in [24] can directly expressed in our setting as
follows.

Lemma 13 (Lemma 2 in [24]).If there is a positive path fromp(m) to q(n) andm−n ≥ k2 andn ≥ k2

then there is such a shortest pathp(m)
σ

−→ q(n) such thatσ = σ1σ
i
2σ3 where|σ1σ3| < k2 andσ2 is an

elementary decreasing cycle with|σ2| ≤ k.

From the previous lemma and a simple pigeonhole argument, wecan prove the following lemma. We define
c1 = 4.

Lemma 14. If there is a path fromp(m) to q(n) andn < k, then there is such a shortest pathp(m)
σ

−→
q(n) such thatσ = σ1(σ2)

lσ3, where|σ1σ3| ≤ c1k
3 and whereσ2 is an elementary decreasing cycle (if

l > 0) and|σ2| ≤ k.

Proof. Before we prove the lemma, we will prove the following claim.

Claim: For everyp′(m′) with m′ ≤ 2k2 andp′(m′) −→∗ q(n) every minimal pathπ from p′(m′) to q(n)
does not visit any process of counter value strictly larger than3k2; hence in particular|π| ≤ 3k3.

Proof of Claim: Fix some minimal pathπ = q1(n1)
π1−→ q2(n2) · · ·

πt−→ qt(nt) from p′(m′) to q(n).
Assume by contradiction some processqj(nj) wherenj > 3k2 is maximal among all counter valuesni.
For eachh ∈ [m′, nj ], define

f(h) = max{i ≤ j | ni = h} and g(h) = min{i ≥ j | ni = h}.

9



Since, by assumptionnj −m′ > 3k2 − 2k2 = k2, there arep1, p2 ∈ Q andm′ ≤ h < h′ ≤ nj such that
f(h) = f(h′) = p1 andg(h′) = g(h) = p2 by the pigeonhole principle. Letd = h′ − h > 0. Now we can
modify the pathπ replacing the subpath fromf(h) to g(h) by the subpath fromf(h′) to g(h′), where all
heights are lowered byd. But the resulting path contradicts minimality ofπ.

This concludes the proof of the claim.

Recall thatc1 = 4. To prove the lemma, we distinguish two cases,:

– m ≤ 2k2: Then we can apply the above claim and we are done.
– m > 2k2: Let us fix some shortest pathπ from p(m) to q(n). Hence there is some intermediate

proceessp′(k2) onπ such thatπ’s (positive) subpath fromp(m) to p′(k2) can be replaced by a shortest
positive pathp(m)

τ
−→ p′(k2) corresponding to the form of Lemma 13. This meansτ is of the form

τ = τ1(τ2)
lτ3 , where|τ1τ3| < k2 andτ2 is an elementary decreasing cycle with|τ2| ≤ k. By the

above claim, the length ofπ’s subpath fromp′(k2) to q(n), let us call this subpathπ′, has length at
most3k3. We putσ1 = τ1, σ2 = τ2 andσ3 = τ3π

′. The pathσ = σ1σ
l
2σ3 is hence a shortest path

from p(m) to q(n) with |σ1σ3| ≤ k2 + 3k3 ≤ c1k
3 and thus the lemma follows.

⊓⊔

We define the constantc2 = 7c1.

Lemma 15. For everyq ∈ Q, every0 ≤ i < LCM[k] and everyp(m) withm < k there exists some ratio
α = α(q, i, p(m)) and some offsetβ = β(q, i, p(m)) ∈ Q with |β| ≤ c2k

4 such that for everyn > c2k
6

with n ≡ i mod LCM[k2] the following two statements hold:

(1) The residue classi determines if dist(q(n), p(m)) = ω

(2) If q(n) −→∗ p(m), then dist(q(n), p(m)) = α · n+ β.

Proof. Let us fix somen1, n2 > c2k
6 with n1 ≡ n2 ≡ i mod LCM[k]. We assume thatn1 < n2 and let

D = n2 − n1, which is a multiple of LCM[k].
Let us first prove point (1). We prove thatq(n2) −→∗ p(m) impliesq(n1) −→∗ p(m) (the converse

direction can be proven analogously). So let us assumeq(n2) −→∗ p(m). Hence there is a pathσ =

σ1(σ2)
lσ3 with q(n2)

σ
−→ p(m) that satisfies the conditions of Lemma 14. Observe thatl > 0 and since

|σ2| ≤ k we have that|σ2| divides LCM[k]. Moreover sincem+ |σ1σ3| ≤ k+ c1k
3 < c2k

6 it follows that
there exists somel′ < l such thatσ1σ

l′

2 σ3 is a path fromq(n1) to p(m). Thusq(n1) −→
∗ p(m).

Let us prove point (2). Let us assumeq(n1) −→
∗ p(m) andq(n2) −→

∗ p(m). Then there is a minimal
pathτ1 (resp.τ2) from q(n1) to p(m) (resp. fromq(n2) to p(m)) that satisfies the conditions of Lemma 14.
Let γ1 (resp.γ2) denote the elementary decreasing cycle ofτ1 (resp.τ2), letd1 (resp.d2) denote its counter
effect (which is a negative integer from{−k, . . . ,−1}).

We will first prove that dist(q(n2), p(m)) = dist(q(n1), p(m)) + α ·D, whereα is some ratio that is
determined byq, i, andp(m). Define the ratioαj =

|γj|
dj

for eachj ∈ {1, 2}. We have the following claim,
whose proof we postpone to the end of the lemma.

Claim:α1 = α2.

So letα = α1 = α2. Let us prove dist(q(n2), p(m)) = dist(q(n1), p(m)) + α · D. Assume first by
contradiction that dist(q(n2), p(m)) < dist(q(n1), p(m)) + α · D. In analogy to the proof of point (1)
one can prove that by traversing the elementary decreacing cycle γ2 in τ2 fewer times one can construct
a path fromq(n1) to p(m) of length smaller than|τ1|, hence contradicting minimality ofτ1. The case
dist(q(n2), p(m)) > dist(q(n1), p(m)) + α ·D can be dealt with analogously.

To finally prove the lemma it remains to prove an upper bound for the absolute value ofβ, whereβ ∈ Q

is the rational that satisfies dist(q(n1), p(m)) = α · n1 + β. Assumeτ1 is of the formσγl
1ψ. Recall thatγ1

is the elementary decreasing cycle ofτ1. LetH be the counter gain/loss ofσψ. Since|σψ| ≤ c1k
3 we have

−c1k3 ≤ H ≤ c1k
3. Then it follows

dist(q(n1), p(m)) =
n1 −m−H

d1
· |γ1| + |σψ| = α · n1 −α · (m+H) + |σψ|

︸ ︷︷ ︸

β

.
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Since1 ≤ α ≤ k andc2 = 6c1 it follows (generously)

− c2k
4 ≤ −3c1k

4 ≤ β ≤ 3c1k
4 ≤ c2k

4. (1)

Proof of the above claim:Without loss of generality let us assumeα1 > α2. Let τ ′1 be the path from
q(n1) to p(m) that is obtained fromτ2 by traversing its elementary decreasing cycleγ2 appropriately often
(i.e. fewer). We prove that|τ ′1| < |τ1|, hence contradicting minimality ofτ1. We derive the contradiction
|τ1| − |τ ′1| > 0 as follows:

|τ1| − |τ ′1| ≥ α1 · n1 − β − α2 · n1 − β

eq.(1)
≥ (α1 − α2) · n1 − 6c1k

4

≥
1

k2
· n1 − 6c1k

4

>
1

k2
· c2k

6 − 6c1k
4

> 0

⊓⊔

We define the constantc3 = 2c2. We conclude this section with the proof of Lemma 8.

Proof of Lemma 8

Point (1) of Lemma 8 follows immediately fromc3 > c2 and from point (1) of Lemma 15.

For point (2) let us fix somen > c3k
6 such thatn ≡ i mod LCM[k]. Let p1(m1), . . . , pl(ml) be an

enumeration of the set{p(m) ∈ INC | q(n) −→∗ p(m)} (which is uniquely determined byq andi by
point (1)). Note thatmj < k by Proposition 4 for eachj. Let us fix ratiosα1, . . . , αl and offsetsβ1, . . . , βl

with |βj | ≤ c2k
4 for each1 ≤ j ≤ l corresponding to Lemma 15.

Defineα = min{αj | 1 ≤ j ≤ l} and letβ = min{βj | αj = α, 1 ≤ j ≤ l}. We prove that
dist(q(n)) = α · n+ β. Since|βj | ≤ c2k

4 for eachj by Lemma 15 it suffices to prove thatα · n+ c2k
4 ≤

α′ · n− c2k
4 for each ratioα′ > α. The latter holds sincec3k6 ≤ n implies

c3k
4 ≤

n

k2
⇒ c3k

4 ≤ (α′ − α) · n ⇒ 2c2k
4 ≤ α′ · n− α · n ⇒ α · n+ c2k

4 ≤ α′ · n− c2k
4.

Let us now prove argue that dist(q(n)) is computable in polynomial time. There are at mostk2 many
members in INC, each of which has counter value strictly lessthank by Proposition 4. We can restrict
ourselves to searching for minimal paths of the formσ = σ1(σ2)

lσ3 in the spirit of Lemma 14. Since
there are potentially at most2c1k4 many one-counter processes whereσ1 ends and at most2c1k4 many
processes whereσ3 starts, we can try all possible combinations of these and test if they can be connected by
repeatedly executing some decreasing elementary cycleσ2 (that we only need to test polynomially many
combinations of). ⊓⊔

5 Proof of Lemma 11

Proof. We prove the lemma by showing thatif there is a coloringχ that satisfies points (1), (2) and (3), i.e.

(1) χ agrees withχM on SURE,
(2) each element ofQ×Q× [0, Ω]2 is locally consistent, and
(3) χ(p0, q0, x0, y0) = •.

then there exists a coloringχ′ that is locally consistent and moreoverχ′(p0, q0, x0, y0) = • (and thus
p(x) ∼ p(y)). Recall that

Ω = x0 + 2c5k
10 + 2c5k6

· (LCM[k2])2.
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So let us fix a coloringχ that satisfies points (1),(2) and (3).
We setχ′ to agree withχM on SURE. It remains to defineχ′ on members of CAND. We will give the

coloring ofχ′ for each candidate(p, q, x, y) ∈ CAND dependent on the belt in which(x, y) lies. More
precisely, we are in particular interested in candidates(p, q, x, y) ∈ CAND with x > 2c5k

10 + x0. For the
latter candidates it follows (even whenx0 = 0) that(x, y) ∈ B by Lemma 9. Moreover it followsy > c5k

8

due to

y ≥
1

k2
· x− c4k

4 > 2c5k
8 − c4k

4 > c5k
8.

Hence for each(p, q, x, y) ∈ CAND with x > 2c5k
10 we have that(x, y) lies in precisely one beltB(µ).

Let us fix one beltB(µ) with slopeµ. We aim to prove that the colors ofχ will repeat periodically in
the beltB(µ) as depicted in Figure 2. To prove this, we look at certain vertical positionsx > 2c5k

10 + x0

with x ≡ 0 mod LCM[k2]2 that we callcuts. Since the denominator of each slope is some number from
{1, . . . , k2} it follows thatµx ≡ 0 mod LCM[k] for each cutx. If x is a cut, note that the elements inside
the beltB(µ) with vertical valuex are precisely the pairs{(x, µx + d) | d ∈ [−c4k

4, c4k
4]}.

Define thecut square(as depicted in Figure 2) to be the mapping

Sx : Q×Q× [−c4k
4, c4k

4] → {◦, •} with Sx(p, q, d) = χ(p, q, x, µx+ d)

for each cutx. Note that there are at most2k2·(2c4k4+1) < 2c5k6

− 1 many different cut squares. Hence
between2c5k10 + x0 and2c5k

10 + x0 + 2c5k6

· LCM[k2]2 = Ω there two distinct cutsx1 < x2 with
Sx1

= Sx2
by the pigeonhole principle. This siutation is depicted in Figure 2. LetΥ = x2 − x1.

Recall that on members of SURE the mappingχ′ is defined the same way asχM (orχ). We will define
that on candidates(p, q, x, y) ∈ CAND with (x, y) ∈ B(µ), the coloringχ′ differs fromχ only (if at all)
in casex > x2. Note that for each candidates(p, q, x, y) insideB(µ) with x > x2 we can express(x, y) as
(x1 + iΥ + s, µ(x1 + iΥ ) + t) for some unique vector(s, t) ∈ N×N providedi ≥ 1 is maximal. We then
defineχ′(p, q, x, y) asχ(p, q, x1 + s, µx1 + t).

Sincex ≡ x1 + s mod LCM[k] andy ≡ µx1 + t mod LCM[k] andx, y >> c3k
6, we have that

(p, q, x, y) is locally consistent if and only if (p, q, x1 + s, µx1 + t) is locally consistent

by Lemma 7. Thus,χ′ is locally consistent andχ′(p0, q0, x0, y0) = χ(p0, q0, x0, y0) = •.

(q1, q1)
(q1, q2)
. . .

(qk, qk)

x

y

x1 x2

Fig. 2. The cut squaresSx1
andSx2

are the same.

⊓⊔
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6 ∼-Regularity

We can easily derive the next lemma, which tells us thatp(m) is not∼-regular iff it allows to reach states
with arbitrarily large finite distances to INC.

Lemma 16. Givenp(m) for a one counter automatonM , p(m) is not∼-regular iff for anyd ∈ N there is
q(n) such thatp(m) →∗ q(n) andd ≤ dist(q(n)) < ω.

The next proposition gives a more convenient characterization.

Proposition 17. p(m) is not∼-regular iff p(m) →∗ q(m + 2k) whereq(m + 2k) →∗ INC. (Recall that
k = |Q| for the setQ of control states ofM .)

Proof. ‘Only if’ is obvious.
On any pathp(m)

σ1−→ q(m + 2k)
σ2−→ INC we have to cross the level(m + k) when going up as well

as when going down to INC (recall thatℓ < k for anyr(ℓ) ∈ INC). The elementary cycles, which must
necessary appear when going up and down, can be suitably pumped to show the condition in Lemma 16.

⊓⊔

Lemma 18. Deciding∼-regularity of one-counter processes is inPTIME.

Proof. We check the condition from Proposition 17. Givenp(m), we can compute allq(m + 2k) which
have finite distances to INC by a polynomial algorithm by Lemma 8. Whenm = 0, the reachability
of a suitableq(2k) (q(2k) →∗ INC) can be checked straightforwardly. Ifm > 0 then a shortest path
p(m)

σ
−→ q(m + 2k) either does not go through zero, i.e. through anyp′(0), in which case it does not

need to cross the levelm − k2 (as can be verified by standard arguments, it is similar as in the claim in
the proof of the Lemma 14), or it does reach somep′(0). Suchp′(0) is surely not∼-regular either (since
p′(0) →∗ q(m + 2k) →∗ INC), and the previous casem = 0 can be used. Because reachability ofp′(0)
from p(m) can be decided in polynomial time by Lemma 8 we are done. ⊓⊔

Lemma 19. Deciding∼-regularity (even) of one-counter nets isPTIME-hard.

Proof. We use a reduction from bisimilarity on finite transition systems which isPTIME-complete [1].
Given a finite transition system(Q,A, {

a
−→}a∈A), andf, g ∈ Q, it is easy to construct a one counter net

which has the following behaviour: ins0(m),m > 0, it has transitionss0(m)
a

−→ s0(m+ 1), s0(m)
a

−→

s0(m − 1), s0(m)
b

−→ f(m), s0(m)
b

−→ g(m). In s0(0) we only haves0(0)
a

−→ s0(1) ands0(0)
b

−→
f(0). Any statef(n) just mimicksf (not changing the counter); similarlyg(n) mimicks g. It is easy to
verify thats0(n) is regular ifff ∼ g. ⊓⊔

Theorem 20. Deciding∼-regularity of one-counter processes isPTIME-complete.
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8. P. Jančar. Strong bisimilarity on basic parallel processes is pspace-complete. InProc. of LICS, pages 218–227.

IEEE Computer Society, 2003.
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