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Abstract. A one-counter automaton is a pushdown automaton over aesimgktack alphabet. We
prove that the bisimilarity of processes generated by nenahénistic one-counter automata (with no
e-steps) is in PSPACE. This improves the previously knownid#gglity result (Jancar 2000), and
matches the knowRSPACE lower bound (Srba 2009). Moreover, we prd¥&€IME-completeness of
regularity of one-counter processes (i.e., their finitengsto bisimilarity).

1 Introduction

Among the different notions of behavioral equivalencesrtbon of (strong)bisimulationplays an im-
portant role (cf, e.g., [13]). For instance, various legéan be characterized as the bisimulation-invariant
fragment of richer logics. A famous theorem due to van Bantktates that the properties expressible in
modal logic coincide with the bisimulation-invariant pesfies expressible in first-order logic [25]. Similar
such characterizations have been obtained for the medalculus [6] and for CTE [14]. Another impor-
tant notion isweak bisimulatiorthat generalizes strong bisimulation by allowing distiistpeds-moves in
the transitions that allow to mimic internal behavior.

There are numerous further notions of equivalences. Foe marore detailed treatment of the different
behaviorial equivalences in the context of concurrencgheve refer to [26].

Hence it is natural to formulate thifereak/strong) bisimilarity probleni.e. to decide if two given states
of a given transition system are weakly/strongly bisimi@nfinite transition systentsoth weak and strong
bisimilarity is well-known to be complete for determintspolynomial time [1].

In the last twenty years a lot of research has been devotdettrking behavioral equivalence of infinite-
state systems, see [20] for an up-to-date record. In thingeif infinite-state systems, see also [11] for
Mayr's classification of infinite-state systems, the sitats less clear. There are numerous classes of
infinite-state systems for whiattecidability of bisimilarity is not known. Two such intricate open prob-
lems are (i) weak bisimilarity on basic parallel processesubclass of Petri nets) and (ii) bisimilarity of
PA/PAD. On the positive side we mention an important resylébnizergues who shows that bisimilarity
on equational graphs [17] (a slight generalization of pasidgraphs) is decidable. See also in Stirling’s
unpublished paper [22] for a shorter proof of this by usinggisifrom concurrency theory.

When focussing on theomputational complexitgf bisimilarity checking of infinite-state systems for
which this problem is decidable, the sitution becomes evans&v There are only very few classes for which
the precise computational complexity of checking bisimitjais known. For instance, when coming back
to the above-mentioned positive results by Sénizergtidsi§ concerning (slight extensions of) pushdown
graphs, a primitive recursive upper bound is not yet knovenmiention one of the few results on infinite
systems where the upper and lower complexity bounds matehiefer to [8], where it is shown that
bisimilarity on basic parallel processePSPACE-complete.

In this paper we study the computational complexity of digjdstrong bisimilarity over processes
generated by one-counter automata. One-counter automegpashdown automata over a singleton stack
alphabet. In recent years, one-counter automata havedjaitgeest in the verification community, see for
example [2,4, 5, 3,23]. On one-counter processes weak itasity)is shown to be undecidable in [12] via
a reduction from the emptiness problem of Minsky machines.

For strong bisimilarity the third author established dabidity in [7], however without providing any
precise complexity bounds. In an unpublished article [2&1 dnalyses the approach of [7] and is able to
derive a triply exponential space upper bound from iP#PACE lower bound for bisimilarity is proven by
Srba [21]. This lower bound already holds over one-couni&raata that cannot test for zero and whose
actions can moreover be restricted touigble (so calledvisibly one-counter nejsi.e. that the label of



the action determines if the counter is incremented, deenésal, or not modified respectively. For visibly
one-counter automata it is proven in [21] that strong biksirity is in PSPACE via a reduction the model
checking problem of the modail-calculus over one-counter processes [18]. For bisintylarh general
one-counter processes, in particular when dropping thibiltig restriction, the situation is surely more
involved.

The main main result of this paper is that we close the conitylgap for bisimilarity on one-counter
processes from above and hence estalfiSPACE-completeness. We provide a nondeterministic proce-
dure implementable in polynomial space which generatesimblation relatioron-the-fly In a nutshell,
for checking bisimilarity for a given paifp(m), ¢(n)) of processes, the output of our procedure is ei-
ther (i) surely bisimilar, (ii) surely non-bisimilar, orii{i it cannot make any sure statement and declares
the currently checked pair of processes &aiadidate Our algorithm needs in fact only polynomial time
for making sure answers (i) and (ii). For checking if a caatkdpair is bisimilar our procedure guesses
the bisimilarity status of pairs of processes that are closa polynomially bounded neighborhood of
(p(m),q(n)). We establish correctness of our procedure by proving tleaheed to postpone candidate
checking only for exponentially many steps.

Another natural problem we consider is decidmgularity (with respect to bisimulation) which asks
if, for a given a one-counter process, there is a state of $imitesystem that is bisimilar to it. Decidability
of this problem was proven in [7] and according to [21] it éalls from [1] and [19] that the problem is also
hard forP. We prove that regularity iB-complete and hence give a new upper bound and a simpler lower
bound proof than the one that one obtains by combining [1][28H

This paper is organized as follows. In Section 2 we introchassc notation and define the algorithmic
problems that we are interested in. TP@PACE upper bound for bisimilarity of one-counter processes is
proven in Section 3. However, the proofs of some of the tazditémmas in Section 3 are postponed to
Section 4 and Section 5. Our results on regularity checkirmme-counter proceeses are proven in Section
6.

2 Definitions

Let N denote the set of nonnegative integ€isl, 2, ...}, andZ the set of all integers. For eachj € Z
we defindli, j] ={k € Z | i < k < j}and[j] = [1,]. Given a sefX, by | X | we denote its cardinality.

Transition systems. A (labeled) transition systeis a tripleT = (S, A, {—=| a € A}), whereS is a set
of states A is a set ofactions and—~C S x S is a set ofa-labeledtransitionsfor each actioru € A.

We define—= UaeA —%, and prefer to use the infix notation — s, (resp.s; — s) instead of
(s51,82) €% (resp.(sy, s2) €—). We say thafl" is finiteif S andA are finite; we then define traizeof

T as|T| = [S] + Al + Y ,en |-

Bisimulation equivalence. Let T = (S,A, {-%+| a € A}) be a transition system. A binary relation
R C S x S'is bisimulationif for each(s1, s2) € R the followingbisimulation conditiorholds:

— for eachs) € S and eachu € A, wheres; — s/, there is some’}, € S such thats, %~ s/, and
(s1,s5) € R, and

— for eachs), € S and eachu € A, wheres, —* s}, there is some} € S such thats; -~ s} and
(sh,85) € R.

We say that states ands, arebisimilar, abbreviated by; ~ s5, whenever there exists a bisimulatién
such tha{sy, s2) € R. We observe that bisimilarity is an equivalence relatiorbokiVe note that the union
of bisimulations is a bisimulation and thatis the maximal bisimulation o1§. Bisimilarity is naturally
defined also between states of different transition sys{esnsonsidering their disjoint union).



One-counter automata. A one-counter automaton (OCAg a tupleM = (Q, A, dp, d0), whereQ is a
finite non-empty set afontrol statesA is a finite set of actiongy C @ x{0, 1} xAxQ is afinite set okero
transitions andd~o C @ x{—1,0, 1} x Ax Qis afinite set opositive transitionsWe note that there are no
e-steps inM . Thesizeof a one-counter automaton is defined 88 = |Q| + |A| + |do| + |d>0|- Each one-
counter automato! = (Q, A, dy, d~o) defines the transition systefy; = (Q x N, A, {-%| a € A}),
where(q,n) — (¢, n+1i) if and only if eithern = 0 and(q, 4, a, ¢') € 5o, orn > 0and(q,i,a,q’) € 6.
We will also denote this byqg, n) (abad), (g, n + ¢) and furthermore extend this relationgequences of

a

transitionsin the obvious way. We define—= J,., —-
A one-counter nefs a one-counter automaton, wheéeC i~ (. State(q, m) of Ty, also callecone-
counter processwill be usually written as;(m). Elements of5y U 0~ are calledtransitions Without

formalities we use the natural notions likgathp(m) -~ ¢(n) wheres is asequence of transitions

Decision problems. We are particularly interested in the following two decisjaroblems.

BISIMILARITY OF ONE-COUNTER PROCESSES

INPUT: A one-counter automato/ with two one-counter processgg(mg) andgo(ng) of T,
where bothny andn are given in binary.

QUESTION: po(mo) ~ qo(n0)?

We say that @ne-counter procesgn) is ~-regular (orfinite up to bisimilarity if there is a finite transition
system with some statesuch thag(n) ~ s.

~REGULARITY OF ONE-COUNTER PROCESSES

INPUT: A one-counter automatal/ and a one-counter processmg) of Ty, wherem, is given
in binary.

QUESTION: Ispg(mg) ~-regular?

Stratified bisimilarity and finite transition systems Given a transition systefi = (S, A, {-%| a €
A}), on S we define the family of-equivalences;, € N, ~y 2~ D~5 2D --- as follows. We putvg=
S x S, and we have; ~;.; s, if the following two conditions hold:

— foreachs| € S, a € A, wheres; — s/, there is some), € S such thats, —~ s, ands/, ~; s} ;
— foreachs), € S, a € A, wheres, — s}, there is some) € S such thats; —*~ s} ands ~; s} .

The following proposition is an instance of the result foame finite systems [13].
Proposition 1. On states of ,; we have~ = (.-, ~i-

Standard partition arguments imply the following propiosif10, 16].

Proposition 2. Given a finite transition systefil = (Q, A, {->| a € A}), wherek = |Q|, we have
~_1 =~ =~ 0nQ. Moreover, (the partition of) corresponding to}» can be computed in polynomial
time.

3 A PSPACE upper bound for bisimilarity

In this section we prove that bisimilarity of one-counteogasses is ifSPACE. If the context does not
indicate otherwise, in what follows we (often implicitlyssume a fixed one-counter automatih =
(Q, A, do,0>0), usingk for |Q].

We proceed in five steps.

In Section 3.1 we show that when comparing a one-counteegse®(m ) with states of theinderlying
finite transition systerof M (where the control states aff are the states and we haye"> ¢ if in M



there is am-labeled positive transition from to ¢’), one can already gain some information concerning
bisimilarity. In particular, inspired by [7], we prove th#tere is a polynomial-time computable set of
incomparable processdblat are useful to proving that certain pairs of processesaely bisimilaror
surely non-bisimilarA necessary condition for two processes to be bisimilduat their minimal distances
to any incomparable process are the same.

In Section 3.2 we prove that for each proceés), wheren is sufficently large, already the residue
class modulo an exponentially large number determinegrij can reach some incomparable process.
Moreover, if the minimal distance frog(n) to an incomparable process is finite, then we prove that this
distance can be expressedrasn + 3, wherea and( are rationals which can take only few values.

We call the pairs of one-counter processes that are neitltetysbisimilar nor surely non-bisimilar
candidatesWe prove in Section 3.3 that candidates lie either in a simi¢ithl area or in few thin belts.

In Section 3.4 we view the (bisimulation) relations betwee-counter processes from a different
angle by regardingolorings which are simply mappings fro® x @ x N x N — {o, e}. We call such
a coloring locally consistent, if it does not violate theitmiglation condition with respect to the transition
systemT’y;. Hence, there is a natural one-to-one correspondence &etaeally consistent colorings and
bisimulations. Then we prove a characterization of bignitiy of one-counter processes: Two one-counter
processep(m) andq(n) are bisimilar if and only if there is a coloring that mapgp, ¢, m,n) to e and
that is locally consistent only in some exponentially sizatiset of) x @ x N x N.

We implement the characterization of bisimilarity givendaction 3.4 in Section 3.5: We guess such
a suitable coloring and check local consistency. Howeveraige implementation would only yield a
NEXPTIME upper bound. For proving implementability REPACE, we employ the result obtained in
Section 3.3, namely that the actual guessing only needs tipbe for candidate pairs: they in a small
initial area or in in few thin belts.

The proofs of some lemmas of this section are postponedaiodattions. We will prove precise bounds
and give explicit polynomials. Therefore, we decided tb & constants:; < c2 < ¢3 < ¢4 < ¢35 that
appear in the rest of the paper below:

3.1 The underlying finite transition systemF,; and the set INC

We start by observing that if the counter value is large, thebehaves, for a long time, like a (nondeter-
ministic) finite transition system; this is expressed byftilwing proposition. ByF',; we denote thénite
transition system underlyiny/; we putFy; = (Q, A, {-%| a € A}), where-%>= {(¢q1,¢2) € Q x Q |

i : (q,1,a,¢") € ds0}. (F thus behaves as if the counter is positive, ignoring the mwhanges.) In
what follows,p, ¢, € @Q are viewed as control states bf or as states of’;, depending on context.

Proposition 3. p(m) ~.,, p. (Herep(m) is a state ofy;, whilep is a state ofF};.)
This implies, e.g., thatip £ ¢ (i.e.,p %k q) andm,n > k, thenp(m) . q(n) (and thusp(m) « g(n)).

If p ~ g then we can have(m) ¢ ¢(n), due to the possibility of reaching zero. For making this enor
precise, we define the following set (as in [7]).

INC = {r(¢) | ¥g € Q: 1(£) 1}

The configurations in INC aremcompatible withF'; in the sense that they are not bisimilar uptmoves
with any state off’,;. The next proposition is straighforward.

Proposition 4. If r(¢) € INC then? < k. Moreover, INC can be constructed in polynomial time.



Letp(m) andg(n) be processes. Let us define thistancebetweerp(m) andq(n) as distp(m), ¢(n)) =
min{: > 0 | p(m) —" ¢(n)}. It is obvious that ifp(m), ¢(n) are bisimilar then they must agree on the
distance to INC; this is formalized by the next lemma. We defin

dist(p(m)) = min{dist(p(m),r(1)) | »(I) € INC}

as the length of the shortest distance to some process inNldte. that we put digp(m)) = w if INC is
unreachable fromp(m), denoteth(m) 4—* INC.

Lemma 5. If p(m) ~ ¢(n) then distp(m)) = dist(¢(n)).
The next lemma clarifies the opposite direction in the casefimite distances.

Lemma 6. If dist(p(m)) = w thenp(m) ~ r for somer € Q. Thus if distp(m)) = dist(¢(n)) = w then
p(m) ~ q(n) if and only if there is some € @ such thaip(m) ~i 7 ~i q(n).

Proof. Firstly, we prove that the relation

R = {(q1(n1),q2(n2)) | q1(n1) ~k q1(n2),dist(qi(n1)) = dist(g2(n2)) = w}

is a bisimulation. For this, letg; (1), g2(n2)) € R and assume;(n;) —— q}(n}) for somea € A.
Since in particular; (n1) ¢ INC there is some € @ such thatg; (n;) ~j r. Furthermore there is
somer’ € @ and somey,(nb) such thatys(ne) —= ¢4 (n9) satisfyingq, (n}) ~k_1 ' ~p_1 gh(nh).It
follows ¢ (n}) ~ ' ~k g5 (nh) by Proposition 2. Thuég; (n}), ¢5(n5)) € R as desired. The case when
q2(n2) — g4 (n}) for somea € A can be proven analogously.

Secondlly, sinc&R is a bisimulation and digp(m)) = dist(¢(n)) = w we can deduce

p(m)~q(n) & (p(m),q(n)) € R & p(m)~rqn) < TreQ:pm)~pr~yqn).

O

In Subsection 3.2 we look in more detail at the functis:(p(m)), which provides a useful constraint
on bisimilar pairs. But before that, we partition the @8tx N) x (Q x N) into three categories. We say

that a pair(p(m), ¢(n)) is

— surely-positivef p(m) ~ g(n) anddist(p(m)) = dist(¢(n)) = w
(and thus surely(m) ~ ¢(n) by Lemma 6),

— surely-negativéf p(m) £ q(n) ordist(p(m)) # dist(q(n))
(and thus surely(m) £ g(n)),

— candidateotherwise, i.e., ib(m) ~j g(n) anddist(p(m)) = dist(q(n)) < w.

In the following, let IRE = SUREPOSU SURENEG denote the union of all surely positive pairs &=Pos
and all surely negative pairsU8ENEG. By CAND we denote the set of candidates. Without risk of con-
fusion, we will treat pairs of processés(m), ¢(n)) as the four-tuplép, ¢, m,n) € @ x Q@ x N x N and
vice versa.

Lemma 7. Membership irSUREPOS and SURENEG is decidable in polynomial time. Moreover, for each
(p,q, m,n) € SURE membership irBUREPOS is determined already by, ¢ and the residue classes of
and ofn. modulo LCMk], providedm, n > c3kS.

Proof. The lemma follows immediately from Lemma 8 and from the faet imembership in-;, obviously
decidable in polynomial time. O



3.2 Ondistances to INC

The goal of this this section is to extract more informatiooni states that have the same distance to

INC. We prove that for states(m), wherem is sufficiently but polynomially large, digi(m)) Luis
determined already by the residue classrofnodulo some exponentially big number gmdMoreover,
we have that digp(m)) < w implies that distp(m)) is precisely«; - m + g; for rationalse; and j3;,
whose denominatoris ifil, . . ., k} and that moreover only depend on the siaéend onm’s residue class
1 modulo some exponentially bounded number.

Before me make this statement more precise, let us introsluoe more notation. Let LCM] be the
least common multiple of the numbers . ., k. Nair proved in [15] thae* < LCM[k] < 4% in casek > 9.
A ratio is a fractiona = ¢, wherel < a <b < k.

Lemma 8. For everyqg € @ and every0 < ¢ < LCM[k] there exists some ratie = a(g, ) and some
offsetd = B(q,i) € Qwith |3| < c3k* such that for every, > c3k5 withn = i mod LCMk] the following
two statements hold:

(1) The residue classdetermines if digt(n)) = w.
(2) Ifdist(g(n)) < w, thendistg(n)) = a-n + .

Moreover distq(n)) is computable in polynomial time (even) wheis given in binary.

Section 4 is devoted to proving Lemma 8.

3.3 Candidates lie in some small initial square and then in f@ thin belts

An areais a setB C N x N of points. ByB = N x N\ B we denote theeomplemenbf B. Let
Bs, = {(z,y) € B|x,y > z} foreachz € N.

For each pointz,y) € Nx N, letcubéz,y) = {(2/,y') e NxN: [z —2'| <1land|y—vy'| <1}. We
define cubéB) = {cubdx,y) | (z,y) € B}. Two areas3;, B, are calledndependerif cube(B;)N By =
() (or equivalentlyB; N cubg Bs) = ()). Observe that in particular independent areas are dtsjoin

A slopeis a rational: € Q such tha, = ¢ for somea, b € [k?]. Letcy = 4cs. For each slopg let
B(u) be thebeltcorresponding te: be the following area:

B(p) = {(z,9) e NxXN|p-z—csk® <y<p-ax+ sk}

Note that there are at makt slopes/belts.

Let B = |J, B(n) denotebelt areg i.e. the union of all areas covered by belts. The followiagina
states that candidates lie in some initial polynomialkesisquare or in the belt area. A visualization of the
following lemma is given by Figure 1. Let us defing= 4c4.

Lemma9. CAND C Q x Q x ([e5k'°]?2 U B).
Proof. The lemma follows from the following two statements:

(1) Ifdist(p(z)) = dist(q(y)) < w andz,y > c4k®, then(z,y) € B(u) for somey.
(2) Assume digip(x)) = dist(¢(y)) and either (i)0 < = < ¢4k® andy > 5k or (i) 2 > ¢;k'Y and
0 <y < c4k8. Thendistp(x)) = dist(p(y)) = w.

For point (1) let us fixp, ¢ € Q andx,y > ¢4k such that digip(z)) = dist(q(y)) < w. Leti (resp.j) be
be residue class of (resp.y) modulo LCMk]. By Lemma 8 there are ratieg(p, i) anda(q, j) and offsets

B(p, i) andB(q, ) with |3(p. i)[,13(g, j)| < c3 - k* such that
dist(p(z)) = a(p,i) - x + B(p,i) ~ and  distg(y)) = alq,j) -y + B(q.J)
Since distp(z)) = dist(¢(y)) we have

Oé(p,i) i +ﬂ(pvl) — ﬂ(qv.])
(g, j)




which impliesy = x- 2+ d, where wherg, = % andd = % Moreover we havél| < ck*.
Thus(z,y) € B(u).

For point (2) we prove the implication only for assumption {ihe case for assumption (ii) can be
proven analogously. Let assurfie< x < ¢4k® andy > c;k19. Assume by contradiction digt(z)) =
dist(¢(y)) < w. Onthe one hand, it follows from Lemma 8

dist(p(z)) < k-x+csk? < k4 esk* < 204k,

On the other hand, sinae> c5k'° > c3kS we have by Lemma 8

cy—eskt > ek —eskt = dek® — skt > 2e4k°.

> =

dist(q(y)) >

Thus distp(z)) < dist(q(y

~—

), a contradiction. O

The following lemma states that different belts are indefeen once we are outside some polynomially
large initial area.

Lemma 10. B(p)s ¢ ks andB(p')~..xs are independent provided # 1.
Proof. It suffices to prove that for all slopes v’ with 1/ # 1 and allz > c5k® we have

W>p = perxdekt+l < poz—ck*—1 and
Wo<p = poxdeakttl < opox—cekt—1

We only treat the casg’ > u, the case/’ < u can be proven analogously. Observe tﬁatg i — . The
desired inequality follows by deducing fromk® < x the following:

Cs ;4()4

sk < (W —p)-x = u-x+c§5k4<u'-x—%5k:4 pordekt 1<y x— ekt —1

O

3.4 Interpretation of ~ in terms of colorings

A coloringis a mappingy : @ x @ x N x N — {e, o}. Note that each coloring gives rise to a binary
relation on the one-counter processes generated bgonversely each binary relation on the set of one-
counter processes gives rise to a coloring. We definbigimulation coloringy »; that corresponds to the
bisimilarity relation~ of M as expected:

i N
xm(p g, x,y) = {' it p(z) ~ q(y) foreachp,q € Q andz,y € N

o otherwise

Let y be a coloring. We call the tupl@, ¢, z,y) € Q x @ x N x N is locally consistentvhenever
x(p, q, z,y) = o implies the bisimulation conditions, i.e.

(1) If p(x) = p/(a’) for somep’(2'), theng(y) — ¢'(y’) for someq/ (y') with x(p', ¢, 2’ , ') = e.
(2) If q(y) = ¢'(y') for someq'(y'), thenp(z) — p/(a) for somep’ (z') with x (p', ¢, 2',y/') = e.

We call x locally consistentf yx locally consistent for every element ¢f x @@ x N x N. Note that
p(z) ~ q(y) if and only if there is some locally consistent colorigguch thaty(p, ¢, z,y) = e. The next
lemma establishes a characterization of bisimilarity of-cpunter processes in terms of colorings. In a
nutshell, it says for proving bisimilarity of two one-coenprocesses(x) andq(y) it is sufficient to look
at a coloringy that agrees with¢,; on the sure pairs, that satisfigép, ¢, z,y) = e, and that is locally
consistent only in an exponentially-sized area.
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Fig. 1. Candidates lie in some initial square and then in indeperikets

Lemma 11 (Characterization of bisimilarity). We havepg(zo) ~ qo(yo) if and only if there is some
coloring x such that

(1) x agrees withy,, on SURE,
(2) each elementad x Q x [0, £2)? is locally consistent, and

(3) X(p()a qdo, o, y()) =e.
where2 = zg + 2csk'0 4 2¢5° . (LCM[k2])2.

Lemma 11 can be seen as the core of the correctness proof gbburomial space procedure that we
provide in the next section. Lemma 11 is proven in Section 5.

3.5 The polynomial space procedure
Theorem 12. Bisimilarity of one-counter processesHS PACE-complete.

Proof. The PSPACE lower bound for this problem was proven by Srba in [21].

For thePSPACE upper bound, let us fix some one-counter automatba- (Q, A, dg, d>0) With k =
|Q| and two one-counter processgg$xo) andgo(yo) of Ths. We now use the characterizationgfzo) ~
(o) given by Lemma 11. Le® = zq + 2¢5k10 + 2°5*° . (LCM[£2])? be the natural from Lemma 11.
We demonstrate that we can check the existence of somermplpithat satisfies conditions (1), (2) and
(3) of Lemma 11 in polynomial space. Note that point (1), ¢leecking if y agrees withy,, on the set
SURE of sure pairs can be solved even in polynomial time by Lemmiae7us explain how to decide in
polynomial space if point (2) holds, i.e.yfis locally consistent on al) x Q) x £22. Sincey’s coloring on
SURE is decidable in polynomial time, it suffices to guass coloring CAND insideQ x @ x [0, 2+ 1]%.
Note that we cannot guess simply allgé colors insid€0, {2 + 1]? at once, since there are exponentially
many such colors to be guessed. This would lead MEXPTIME upper bound only. Instead, we guess
these colors on-the-fly. For this, it will be useful to vievetbet CAND of all candidate pairs as the union

CAND = CANDyUCAND; UCAND2oU:---



where CAND contains thecandidate pairs at vertical level i.e. the pairsp(z), ¢(y)) € CAND with
x = i. By Lemma 9 we know that CANDC @ x @ x ([0, c5k'°]? U B). SinceB was the union of all
belt areas and since there are at migsbelts of thicknesQcsk* + 1 each, we obtain that CANDis
polynomially bounded for each> 0.

Foreachsef C @ x Q x N x N, define cub&’) = {(p'(2'), ¢’ (v/)) | I(p(x),q(y)) € C: («',y') €
cubdz, y)} to be the neighbors af' that can influence the bisimilarity condition of membergofOur
nondeterministic algorithm is depicted in algorithm eoviment 1.

Algorithm 1 Checking ifpo(zo) ~ qo(y0) via some locally consistent coloring insidex Q x [0, £2]?
1: forall i = 1uptof2do

2 Guessy’s colors on CAND_1,CAND; and CAND; if not already guessed

3:  Check local consistency for eagh g, z,y) € cubg CAND;) with z = 1.

4:  Forgety’s colors on CAND_1 but notx(po, qo, zo, yo) if inside.

5

6

: end for
> return x(po, go, T0,yo) = e.

Itis clear that we can implement Algorithm 1 in polynomiaasp. a

4  Proof of Lemma 8

LetI"=@Q x {—1,0,1} x A x Q be the set of all possible transitions of our one-countesraaton)\/ .
Let s,¢ and be states iff’y;. A path inT,; from s to t is a finite sequence of transitions= ~; - - -y
such thatyy(ng) == qi(q1) -+ =5 q(m) with go(ng) = s andg;(n;) = t. By |o| = [ we denote the
lengthof o. We callo minimal if the length of every path from to ¢ is at leasto|. We also denote this
by dist(s,t) = |o|. We callo positiveif n; > 0 for eachi € [0,!] andzerootherwise. A pathr is called
elementary cyclé it induces an elementary cycle in the control state(geBuch a cycle has length at most
|Q|, and its effect on the counter value is non-zero and thys-i@)|, —|Q| + 1, ...,|Q|}

We note that the following Lemma from [24] was proven in thatext of deterministicone-counter
automata (witte-steps) but the lemma obviously applies to our nondetestioiase as well (since we can
view the transitions themselves as the actions). Lemma 24hdan directly expressed in our setting as
follows.

Lemma 13 (Lemma 2 in [24]).If there is a positive path from(m) to ¢(n) andm—n > k? andn > k2

then there is such a shortest patfn) -7+ ¢(n) such thatr = 0,003 where|o,03| < k% ando, is an
elementary decreasing cycle with,| < k.

From the previous lemma and a simple pigeonhole argumerdawprove the following lemma. We define
Cc1 = 4,

Lemma 14. If there is a path fronp(m) to ¢(n) andn < k, then there is such a shortest patfm) 7
q(n) such thatr = o, (02)'o3, where|oy 03| < ¢1k* and wherer, is an elementary decreasing cycle (if
[ >0)and|os| < k.

Proof. Before we prove the lemma, we will prove the following claim.

Claim: For everyp’(m’) with m’ < 2k? andp’(m’) —* ¢(n) every minimal pathr from p’(m/) to ¢(n)
does not visit any process of counter value strictly largan8k?; hence in particulapr| < 3k3.

Proof of Claim: Fix some minimal pathr = ¢ (n;) —= ga2(n2) -+ —% q¢(n;) from p/(m’) to q(n).
Assume by contradiction some proceséz;) wheren; > 3k? is maximal among all counter values.
For eachh € [m/, n;], define

f(h)=max{i <j|n;=h} and  g(h) =min{i > j|n; = h}.



Since, by assumption; — m’ > 3k?* — 2k? = k?, there are, p» € Q andm’ < h < h/ < n; such that
f(h) = f(h') = p1andg(h’) = g(h) = p2 by the pigeonhole principle. Let= h’ — h > 0. Now we can
modify the pathr replacing the subpath frorfi(h) to g(h) by the subpath fronf (h') to g(h'), where all
heights are lowered hy. But the resulting path contradicts minimality of

This concludes the proof of the claim.

Recall thate; = 4. To prove the lemma, we distinguish two cases,:

— m < 2k?: Then we can apply the above claim and we are done.

— m > 2k?: Let us fix some shortest path from p(m) to ¢(n). Hence there is some intermediate
proceesg’ (k?) onn such thatr's (positive) subpath from(m) to p’(k?) can be replaced by a shortest
positive pathp(m) — p’(k?) corresponding to the form of Lemma 13. This mearis of the form
7 = 71(r2)lm3 , where|r 73| < k? andr, is an elementary decreasing cycle with| < k. By the
above claim, the length of's subpath fromp’(k2) to q(n), let us call this subpath’, has length at
most3k3. We puto; = 71, 02 = 7 andoz = 737’. The patho = 01003 is hence a shortest path
from p(m) to ¢(n) with |o103| < k? + 3k% < ¢, k3 and thus the lemma follows.

0

We define the constant = 7¢;.

Lemma 15. For everyq € Q, every0 < i < LCM[k] and everyp(m) with m < k there exists some ratio
a = alq,i,p(m)) and some offset = 3(q,, p(m)) € Q with |3] < cok* such that for every, > cok°
with n = i mod LCMk?] the following two statements hold:

(1) The residue classdetermines if digt(n), p(m)) = w
(2) If g(n) —* p(m), then distg(n),p(m)) = a-n+ 3.

Proof. Let us fix somen;, na > c2kS with ny = ny = i mod LCM[k]. We assume that; < ny and let
D = ny — ny, which is a multiple of LCME].

Let us first prove point (1). We prove thgtn,) —* p(m) impliesq(n,) —* p(m) (the converse
direction can be proven analogously). So let us assyfng) —* p(m). Hence there is a path =
o1(o9) o3 with ¢(n2) -2 p(m) that satisfies the conditions of Lemma 14. Observelthat) and since
|oa| < k we have thato, | divides LCMk]. Moreover sincen + |o103] < k+ c1k3 < c2kS it follows that
there exists somi < [ such thatr; o} o3 is a path fromy(ny ) to p(m). Thusg(ny) —* p(m).

Let us prove point (2). Let us assumer; ) —™ p(m) andg(nz) —* p(m). Then there is a minimal
pathr; (resp.r2) fromg(nq) to p(m) (resp. fromg(n2) to p(m)) that satisfies the conditions of Lemma 14.
Let~; (resp-y2) denote the elementary decreasing cycledfesp.m), letd; (resp.d,) denote its counter
effect (which is a negative integer frofa-%, ..., —1}).

We will first prove that disty(n2), p(m)) = dist(q(n1),p(m)) + « - D, where« is some ratio that is
determined by, i, andp(m). Define the ratiay; = ‘Z—jl for eachj € {1, 2}. We have the following claim,
whose proof we postpone to the end of the lemma.

Claim: a; = as.

So leta = a3 = as. Let us prove disy(ns),p(m)) = dist(q(n1),p(m)) + « - D. Assume first by
contradiction that digty(n2), p(m)) < dist(g(n1),p(m)) + « - D. In analogy to the proof of point (1)
one can prove that by traversing the elementary decreagitig ¢, in 7 fewer times one can construct
a path fromg(n,) to p(m) of length smaller thanr |, hence contradicting minimality of;. The case
dist(q(n2),p(m)) > dist(¢(n1), p(m)) + « - D can be dealt with analogously.

To finally prove the lemma it remains to prove an upper bounthi®absolute value ¢f, wheres € Q
is the rational that satisfies digtn1), p(m)) = a - n; + 3. Assumer; is of the forma~} 1. Recall thaty,
is the elementary decreasing cyclerpfLet H be the counter gain/loss ef). Since|oy| < ¢ k% we have
—c1k3 < H < ¢1k®. Then it follows

ny —m

distig(m).p(m) = "Il +lov] = acm—a(n+ H) +loy).
B
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Sincel < a < k andcs = 6¢; it follows (generously)
- Cgk/’4 S —301k4 S ﬁ S 301/€4 S 02k4. (1)

Proof of the above claimWithout loss of generality let us assume > «». Let 7{ be the path from
q(n1) to p(m) that is obtained fromy, by traversing its elementary decreasing cygl@ppropriately often
(i.e. fewer). We prove thdt{| < ||, hence contradicting minimality af,. We derive the contradiction
|71| — |71] > 0 as follows:

7| =] > a1-nmi—fB—az-ni—f
eq(1) 4
> (a1 —ag) -ny — 61k
1
Z ﬁ Ny 7661]64
1
> ﬁ 'Cgk67661k4
> 0

We define the constant = 2¢». We conclude this section with the proof of Lemma 8.

Proof of Lemma 8

Point (1) of Lemma 8 follows immediately from > ¢, and from point (1) of Lemma 15.

For point (2) let us fix some > c3k® such that, = i mod LCM[k]. Let py(m1),...,pi(m;) be an
enumeration of the s€p(m) € INC | ¢(n) —* p(m)} (which is uniquely determined by and: by
point (1)). Note thatn; < k by Proposition 4 for eacl Let us fix ratiosy, . . ., oy and offsetssy, ..., G
with |3;] < cok? for eachl < j < I corresponding to Lemma 15.

Definea = min{e; | 1 < j < {} and letf = min{F; | a; = a,1 < j < [}. We prove that
dist(g(n)) = a - n + B. Since|B;| < cok* for eachj by Lemma 15 it suffices to prove that n + cak* <
o’ -n — cok* for each ratim’ > a. The latter holds since;k® < n implies

esk? < % = @k'<(d—a)n = 20k <d n—a-n =a ntek!<d -n-—ck

Let us now prove argue that digfn)) is computable in polynomial time. There are at mosmany
members in INC, each of which has counter value strictly thas & by Proposition 4. We can restrict
ourselves to searching for minimal paths of the farm= o, (02)!o3 in the spirit of Lemma 14. Since
there are potentially at mo8&t; k* many one-counter processes whereends and at mostc; k* many
processes wherg; starts, we can try all possible combinations of these andf they can be connected by
repeatedly executing some decreasing elementary eydthat we only need to test polynomially many
combinations of). a

5 Proof of Lemma 11

Proof. We prove the lemma by showing th&there is a coloring that satisfies points (1), (2) and (3), i.e.

(1) x agrees withyy, on URE,
(2) each elementad x Q x [0, £2]? is locally consistent, and
(3) x(po, 0,0, yo) = .

thenthere exists a coloring’ that is locally consistent and moreovet(po, go, x0,y0) = e (and thus
p(z) ~ p(y)). Recall that

2 = o+ 2e5k"0 4 2K . (LCM[E2))2.
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So let us fix a coloring that satisfies points (1),(2) and (3).

We sety’ to agree withy; on QURE. It remains to defing’ on members of CAND. We will give the
coloring of ' for each candidatép, ¢, x,y) € CAND dependent on the belt in whidh;, y) lies. More
precisely, we are in particular interested in candidgtes, =, y) € CAND with x > 2¢5k'0 + . For the
latter candidates it follows (even wheg = 0) that(z,y) € B by Lemma 9. Moreover it followg > c5k®
due to

T % cx— ekt > 205k:8 — ekt > C5k8.
Hence for eactltp, ¢, z,y) € CAND with 2 > 2¢5k'° we have thatz, y) lies in precisely one belB(1).

Let us fix one beli3(u) with slopeyu. We aim to prove that the colors gfwill repeat periodically in
the beltB(u) as depicted in Figure 2. To prove this, we look at certainig@rpositionsr > 2c5k19 + z
with z = 0 mod LCM[%?]? that we callcuts Since the denominator of each slope is some number from
{1,...,k%} it follows thatuz = 0 mod LCM[k] for each cutz. If x is a cut, note that the elements inside
the beltB(u) with vertical valuer are precisely the pailgz, ux + d) | d € [—cik*, c4k*]}.

Define thecut squarg(as depicted in Figure 2) to be the mapping

St Q% Q x [—eak?, eak’] — {0, 0} with  S,(p,q.d) = x(p,q, 2, px + d)

for each cutr. Note that there are at mogf™ (2csk*+1) < 9esk® _ 1 many different cut squares. Hence
betweer2es k10 + zy and2esk'0 + 2o + 2¢5+° . LCM[k?)2 = 2 there two distinct cuts:; < x5 with
Sz, = Sz, by the pigeonhole principle. This siutation is depictedigufe 2. Letl” = x5 — 1.

Recall that on members ofi&E the mappingy’ is defined the same way &g, (or x). We will define
that on candidate®, ¢, z,y) € CAND with (x,y) € B(u), the coloringy’ differs fromy only (if at all)
in caser > x2. Note that for each candidatés q, =, y) insideB(u) with > x5 we can exprese, y) as
(1 +iT + s, u(x1 +i7") + t) for some unique vectds, t) € N x N providedi > 1 is maximal. We then
definex’(p, ¢, z,vy) asx(p, q,x1 + s, px1 + t).

Sincex = x; + s mod LCM[k] andy = ux; + t mod LCM[k] andz, y > c3kS, we have that

(p,q,x,y) is locally consistent ifand only if  (p,q,2z1 + s, px1 + t) is locally consistent

by Lemma 7. Thusy’ is locally consistent ang’ (po, qo, %o, ¥o) = Xx(Po, 90, Zo, Yo) = e.

Y

N

(qr>qr) \=

(q%, q2)

q,q)

oy

Fig. 2. The cut squareS,, andsS,, are the same.
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6 ~-Regularity

We can easily derive the next lemma, which tells us ffat) is not~-regular iff it allows to reach states
with arbitrarily large finite distances to INC.

Lemma 16. Givenp(m) for a one counter automatal, p(m) is not~-regular iff for anyd € N there is
q(n) such thaipp(m) —* q(n) andd < dist(q(n)) < w.

The next proposition gives a more convenient charactésizat

Proposition 17. p(m) is not~-regular iff p(m) —* g(m + 2k) whereg(m + 2k) —* INC. (Recall that
k = |Q| for the set of control states of\/.)

Proof. ‘Only if’ is obvious.

On any pattp(m) % g(m + 2k) 2% INC we have to cross the levéh + k) when going up as well

as when going down to INC (recall that< k for anyr(¢) € INC). The elementary cycles, which must

necessary appear when going up and down, can be suitablygoltmghow the condition in Lemma 16.
O

Lemma 18. Deciding~-regularity of one-counter processes isAii IME.

Proof. We check the condition from Proposition 17. Givefm), we can compute alj(m + 2k) which
have finite distances to INC by a polynomial algorithm by Lem& Whenm = 0, the reachability
of a suitableg(2k) (¢(2k) —* INC) can be checked straightforwardly.sf > 0 then a shortest path
p(m) -2+ q(m + 2k) either does not go through zero, i.e. through af{y), in which case it does not
need to cross the levet — k2 (as can be verified by standard arguments, it is similar asdrckaim in
the proof of the Lemma 14), or it does reach sasf(®). Suchp’(0) is surely not~-regular either (since
p'(0) —* q(m + 2k) —* INC), and the previous case = 0 can be used. Because reachability )
from p(m) can be decided in polynomial time by Lemma 8 we are done. a

Lemma 19. Deciding~-regularity (even) of one-counter netsH§ IME-hard.

Proof. We use a reduction from bisimilarity on finite transition tgas which isPTIME-complete [1].
Given a finite transition systerf@Q, A, { ——}.ca), andf, g € Q, it is easy to construct a one counter net
which has the following behaviour: iy (m), m > 0, it has transitions, (m) —— so(m + 1), so(m) ——
so(m — 1), so(m) —= f(m), so(m) —= g(m). In so(0) we only haves,(0) — so(1) andso(0) —
£(0). Any statef(n) just mimicksf (not changing the counter); similarly(n) mimicks g. It is easy to
verify thatso(n) is regulariff f ~ g. O

Theorem 20. Deciding~-regularity of one-counter processesHg IME-complete.
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