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What is game theory?

• Important branch of applied mathematics / economics

• Eight game theorists have won the Nobel prize,                         
most notably John Nash (subject of “Beautiful mind” movie)

• Relevant to many other fields (biology, computer science, ...)

• Studies the behaviour of agents in strategic situations

• Uses games as mathematical model of these strategic situations

• Proposes ways of analyzing games to identify what choices rational 
agents will make

• Many different types of games have been proposed and studied

• we consider simplest type: strategic (aka normal form) games
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Formal definition of a strategic game
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An strategic game consists of:

• a finite set P = {1, . . . , n} of players

• for each player i, a set Ai of possible actions

– A = A1 × . . .×An is the set of action profiles,
also called outcomes

• for each player i, a utility function ui : A→ R, expressing
the preferences of the player for the possible outcomes of
the game

– players aim to maximize their utility
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Two player games: matrix form

When there are only two players, we can represent strategic
games using matrices.

C D E

A

B

u1, u2

Each row represents
an action for Player 1

Each column represents
an action for Player 2Utility values for

action profile (A,C)
u1: player 1
u2:  player 2

4
Thursday, May 20, 2010



Rock-paper-scissors

Rock Paper Scissors

Rock

Paper

Scissors

0 , 0 1 , -1 -1 , 1

1 , -1 0 , 0 1 , -1

-1 , 1 1 , -1 0 , 0

Rock beats scissors, scissors beats paper, paper beats rock

Example of a zero-sum game: players utilities sum to zero.

5
Thursday, May 20, 2010



Prisonerʼs dilemma

Two suspects in a major crime are held and interrogated separately.

• If both confess, they get 3 years of prison each.

• If only one confesses, the confessor goes free and the other
is sentenced to 4 years of prison.

• If neither confesses, both get 1 year of prison.

confess donʼt confess

confess

donʼt confess

-3 , -3 0 , -4

-4 , 0 -1 , -1

6
Thursday, May 20, 2010



Stag hunt
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Two people are out hunting. If an individual hunts a stag, she must 
have the cooperation of her partner in order to succeed. Either 
hunter can get a hare by herself, but a hare is worth less 
than a stag.

stag hare

stag

hare

4 , 4 0 , 3

3 , 0 3 , 3
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Bach or Stravinsky

Two people wish to go together to see a classical music concert 
of either Bach or Stravinsky. They have different preferences 
regarding which concert to attend: the first would prefer to see 
Bach, while the second prefers Stravinsky.

Bach Stravinsky

Bach

Stravinsky

2 , 1 0 , 0

0 , 0 1 , 2
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Coordination game 

Right Left

Right

Left

0 , 0 -50 , -50

-50 ,-50 0 , 0

Assume that two drivers meet on a narrow dirt road. Both have to 
swerve in order to avoid a head-on collision. If both swerve to 
different sides they will pass each other, but if they choose the 
same side they will collide.
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Matching pennies
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Both players have the same possible actions: Heads and Tails.
If both players select the same action, then Player 1 wins, 
else Player 2 wins.

Heads Tails

Heads

Tails

1 , -1 -1 , 1

-1 , 1 1 , -1
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Analyzing games
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We now introduce different notions which will help us to 
formalize what it means for an action to be a good choice
for a player, or for an action profile to be “stable”.

Pareto-optimality: cannot be uniformly improved

Dominant strategies: best choice for a player

Dominated strategies: strategies to be avoided

Nash equilibrium: players have no regrets about their choices
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Some notation and terminology
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For the moment, we consider only pure strategies, which means
Si = Ai and S = A.

We will first consider pure strategies, in which each player
selects a single action to play, and later we will introduce
mixed strategies, in which actions are selected probabilistically.

• Si is the strategy set of player i

• S = S1 × . . .× Sn is the set of strategy profiles

• S−i is the set of strategy profiles for P \ {i}

• if s is a strategy profile, si ∈ Si is the strategy in s
assigned to player i, and s−i ∈ S−i is the strategy
profile for the other players

• (s�, s−i) is a shorthand for (s1, . . . , si−1, s�, si+1, . . . , sn)
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Pareto-optimality
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A strategy profile s is Pareto-optimal a strategy if there does not
exist another strategy profile s� such that s� Pareto-dominates s.

Note that every game must have at least one Pareto-optimal
strategy profile, but some games may have more than one.

In zero-sum games, all outcomes are Pareto-optimal.

A strategy profile s Pareto-dominates a strategy profile s� if
for all i ∈ P , ui(s) ≥ ui(s�), and there exists some j ∈ P
such that uj(s) > uj(s�).
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Examples of Pareto-optimality
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confess donʼt confess

confess

donʼt confess

-3 , -3 0 , -4
-4 , 0 -1 , -1

Pareto-optimal outcomes in yellow.

Prisonerʼs Dilemma:

stag hare

stag

hare

4 , 4 0 , 3
3 , 0 3 , 3

Stag Hunt:
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Dominant strategies
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ui(s∗, s−i) ≥ ui(s�, s−i)

If s∗ dominates every other strategy in Si, then s∗ is
said to be a dominant strategy for player i.

dominant strategy = unique best choice

ui(s∗, s−i) > ui(s�, s−i)

For a player i, a strategy s∗ ∈ Si strictly dominates s� ∈ Si

if for all s−i ∈ S−i we have

A strategy s∗ ∈ Si weakly dominates a strategy s� ∈ Si

if for all s−i ∈ S−i we have

and for some s−i ∈ Si, we have ui(s∗, s−i) > ui(s�, s−i).
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Example: Dominant strategies
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confess donʼt confess

confess

donʼt confess

-3 , -3 0 , -4
-4 , 0 -1 , -1

Dominant strategy solutions in yellow.

Prisonerʼs Dilemma:

stag hare

stag

hare

4 , 4 0 , 3
3 , 0 3 , 3

Stag Hunt:

Confess is a dominant strategy
for both players, and gives a 
dominant strategy solution.

There are no dominant strategies 
in the Stag Hunt game.
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Dominated strategies
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Strictly dominated strategies are “bad moves”: no reason for a
rational player to use such strategies.

Note that strictly dominated strategies can exist even if there is no
dominant strategy.

Iterated elimination of strictly dominated strategies (IESDS) is a 
procedure by which we remove strictly dominated strategies from 
a game until no such strategies remain.

It allows us to simplify a game, and sometimes identify a solution.

A strategy s is said to be strictly dominated if there is another
strategy which strictly dominates it.
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Example of IESDS
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E F

A

B

C

D

5 , 2 4 , 3

3 , 6 3 , 2 

2 , 1 4 , 1

4 , 3 5 , 4

Are any of player 1ʼs strategies
strictly dominated ?
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Example of IESDS
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E F

A

B

C

D

5 , 2 4 , 3

3 , 6 3 , 2 

2 , 1 4 , 1

4 , 3 5 , 4

Strategies B and C are strictly
dominated for player 1.
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E F

A

B

C

D

5 , 2 4 , 3

3 , 6 3 , 2 

2 , 1 4 , 1

4 , 3 5 , 4

Example of IESDS
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Strategies B and C are strictly 
dominated for player 1.

... so we can simplify the
game by assuming these
strategies wonʼt be played.
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E F

A

B

C

D

5 , 2 4 , 3

3 , 6 3 , 2 

2 , 1 4 , 1

4 , 3 5 , 4

Example of IESDS
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In the simplified game, E is
strictly dominated by F.
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E F

A

B

C

D

5 , 2 4 , 3

3 , 6 3 , 2 

2 , 1 4 , 1

4 , 3 5 , 4

Example of IESDS
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In the simplified game, E is
strictly dominated by F.

... so we can simplify the
game by assuming strategy
E wonʼt be played.
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E F

A

B

C

D

5 , 2 4 , 3

3 , 6 3 , 2 

2 , 1 4 , 1

4 , 3 5 , 4

Example of IESDS
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In the reduced game, 
strategy A is strictly 
dominated by D, so it
also can be removed. 
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E F

A

B

C

D

5 , 2 4 , 3

3 , 6 3 , 2 

2 , 1 4 , 1

4 , 3 5 , 4

Example of IESDS
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In the reduced game, 
strategy A is strictly 
dominated by D, so it
also can be removed. 

Expected outcome is (D,F).
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Nash equilibrium
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A strategy profile is a Nash equilibrium if no player would
benefit from changing his strategy unilaterally.

In other words, no player regrets his choice.

Formally:

ui(x∗i , x
∗
−i) ≥ ui(yi, x

∗
−i)

A strategy profile x∗ ∈ S is a Nash equilibrium if for all
players i ∈ P and all yi ∈ Si such that yi �= x∗i , we have

To define Strict Nash equilibrium, we replace ≥ by > above.

Weak Nash equilibrium: for some yi ∈ Si, equality holds.
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Best responses
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For s−i ∈ S−i, we define BRi(s−i) as the set of player i’s best
strategies when the other players play s−i:

We call BRi the best-response function of player i.

Another way to define Nash equilibria:

x∗ is a Nash equilibrium iff x∗i ∈ BRi(x∗−i) for all i ∈ P

Every playerʼs strategy is a best response to the 
strategies of the other players.

BRi(s−i) = {s∗ ∈ Si : ui(s∗, s−i) ≥ ui(s�, s−i) for all s� ∈ Si}
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Examples: Nash equilibrium
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confess donʼt confess

confess

donʼt confess

-3 , -3 0 , -4
-4 , 0 -1 , -1

Nash equilibria in yellow.

Prisonerʼs Dilemma:

stag hare

stag

hare

4 , 4 0 , 3
3 , 0 3 , 3

Stag Hunt:

The dominant strategy solution
is the only Nash equilibrium.

Two Nash equilibria, only 
one of which is Pareto-optimal.

In fact, dominant strategy solutions
always give unique Nash equilibria. 
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Examples: Nash equilibrium
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Heads Tails

Heads

Tails

1 , -1 -1 , 1
-1 , 1 1 , -1

Nash equilibria in yellow.

Matching Pennies:

Bach Stravinsky

Bach

Stravinsky

2 , 1 0 , 0
0 , 0 1 , 2

Bach or Stravinsky:

Two Nash equilibria, capturing
the two “stable outcomes”.

No Nash equilibria, capturing
the lack of “stable outcomes”.
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Mixed strategies
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In games like “Matching pennies” or “Rock-paper-scissors”, 
it seems natural to allow players to make random moves.

We can extend the playersʼ utility functions to mixed strategy 
profiles as follows:

consider all
outcomes

utility of
outcome

probability of 
this outcome

A mixed strategy for a player i is a probability distribution
over the set Ai, i.e. it is a function si such that:
0 ≤ si(b) ≤ 1 for all b ∈ Ai, and Σb∈Aisi(b) = 1.

here s is mixed 
strategy profile

ui(s) =
�

a∈A

(ui(a) ·
n�

j=1

sj(aj) )
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Mixed strategy Nash equilibrium
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Nash equilibrium for mixed strategy profiles is defined the 
same way as for pure strategy profiles, except that we now 
allow players to use mixed strategies. 

All pure strategy Nash equilibria are still Nash equilibria
when we allow mixed strategies. 

But what is interesting is that by considering mixed strategies,
we can find new Nash equilibria.

Letʼs see this on an example.
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Example: Mixed strategy Nash equilibrium
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Heads Tails

Heads

Tails

1 , -1 -1 , 1
-1 , 1 1 , -1

Matching Pennies:

Both players choosing
the mixed strategy
1/2 Heads, 1/2 Tails is 
the unique Nash Equilibrium.
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Example: Mixed strategy Nash equilibrium
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Heads Tails

Heads

Tails

1 , -1 -1 , 1
-1 , 1 1 , -1

Matching Pennies:

Why a Nash equilibrium?
No matter what mixed strategy a player adopts, his expected utility is 0 if the other 
player uses 1/2 Heads, 1/2 Tails. So he has no incentive to change strategies.

Both players choosing
the mixed strategy
1/2 Heads, 1/2 Tails is 
the unique Nash Equilibrium.
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Example: Mixed strategy Nash equilibrium
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Heads Tails

Heads

Tails

1 , -1 -1 , 1
-1 , 1 1 , -1

Matching Pennies:

Both players choosing
the mixed strategy
1/2 Heads, 1/2 Tails is 
the unique Nash Equilibrium.

Why a Nash equilibrium?
No matter what mixed strategy a player adopts, his expected utility is 0 if the other 
player uses 1/2 Heads, 1/2 Tails. So he has no incentive to change strategies.

Why unique?
Suppose player 1 plays a mixed strategy (p, 1− p), where p > 1

2 .

Similar argument if p < 1
2 , or if player 2 is the one using a different strategy.

Heads  Tails

If player 2 does not play (0, 1), then would prefer to play (0, 1).

If player 2 does play (0, 1), then player 1 should switch to (1, 0).
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Example: Mixed strategy Nash equilibrium
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Bach Stravinsky

Bach

Stravinsky

2 , 1 0 , 0

0 , 0 1 , 2

Bach or Stravinsky:

This game has two pure
Nash Equilibria (B,B) and 
(S,S), but it also has
one mixed Nash equilibrium.
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Example: Mixed strategy Nash equilibrium
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Bach Stravinsky

Bach

Stravinsky

2 , 1 0 , 0

0 , 0 1 , 2

Bach or Stravinsky:

This game has two pure
Nash Equilibria (B,B) and 
(S,S), but it also has
one mixed Nash equilibrium.

Finding the mixed Nash equilibrium:
Suppose (α1, α2) is a Nash equilibrium,
where α1 = (p, 1− p) and α2 = (q, 1− q).
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Example: Mixed strategy Nash equilibrium
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Bach Stravinsky

Bach

Stravinsky

2 , 1 0 , 0

0 , 0 1 , 2

Bach or Stravinsky:

This game has two pure
Nash Equilibria (B,B) and 
(S,S), but it also has
one mixed Nash equilibrium.

Finding the mixed Nash equilibrium:
Suppose (α1, α2) is a Nash equilibrium,
where α1 = (p, 1− p) and α2 = (q, 1− q).

Need player 1 to be indifferent between
B and S, i.e. the expected utilities should
be the same:

u1(B, α2) = 2q = 1− q = u1(S, α2)

So q must be equal to 1
3 .
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Example: Mixed strategy Nash equilibrium
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Bach Stravinsky

Bach

Stravinsky

2 , 1 0 , 0

0 , 0 1 , 2

Bach or Stravinsky:

This game has two pure
Nash Equilibria (B,B) and 
(S,S), but it also has
one mixed Nash equilibrium.

Finding the mixed Nash equilibrium:
Suppose (α1, α2) is a Nash equilibrium,
where α1 = (p, 1− p) and α2 = (q, 1− q).

Need player 1 to be indifferent between
B and S, i.e. the expected utilities should
be the same:

u1(B, α2) = 2q = 1− q = u1(S, α2)

So q must be equal to 1
3 .

Player 2 must also be indifferent:
u2(α1, B) = p = 2(1− p) = u2(α1, S)

So we get p = 2
3 .
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Example: Mixed strategy Nash equilibrium
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Bach Stravinsky

Bach

Stravinsky

2 , 1 0 , 0

0 , 0 1 , 2

Bach or Stravinsky:

This game has two pure
Nash Equilibria (B,B) and 
(S,S), but it also has
one mixed Nash equilibrium.

α1 = (2
3 , 1

3 ) α2 = (1
3 , 2

3 )

Finding the mixed Nash equilibrium:
Suppose (α1, α2) is a Nash equilibrium,
where α1 = (p, 1− p) and α2 = (q, 1− q).

Need player 1 to be indifferent between
B and S, i.e. the expected utilities should
be the same:

u1(B, α2) = 2q = 1− q = u1(S, α2)

So q must be equal to 1
3 .

Player 2 must also be indifferent:
u2(α1, B) = p = 2(1− p) = u2(α1, S)

So we get p = 2
3 .

Thursday, May 20, 2010



Existence of Nash equilibria
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We know that some games do not admit any pure strategy
Nash equilibria, but what if we allow mixed strategies?

Nashʼs Theorem: 
Every finite strategic game has a mixed strategy Nash equilibrium.

Nashʼs Theorem is one of the most important results in game 
theory. Nash won a Nobel prize in economics for his work.

In the statement of the theorem, “finite” means that each player
has only finitely many actions. 

The finiteness condition is important, since games with infinite
action sets may have no Nash equilibria. 
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Correlated equilibrium

40

Suppose two drivers arrive at an intersection. They both have
the option to stop or to continue. If both continue, they collide,
and if both wait, they donʼt get anywhere. 

Solution for this coordination problem in real life? Traffic lights.

Note that nothing forces the drivers to follow the light, but it is
generally in their best interest to do so.

Idea: an independent third-party selects (probabilistically) an 
action profile and tells each player what action she should play. 

Correlated equilibrium if no player wishes to use a different
action assuming the other players all follow the recommendation.
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Correlated equilibrium

41

�

a−i∈A−i

p(ai, a−i) · ui(ai, a−i) ≥
�

a−i∈A−i

p(ai, a−i) · ui(a�i, a−i)

Correlated equilibria are a generalization of Nash equilibria:
All Nash equilibria are correlated equilibria, but correlated
equilibria do not necessarily correspond to Nash equilibria.

A correlated equilibrium is a probability distribution p over
the set A of action profiles such that for every player i ∈ P
and every pair of actions ai, a�

i ∈ Ai, we have:
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Example: Bach or Stravinsky
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Bach Stravinsky

Bach

Stravinsky

2 , 1 0 , 0

0 , 0 1 , 2

Bach or Stravinsky:

Utility: (3
2 , 3

2 )

Claim: p(BB) = p(SS) = 1
2

is a correlated equilibrium.

• if 1 is told to play B, knows 2 will play B, so B is best option.

• if 1 is told to play S, knows 2 will play S, so S is best option.

• if 2 is told to play B, knows 1 will play B, so B is best option.

• if 2 is told to play S, knows 1 will play S, so S is best option.
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Example: Traffic game
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Suppose we model the traffic game as follows, 
with actions S (for stop) and C (for continue).

S C

S

C

4 , 4 1 , 5

5 , 1 0 , 0

Three Nash equilibria:

• pure strategy profile (C, S) with expected utility vector (5, 1)

• pure strategy profile (S, C) with expected utility vector (1, 5)

• mixed strategy profile (1
2 , 1

2 ) with expected utility vector (2.5, 2.5)
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Example: Traffic game
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Suppose we model the traffic game as follows, 
with actions S (for stop) and C (for continue).

p is correlated equilibrium is following constraints satisfied:

S C

S

C

4 , 4 1 , 5

5 , 1 0 , 0

• 4 · p(SS) + 1 · p(SC) ≥ 5 · p(SS) + 0 · p(SC)

• 5 · p(CS) + 0 · p(CC) ≥ 4 · p(CS) + 1 · p(CC)

• 4 · p(SS) + 1 · p(CS) ≥ 5 · p(SS) + 0 · p(CS)

• 5 · p(SC) + 0 · p(CC) ≥ 4 · p(SC) + 1 · p(CC)
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Example: Traffic game

45

Suppose we model the traffic game as follows, 
with actions S (for stop) and C (for continue).

S C

S

C

4 , 4 1 , 5

5 , 1 0 , 0
Equivalently:

• p(SC) ≥ p(SS)

• p(CS) ≥ p(CC)

• p(CS) ≥ p(SS)

• p(SC) ≥ p(CC)

Possible solution:
p(CC) = 0.1, p(SS) = 0.2,
p(SC) = 0.3, p(CS) = 0.4

with expected utility (3.1, 2.7)
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Example: Traffic game
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Suppose we model the traffic game as follows, 
with actions S (for stop) and C (for continue).

S C

S

C

4 , 4 1 , 5

5 , 1 0 , 0
Equivalently:

• p(SC) ≥ p(SS)

• p(CS) ≥ p(CC)

• p(CS) ≥ p(SS)

• p(SC) ≥ p(CC)

p(SC) = p(SS) = p(CS) = 1
3

with expected utility (10
3 , 10

3 )

Another possible solution:
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Maxmin strategies
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maximum utility which
player i can guarantee
no matter what the other
players do  

pick a strategy 
which gives the 
maxmin value  

What if we donʼt know the other players are rational ? 
Or what if they are purposely trying to hurt us ?
What is the “safest” way for us to play ?

The maxmin value for player i is maxsimins−iui(si, s−i).

A maxmin strategy of player i is any si ∈ Si such that
mins−iui(si, s−i) is i’s maxmin value.
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Minmax strategies

48

Now we consider the opposite situation, in which we 
want to choose a strategy which will minimize the 
utility of our adversary.

Here we assume there are only two players, but the
definition can be generalized to an arbitrary number.

assume player -i will try to maximize his utility,
player i wants to make maximum as low as possible 

choose strategy for player i which makes 
player -iʼs utility as low as possible

The minmax value for player −i is minsimaxs−iu−i(si, s−i).

A minmax strategy for player i against player −i is a strategy
si ∈ Si such that maxs−iu−i(si, s−i) is −i’s minmax value.
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Minmax Theorem

49

The following result was proven by von Neumann in 1928: 

Minmax Theorem. In any finite, two-player, zero-sum game, 
in any Nash equilibrium each player receives a payoff that 
is equal to both his maxmin value and his minmax value.   

This theorem tells us three things:

1. A playerʼs minmax and maxmin values are always the same.  

2. A playerʼs minmax and maxmin strategies are the same.

3. In every Nash equilibrium, a playerʼs utility is exactly his   
    maximin =  minmax value. So all Nash equilibria give 
    the same utilities.
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Extensive form games

50

We now consider games with sequential moves.

An extensive form game consists of:

• a finite set P = {1, . . . , n} of players

• a finite tree in which:

– each edge is labelled with an action
– each non-terminal node (called a decision node) is labelled

by the player whose turn it is to choose an action
– each terminal node is labelled with a tuple of utility values,

one for each player

• a partition of the decision nodes into information sets
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Extensive form games, cont.
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Some constraints:

• a node cannot have two outgoing edges with the same label

• nodes in the same information sets must have the same
player and same possible actions

Perfect-information extensive form games:
every information set contains a single node

Imperfect-information extensive form games:
some information sets contain multiple nodes
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Example: Bach or Stravinsky
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Since Player 2 ignores Player 1ʼs choice, same game as before.

B

B B

S

S S

1

2 2

(2, 1) (0, 0) (0, 0) (1, 2)

Player 1

Player 2 Player 2

Information sets: {λ}, {B, S}
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Example: Bach or Stravinsky
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Now Player 2 knows what Player 1 has selected, and 
she can use this information to make her choice. 

B

B B

S

S S

1

2 2

(2, 1) (0, 0) (0, 0) (1, 2)

Player 1

Player 2 Player 2

Information sets: {λ}, {B}, {S}
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Pure strategies in extensive form games

54

A pure strategy tells us what choice a player will make in any
possible state of the game.

More formally, a pure strategy for player i is a function mapping
each information set of i to one of the actions which is possible
from the information set.

For perfect-information games, this means the function selects an
action at each of player i’s nodes.

Important: the strategy definition requires a decision at every
information set, even if it is not possible to reach that information
set given earlier moves.
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Pure strategies in extensive form games

55

In the perfect-information version of Bach or Stravinsky:

2 pure strategies for player 1: B and S

4 pure strategies for player 2:

• play B at choice points, written as B(B), B(S)

• play S at choice points, written as S(B), S(S)

• play B following B and S following S, written as B(B), S(S)

• play S after B and B after S, written as S(B), B(S)
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Pure strategies in extensive form games
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In the imperfect-information version of Bach or Stravinsky:

Same 2 pure strategies for player 1: B and S

Only 2 pure strategies for player 2:

• play B at both nodes, written as B({B, S})

• play S at both nodes, written as S({B, S})

Thursday, May 20, 2010



From extensive form to strategic form

57

Every extensive form game can be translated into a strategic game
as follows:

• the set of players is the same in both games

• the action set Ai of player i is the set of pure strategies of
player i in the extensive form game

• the utility of an action profile for player i is simply the utility
value of i at the terminal node which occurs when all players
follow their pure strategies in the action profile

Note: strategic game may be exponentially larger
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From extensive form to strategic form
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For the perfect-information version of Bach or Stravinsky, we get:

B(B),B(S) S(B),S(S) B(B),S(S) S(B),B(S)

B

S
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From extensive form to strategic form
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For the perfect-information version of Bach or Stravinsky, we get:

B(B),B(S) S(B),S(S) B(B),S(S) S(B),B(S)

B

S

2 , 1 0 , 0 2 , 1 0 , 0

0 , 0 1 , 2 1 , 2 0 , 0
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From strategic form to extensive form

60

Every strategic game can be translated into an imperfect-information
extensive form game as follows:

• the set of players is the same in both games, P = {1, . . . , n}

• at root node, player 1’s turn, create one outgoing edge for each
action in A1

• at second level, all nodes belong to player 2 and are part of a
single information set, outgoing edges correspond to the
actions in A2

• repeat procedure for players 3, . . . , n

• at terminal node, if a is the action profile obtained by taking the
actions along the path from the root node, then we assign the
utility vector (u1(a), . . . , un(a))
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From strategic form to extensive form

61

Bach or Stravinsky game yields:

B

B B

S

S S

1

2 2

(2, 1) (0, 0) (0, 0) (1, 2)

Player 1

Player 2 Player 2
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From strategic form to extensive form
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which translates back to...

B({B,S}) S({B,S})

B

S

2 , 1 0 , 0

0 , 0 1 , 2

Same as original game, just different names for actions.
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Nash equilibrium in extensive form games

63

Definition of Nash equilibrium also can be used for extensive 
form games.

For imperfect-information extensive form games, a pure 
strategy Nash equilibrium need not exist. Why ?

For perfect-information extensive form games, there is 
always at least one pure strategy Nash equilibrium.

Two methods for finding a PNE:
1. Translate into equivalent strategic form game
2. Backward induction 
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First method: use strategic games

64

A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)
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First method: use strategic games

65

A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)

C(A), E(B) C(A), F(B) D(A), E(B) D(A), F(B)

A

B

3 , 0 3 , 0 5 , 1 5 , 1

4 , 1 3 , 2 4 , 1 3 , 2
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First method: use strategic games
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A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)

C(A), E(B) C(A), F(B) D(A), E(B) D(A), F(B)

A

B

3 , 0 3 , 0 5 , 1 5 , 1

4 , 1 3 , 2 4 , 1 3 , 2
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Second method: backward induction

67

Basic idea: start at the terminal nodes, and select always the
actions leading to best payoff

A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)
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Second method: backward induction

68

Basic idea: start at the terminal nodes, and select always the
actions leading to best payoff

A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)

Thursday, May 20, 2010



Second method: backward induction

Basic idea: start at the terminal nodes, and select always the
actions leading to best payoff

A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)

Player 1: A

Player 2: D(A), F(B)
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Subgame perfect equilibrium

70

Nash equilibria well-defined for extensive form games, but
sometimes gives unnatural solutions.

Subgame perfect equilibria is a refinement of Nash equilibria
which addresses this problem.

A subgame of a perfect-information extensive form game is
a restriction of a game to a node and its descendants.

A subgame perfect equilibrium (SPE) of a game G is a strategy profile s
such that for any subgame G� of G, the restriction of s to G� is a
Nash equilibrium.

Note: backward induction always gives SPE.
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Subgames

71

A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)

3 subgames: whole game, subtree of A, subtree of B
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Subgames

72

3 subgames: whole game, subtree of A, subtree of B

A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)
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Subgames

73

3 subgames: whole game, subtree of A, subtree of B

A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)
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Subgames

74

3 subgames: whole game, subtree of A, subtree of B

A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)
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Subgame perfect equilibrium
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A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)

C(A), E(B) C(A), F(B) D(A), E(B) D(A), F(B)

A

B

3 , 0 3 , 0 5 , 1 5 , 1

4 , 1 3 , 2 4 , 1 3 , 2

3 PNE. How many are subgame perfect equilibria?
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Subgame perfect equilibrium
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A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)

C(A), E(B) C(A), F(B) D(A), E(B) D(A), F(B)

A

B

3 , 0 3 , 0 5 , 1 5 , 1

4 , 1 3 , 2 4 , 1 3 , 2

Not SPE since C not NE in subgame rooted at A.
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Subgame perfect equilibrium

77

A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)

C(A), E(B) C(A), F(B) D(A), E(B) D(A), F(B)

A

B

3 , 0 3 , 0 5 , 1 5 , 1

4 , 1 3 , 2 4 , 1 3 , 2

Not SPE since E not NE in subgame rooted at B.
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Subgame perfect equilibrium
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A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)

C(A), E(B) C(A), F(B) D(A), E(B) D(A), F(B)

A

B

3 , 0 3 , 0 5 , 1 5 , 1

4 , 1 3 , 2 4 , 1 3 , 2

Only 1 SPE, corresponding to intuitive solution.
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Computing subgame perfect equilibrium

79

We have shown that backward induction returns a subgame 
perfect equilibrium.

Good news: backward induction takes only polynomial time in 
the size of the extensive game.

Bad news: for many realistic games, the extensive form is 
simply too large to be represented.

Example: chess can be represented as a perfect-information 
extensive form game, but requires around 10150 nodes !!

In general, no way to avoid looking at all nodes in the tree,
but for zero-sum games, some improvements exist...
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Minmax algorithm and backward induction

80

For two-player zero-sum games, only need to keep track of the 
utility for player 1, since player 2ʼs utility is just the opposite.

Player 1 wants to maximize this value, and player 2 wants to 
minimize it.

This means that backward induction corresponds to taking the 
maximum at 1 nodes, and the minimum at 2 nodes.

Letʼs see this on an example...
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Minmax algorithm
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1

2 2 2

9 5 6 3 -1 7 8 1 5

min

max
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Minmax algorithm
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1

2 2 2

9 5 6 3 -1 7 8 1 5

min

max

5 -1 1

5
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Alpha-beta pruning

83

Idea: use depth-first traversal, skip nodes whenever possible 

Once 3 is visited, know that the 
value of the node is at most 3,
which is lower than 5. So player 1 
will never choose this branch.

Once 1 is seen, know that the 
value of the node is at most 1,
which is lower than 5. So can 
safely skip the final node.

1

2 2 2

9 5 6 3 -1 7 8 1 5

min

max

5 3 1

5
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Imperfect-information games

84

In imperfect-information extensive form games, there might
be no pure strategy Nash equilibria.

In order to ensure the existence of a NE, we can
introduce mixed strategies for extensive form games.

A mixed strategy for player i in an extensive form game is a
probability distribution over the set of pure strategies of player i.

Can also define another type of probabilistic strategy where
we associate a probability distribution over actions to each of the
player’s information sets. Known as behavioral strategies.
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Example

85

A

C E

B

D F

1

2 2

(3, 0) (5, 1) (4, 1) (3, 2)

Mixed strategy for player 2: 12 [C(A),E(B)] and 1
2 [C(A),F(B)]

Behavioral strategy for player 2: play [ 13C, 23 D] at A and [ 35 E, 25 F ] at B

Question: do we get the same equilibrium notions ?
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Single-player imperfect-information game

86

E

E

S

S

1

(0) 1

(4) (1)
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Single-player imperfect-information game

87

Pure strategies: E and S

Mixed strategies: play pure strategy E with probability p, S with probability 1− p

Behavioral strategies: at each 1-node, play E with probability p, S with probability 1− p

E

E

S

S

1

(0) 1

(4) (1)
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Single-player imperfect-information game

88

E

E

S

S

1

(0) 1

(4) (1)

Value of best mixed strategy: 1 (when p= 0)

Value of best behavioral strategy: 43 (when p= 1
3 )
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Perfect recall games

89

The previous example involved a player who forgot which moves he
had played. What happens if we require players to have perfect memories ?

An extensive form game is called a perfect recall game if whenever x and
y belong to the same information set of a player i, then the paths to x and y,
restricted to i’s information sets and actions, are the same.

Two strategies for a player are called equivalent if they give rise to the same
probability distributions over terminal nodes, for every choice of strategies
for the other players.

Kuhn’s Theorem: for perfect recall games, every mixed strategy is equivalent
to some behavioral strategy, and vice-versa.

Useful since sometimes easier to work with behavioral strategies.
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Equivalent strategies

90

A

C E

B

D F

1

2 2

The following strategies for player 2 are equivalent:

• Mixed strategy: equal probability to 4 pure strategies

• Mixed strategy: 12 [C(A),F(B)],
1
2 [D(A), E(B)]

• Behavioral strategy: 12 C at node A, 12 E at node B
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SPE in imperfect-information games

91

A subgame (of an imperfect-information game) is a subtree of a game tree
such that if a node belongs to the subtree then so does all the other
nodes in its information set.

In other words, a subgame can contain either all or none of the nodes of
an information set.

Given this new definition of subgame, we can extend the notion of
subgame perfect equilibria to imperfect-information games.

Backward induction can still be used, but now some of the subgames will
involve several players, and so we cannot easily determine the Nash
equilibria in the subgames.

Even more refined notions of equilibrium exist for imperfect-information games.

Thursday, May 20, 2010


