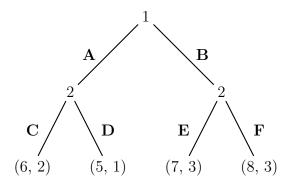
Homework 2

Algorithmic Game Theory	Summer semester 2010
-------------------------	----------------------

Exercise 1 (10 points). In class, we discussed dominated strategies only in the case of pure strategies, but the definition also works in the case of mixed strategies. Show in the following game that the mixed strategy $(\frac{1}{2}, 0, \frac{1}{2})$ for Player 2 (i.e. equal probability of playing C or E) strictly dominates the pure strategy D, even though neither C nor E strictly dominates D. Then determine all values for p, q such that the mixed strategy (p, 0, q) strictly dominates D.

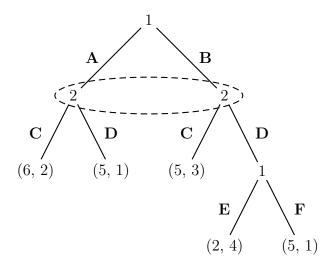
2 1	C	D	E
A	(1, 0)	(1, 1)	(1, 3)
В	(1, 4)	(1, 1)	(1, 0)

Exercise 2 (15 points). Calculate a mixed Nash equilibrium in the coordination game we saw in class:


2 1	C	D
A	(0,0)	(-50, -50)
В	(-50, -50)	(0,0)

Exercise 3 (35 points). Consider the following 2-player game:

2 1	C	D
A	(2, 3)	(0, 1)
В	(1, 0)	(4, 2)


- (a) Find all (pure and mixed) Nash equilibria.
- (b) Suppose p is defined as follows: $p(BC) = p(AD) = p(BD) = \frac{1}{3}$. Is p a correlated equilibrium?
- (c) Now suppose p is such that $p(AC) = \frac{2}{3}$ and $p(BD) = \frac{1}{3}$. Is p a correlated equilibrium?

Exercise 4 (25 points). Consider the following extensive form game:

- (a) Transform this game into a strategic game.
- (b) Use backward induction to find a PNE.
- (c) Use the strategic form to identify all PNE.
- (d) Identify all subgame perfect Nash equilibria.

Exercise 5 (15 points). Consider the following extensive form game:

- (a) Transform this game into a strategic game.
- (b) Does this game have a pure strategy Nash equilibrium? If so, find one, and if not, explain why there are none.