Automatentheorie und ihre Anwendungen

Übungsblatt 1: EAs auf endlichen Wörtern

Abgabe am 10.4. zu Beginn der Übung

- 1. (50%) Konstruiere DEAs über dem Alphabet $\Sigma = \{a, b\}$, welche die folgenden Sprachen erkennen.
 - a) die Menge aller Wörter mit einer durch 3 teilbaren Anzahl a's
 - b) die Menge aller Wörter, die nicht das Teilwort aaa enthalten
 - c) die Menge aller Wörter, in denen auf jedes a sofort ein b folgt
 - d) die Menge aller Wörter, deren drittletztes Zeichen ein a ist
 - Gib für die letzte Sprache auch einen einfacheren NEA an.
- **2.** (50%) Für ein beliebiges Wort w bezeichne w^R das Wort, das man erhält, wenn man die Zeichenkette von w umgekehrt aufschreibt. Ist also $w = a_1 \dots a_n$, dann ist $w^R = a_n \dots a_1$. Außerdem gelte $\varepsilon^R = \varepsilon$.
 - Beweise oder widerlege: wenn die Sprache L erkennbar ist, dann ist auch die Sprache Reverse $(L) = \{w^R \mid w \in L\}$ erkennbar.
- 3. (freiwillige Zusatzaufgabe: wähle 1 Teilaufgabe und verdiene bis zu 20% dazu) Sei L eine Sprache über dem Alphabet Σ .
 - a) Sei DeleteOne $(L) = \{vw \mid vaw \in L, \ a \in \Sigma\}$, d. h. die Sprache aller Wörter, die man erhält, indem man in einem beliebigen Wort aus L einen Buchstaben streicht.
 - Zeige: wenn L erkennbar ist, dann ist auch DeleteOne(L) erkennbar.
 - b) Sei $\mathsf{Half}(L)=\{w\mid \exists v: |v|=|w| \text{ und } vw\in L\},$ d. h. die Sprache aller ersten Hälften von Wörtern gerader Länge aus L.
 - Zeige: wenn L erkennbar ist, dann ist auch Half(L) erkennbar.
- 4. (ohne Wertung)
 - a) Konstruiere den DEA \mathcal{A}^d für das Beispiel von Folie 15 mit $w_1 = \mathsf{web}$ und $w_2 = \mathsf{ebay}$.
 - b) Beschreibe die Konstruktion von \mathcal{A}^d laut Folie 16 allgemein: Seien w_1, \ldots, w_n gegeben, mit $w_i = a_{i1} \ldots a_{i\ell_i}$ für jedes $i = 1, \ldots, n$. Gib \mathcal{A} explizit an und beschreibe dann, wie man \mathcal{A}^d aus \mathcal{A} erhält. Erkläre dabei, wie viele Zustände \mathcal{A}^d maximal hat.