Beschreibungslogik

Übungsblatt 4

Abgabe am 1.6. zu Beginn der Übung

- 1. (35%) Verwende den Tableau-Algorithmus für \mathcal{ALC} mit TBoxen aus der Vorlesung um zu entscheiden, ob
 - a) $C_0 = \exists r. (\exists r. A \sqcup \exists r. B)$ erfüllbar bzgl. $\mathcal{T} = \{ \top \sqsubseteq \forall r. (\neg A \sqcap \neg B) \}$ ist;
 - b) $C_0 = A \cap B'$ erfüllbar bzgl. $\mathcal{T} = \{ \top \sqsubseteq \exists r.A \cap \exists s.A \cap \forall r.(B \cap \forall r.B') \}$ ist;
 - c) die Subsumtion $\mathcal{T} \models \mathsf{Student} \sqsubseteq \mathsf{Schlau} \ \mathrm{gilt},$ wobei $\mathcal{T} = \{\mathsf{Student} \sqsubseteq \exists \mathsf{l\"{o}st}.\mathsf{Aufgabe}, \ \exists \mathsf{l\~{o}st}.\mathsf{T} \sqsubseteq \mathsf{Schlau}\}.$

Sobald in einem I-Baum ein offensichtlicher Widerspruch auftritt, brauchst Du auf diesen Baum keine weiteren Tableau-Regeln anzuwenden. Versuche deshalb möglichst zeitig offensichtliche Widersprüche zu erzeugen, sofern das möglich ist.

- 2. (20%) Welche der folgenden Aussagen sind wahr, welche falsch? Begründe kurz.
 - a) Der Tableau-Algorithmus für \mathcal{ALC} ohne TBoxen terminiert immer.
 - b) Der Tableau-Algorithmus für \mathcal{ALC} mit TBoxen terminiert für manche Eingaben nicht.
 - c) Der Tableau-Algorithmus für \mathcal{ALC} verhält sich auf jeder Eingabe (C_0, \mathcal{T}) genauso wie der Algorithmus für Typelimination: entweder geben beide "erfüllbar" aus oder beide "unerfüllbar".
 - d) Der Tableau-Algorithmus für \mathcal{ALC} hat im Worst Case dieselbe Laufzeit wie Typelimination.
 - e) Wenn ein Typ t schlecht in Γ ist, dann gibt es keine Interpretation \mathcal{I} , so dass $\{t_{\mathcal{I}}(d) \mid d \in \Delta^{\mathcal{I}}\} \subseteq \Gamma$ und $t = t_{\mathcal{I}}(d)$ für ein $d \in \Delta^{\mathcal{I}}$.
- 3. (25%) Verwende Typelimination um zu entscheiden, ob
 - a) $C_0 = \exists r. \neg A$ erfüllbar bzgl. $\mathcal{T} = \{ \forall r. A \sqsubseteq A, A \sqsubseteq \bot, \forall r. A \sqsubseteq \exists r. A \}$ ist;
 - b) $C_0 = \forall r. \forall r. A$ erfüllbar bzgl. $\mathcal{T} = \{ \neg A \sqsubseteq B, A \sqsubseteq \neg B, \forall r. A \sqsubseteq \bot \}$ ist.

Gib jeweils die konstruierte Folge $\Gamma_0, \Gamma_1, \ldots$ an. Im Fall von Erfüllbarkeit gib das Modell aus dem Beweis von Proposition 5.5 an. Beim Wandeln der TBox in Normalform kannst Du Inklusionen der Form $C \sqsubseteq \bot$ direkt in $\mathsf{NNF}(\neg C)$ wandeln anstatt in $\mathsf{NNF}(\neg C) \sqcup \bot$.

4. (20%) Betrachte folgende eingeschränkte Variante des Erfüllbarkeitsproblems für \mathcal{ALC} ohne TBoxen:

Gegeben ein \mathcal{ALC} -Konzept C, in dem keine Quantoren (\exists, \forall) vorkommen, entscheide ob C erfüllbar ist.

Zeige, dass dieses Problem in NP ist, indem Du eine Reduktion zum Erfüllbarkeitsproblem der Aussagenlogik (SAT) angibst. Begründe, dass Deine Reduktionsfunktion die Anforderungen an eine Polynomialzeitreduktion erfüllt.

Hinweis: Wenn Du Deine Kenntnisse über (Polynomialzeit-)Reduktionen auffrischen möchtest, kannst Du z.B. Def. 15.9 und 19.1 im Skript Theoretische Informatik 1 + 2 nachlesen: http://tinyurl.com/ss16-theoinf

5. Zusatzaufgabe (20%) Mit $\mathcal{ALC}_{\mathsf{trans}}$ bezeichnen wir die Erweiterung von \mathcal{ALC} um transitive Rollen, d.h. die TBox darf nun zusätzlich zu Konzeptinklusionen auch Zusicherungen der Form $\mathsf{trans}(r)$ enthalten, wobei r ein Rollenname ist. Eine Interpretation \mathcal{I} erfüllt $\mathsf{trans}(r)$, wenn $r^{\mathcal{I}}$ eine transitive Relation ist.

Sei \mathcal{T} eine $\mathcal{ALC}_{\mathsf{trans}}$ -TBox der Form $\{\top \sqsubseteq C_{\mathcal{T}}, \; \mathsf{trans}(r_1), \ldots, \; \mathsf{trans}(r_n)\}$ mit $C_{\mathcal{T}}$ in NNF. Wir definieren eine \mathcal{ALC} -TBox \mathcal{T}^* wie folgt.

- \mathcal{T}^* enthält $\top \sqsubseteq C_{\mathcal{T}}$.
- Für jedes $\forall r.C \in \mathsf{sub}(C_{\mathcal{T}})$ mit $\mathsf{trans}(r) \in \mathcal{T}$ enthält \mathcal{T}^* die Konzeptinklusion $\forall r.C \sqsubseteq \forall r. \forall r.C$.

Beweise, dass ein Konzeptname A erfüllbar ist bzgl. \mathcal{T} gdw. A erfüllbar ist bzgl. \mathcal{T}^* .

Über diese Reduktion kann man den Tableau-Algorithmus und das Verfahren der Typelemination für \mathcal{ALC} also auch für $\mathcal{ALC}_{\mathsf{trans}}$ verwenden.