Introduction	Modules	Summary and Outlook	Introduction	Modules	Summary and Outlook
			Plan for today		
Description	n Logics: a Nice Family	of Logics			
	— Modularity —		1 What is modula	arity good for?	
Uli	i Sattler ¹ Thomas Schneider	.2			
	Computer Science, University of Mancl		 Modules for reu 	ISE	
	of Computer Science, University of Brer		Summary and C	Dutlook	
	ESSLLI, 19 August 2016				
		Ŵ			Ű
Uli Sattler, <i>Thomas Schneider</i> Introduction	DL: Modularity Modules	1 Summary and Outlook	Uli Sattler, <i>Thomas Schneider</i> Introduction	DL: Modularity Modules	2 Summary and Outlook
And now			What can I do wit	th my ontology?	
			Ontology users and	d engineers want to use ontolog	gies to
			 represent and in a structured 	archive knowledge (M) way	
 What is modula 	rity good for?			rences from archived knowledge ion, query answering	(M)
2 Modules for reu	se		 explain inferer justifications = 	nces (M) pinpointing, abduction	
3 Summary and C	Jutlook		 reuse (parts o import 	f) other ontologies to build the	ir ontology <mark>(M)</mark>
			 expose the log comprehension 	gical structure of the represente	ed knowledge <mark>(M)</mark>
		Ű	(M) = modularity	helps	Ű
Uli Sattler, Thomas Schneider	DL: Modularity	3	Uli Sattler, <i>Thomas Schneider</i>	DL: Modularity	

Modules

Summary and Outlook

What can I do with my ontology?

Building and using an ontology often requires

- fast reasoning (M)
 expressivity ↔ complexity; optimisations, incremental reasoning
- collaborative development (M)
- version control (M)
- efficient reuse (M)
- an understanding of the ontology's content and structure (M) comprehension

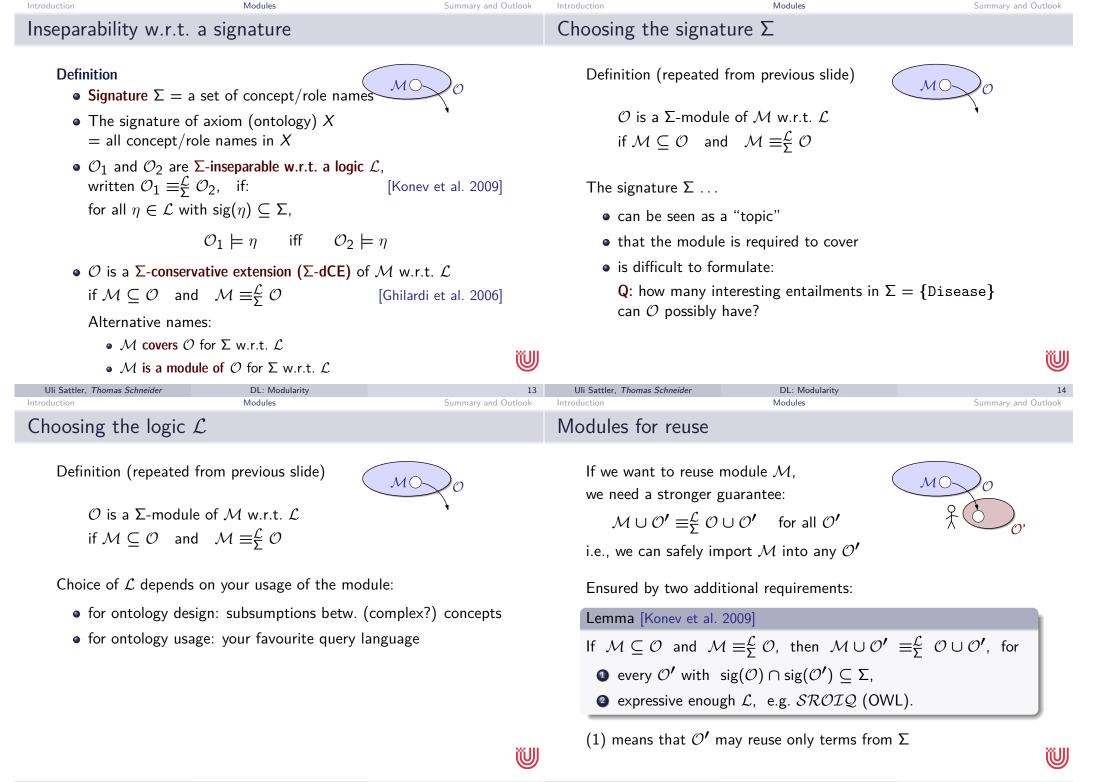
(M) = modularity helps

A priori (not covered today)

• At first, a modular structure is decided on.

A priori vs. a posteriori modularisation

• Then, the ontology is developed and used according to that structure.


A posteriori

Introduction

- The ontology is regarded as a monolithic entity.
- At some point, a module is extracted or the ontology is decomposed into several modules.

		Ŵ			Ű	IJ
Uli Sattler, Thomas Schneider	DL: Modularity Modules	5 Summary and Outlook	Uli Sattler, <i>Thomas Schneider</i> Introduction	DL: Modularity Modules	Summary and Outlook	6
And now			Comparing two o			
What is modularity good for?			 Assume that you want to buy a medical ontology from me I offer two medical ontologies O₁ and O₂ Q: which one do you choose? Possible A: the one that contains more knowledge. 			
2 Modules for reuse	2		Q : how do you me	easure the amount of know	vledge in \mathcal{O}_i ?	
3 Summary and Outlook			Possible A: Number of axioms? • Well, compare $\{A \sqsubseteq B, B \sqsubseteq A\}$ vs. $\{A \equiv B\}$ • or $\{A \sqsubseteq B, B \sqsubseteq A \sqcup \neg A, A \sqcap \neg A \sqsubseteq B\}$ vs. $\{A \equiv B\}$			
		Ŵ	Possible A:	Number of entailments?	Number of models?	IJ
Uli Sattler, Thomas Schneider	DL: Modularity	7	Uli Sattler, Thomas Schneider	DL: Modularity		8

Introduction	Modules	Summary and Outlook	Introduction	Modules	Summary and Outlook		
Ontologies and	their entailments		Ontologies and the	eir models			
			Think of axioms as	s restricting possible models			
Think of axior	ns as generating entailments – e.g.:		Axioms "filter out"	' unwanted models – e.g.:			
$A \sqsubseteq \exists r$			● Hand ⊑ ∃ha	sPart.Finger			
∃r.⊤ ⊑	$ \left\{ \begin{array}{c} B \\ C \sqcap D \end{array} \right\} \models A \sqsubseteq D $			nnot have instances of Hand to an instance of Finger	with no		
Q : how many	entailments can a TBox have?		• Hand $\Box = 51$	hasPart.Finger			
A:		∞	\rightarrow models cannot have instances of Hand with $\neq 5$				
$A \sqsubseteq D$	$A \sqsubseteq D A \sqsubseteq D \sqcup A A \sqsubseteq D \sqcup (A \sqcap D), \dots$		hasPart-edge	s to instances of Finger			
			Q : how many mode	els can a TBox have?			
		Ű	A : 0		∞ ⊌		
Uli Sattler, <i>Thomas Schnei</i> Introduction	der DL: Modularity Modules	9 Summary and Outlook	Uli Sattler, <i>Thomas Schneider</i> Introduction	DL: Modularity Modules	10 Summary and Outlook		
Next attempt	at "more" entailments/models		Knowledge w.r.t. a	a signature			
We cannot co	mpare <i>numbers</i> of entailments or models		Let's reformulate th Assume that	he initial dialogue.	MO-O		
	se set inclusion: most as much as \mathcal{O}^{\prime} " if			uy <mark>a subset of</mark> a medical onto e subdomain of, say, diseases	logy ${\cal O}$ from me		
	ailment of \mathcal{O} is one of \mathcal{O}' :		 I offer two sub 	osets \mathcal{M}_1 and \mathcal{M}_2			
-	$\{\eta\} \subseteq \{\eta \mid \mathcal{O}' \models \eta\}$ or		Q : which one do yc	ou choose?			
• every mo	del of \mathcal{O}' is one of \mathcal{O} :		Possible A: the	e one that "knows more" about	ut diseases!		
$\{\mathcal{I} \mid \mathcal{I} \models$	$\{\mathcal{O}'\} \subseteq \{\mathcal{I} \mid \mathcal{I} \models \mathcal{O}\}$		Q : which is the bes	st subset I can offer?			
Problem:			Possible A: a n	nodule for diseases			
	How do we test these conditions?		_	hat knows as much as ${\mathcal O}$ about			
		Ű		iguishable from ${\mathcal O}$ w.r.t. all terms all as possible	s relevant for diseases		
Uli Sattler, Thomas Schnei	der DL: Modularity	11	Uli Sattler, Thomas Schneider	DL: Modularity	12		

15

16

DL: Modularity

Introduction	Modules	Summary and Outlook	Introdu	uction	Modules	Summary and Our	tlook
How is a minima	I Σ-module extracted?		Exa	ample			
	traction algorithm:	MOVO		Let $\Sigma = \{$ Knee, HingeJ	oint}. Suppose Galen con	tains:	
• $\mathcal{M} \leftarrow \mathcal{O}$ • While $\mathcal{M} \setminus \cdot$	$\{\alpha\} \equiv_{\Sigma}^{\mathcal{L}} \mathcal{O}, \text{ for some } \alpha \in \mathcal{I}$	M,			Knee ≡ Joint ⊓ ∃hasPart.Pa ∃hasFunct.Hing	()	
$do\;\mathcal{M} \leftarrow$	$\mathcal{M} \setminus \{\alpha\}$				Patella ⊑ Bone ⊓ Sesamoid	(2)	
• Output ${\cal M}$				($Ginglymus \equiv Joint \sqcap \exists hasFunct.Final$	Hinge (3)	
				Joint □ ∃hasPart.(Bone□	Sesamoid) 드 Ginglymus	(4)	
Observation:				($Ginglymus \equiv HingeJoint$	(5)	
	lers of choosing $lpha$ different minimal modules				$Meniscus \equiv FibroCartilage \sqcap \exists lo$	catedIn.Knee (6)	
				⊆-Minimal module for	Σ ? {(1), (2), (4), (5)} and	{(1), (3), (5)}	
				Note that a module for	Σ does not necessarily cont	ain	
				• all axioms that us	e terms from Σ		
		Ŵ		 only axioms that of 	only use terms from Σ		Ű
Uli Sattler, <i>Thomas Schneider</i>	DL: Modularity Modules	17 Summary and Outlook	UI Introdu	i Sattler, Thomas Schneider	DL: Modularity Modules	Summer and Ou	41
	pressive ontology language				dules of expressive DL	Summary and Ou	100
		,	001			-	
				Extracting modules is l	nighly complex for expressive		
					lightly complex for expressive		
Big, sad theorem	[Ghilardi et al. 2006]			What to do?			
Let $\mathcal{O}_1, \mathcal{O}_2$ be or	ntologies in ${\cal L}$ and Σ a signature	2.		Give up? No: mo	odules clearly too important		
Determining whe	ther $\mathcal{O}_1\equiv^{\mathcal{L}}_{\Sigma}\mathcal{O}_2$ is			Peduce expressivit	y of logic? Yes! (Not cover	red here.)	
ЕхрТіме-сот	plete for $\mathcal{L} = \mathcal{EL}$			Approximate for e	xpressive logics? Yes – but	from the <i>right</i> direction!	
2ExpTIME-COI	$ mplete for \mathcal{ALC} \leqslant \mathcal{L} \leqslant \mathcal{ALC} $	CQI, and					

Next: 2 approximations, i.e., sufficient conditions for inseparability

DL: Modularity

- based on semantic locality
- ② based on syntactic locality

[Cuenca Grau et al. 2009]

Uli Sattler, Thomas Schneider

undecidable

(even if $\mathcal{O}_1, \mathcal{O}_2$ are in \mathcal{ALC}).

DL: Modularity

for $\mathcal{L} \ge \mathcal{ALCQO}$, including OWL

Ŵ

Ŵ

20

Modules

Model-theoretic inseparability

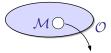
Remember: $\mathcal{O}_1 \equiv \frac{\mathcal{L}}{\Sigma} \mathcal{O}_2$ if: for all $\eta \in \mathcal{L}$ with sig $(\eta) \subset \Sigma$,

$$\mathcal{O}_1 \models \eta \qquad \text{iff} \qquad \mathcal{O}_2 \models \eta$$

Good news:

 $\{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{O}_1\} = \{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{O}_2\}$

≏


- i.e., \mathcal{O}_1 and \mathcal{O}_2 have the same models modulo Σ $(\mathcal{I}|_{\Sigma})$ is the restriction of \mathcal{I} to Σ)
- shorthand: $\mathcal{O}_1 \equiv_{\Sigma}^{mod} \mathcal{O}_2$ (model-inseparable)
- this notion does not depend on \mathcal{L}

Semantic locality

Introduction

Summary and Outlook

We can approximate model-inseparability, exploiting that \mathcal{M} is a subset of \mathcal{O}

$\mathcal{M}\equiv^{mod}_{\Sigma}$	\mathcal{O}
1	

every
$$\mathcal{I} \models \mathcal{M}$$
 can be extended to $\mathcal{J} \models \mathcal{O}$ with $\mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma}$

↑

every $\mathcal{I} \models \mathcal{M}$ can be extended to $\mathcal{J} \models \mathcal{O}$ with $\mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma}$ and $\forall X \notin \Sigma : X^{\mathcal{J}} = \emptyset$

↕

every $\alpha \in \mathcal{O} \setminus \mathcal{M}$ is semantically local w.r.t. $\Sigma \cup sig(\mathcal{M})$: α , with all terms not in $\Sigma \cup sig(\mathcal{M})$ replaced by \bot , is a tautology

Bad news: $\mathcal{O}_1 \equiv_{\Sigma}^{\text{mod}} \mathcal{O}_2$ is undecidable already for \mathcal{ALC} ! Uli Sattler, Thomas Schneider 21 22 Uli Sattler, Thomas Schneider DL: Modularit DL: Modularit Modules Modules Summary and Outlook Introduction Summary and Outlook From semantic to syntactic locality Module extraction with locality Module extraction algorithm: \mathcal{M} • $\mathcal{M} \leftarrow \emptyset$ • Semantic locality involves tautology check • While α not local w.r.t. $\Sigma \cup sig(\mathcal{M})$, for some $\alpha \in \mathcal{O} \setminus \mathcal{M}$, \rightsquigarrow can be tested using a reasoner do $\mathcal{M} \leftarrow \mathcal{M} \cup \{\alpha\}$ \sim has the same complexity as standard reasoning • Output \mathcal{M} • A syntactic approximation that can be tested in poly-time: syntactic locality

Ŵ

Ŵ

23

(describes "obviously" sem. local axioms via a grammar)

- Both notions lead to modules that are
 - $(\Sigma \cup sig(\mathcal{M}))$ -inseparable from \mathcal{O}
 - not necessarily minimal

Variations:

- this notion: (semantic/syntactic) \perp -module
- dual notion: (semantic/syntactic) ⊤-module
- smaller modules by nesting \top and \perp -module extraction: $\top \perp^*$ -modules

Uli Sattler, Thomas Schneider

DL: Modularity

Uli Sattler, Thomas Schneider

ίÜ,

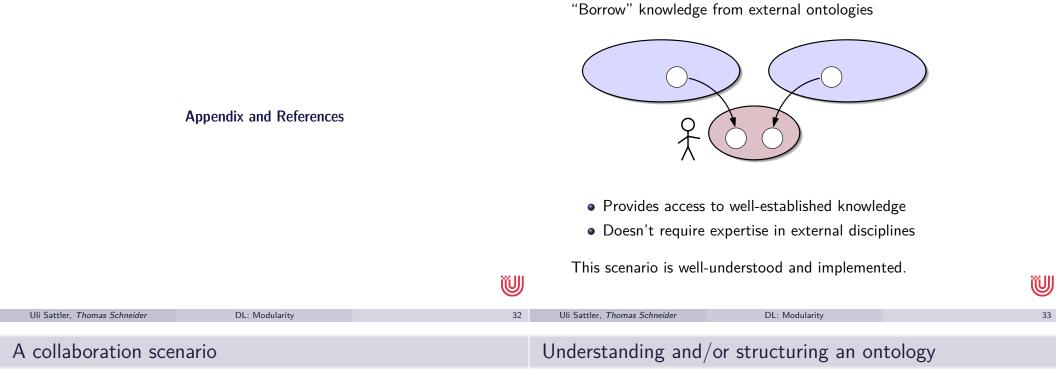
ĨU

Introduction	Modules	Summary and Outlook	Introduction	Modules	Summary and Outlook	
Summary localit	y-based modules		And now			
	podules pproximations" of minimal modely guarantee $\mathcal{M}\equiv^{\mathcal{L}}_{\Sigma}\mathcal{O}$	MO-O ul es				
	essarily minimal tice often small enough)		1 What is modulari	ity good for?		
	acted in polynomial time (synta	ctic locality)	2 Modules for reuse			
• are even sel	f-contained:					
	$\mathcal{M} \equiv^{\mathcal{L}}_{\Sigma \cup \operatorname{sig}(\mathcal{M})} \mathcal{O}$			de al		
and depletin	$\mathcal{M} \equiv^{\mathcal{L}}_{\Sigma \cup \operatorname{sig}(\mathcal{M})} \mathcal{O}$ $\mathcal{O} \setminus \mathcal{M} \equiv^{\mathcal{L}}_{\Sigma \cup \operatorname{sig}(\mathcal{M})} \emptyset$)	Summary and Out	ITIOOK		
and thus un						
• contain all j \sim Cheap is chee	ustifications for any $lpha$ with sig(<code>vrful!</code> :)	$(\alpha) \subseteq \Sigma$			Ŵ	
Uli Sattler, <i>Thomas Schneider</i>	DL: Modularity	25 Summers and Outleads	Uli Sattler, <i>Thomas Schneider</i>	DL: Modularity	26 Summer and Outlands	
Introduction	Modules	Summary and Outlook	Introduction	Modules	Summary and Outlook	
Summary on mo	odularity		See also			

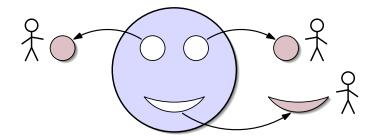
- Inseparability/coverage is a guarantee relevant (not only) for reuse
- Approximation of minimal covering modules via locality
- Modules based on syntactic locality can be extracted efficiently in logics up to SROIQ (OWL 2)
- Tool support for extracting modules: http://owl.cs.manchester.ac.uk/modularity http://owlapi.sourceforge.net/
- This line of research is rather new for DLs and ontology languages, and many questions are (half)open.

... slides from ESSLLI 2013 course "Modularity in Ontologies": http://www.informatik.uni-bremen.de/~ts/teaching/2013_modularity/

 \ldots the references at the end of this presentation

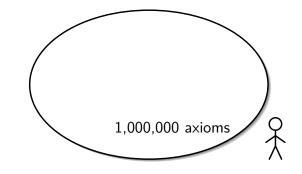

We're almost done! :)

Ŵ


27

i U

An import/reuse scenario


Collaborative ontology development

- Developers work (edit, classify) locally
- Extra care at re-combination
- Prescriptive/analytic behaviour

This approach is mostly understood, but not implemented yet.

Compute the modular structure of an ontology

DL: Modularity

Ŵ

34

ĬU

Understanding and/or structuring an ontology

Compute the modular structure of an ontology $% \label{eq:computed}$

This is work in progress.

Uli Sattler, Thomas Schneider

DL: Modularity

References

Ŵ

35

	Extracting Modules In H. Stuckenschmi 5445 of LNCS, Spr http://www.sprin http://web.comla	Horrocks, Y. Kazakov, U. Sattl s from Ontologies: a Logic-Base idt et al., eds: <i>Modular Ontolog</i> inger, 2009. ngerlink.com/content/qq7323 ab.ox.ac.uk/oucl/work/berna perJAIR.pdf (previous version)	d Approach. <i>ties</i> , pages 159–186, vol. 374182825q0/	
	Description Logics. In Proc. KR, pages http://www.csc.l	Ontology? A Case for Conserva	short.pdf	
	Formal Properties of In H. Stuckenschmi 5445 of LNCS, Spr	idt et al., eds: <i>Modular Ontolog</i>		Ũ
Uli Sattle	er, Thomas Schneider	DL: Modularity		36