
Automata on Infinite Words and Trees

Course notes for the course

“Automata on Infinite Words and Trees”

given by Dr. Meghyn Bienvenu

at Universität Bremen

in the 2009-2010 winter semester

Last modified: January 13, 2010

2

Contents

1 Review of Automata on Finite Words 1

1.1 Main Definitions . 1

1.2 Determinization . 2

1.3 Closure Properties . 3

1.4 Myhill-Nerode Theorem . 4

1.5 Kleene’s Theorem . 5

1.6 Pumping Lemma . 7

1.7 Decision Problems . 8

2 Automata on Infinite Words 11

2.1 Basic Notions . 11

2.2 Büchi Automata . 12

2.3 Closure Properties . 14

2.4 Büchi’s Theorem . 16

2.5 Deterministic Büchi Automata 18

2.6 Müller Automata . 19

2.7 Rabin Automata . 23

2.8 Streett Automata . 25

2.9 Determinization of Büchi Automata 28

2.10 Decision Problems . 38

3 Automata on Finite Trees 41

3.1 Basic Notions . 41

3.2 Bottom-up Automata on Finite Trees 42

3.3 Determinization . 44

3.4 Pumping Lemma for Tree Languages 45

3.5 Closure Properties for Tree Languages 46

3.6 Top-down Tree Automata . 47

3.7 Decision Problems . 49

3

4 CONTENTS

4 Automata on Infinite Trees 51
4.1 Basic Definitions and Notations 51
4.2 Definition of Automata on Infinite Trees 52
4.3 Relation between Büchi and Müller Tree Automata 55
4.4 Relation between Müller and Parity Tree Automata 57
4.5 Complementation: Reduction to Parity Games 59

Disclaimer:

These course notes were prepared for the benefit of students in the 2009-
2010 winter semester automata course at Universität Bremen. These notes
borrow heavily from the material found in the following resources:

• Automata Theory and its Applications.
Khoussainov and Nerode, 2001.

• Automata, Logics, and Infinite Games.
Grädel, Thomas, and Wilke (Eds.), 2002.

• “Languages, Automata, and Logic” in Handbook of Formal Languages.
Thomas, 1997.

• Infinite Words: Automata, Semigroups, Logic, and Games.
Perrin and Pin, 2004.

• Tree Automata Techniques and Applications.
Available at http://tata.gforge.inria.fr/.

No originality of the content is implied.

i

ii CONTENTS

Chapter 1

Review of Automata on

Finite Words

1.1 Main Definitions

Definition 1. A nondeterministic finite automaton, or NFA, over an alpha-
bet Σ is a quintuple A = (Q,Σ, T, I, F) where:

• Q is a finite non-empty set of states

• Σ is an alphabet, i.e. a finite non-empty set of symbols

• T ⊆ Q × Σ × Q is the transition relation

• I ⊆ Q is the set of initial states

• F ⊆ Q is the set of final states

If for every q ∈ Q and every σ ∈ Σ there is a single tuple (q, σ, q′) in T ,
and there is a single state in I, then A is said to be a deterministic finite
automaton (DFA).

Often, it is convenient to represent finite automata using labelled di-
rected graphs. For example, we can represent the finite automaton A =
{{q0, q1}, {a, b}, {(q0 , a, q0), (q0, b, q1), (q1, b, q1)}, {q0}, {q1}} by the graph pic-
tured in Figure 1.1. Notice that the states are nodes, the directed edges give
the transitions, initial states are indicated with incoming arrows, and final
states are indicated by double edges.

1

2 CHAPTER 1. REVIEW OF AUTOMATA ON FINITE WORDS

q0 q1
b

a b

Figure 1.1. A pictorial representation of the DFA A.

Definition 2. A run of A on w = w0w1 . . . wn starting from q0 is a sequence

q0q1q2 . . . qn+1

where for all 0 ≤ i ≤ n: (qi, wi, qi+1) ∈ T . In this case, we say that the word
w transforms q0 to qn+1.

Definition 3. An automaton A = (Q,Σ, T, I, F) accepts the finite string

w = w0w1 . . . wn

if there exists a run
q0q1q2 . . . qn+1

of A on w such that q0 ∈ I and qn+1 ∈ F .

Definition 4. The language of A, written L(A), is defined to be the set
{w ∈ Σ∗ | A accepts w}.

Example 5. The automaton A from Figure 1.1 accepts the language of
strings of the form anbm where n ≥ 0 and m ≥ 1.

Definition 6. A language L ⊆ Σ∗ is said to be finite automaton recognizable
(or simply, FA recognizable) if there exists a NFA A such that L = L(A).

1.2 Determinization

Theorem 7. Let A be a (possibly nondeterminisitic) automaton. Then
there exists a DFA Ad such that L(A) = L(Ad).

Proof sketch. Let A = (Q,Σ, T, I, F). We construct the desired automaton
Ad = {Qd,Σ, T d, Id, F d} as follows:

• Qd = 2Q

1.3. CLOSURE PROPERTIES 3

• (S, σ, S′) ∈ T d if and only if S′ = {q′ | ∃q ∈ S : (q, σ, q′) ∈ T}

• Id = I

• F d = {S ⊆ Q |S ∩ F 6= ∅}

This method of determinization is known as the power set construction.

1.3 Closure Properties

Theorem 8. Let A1 and A2 be finite automata over an alphabet Σ. Then
there exists an automaton A3 such that L(A3) = L(A1) ∪ L(A2).

Proof sketch. Let A1 = {Q1,Σ, T1, I1, F1} and A2 = {Q2,Σ, T2, I2, F2}. We
suppose without loss of generality that the set of states of A1 and A2 are
disjoint, i.e. Q1 ∩ Q2 = ∅. An automaton A3 = {Q3,Σ, T3, I3, F3} with the
desired property can be constructed as follows:

• Q3 = Q1 ∪ Q2

• T3 = T1 ∪ T2

• I3 = I1 ∪ I2

• F3 = F1 ∪ F2

Theorem 9. Let A1 and A2 be finite automata over an alphabet Σ. Then
there exists an automaton A3 such that L(A3) = L(A1) ∩ L(A2).

Proof sketch. Let A1 = {Q1,Σ, T1, I1, F1} and A2 = {Q2,Σ, T2, I2, F2}. We
construct an automaton A3 = {Q3,Σ, T3, I3, F3} with the desired property
as follows:

• Q3 = Q1 × Q2

• T is composed of all tuples ((q1, q2), σ, (q3, q4)) such that (q1, σ, q3) ∈ T1

and (q2, σ, q4) ∈ T2

• I3 = I1 × I2

• F3 = F1 × F2

Theorem 10. Let A be a finite automaton. Then there exists an automaton
Ac such that L(Ac) = L(A) = Σ⋆ \ L(A).

4 CHAPTER 1. REVIEW OF AUTOMATA ON FINITE WORDS

Proof. We can assume without loss of generality that A = (Q,Σ, T, I, F)
is deterministic (this is because Theorem 7 shows how every recognizable
language is accepted by some deterministic automaton). Then the automa-
ton Ac = (Q,Σ, T, I,Q \ F) can be shown to satisfy the condition of the
theorem.

1.4 Myhill-Nerode Theorem

Definition 11. Let L be a language. The words u and v are L-equivalent,
written u ∼L v if for all w, the word uw is in L if and only if the word vw
is in L.

Definition 12. Let A be a finite automaton. The words u and v are A-
equivalent, written u ∼A v if for all states q1, q2, u transforms q1 to q2 if and
only if v transforms q1 to q2.

Lemma 13. Let A be a finite automaton. The relation ∼A is an equivalence
relation on Σ∗ and has finite index (i.e. the relation ∼A induces a finite
number of equivalence classes). Moreover, for all u, v,w: if u ∼A v, then
uw ∈ L(A) iff vw ∈ L(A).

Proof. Exercise.

Theorem 14 (The Myhill-Nerode Theorem). A language L is finite au-
tomaton recognizable if and only if ∼L is of finite index.

Proof sketch. Suppose L = L(A) for some finite automaton A. Now if
u ∼A v, then by Lemma 13, uw ∈ L(A) iff vw ∈ L(A) for all w, and so
u ∼L v. So ∼L cannot have more equivalence classes than ∼A, which means
∼L has finite index.

For the other direction, suppose ∼L is of finite index. The basic idea is to
use the equivalence classes in ∼L as the states in the automata. Specifically,
we can construct a finite automaton A = (Q,Σ, T, I, F) which accepts L as
follows:

• Q = {[u] |u ∈ Σ∗} (where [u] is the equivalence class in ∼L which
contains u)

• T is composed of all tuples of the form ([u], σ, [uσ])

• I = [λ] (where λ denotes the empty string)

• F = {[w] |w ∈ L}

1.5. KLEENE’S THEOREM 5

Note that because ∼L has finite index, Q has only finitely many states.

Corollary 15. If the index ∼L has n states, then there is a DFA with exactly
n states which recognizes L.

Example 16. Consider the language L = {ambm |m ≥ 0}. For every m,
the word ambm ∈ L, but ambk 6∈ L for k 6= m. It follows that ∼L has infinite
index, and so L is not regular by Theorem 14.

1.5 Kleene’s Theorem

Definition 17. Let L1 and L2 be languages of finite words. The concate-
nation of L1 and L2, denoted L1 · L2 is defined as follows:

L1 · L2 = {uv |u ∈ L1, v ∈ L2}

Definition 18. Let L1 and L2 be languages of finite words. The union of
L1 and L2, denoted L1 + L2 is defined as follows:

L1 + L2 = L1 ∪ L2

Definition 19. Let L be a language of finite words. The application of the
Kleene star (⋆) to L, denoted L⋆ is defined as follows:

L⋆ =
∞⋃

i=0

Li

where L0 = L and Li+1 = Ln · L for i ≥ 1.

Definition 20. A language L ⊆ Σ⋆ is said to be regular if L can be obtained
from the empty set, the set {λ} (containing only the empty word), and
the sets {a} (for each a ∈ Σ) using a finite number of applications of the
operators ·, ∪, and ⋆.

Definition 21. We define a regular expression r over the alphabet Σ and
the associated language L(r) inductively as follows:

• r = ∅ is a regular expression with L(r) = ∅

• r = λ is a regular expression with L(r) = {λ}

• r = a, for a ∈ Σ, is a regular expression with L(a) = {a}

6 CHAPTER 1. REVIEW OF AUTOMATA ON FINITE WORDS

If r1 and r2 are regular expressions with languages L(r1) and L(r2), then
we have:

• r = (r1 · r2) is a regular expression with L(r) = L(r1) · L(r2)

• r = (r1 ∪ r2) is a regular expression with L(r) = L(r1) ∪ L(r2)

• r = r⋆
1 is a regular expression with L(r) = L(r1)

⋆

Theorem 22. A language L is regular if and only if L = L(r) for some
regular expression r.

Theorem 23 (The Kleene Theorem). A language L is regular if and only
if it is finite automaton recognizable.

Proof. Suppose that L is regular. Then by Theorem 22, L = L(r) for some
regular expression r. We show by induction on the structure of r that L is
finite automaton recognizable. The base case is when r is an atomic regular
expression. In this case, L(r) is either ∅, {λ}, or {a} for some a ∈ Σ, all
of which can be recognized by a finite automaton. For the induction step,
suppose that r1 and r2 are regular expressions such that L(r1) and L(r2)
are finite automaton recognizable, and let A1 = {Q1,Σ, T1, {qI,1}, F1} and
A2 = {Q2,Σ, T2, {qI,2}, F2} be automata recognizing these languages (we
assume w.l.o.g. that their sets of states are disjoint). We now show that
L(r1 + r2), L(r1 · r2), and L(r⋆

1) are also FA recognizable. We consider only
the latter two cases, since the first case, the result follows directly from the
closure of FA recognizable languages under union.

We start by showing that L(r1 · r2) is FA recognizable. The idea is
simple: our (nondeterministic) automata will simulate A1, and when a final
state is reached, it will either continue the simulation of A1, or switch over
to simulating A2 from A2’s start state. Formally, the desired automaton
A3 = {Q3,Σ, T3, I, F) is as follows:

• Q3 = Q1 ∪ Q2

• T3 contains T1, T2, plus all tuples (s, σ, s′) such that s ∈ F1 and
(qI,2, σ, s′) ∈ T2

• I3 = {qI,1}

• F3 = F2

1.6. PUMPING LEMMA 7

To show that L(r⋆
1) is recognizable, we create an automaton which simulates

A1, and whenever a final state is reached, it either continues the simulation,
or starts a new simulation of A1 from the initial state. Formally, the desired
automaton is just like A1 (which we assume w.l.o.g. to have no transi-
tions to its initial state), except we additionally have transitions of the form
(s, σ, sI,1) whenever s is such that T (s, σ) ∈ F1.

Now we need to show the second part of the theorem, namely that every
FA recognizable language is regular. So let us consider some FA recognizable
language L, and let A = (Q,Σ, T, qI , F) be a deterministic automaton with
L(A) = L. For q1, q2 ∈ Q and X ⊆ Q, we use G(q1, q2,X) to refer to
the set of all words which transform q1 to q2, while passing only through
intermediate states in X. We can show by induction on the cardinality of the
set X that every set G(q1, q2,X) is regular. The base case is when X is the
empty set: in this case, there can be no intermediate states, so G(q1, q2, ∅)
consists of all σ ∈ Σ such that (q1, σ, q2) ∈ T . For the induction hypothesis,
we suppose the result holds for |X| ≤ n. Then we take a set Y with n + 1
elements, and we use Yq to refer to the set Y \ {q}. It can then be shown
that the set G(q1, q2,X) is equal to

(
⋃

q∈Y

G(q1, q2, Yq)) ∪ (
⋃

q∈Y

G(q1, q, Yq) · [G(q, q, Yq)]
∗ · G(q, q2, Yq))

which is clearly regular, as it is obtained from the regular sets Yq using ·, ∗,
and ∪. This means that

L(A) =
⋃

f∈F

G(qI , f,Q)

must also be regular, completing the proof.

1.6 Pumping Lemma

Theorem 24 (The Pumping Lemma). Let A be a finite automaton which
has exactly n states, and let

u = σ0 . . . σm

be a word of length at least n. Then if u is accepted by A, there must exist
a non-empty substring v = σi . . . σi+j of u such that for every k ≥ 0, the
automaton A accepts all strings of the form

σ0 . . . σi−1v
kσi+j+1 . . . σm

8 CHAPTER 1. REVIEW OF AUTOMATA ON FINITE WORDS

Proof sketch. Let A = (Q,Σ, T, I, F) be a finite automaton with n states,
and let u = σ0 . . . σm be a word of length at least n which is accepted by A.
There must be a run

q0 . . . qm+1

of A on u such that q0 ∈ I and qm+1 ∈ F . Now since m ≥ n and A has only
n states, there must be some state which occurs twice in the run q0 . . . qm+1,
i.e. we can find positive integers i and j such that qi = qi+j. This means
that

q0 . . . qi(qi+1 . . . qi+j)
kqi+j+1 . . . qm+1

is a successful run of A on the word

σ0 . . . σi(σi+1 . . . σi+j)
kσi+j+1 . . . σm

for all k ≥ 0.

Example 25. Suppose that the language L = {ambm |m ≥ 0} is recogniz-
able, and let A be an automaton such that L(A) = L. Let n be the number
of states of A. As anbn is a word in L with length greater than n, by Theo-
rem 24, anbn can be decomposed into uvw such that v is non-empty, and for
every k ≥ 0, the word uvkw also belongs to L. But this is a contradiction,
because uv2w has either a different number of a’s and b’s, or has some b’s
which appear before a’s, and in either case, it cannot belong to L.

1.7 Decision Problems

Theorem 26. The emptiness problem (is L(A) = ∅?) is decidable.

Proof sketch. It follows from the pumping lemma that if A accepts some
word, then A accepts some word of length at most n, where n is the number
of states of A. Since there are only finitely many strings of length at most n
over a finite alphabet, we can simply test for each of these strings whether
it is accepted by A. If some such string is accepted, then L(A) 6= ∅, and if
all strings fail, then L(A) = ∅.

Theorem 27. The equivalence problem (is L(A1) = L(A2)?) is decidable.

Proof sketch. We remark that L(A1) = L(A2) if and only if both L(A1) \
L(A2) = ∅ and L(A2) \ L(A1) = ∅. Using our closure properties, we can
construct automata whose languages are precisely L(A1)\L(A2) and L(A2)\
L(A1). We then use the previous theorem to decide emptiness.

1.7. DECISION PROBLEMS 9

Theorem 28. The universality problem (is L(A) = Σ⋆?) is decidable.

Proof sketch. We remark that L(A) = Σ⋆ if and only if Σ⋆ \L(A) = ∅. That
means we can use closure under complementation to construct an automata
with language Σ⋆ \ L(A) and then apply the above emptiness test to this
automaton.

10 CHAPTER 1. REVIEW OF AUTOMATA ON FINITE WORDS

Chapter 2

Automata on Infinite Words

2.1 Basic Notions

Definition 29. An infinite word (or infinite string) over an alphabet Σ is
a function α from the set ω of natural numbers to Σ. We often write α as

α0α1α2 . . .

We use α[m,n] (where m ≤ n) to refer to the finite string αmαm+1 . . . αn−1αn,
and α(n) to refer to the symbol αn.

Definition 30. We use Σω to refer to the set of all infinite strings over Σ.

Definition 31. An ω-language (with respect to the alphabet Σ) is any
subset of Σω.

Definition 32. Let W be a language of finite words over Σ. The ω-language
W ω is defined as the set of all infinite strings of the form

w0w1w2 . . .

such that each wi is non-empty and belongs to W .

Definition 33. Let W be a language of finite words over Σ. The ω-language
−→
W is defined as the set of all infinite strings α such that α[0, n] ∈ W for
infinitely many n.

Definition 34. Let W ⊆ Σ∗ and L ⊆ Σω. The ω-language WL is defined
as the set of all infinite strings of the form wα where w ∈ W and α ∈ L.

11

12 CHAPTER 2. AUTOMATA ON INFINITE WORDS

2.2 Büchi Automata

Definition 35. A nondeterministic Büchi automaton is a quintuple A =
(Q,Σ, T, I, F) where:

• Q is a finite non-empty set of states

• Σ is an alphabet, i.e. a finite non-empty set of symbols

• T ⊆ Q × Σ × Q is the transition relation

• I ⊆ Q is the set of initial states

• F ⊆ Q is the set of final states

If for every q ∈ Q and every σ ∈ Σ there is at most one tuple of the
form (q, σ, q′) in T , and there is a single state in I, then A is said to be
deterministic.

Definition 36. A run of A on w = w0w1w2 . . . starting from q0 is an infinite
sequence

q0q1q2 . . .

of states such that for all i ≥ 0: (qi, wi, qi+1) ∈ T .

Definition 37. If r = q0q1q2 . . . is an infinite sequence of states, then the
infinity set of r, written Inf(r), is defined to be the set of states which appear
infinitely often in r.

Definition 38. A run r = q0q1q2 . . . of A on the string w is said to be
successful if q0 ∈ I and Inf(r) ∩ F 6= ∅.

Thus a run is successful if it starts from an initial state and visits some
final state infinitely often.

Definition 39. An automaton A accepts (or recognizes) a word w if there
is a successful run of A on w.

Definition 40. The language of A, written L(A), is defined to be the set
{w ∈ Σω | A accepts w}. We say that A accepts (or recognizes) the language
L(A).

Definition 41. A language L ⊆ Σω is said to be Büchi recognizable if there
exists a Büchi automaton A such that L = L(A).

2.2. BÜCHI AUTOMATA 13

We conclude the section with a few simple examples of Büchi automata.
In the examples, we present the automata using graphs, with nodes for
states, directed labelled edges for transitions, an incoming arrow for initial
states, and double lines to indicate final states.

Example 42. Consider the Büchi automata represented by the following
graph: This automaton accepts all strings which contain a finite block of a’s

q0 q1
a

a b

Figure 2.1

followed by an infinite string of only b’s. This is because any successful run
must contain the final state q1, only a string of a’s can lead to q1, and once
in the state q1, only b’s can be read.

Example 43. Consider the Büchi automata represented by the follow-
ing graph: This automaton accepts all strings which contain only finitely

q0 q1
b

a, b b

Figure 2.2

many a’s. This is because any successful run must contain the final state
q1, any string can lead from the initial state q0 to q1, and from state q1 no
further a’s can be read.

Example 44. Consider the Büchi automata represented in Figure 2.3. This
automaton accepts all strings in which every occurrence of b is doubled, i.e.
if there is a substring of the form abna, then n must be even.

14 CHAPTER 2. AUTOMATA ON INFINITE WORDS

q0 q1

b

b

a

Figure 2.3

2.3 Closure Properties

Theorem 45. Let A1 and A2 be Büchi automata over an alphabet Σ. Then
there exists a Büchi automaton A3 such that L(A3) = L(A1) ∪ L(A2).

Proof. Let A1 = {Q1,Σ, T1, I1, F1} and A2 = {Q2,Σ, T2, I2, F2} be Büchi
automata. We suppose without loss of generality that Q1 ∩ Q2 6= ∅. The
proof is essentially the same as for automata on finite words, but we give it
here for completeness. We consider the automaton A3 = {Q3,Σ, T3, I3, F3}
defined as follows:

• Q3 = Q1 ∪ Q2

• T3 = T1 ∪ T2

• I3 = I1 ∪ I2

• F3 = F1 ∪ F2

We want to show that L(A3) = L(A1) ∪ L(A2). For the first direction,
suppose that A3 accepts the infinite word w = w0w1w2 Then there is
some run r = q0q1q2 . . . of A on w such that q0 ∈ I3 and Inf(r) ∩ F3 6= ∅.
If q0 ∈ Q1, then we must have qi ∈ Q1 for all i ≥ 0 (since there are no
transitions between states in Q1 and Q2), and so Inf(r) ∩ F1 6= ∅. So r is a
successful run of A1 on w. If instead q1 6∈ Q1, then we must have q1 ∈ Q2,
and we have that r is a successful run of A2 on w. Thus, w ∈ L(A1)∪L(A2).

For the other direction, we suppose that w ∈ L(A1) ∪ L(A2). That
means that there is a successful run r = q0q1q2 . . . of either A1 or A2 on w.
But then r must also be a successful run of A3 on w, since I1 ∪ I2 ⊆ I3,
F1 ∪ F2 ⊆ F3, and T1 ∪ T2 ⊆ T3. So w ∈ L(A3).

Theorem 46. Let A1 and A2 be Büchi automata over an alphabet Σ. Then
there exists a Büchi automaton A3 such that L(A3) = L(A1) ∩ L(A2).

2.3. CLOSURE PROPERTIES 15

Proof. Let A1 = {Q1,Σ, T1, I1, F1} and A2 = {Q2,Σ, T2, I2, F2} be Büchi
automata. The idea of the proof is as follows: our automaton will simulate
both A1 and A2. When it reaches a final state of A1, it notes this (using
its states) and then waits until it sees a final state of A2, at which point it
starts looking again for a final state for A1, and so on. If we switch back
and forth infinitely often between these two “modes” (waiting for a final
state of A1, waiting for final state of A2), then the word will be accepted
by our automaton. Formally, we construct the Büchi automaton A3 =
{Q3,Σ, T3, I3, F3} where:

• Q3 = Q1 × Q2 × {1, 2}

• T3 is composed of the following tuples:

– ((q1, q2, 1), σ, (q3, q4, 1)), where (q1, σ, q3) ∈ T1, (q2, σ, q4) ∈ T2,
and q1 6∈ F1

– ((q1, q2, 1), σ, (q3, q4, 2)), where (q1, σ, q3) ∈ T1, (q2, σ, q4) ∈ T2,
and q1 ∈ F1

– ((q1, q2, 2), σ, (q3, q4, 2)), where (q1, σ, q3) ∈ T1, (q2, σ, q4) ∈ T2,
and q2 6∈ F2

– ((q1, q2, 2), σ, (q3, q4, 1)), where (q1, σ, q3) ∈ T1, (q2, σ, q4) ∈ T2,
and q2 ∈ F2

• I3 = I1 × I2 × {1}

• F3 = Q1 × F2 × {2}

We claim that L(A3) = L(A1) ∩ L(A2). For the first direction, suppose
that w ∈ L(A3). Then there is a run r = q0q1q2 . . . of A on w such that
q0 ∈ I3 and Inf(r) ∩ F3 6= ∅. Each qi must be of the form (si, ti, ni) where
si ∈ Q1 and ti ∈ Q2. The sequence s = s0s1s2 . . . is a run of A1 on w since
(si, wi, si+1) ∈ T1 for all i ≥ 0. It is an accepting run since s0 ∈ I1 (by
definition of I3) and Inf(r) ∩ F3 6= ∅, which means that there are infinitely
many states with last coordinate 2, and hence infinitely many i for which
si ∈ F1, since we must switch between 1-states and 2-states infinitely often,
qnd the only way to switch from 1 to 2 is to pass by some state in F1.
Likewise, we can show that the run t = t0t1t2 . . . is an accepting run of A2

on w. So w ∈ L(A1) ∩ L(A2).
For the second direction, suppose w ∈ L(A1) ∩ L(A2). Then there is a

accepting run s = s0s1s2 . . . of A1 on w, and an accepting run t = t0t1t2 . . .
of A2 on w. Consider the following sequence of states

(s0, t0, n0)(s1, t1, n1)(s2, t2, n2) . . .

16 CHAPTER 2. AUTOMATA ON INFINITE WORDS

where the ni are defined inductively as follows: n0 = 1; ni = 1 if ni−1 = 1
and si−1 6∈ F1 or if ni−1 = 2 and ti−1 ∈ F2, and otherwise ni = 2. It is
easily verified that this sequence of states defines an accepting run of A3 on
w, which means w ∈ L(A3).

Complementation will be discussed later in Section 2.9.

2.4 Büchi’s Theorem

In this section, we provide a characterization of the set of Büchi recognizable
languages in terms of FA recognizable languages. We start with two lemmas.

Lemma 47. If W ⊆ Σ∗ is FA recognizable, then the ω-language W ω is
Büchi-recognizable.

Proof. Let A1 = {Q1,Σ, T1, {qI}, F1} be a DFA which recognizes W . The
basic idea is to create a Büchi automaton which simulates A1 until a final
state is reached, and then decides non-deterministically to either continue
the simulation, or to start a new simulation of A1 from the initial state.
Formally, we construct a Büchi automaton A2 = {Q2,Σ, T2, I2, F2} defined
as follows:

• Q2 = Q1

• T2 contains all the transitions in T1 plus:

– all tuples (q, σ, q′) such that q ∈ F1 and (qI , σ, q′) ∈ T1

• I2 = I1 = {qI}

• F2 = F1

It can be verified that A2 indeed recognizes the language W ω.

Lemma 48. If V ⊆ Σ∗ is FA recognizable and L is Büchi-recognizable, then
the ω-language V L is Büchi-recognizable.

Proof. Let A1 = {Q1,Σ, T1, {qI}, F1} be a DFA which recognizes V , and
let A2 = {Q2,Σ, T2, I2, F2} be a Büchi automaton which recognizes L. We
suppose without loss of generality that Q1 ∩Q2 6= ∅. The idea is as follows:
we simulate A1 until we reach a final state, at which point we either continue
the simulation or switch to simulating A2 from its initial state. Formally, the
desired automaton A3 = {Q3,Σ, T3, I3, F3} can be constructed as follows:

2.4. BÜCHI’S THEOREM 17

• Q3 = Q1 ∪ Q2

• T3 contains T1, T2, plus

– all tuples (q, σ, q′) such that q ∈ F1 and there is some (q′′, σ, q′) ∈
T2 such that q′′ ∈ I2

• I3 = I1

• F3 = F2

It can be checked that the language accepted by A3 is in fact V L.

Theorem 49 (Büchi’s Theorem). A language L ⊆ Σω is Büchi recognizable
if and only if L is a finite union of sets V W ω, where V,W are FA recognizable
languages.

Proof. For the first direction, we need to show that we can represent every
Büchi recognizable language as a union of languages of the V W ω for FA
recognizable V and W . The idea is quite simple: every word which is
accepted by a Büchi automaton must be composed of a prefix which takes
the automaton from the initial state to some repeated final state plus an
infinite sequence of segments which take this final state back to itself. Since
the language of all finite words which take a state q1 to a state q2 is FA
recognizable, we obtain the desired result. Formally, given a Büchi automata
A = (Q,Σ, T, I, F), we consider the languages

Wq1,q2
= {w |w is accepted by the finite automaton (Q,Σ, T, {q1}, {q2}})

By definition, each language Wq1,q2
is FA recognizable. As

L(A) =
⋃

qI∈I,qF∈F

WqI ,qF
W ω

qF ,qF

we obtain the desired result.
For the second direction, because we know Büchi recognizable languages

to be closed under finite union, all we have to show is that the language V W ω

is Büchi recognizable whenever V,W are FA recognizable languages. So take
two FA recognizable languages V and W . By Lemma 47, we know that the
language W ω is Büchi-recognizable because W is FA recognizable. Then by
Lemma 48, we know that the language V W ω must be Büchi-recognizable,
as V is FA recognizable and W ω is Büchi-recognizable. This completes the
proof.

18 CHAPTER 2. AUTOMATA ON INFINITE WORDS

2.5 Deterministic Büchi Automata

For finite strings, deterministic and nondeterministic finite automata have
the same expressive power: every FA recognizable language is accepted by
some deterministic finite automaton. It is natural to wonder whether the
same is true for Büchi automata. We show in this section that this is not the
case, i.e. there exist ω-languages that are accepted by a nondeterministic
Büchi automaton but not by any deterministic Büchi automaton.

We begin by giving a characterization of the sets of ω-languages which
are recognized by deterministic Büchi automata.

Theorem 50. A language L ⊆ Σω is recognizable by a deterministic Büchi
automaton if and only if there exists a FA recognizable language W ⊆ Σ∗

such that L =
−→
W .

Proof. Consider some deterministic Büchi automaton A = (Q,Σ, T, {qI}, F),
and let W be the language accepted by A if it is viewed as a deterministic

finite automaton. We intend to show L(A) =
−→
W . For the first direction,

suppose α is accepted by A. Since A is deterministic, there is a unique
run r = q0q1q2 . . . of A on α with q0 = qI , and this run r must be such
that Inf(r) ∩F 6= ∅. This means that each of the infinitely many finite runs
ending in a final state in F determine a prefix of α which belongs to W , so

α ∈
−→
W .
For the other direction, suppose that α ∈

−→
W . That means that α has

infinitely many prefixes in W , or in other words, the unique run r of A on
α reaches a final state infinitely often, so α ∈ L(α).

We now use Theorem 50 to identify a language which is recognizable
only by nondeterministic Büchi automata.

Theorem 51. There exist Büchi recognizable languages which are recognized
by no deterministic Büchi automaton.

Proof. Consider the language L = {α ∈ {a, b}ω |α contains finitely many b’s}.
As L = Σ∗{a}ω and Σ∗ and {a} are both FA recognizable, by Theorem 49,
L is Büchi recognizable. Now suppose for a contradiction that L is accepted

by a deterministic Büchi automaton. Then by Theorem 50, L =
−→
W for some

FA recognizable language W . Now since aω ∈ L and L =
−→
W , there must

be some non-empty string an1 ∈ W . But since an1baω is also in L, we can
find a string an1ban2 ∈ W . Continuing in this way we construct an infinite
string

an1ban2ban3ban4 . . .

2.6. MÜLLER AUTOMATA 19

which belongs to L since it has infinitely many prefixes in W . But this string
has infinitely many b’s, so it cannot belong to L. Thus, we have shown it to
be impossible for a deterministic Büchi automaton to accept L.

The proof of the previous theorem also shows that the set of languages
recognized by deterministic Büchi automata is not closed under complemen-
tation. This is because the complement of the language L used in the proof
is the language consisting of those strings having infinitely many b’s, which
is recognizable by a deterministic Büchi automata.

2.6 Müller Automata

In the last section, we saw that deterministic Büchi automata are strictly
weaker than nondeterministic ones. This is a disappointing result since it
is often proves more convenient to work with deterministic automata (e.g.
for complementation). This is why in the following sections we investigate
other ways of defining deterministic automata on infinite words. The real
difference with these new types of automata will be in the way in which
we define successful runs. For Büchi automata, we specified a set of final
states F , and we said that a run r was successful if Inf(r)∩F 6= ∅. But as we
shall see, there are other interesting conditions that can be placed on the set
Inf(r). For instance, for Müller automata, which we consider in this section,
the condition is that the set Inf(r) belongs to a given set of distinguished
sets of states F .

Definition 52. A Müller automaton is a quintuple A = (Q,Σ, T, {qI},F)
where:

• Q is a finite non-empty set of states

• Σ is an alphabet, i.e. a finite non-empty set of symbols

• T : Q × Σ → Q is the transition function

• qI is the initial state

• F ⊆ 2Q is the set of final states

The definition of runs, acceptance, and L(A) for Müller automata (and
for the other automata we introduce in the following sections) is the same as
for Büchi automata. However, the definition of a successful run is different.

20 CHAPTER 2. AUTOMATA ON INFINITE WORDS

Definition 53. A run r = q0q1q2 . . . of a Müller automaton A = (Q,Σ, T, {qI},F)
on w is said to be successful if q0 = qI and Inf(r) ∈ F .

Thus, a Müller automaton accepts a word w if the infinity set of the
unique run of A on w belongs to F .

Definition 54. A language L ⊆ Σω is said to be Müller recognizable if there
exists a Müller automaton A such that L = L(A).

We illustrate the above definitions with an example.

Example 55. Consider the Müller automata represented in Figure 2.4. If

q0 q1

b

a

a b

Figure 2.4

we have F = {{q0}}, then that means that successful runs visit q0 infinitely
often and q1 finitely often. Since every occurrence of a leads to q0, and
every b leads to q1, it follows that the language of this automaton is the set
of strings with finitely many b’s. If instead we have F = {{q1}}, we get
the set of strings with finitely many a’s. Finally, if F = {{q0}, {q1}}, this
describes the language of strings having either finitely many a’s or finitely
many b’s.

We remark that the previous example shows that there are languages
which are recognized by Müller automata but not by deterministic Büchi
automata. The following two theorems further clarify the relationship be-
tween the sets of Büchi and Müller recognizable languages.

Theorem 56. Every Müller recognizable language is Büchi recognizable.

Proof. Let L be a Müller recognizable language, and let A = (Q,Σ, T, {qI},F)
be a Müller automaton with L = L(A). We remark that

L =
⋃

S∈F

LS

2.6. MÜLLER AUTOMATA 21

where LS is the language recognized by AS = (Q,Σ, T, {qI}, {S}). Since
Büchi recognizable languages are closed under union (Theorem 45), it suf-
fices to show that every LS is Büchi recognizable. So consider some AS =
(Q,Σ, T, {qI}, {S}). The idea is as follows: our Büchi automaton will simu-
late AS, then at some point, it will nondeterministically switch into a new
mode in which it simulates AS and keeps track of the states in S which
are being visited. Intuitively, the switch to a new mode marks the point at
which all of the future states in the run must belong to S, and we need to
keep track of the states visited in order to ensure that all of the states in
S are visited infinitely often. Now whenever the set of states we are keep-
ing track of is equal to S, we reset the set of states to ∅, and continue as
before. If at any point we encounter a state that is not in S, there will be
no possible transitions (so we reject the word), and if we reset the set of
states infinintely often to ∅, then we accept. Formally, we construct a Büchi
automaton A′ = {Q′,Σ, T ′, {qI}, F) as follows:

• Q′ = Q ∪ {(q, U) | q ∈ S,U ⊆ S}

• T ′ is composed of the tuples:

– (q, σ, r), where T (q, σ) = r

– (q, σ, (r, ∅)), where T (q, σ) = r

– ((q, U), σ, (r, ∅)), where T (q, σ) = r, U = S

– ((q, U), σ, (r, V)), where T (q, σ) = r, U 6= S, and V = U ∪ {r}

• F = {(q, ∅) | q ∈ S}

We want to show L(A′) = LS. For the first direction, suppose that w ∈
L(A′). Then there is some run r of A′ on w starting from qI such that some
state (q, ∅) appears infinitely often in r. Now consider the sequence of states
s which is defined by s(i) = q when either r(i) = q or r(i) = (q, U) for some
U . It is not hard to see that s is a run of AS on w from qI . Moreover, s can
contain only finitely many occurrences of states outside S, otherwise r could
not be a run of A′. Finally, since the state (q, ∅) occurs infinitely often in r,
it must be the case that every state in S occurs infinitely often in s. So s is
a successful run of AS on w, so w ∈ L(AS).

For the second direction, suppose that w ∈ L(AS). Let r = q0q1q2 . . .
be the successful run of AS on w. Then q0 = qI and Inf(r) = S. Let
j ≥ 1 be such that qi ∈ S for all i ≥ j. Now define a sequence s of states
of Q′ inductively as follows: s(i) = qi for i < j, s(j) = (qj , ∅), and for
i > j, s(i) = (qi, U ∪ {qi}) if s(i) = (qi−1, U) and U 6= S, and s(i) = (qi, ∅)

22 CHAPTER 2. AUTOMATA ON INFINITE WORDS

otherwise. It is not hard to show that s is a run of A′ on w from qI .
Moreover, since Inf(r) = S, each state in S appears infinitely often as the
first component of a state in s, and so there will be infinitely many states
in s with ∅ as their second component, i.e. Inf(s) ∩ F 6= ∅. This means w is
accepted by A′.

Later in the chapter, we will see that the converse of Theorem 56 also
holds, i.e. every Büchi recognizable language is also Müller recognizable.
For now, we prove the following much easier result relating deterministic
Büchi automata to Müller automata.

Theorem 57. Every language which is recognized by a deterministic Büchi
automaton is recognized by some Müller automaton.

Proof. Consider some deterministic Büchi automaton A = (Q,Σ, T, {qI}, F).
We construct the Müller automaton A′ = (Q,Σ, T ′, {qI},F) as follows:

• T ′(q, σ) = q′ if (q, σ, q′) ∈ T

• F = {S ⊆ Q |S ∩ F 6= ∅}

Note that the definition of T ′ is well-defined, since there can be at most
one tuple of the form (q, σ, q′) in T . It can be easily verified that A and A′

accept the same language.

We end this section with some closure properties of Müller automata.

Theorem 58. The set of Müller recognizable languages is closed under com-
plementation, union, and intersection.

Proof. For complementation, consider some Müller recognizable language L,
and let A = (Q,Σ, T, {qI},F) be a Müller automaton with L = L(A). Now
consider the Müller automaton A′ = (Q,Σ, T, {qI}, 2

Q \ F). A word α is in
L if and only if Inf(r) ∈ F for the unique run of A on α from qI if and only
if Inf(r) 6∈ 2Q \F if and only if A′ does not accept α. Thus, L(A′) = Σω \L.

For union, consider Müller recognizable languages L1 and L2, and Müller
automata A = {Q1,Σ, T1, {qI,1},F1} and A = {Q2,Σ, T2, {qI,2},F2} such
that L1 = L(A1) and L2 = L(A2). We construct our new Müller automaton
A = {Q3,Σ, T3, {qI,3},F3} as follows:

• Q3 = Q1 × Q2

• T3((q1, q2), σ) = (q3, q4) where T (q1, σ) = q3 and T (q2, σ) = q4

2.7. RABIN AUTOMATA 23

• qI3 = (qI,1, qI,2)

• F contains all sets {(q1, q
′
1), . . . , (qn, q′n)} such that {q1, . . . , qn} ∈ F1

or {q′1, . . . , q
′
n} ∈ F2

It is straightforward to show that either L(A3) = L(A1)∪L(A2) = L1 ∪L2.

For intersection, we simply note that

L1 ∩ L2 = (L1 ∪ L2)

so closure under intersection follows directly from closure under union and
complementation.

2.7 Rabin Automata

In this section, we introduce Rabin automata, which are another type of
deterministic automata on infinite words.

Definition 59. A Rabin automaton is a quintuple A = (Q,Σ, T, {qI},Ω)
where:

• Q is a finite non-empty set of states

• Σ is an alphabet, i.e. a finite non-empty set of symbols

• T : Q × Σ → Q is the transition function

• qI is the initial state

• Ω = {(E1, F1), . . . , (Ek, Fk)} is the set of accepting pairs

Intuitively, each accepting pair (Ei, Fi) in a Rabin automaton specifies
a set Ei of states we want to avoid visiting infinitely often and a set Fi of
states we would like to visit infinitely often. This yields the following notion
of a successful run.

Definition 60. A run r = q0q1q2 . . . of a Rabin automaton A = (Q,Σ, T, {qI},Ω)
on w is said to be successful if q0 = qI and for some (Ei, Fi) ∈ Ω we have
Inf(r) ∩ Fi 6= ∅ and Inf(r) ∩ Ei = ∅.

Thus, a Rabin automaton accepts a word w if for some accepting pair
(Ei, Fi) the unique run of A visits infinitely often some state in Fi and
finitely often every state in Ei.

24 CHAPTER 2. AUTOMATA ON INFINITE WORDS

q0 q1

b

a

a b

Figure 2.5

Example 61. Consider the Rabin automata presented in Figure 2.5. If
the set Ω contains a single accepting pair ({q1}, {q0}), then every successful
run visits q0 infinitely often and q1 only finitely often. It follows that the
language accepted by the automaton is the set of strings with finitely many
b’s. If instead Ω has a single pair ({q0}, {q1}), we get the set of strings with
finitely many a’s. Finally, if F = {∅, {q1}}, we obtain the language of strings
having an infinite number of b’s.

We can show that Müller and Rabin automata recognize the same set of
ω-languages.

Theorem 62. Every language which is recognized by a Rabin automaton is
recognized by some Müller automaton.

Proof. Let A = (Q,Σ, T, {qI},Ω) be some Rabin automaton. Then it is easy
to see that the Müller automaton A′ = (Q,Σ, T, {qI},F) with

F = {S ⊆ Q |S ∩ Ei = ∅ and S ∩ Fi 6= ∅ for some (Ei, Fi) ∈ Ω)

accepts exactly the same inputs as A.

Corollary 63. Every language which is recognized by a Rabin automaton is
recognized by some Büchi automaton.

Proof. Direct consequence of Theorems 56 and 62.

Theorem 64. Every language which is recognized by some Müller automa-
ton is recognized by some Rabin automaton.

Proof. Let L = L(A) for some Müller automaton A = (Q,Σ, T, {qI},F),
where F = {S1, . . . , Sn}. The basic idea is to simulate this automaton,
while keeping track of the subset of each Si which has been visited. When
we have seen all elements in Si, we “empty” that set of states, and start

2.8. STREETT AUTOMATA 25

again from ∅. We accept an input if for some i, the ith set of states is reset
infinitely often and the elements outside Si are visited only finitely often.
Formally, we create the Rabin automaton A′ = {Q′,Σ, T ′, {q′I},Ω) where:

• Q′ = {(U1, . . . , Un, q) |Ui ⊆ Si, q ∈ Q}

• T ′((U1, . . . , Un, q), σ) = (U ′
1, . . . , U

′
n, q′) where

– T (q, σ) = q′

– U ′
i = ∅ if Ui = Si, and U ′

i = (Ui ∪ {q′}) ∩ Si otherwise

• q′I = (∅, . . . , ∅, qI)

• Ω = {(E1, F1), . . . , (En, Fn)} where:

– Ei = {(U1, . . . , Un, q) | q 6∈ Si}

– Fi = {(U1, . . . , Un, q) |Ui = Si}

For the first direction, suppose w ∈ L(A), and let r be the successful run of
A on w. Then we must have Inf(r) = Si for some 1 ≤ i ≤ n. Now let r′ be
the run of A′ on w from q′I . Now since Inf(r) = Si, it follows that Ui = ∅
infinitely often during the run r′, so Inf(r′)∩Fi 6= ∅. Also, we know that the
states outside Si appear only finitely often in r, and hence only finitely often
as a last component of states in r′, so Inf(r′) ∩ Ei = ∅. It follows that w is
accepted by A′. The second direction of the proof is left as an exercise.

Using Theorems 62 and 64, we obtain the following closure properties.

Corollary 65. The set of languages recognized by Rabin automata is closed
under union, intersection, and complementation.

Proof. Theorems 62 and 64 tell us that the set of languages recognizable by
Rabin automata is precisely the set of Müller recognizable languages. Since
the set of Müller recognizable languages is known to be closed under union,
intersection, and complementation (Theorem 58), it follows the same must
be true for the set of languages recognized by Rabin automata.

2.8 Streett Automata

We introduce another variety of deterministic automata on infinite words.

Definition 66. A Streett automaton is a quintuple A = (Q,Σ, T, {qI},Ω)
where:

26 CHAPTER 2. AUTOMATA ON INFINITE WORDS

• Q is a finite non-empty set of states

• Σ is an alphabet, i.e. a finite non-empty set of symbols

• T : Q × Σ → Q is the transition function

• qI is the initial state

• Ω = {(E1, F1), . . . , (Ek, Fk)} is the set of fairness conditions

Formally, Streett automata are defined the same as Rabin automata, but
we will use a different definition of successful run:

Definition 67. A run r = q0q1q2 . . . of a Streett automaton A = (Q,Σ, T, {qI},Ω)
on w is said to be successful if q0 = qI and for every (Ei, Fi) ∈ Ω we have
either Inf(r) ∩ Ei 6= ∅ or Inf(r) ∩ Fi = ∅.

Thus, a word w is accepted by a Streett automaton if for every fairness
condition (Ei, Fi) the unique run of A visits infinitely often some state in
Ei whenever it visits infinitely often some state in Fi.

Example 68. Consider the Streett automata presented in Figure 2.6. If

q0 q1

b

a

a b

Figure 2.6

the set Ω consists of the pair ({q1}, {q0}), then every successful run visits
q1 infinitely often or visits q0 finitely often. Now the strings which visit q1

infinitely often are those which contain infinitely many b’s, and the strings
which visit q0 finitely often are those which contain finitely many a’s (hence
infinitely many b’s). So the automaton accepts all strings with infinitely
many b’s. If Ω consists instead of the pair ({q0}, {q1}), we obtain the set of
strings with infinitely many a’s. Finally, if Ω = {(∅, {q1})}, then the infinity
set of each successful run must either have a non-empty intersection with
∅ (impossible) or an empty intersection with {q1}, i.e. q1 must be visited
finitely often. So the language accepted is the set of infinite words with
finitely many b’s.

2.8. STREETT AUTOMATA 27

We now consider the relationship between Streett automata and Müller
and Rabin automata.

Theorem 69. Every language which is recognized by a Streett automaton
is recognized by a Müller automaton.

Proof. Suppose we are given a Streett automaton A = (Q,Σ, T, {qI},Ω).
Then it can be easily verified that the Müller automaton A′ = (Q,Σ, T, {qI},F)
with

F = {S ⊆ Q |S ∩ Ei 6= ∅ or S ∩ Fi = ∅ for every (Ei, Fi) ∈ Ω}

gives the desired result.

Theorem 70. Every language L whose complement is recognized by a Rabin
automaton is recognized by some Streett automaton, and vice-versa.

Proof. Suppose that L = L(A) for a Rabin automaton A = (Q,Σ, T, {qI},Ω).
Then it can be straightforwardly verified that the Streett automaton A′ =
(Q,Σ, T, {qI},Ω) accepts the language Σω \ L. Conversely, if L = L(A)
for a Streett automaton A = (Q,Σ, T, {qI},Ω), then the Rabin automaton
A′ = (Q,Σ, T, {qI},Ω) accepts the complement of L.

Theorem 71. Müller, Rabin, and Streett automata recognize the same set
of ω-languages.

Proof. We have already shown in Theorems 62 and 64 that Müller and
Rabin automata recognize the same set of ω-languages. We also know from
Theorem 69 that every Streett recognizable language is Müller recognizable.
Thus all that remains to be shown is that Müller recognizable languages are
all Streett recognizable. So let us consider some language L = L(A) where
A is a Müller automaton. By Theorem 58, there exists a Müller automaton
A′ which recognizes Σω \ L. Then by Theorem 64 we can find a Rabin
automaton A′′ such that L(A′′) = L(A′) = Σω \ L. Finally, by Theorem
70, we can construct a Streett automaton which recognizes Σω \L(A′′) = L,
which completes the proof.

Corollary 72. The set of ω-languages which are recognized by Streett au-
tomata is closed under union, intersection, and complementation.

28 CHAPTER 2. AUTOMATA ON INFINITE WORDS

2.9 Determinization of Büchi Automata

In this section, we prove an important result due to McNaughton which
shows that every Büchi recognizable language is recognized by some Rabin
automaton (and hence also by Müller and Streett automata). This result
shows that in some sense nondeterministic Büchi automata can be deter-
minized.

For automata on finite words, we used the power set construction for
constructing deterministic automata from nondeterministic ones. However,
such a construction does not give the desired result for Büchi automata. For
instance, consider the automaton A from Figure 2.2 which recognizes the
set of infinite strings with only finitely many a’s. Applying the power set
construction to A yields the automaton A′ shown in Figure 2.7. We remark

{q0} {q0, q1}
b

a

a b

Figure 2.7. The automaton resulting from applying the power set construc-
tion to A from Figure 2.7.

that A′ accepts the string w = babababa . . . since

{q0}{q0, q1}{q0}{q0, q1}{q0}{q0, q1} . . .

is a successful run of A on w. However, the only run of A on w is q0q0q0 . . .,
which is not successful as it does not visit the final state q1. It follows
that L(A′) 6= L(A), which is not very surprising since we showed earlier
in the chapter that no deterministic Büchi automata accepts L(A). Notice
however that if we consider A′ as a Rabin automaton with a single accepting
pair ({{q0}}, {{q0, q1}}) then we would obtain automata which accept the
desired language.

One might then wonder whether the power set construction can always
be used to construct an appropriate Rabin automaton. We will show that
this is not the case. Consider the Büchi automaton in Figure 2.8. Then it can
be shown that if the automaton resulting from the power set construction is
viewed as a Rabin automaton, then no matter what set of accepting pairs
we choose, the accepted language will not be the same as the language of the

2.9. DETERMINIZATION OF BÜCHI AUTOMATA 29

original automaton. This means the power set construction can not always
be used to transform Büchi automata into equivalent Rabin automata.

q0 q1

q2

1

10

0, 1

Figure 2.8

In the remainder of this section, we present a proof of McNaughton’s
theorem which is due to Safra. It provides a procedure for constructing a
Rabin automaton which accepts the same language as a given Büchi au-
tomaton, which can be seen as a more sophisticated version of the power
set construction. In Safra’s construction, states in the new automaton are
not sets of states (as in the power set construction), but rather trees of sets
of states, known as Safra trees. Formally, a Safra tree over a set V of node
names and a set Q of states is defined as an ordered tree in which the nodes
belong to V , are each labelled with a non-empty subset of Q, and can possi-
bly be marked with a special symbol ‘!’. Additionally, we require that Safra
trees satisfy the following conditions:

1. If a node is labelled by S has children labelled with states S1, . . . , Sk,
then

⋃n
i=1 Si (S.

2. Brother nodes (i.e. those nodes having the same parent) are labelled
with disjoint sets of states.

The first condition ensures that the states appearing in the label of a node
appear as well in the label of the node’s parent and also that at least one
state in the node’s label appears in none of the labels of its children. The
second condition ensures that each state appearing in a node’s label appears
in the label of at most one of the node’s children. We remark that these two
conditions together imply that every Safra tree which is labelled with states
from the set Q has at most |Q| nodes (this is easily proven by induction of
tree height).

We now present the details of Safra’s construction. Consider some Büchi
automaton A = (Q,Σ, T, I, F), and let V = {1, . . . , 2|Q|}. We construct a

30 CHAPTER 2. AUTOMATA ON INFINITE WORDS

Rabin automaton A′ = (Q′,Σ, T ′, {qI},Ω). We start by defining the transi-
tion function T ′. The result of applying T ′ to a symbol σ and a Safra tree
with nodes N is computed according to the following steps:

Step 1 Remove mark ‘!’ from all marked nodes.

Step 2 For every node n with label S such that S ∩ F 6= ∅, we create a
child n′ ∈ V \ N with label S ∩ F which is placed to the right of n’s
other children.

Step 3 Apply the powerset construction to all node labels, i.e. replace a
label S with the label {s′ | ∃s ∈ S such that (s, σ, s′) ∈ T}.

Step 4 (horizontal merge) For every node n with label S, if s ∈ S be-
longs to some brother node to the left of n, delete s from n’s label.

Step 5 Remove all nodes with empty labels.

Step 6 (vertical merge) For every node n whose label is contained in
the union of its children’s labels, remove all children of n (and their
descendants) and mark n with ‘!’.

The initial state qI of A′ is the Safra tree with an unmarked root node 1
with label I. The set Q′ of states consists of all Safra trees over V and Q
which are reachable from qI . To complete our description of A′, we need to
specify the set of accepting pairs Ω. We set Ω = {(Ev , Fv) | v ∈ V } where:

• Ev consists of all Safra trees which do not contain node v.

• Fv consists of all Safra trees in which node v is marked by ‘!’.

In order for the above definition of T ′ to be well-defined, we must check
that T ′ actually maps every Safra tree and input symbol to another Safra
tree. We remark that because of Step 5, every node has a non-empty label.
Since any new child of a node n starts off with a subset of the n’s label, and
all other children are known to have labels contained in n’s label, and we
apply the same power set construction to all nodes in the tree, clearly any
state present in a node’s label at the end of Step 6 must appear in its parent
node. Moreover, because of Step 6, we know that the states appearing in
the labels of a node’s children must be a proper subset of the node’s own
label. Finally, because of Step 4, labels of brother nodes must be disjoint.
Thus, T ′ always yields a new Safra tree.

Before proving the correctness of Safra’s construction, we illustrate the
procedure step-by-step on an example.

2.9. DETERMINIZATION OF BÜCHI AUTOMATA 31

Example 73. We consider the Büchi automaton

A = ({q0, q1}, {a, b}, {(q0, a, q0), (q0, b, q0), (q0, b, q1), (q1, b, q1)}, {q0}, {q1})

which was introduced in Figure 2.2. The initial state S0 of our Rabin au-
tomaton will be the Safra tree pictured in Figure 2.9. We first compute

{q0} 1

Figure 2.9. The state S0.

T ′(S0, a). Steps 1 and 2 are inapplicable since S0 has no marked nodes and
does not contain any final states. Step 3 also leaves the tree unchanged, since
the only transition for q0 and a is q0. Steps 4, 5, and 6 are also inapplicable
since there is a single node with a non-empty label. Thus, T ′(S0, a) = S0.

We now compute T ′(S0, b). Again, steps 1 and 2 do not apply. In
step 3, the label of the root node changes to {q0, q1} since both (q0, b, q0)
and (q0, b, q1) belong to T . Steps 4, 5, and 6 do not apply. So we have
T ′(S0, b) = S1 where the Safra tree S1 is pictured in Figure 2.10.

{q0, q1} 1

Figure 2.10. The state S1.

Now we need to compute the transitions for state S1. First we compute
T ′(S1, a). Since there are no marked nodes in S1, we proceed to step 2,
where we add a new child node 2 with label {q1} since q1 ∈ F . We obtain
the tree in Figure 2.11. In Step 3, we apply the power set construction to

{q0, q1}

{q1}

1

2

Figure 2.11. After step 2 in computation of T ′(S1, a).

each of the labels. The label {q0, q1} changes to {q0} and {q1} goes to ∅
since there is a transition (q0, a, q0) but no transition from q1 via a. We
obtain the tree pictured in Figure 2.12. Step 4 is inapplicable since there is

32 CHAPTER 2. AUTOMATA ON INFINITE WORDS

{q0}

∅

1

2

Figure 2.12. After step 3 in computation of T ′(S1, a).

a single child node, and in step 5, we remove the node 2 since its label is
empty. Thus, we obtain T ′(S1, a) = S0.

We now compute T ′(S1, b). The first two steps are just as for T ′(S1, a),
so at the end of step 2, we have the tree in 2.11. In step 3, we change the
label {q0, q1} to {q0, q1} and the label {q1} to {q1} since there are transitions
(q0, b, q0), (q0, b, q1), and (q1, b, q1) in T . This gives the tree S2 in Figure 2.13.
Steps 4, 5, and 6 are inapplicable, so we end up with T ′(S1, b) = S2.

{q0, q1}

{q1}

1

2

Figure 2.13. The state S2.

We now calculate T ′(S2, a). Step 1 is still inapplicable since there are no
marked nodes, but in Step 2, we add two new nodes, since both nodes 1 and
2 have final states in their labels. We get the tree in Figure 2.14. After step

{q0, q1}

{q1}

{q1}

{q1}

1

2 3

4

Figure 2.14. After step 2 in computation of T ′(S2, a).

3, the label {q0, q1} of node 1 is replaced by {q0}, and the three node labels
{q1} are replaced by ∅, since there is no transition from q1 with the symbol
a. We thus obtain the tree in Figure 2.15. In Step 5, the three nodes with
empty labels are removed, and so the final result is T ′(S2, a) = S0.

2.9. DETERMINIZATION OF BÜCHI AUTOMATA 33

{q0}

∅

∅

∅

1

2 3

4

Figure 2.15. After step 2 in computation of T ′(S2, a).

The first two steps of the computation of T ′(S2, b) are the same as for
T ′(S2, a). In step 3, we change the labels do not change since T maps {q0, q1}
and b to {q0, q1} and {q1} and b to {q1}. In step 4, we remove q1 from the
label of 3 since q1 already appears in the node 2 to the left of 3. We thus
have the tree in Figure 2.16. The node 3 is removed in step 5 since it has

{q0, q1}

{q1}

{q1}

∅

1

2 3

4

Figure 2.16. After step 4 in computation of T ′(S2, b).

an empty label, and in step 6, we mark node 2 since the unique state in its
label is shared by its child node, and we remove the child node 4. We obtain
the tree S3 pictured in Figure 2.17.

{q0, q1}

{q1}

1

2 !

Figure 2.17. The state S3.

It can be easily verified that T ′(S3, a) = S0 and T ′(S3, b) = S3, since
S2 and S3 only differ in the marking of the node 2. There are no more
transitions to calculate, so we obtain the Rabin automaton A′ pictured in
Figure 2.18. The set of accepting pairs of this automaton is composed of
(E1, F1) = (∅, ∅) (since the node 1 appears in all states but is never marked)

34 CHAPTER 2. AUTOMATA ON INFINITE WORDS

S0 S1

S3 S2

b

a

a a
b

b

a

b

Figure 2.18. The automaton resulting from applying Safra’s construction to
A from Figure 2.2.

and (E2, F2) = ({S0, S1}, {S3}) (since the node 2 does not appear in S0 or
S1, and it is marked only in S3). So the successful runs of our automaton are
those in which S0 and S1 are visited finitely often and S3 is visited infinitely
often. Now since every occurrence of a leads back to S0, all accepted words
have only finitely many a’s. Conversely, every infinite string with finitely
many a’s is accepted by our automaton since the unique run will eventually
get stuck in S3. Thus, the Rabin automaton we have constructed recognizes
the set of strings with finitely many a’s, which is precisely L(A).

We now show the correctness of Safra’s determinization procedure. We
break the proof down into two pieces (Propositions 74 and 75). The first
proposition shows that every word accepted by the original Büchi automaton
must also be accepted by the Rabin automaton we construct via Safra’s
procedure.

Proposition 74 (Completeness). Let A = (Q,Σ, T, I, F) be a Büchi au-
tomaton, and let A′ = (Q′,Σ, T ′, {qI},Ω) be the Rabin automaton obtained
by applying Safra’s construction to A. Then L(A) ⊆ L(A′).

Proof. Suppose that w ∈ L(A), and let r = q0q1q2 . . . be an accepting run
of A on w. As A′ is deterministic, there is a unique run of s = S0S1S2 . . . of
A′ on w from qI . We intend to show that there is some node n such that:

(a) there exists some integer m such that n belongs to Si for all i ≥ m

2.9. DETERMINIZATION OF BÜCHI AUTOMATA 35

(b) n is marked by ‘!’ in infinitely many Si

Note that if a node n satisfies (a), then Inf(s) ∩ En = ∅; if n satisfies (b),
then Inf(s) ∩ Fn 6= ∅. Thus if we find some node n satisfying both (a) and
(b), then we have shown that s is a successful run of A′, and hence that
w ∈ L(A′).

We remark that by construction the label of the node 1 in the Safra tree
Si contains all states which can be reached from some initial state by reading
the first i symbols in w. In particular, this means that Si must contain the
state qi from the run r. This means the node 1 always has a non-empty
label, and so is never removed in step 5 of Safra’s procedure. So the root
node 1 satisfies condition (a). Now if the node 1 is marked infinitely often
with ‘!’, then condition (b) is also satisfied, and we are done. Otherwise,
there is some point m such that 1 is unmarked in every Si with i > m.

Since r is a successful run of A, there must be some state f ∈ Inf(r)∩F .
Let p be the index of the first occurrence of f in r after point m (i.e. we
have qp = f and qi 6= f for all m < i < p). Since qp = f , the state f must
appear in the label of node 1 in Sp. That means that during step 2 of the
computation of Sp+1, a new right-most child will be added to the node 1
and its label will contain f . As the root node 1 remains unmarked for the
remainder of the run s, the state qi will appear in some child of 1 for all
i ≥ p + 1. Note however that because of horizontal merges in step 4, the
state qi might move to the label of another child of 1 which is further to the
left. But since all new children are added to the right, there can be only
finitely many moves to the left, and so at some point, the state qi will remain
in a fixed child c of the root node 1. Thus, the node c will satisfy condition
(a). If c is marked infinitely often, then we have found a suitable node.
Otherwise, there is some point m′ after which c is permanently unmarked.
We can then apply the same argument to c as we did for the node 1. But
as the Safra trees Si have a depth of at most |Q|, this procedure must stop
at some point, and we will have found a node with the desired properties,
which means w ∈ L(A′).

We now prove the second proposition, which states that every word
which is accepted by the Rabin automaton we constructed must also belong
to the language of the Büchi automaton.

Proposition 75 (Soundness). Let A = (Q,Σ, T, I, F) be a Büchi automa-
ton, and let A′ = (Q′,Σ, T ′, {qI},Ω) be the Rabin automaton obtained by
applying Safra’s construction to A. Then L(A′) ⊆ L(A).

36 CHAPTER 2. AUTOMATA ON INFINITE WORDS

For our proof of Proposition 75, we will require the following result from
graph theory.

Theorem 76 (König’s Lemma). Every finitely branching infinite tree has
an infinite path.

In order to make the proof of Proposition 75 a bit easier to read, we in-
troduce the abbreviation T ∗(S, u) which is defined recursively as follows:
T ∗(S, a) = {q′ | ∃q ∈ S : (q, a, q′) ∈ T} for a ∈ Σ, and T ∗(S,wa) =
T ∗(T ∗(S,w), a). Intuitively, T ∗(S, u) gives the set of states which can be
reached from states in S with the finite word u according to the transition
relation T . We now proceed with the proof of Proposition 75.

Proof of Proposition 75. Suppose w ∈ L(A′). Then the unique run s =
S0S1S2 . . . of A′ on w from qI = S0 is successful. This means that for some
node n, both Inf(s) ∩ En = ∅ and Inf(s) ∩ Fn 6= ∅. In other words, there is
a point p such that the node n appears in every Safra tree Si for i ≥ p, and
the node n is marked infinitely often. We let m1,m2, . . . be the increasing
infinite sequence composed of all indices i ≥ p such that node n is marked
in the tree Si, and we will use Li to refer to the label of node n in the tree
Si. We use the sequence m1m2 . . . to split w into a sequence of finite words:
w1 = w[0,m1 − 1], and wi+1 = w[mi,mi+1 − 1] for i ≥ 1. Thus, we have
w = w1w2 . . . We claim the following:

For every i > 0 and every q ∈ Lmi+1
, there is a finite run1 of A on

the word wi+1 which starts from some state in Lmi
, terminates in the

state q, and contains at least one final state which appears before the
terminating state.

In order to show this claim, we begin by proving by induction on j that
for every mi < j ≤ mi+1 − 1 and for every state qj appearing in the label of
a descendant of n in Sj, there exists a run of A on w[mi, j−1] starting from
a state in Lmi

, ending with qj, and containing at least one final state. The
base case is when j = mi+1. Since n is marked in Smi

, there are no children
of n in Smi

. Thus, if a state qj appears in a descendant of n in Sj = Smi+1,
then there must have been a child c of n created in step 2 with label Lmi

∩F .
In step 3, the label of c will be updated to T ∗(Lmi

∩F,w(mi)), and this will
be the label of c in Sj . So we must have qj ∈ T ∗(Lmi

∩ F,w(mi)), which
means that there is a state s ∈ Lmi

∩ F such that (s,w(mi), qj) ∈ T . But
then sqj is a run of A on w[mi,mi] starting from a state in Lmi

, terminating

1Here we treat the Büchi automaton A as an automaton on finite words.

2.9. DETERMINIZATION OF BÜCHI AUTOMATA 37

in qj, and passing by a final state (namely s). For the induction step, assume
that we have the result for all mi < j ≤ k < mi+1−2, and consider the case
where qk+1 appears in a descendant c of node n in Sk+1. Then there are
two possibilities: either the node c was already present in Sk, or the node c
was created in step 2 of Safra’s procedure. In the first case, there is a state
qk in the label of c in Sk such that (qk, w(k), qk+1) ∈ T . By the induction
hypothesis, there is a run of A on w[mi, k−1] beginning in Lmi

, terminating
in qk, and passing by some final state. If we simply add qk+1 to the end of
this run, then we get a run satisfying the desired conditions for qk+1. The
other possibility is that we created the node c in step 2. That means that
c has label T ∗(Lk ∩ F,w(k)), and so there must be some qk ∈ Lk ∩ F with
(qk, w(k), qk+1) ∈ T . Then any run of A on w[mj , k] from a state in Lmi

which terminates with qkqk+1 will work. Note that there must exist such a
run since qk appears in Lk and (qk, w(k), qk+1) ∈ T .

To finish the proof of the above claim, suppose q ∈ Lmi+1
. Since n is

marked in Smi+1
, we know that in step 6, the children of n were removed,

and the union of their labels was equal to the label of n. Thus, every state
q ∈ Lmi+1

appeared in the label of a child c of n at the beginning of step 6.
There are two possibilities: either the child c was already present in Smi+1−1,
or it was created during step 2. In the first case, we can find a state q′ in the
label of c in Smi+1−1 such that (q′, w(mi+1 − 1), q) ∈ T , and by using what
we showed above, we can find a finite run of A on w[mi,mi+1 − 1] leading
from Lmi

to q′, and passing by a final state. By adding q to the end of this
run, we obtain the desired run for q. Now in the second case, there must be
some state q′ ∈ Lmi+1−1 ∩ F such that (q′, w(mi+1), q) ∈ T . Then any run
of A on w[mi,mi+1 − 1] from a state in Lmi

which terminates with q′q will
work since we have q′ ∈ F . Note that such a run must exist, since every
state in Lmi+1−1 must have been obtained from a state Lmi

by applying the
transition function with respect to the word w[mi,mi+1 − 2].

We now use the above claim to complete the proof. We start by con-
structing an infinite tree whose set of nodes is {r} ∪ {(q, 0) | q ∈ I} ∪
{(q, i) | q ∈ Lmi

, i ≥ 1}. Note that there must be at least one node (q, i)
for each i since the labels Lmi

are always non-empty. The nodes of the
form (q, 0) all have r as parent, and have as children nodes (q′, 1) such that
q′ ∈ T ∗(q, w1). For each node of the form (q′,mi+1), we choose a parent
node (q,mi) such that there is a finite run of A on the word wi+1 which
starts from q ∈ Lmi

, terminates in the state q′, and contains at least one
final state. Because of our claim, we know that it is always possible to find
at least one such node (q,mi). Thus, we have an infinite tree which is finitely
branching, so by König’s Lemma (Theorem 76), there must be an infinite

38 CHAPTER 2. AUTOMATA ON INFINITE WORDS

path in this tree. Choose some such infinite path, and define qi to be the
unique state which appears at level i in the infinite path (i.e. the node (qi, i)
belongs to the path). We now use these states to construct an infinite run
of A on w. First for the initial segment w1, we take any run r1 of A which
leads from the state q0 to the state q1 on the word w1; because of the way
we have constructed the tree, we know that such a run must exist. Then for
any word wi+1, we select a run ri+1 which leads from the states qi and qi+1

while reading wi+1 and which contains a final state. We know that such a
run must exist, since otherwise the nodes (qi, i) and (qi+1, i + 1) could not
be connected in the tree. Now by putting these runs altogether, we obtain
a run r = r1r2r3 . . . of A on w which starts from some initial state (since
q0 must be in I) and which passes infinitely often by some final state (since
the run ri has at least one final state, for all i > 1). Thus, we have shown
w ∈ L(A).

Putting Propositions 74 and 75 together, we obtain:

Theorem 77 (McNaughton’s Theorem). Let A be a Büchi automaton.
Then there exists a Rabin automaton A′ with L(A′) = L(A).

As a corollary to Theorem 77, we are able to show the set of Büchi
recognizable languages to be closed under complementation.

Corollary 78. Let A be a Büchi automaton. Then there exists a Büchi
automaton Ac such that L(Ac) = Σω \ L(A).

Proof. Consider some Büchi automaton A. By McNaughton’s Theorem,
there is a Rabin automaton Ad such that L(A) = L(Ad). Now by Corollary
65, we can find a Rabin automaton Ād which accepts the language Σω \
L(Ad). But then by Corollary 63 we can transform Ād into an equivalent
Büchi automaton A′.

2.10 Decision Problems

We consider the standard decision problems: emptiness, equivalence, and
universality. We focus on Büchi automata in this section, but the decidabil-
ity results immediately transfer to Müller, Rabin, and Streett automata.

Theorem 79. The emptiness problem (is L(A) = ∅?) is decidable for Büchi
automata.

2.10. DECISION PROBLEMS 39

Proof. Let A = (Q,Σ, T, I, F) be a Büchi automata. From the proof of the
Büchi theorem (Theorem 49), we know that

L(A) =
⋃

qI∈I,qF∈F

WqI ,qF
W ω

qF ,qF

where Wq,q′ denotes the set of strings which lead from q to q′. Thus, L(A) 6=
∅ if and only if there is some state qF ∈ F such that there is a finite string v
taking q0 to qF and some finite string w taking qF to qF . If we represent A
by a graph, then these conditions correspond to finding a path from q0 to qF

and a path from qF to qF . Thus, emptiness reduces to graph reachability,
which is a decidable (in fact linear-time) problem.

Theorem 80. The equivalence problem (is L(A1) = L(A2)?) is decidable
for Büchi automata.

Proof. Consider Büchi automata A1 and A2. We remark that L(A1) =
L(A2) if and only if both L(A1) ∩ L(A2) = ∅ and L(A2) ∩ L(A1) = ∅. As
Büchi automata are closed under complementation (Corollary 78) and in-
tersection (Theorem 46), we can construct Büchi automata whose languages
are precisely L(A1) ∩ L(A2) and L(A2) ∩ L(A1). We then apply Theorem
79 to decide emptiness of these languages.

Theorem 81. The universality problem (is L(A) = Σ⋆?) is decidable for
Büchi automata.

Proof sketch. We remark that L(A) = Σ⋆ if and only if Σ⋆ \ L(A) = ∅.
We can thus use closure under complementation (Corollary 78) to construct
a Büchi automaton with language Σ⋆ \ L(A) and then apply the above
emptiness test (Theorem 79) to this automaton.

40 CHAPTER 2. AUTOMATA ON INFINITE WORDS

Chapter 3

Automata on Finite Trees

3.1 Basic Notions

We denote by N the set of positive integers, and by N⋆ the set of all finite
strings over N. We use λ to denote the empty string.

A finite ordered tree t over an (unranked) alphabet Γ is a function from
a non-empty prefix-closed1 subset P of N⋆ to Γ.

A ranked alphabet Σ is defined to be a non-empty set of symbols each
with an associated arity. We will use Σm to denote the set of symbols in
the ranked alphabet Σ with arity m. For convenience, when presenting a
ranked alphabet Σ with symbols s1, . . . , sn of arities a1, . . . , an, we write
Σ = {s1/a1, . . . , sn/an}. For example, Σ = {f/1, g/3, a/0} refers to the
ranked alphabet composed of a symbol f of arity 1, a symbol g of arity 3,
and a symbol a of arity 0.

A finite ordered ranked tree t over the ranked alphabet Σ (or simply a
Σ-tree) is a function t : P → Σ which satisfies the following conditions:

• P ⊆ N⋆ is a non-empty prefix-closed set

• if t(p) ∈ Σm where m ≥ 1, then {j | pj ∈ P} = {1, . . . ,m}

• if t(p) ∈ Σ0, then {j | pj ∈ P} = ∅

We will call the set P the domain of t, and we write Pos(t) = P . The
elements of Pos(t) are called the positions (or nodes) of the tree t. If p ∈
Pos(t) and pi ∈ Pos(t), then pi is said to be a child of the node p. If
p, p′ ∈ Pos(t) and p is a prefix of p′, then p′ is a descendant of p, and we

1We recall that a set S of finite words is prefix-closed if w ∈ S whenever wv ∈ S.

41

42 CHAPTER 3. AUTOMATA ON FINITE TREES

write p ⊑ p′. A position p is said to be a frontier position (sometimes called
a terminal position or leaf node) if it has no descendants. The set of frontier
positions in t will be denoted by FPos(t). The height of a tree t is the
longest position in Pos(t). We denote by tp the subtree of t which is based
at p; formally, Pos(tp) = {w ∈ Pos(t) | p is a prefix ofw} and tp(q) = t(pq).

Example 82. Consider the ranked alphabet Σ = {f/1, g/3, a/0}, and let
t be a tree with domain {λ, 1, 11, 12, 13, 131} such that t(λ) = f , t(1) = g,
t(11) = a, t(12) = a, t(13) = f , and t(131) = a. The tree t has height
3, its root symbol is f , and its set of terminal positions is {11, 12, 131}. A
graphical representation of this tree is given in Figure 3.1.

f

g

a a f

a

Figure 3.1. An example tree.

3.2 Bottom-up Automata on Finite Trees

Definition 83. A nondeterministic bottom-up automaton on finite ordered
ranked trees (or NFTA for short) is a quadruple A = (Q,Σ, T, F) where:

• Q is a non-empty set of states

• Σ is a ranked alphabet

• T is a set of transition rules of the form:

f(q1, . . . , qm) → q

where m ≥ 0, f ∈ Σm, q, q1, . . . , qm ∈ Q.

• F ⊆ Q is a set of final states

If there do not exist two distinct rules in T with the same left hand side, then
the automaton is said to be a deterministic finite tree automaton (DFTA).

3.2. BOTTOM-UP AUTOMATA ON FINITE TREES 43

NFTAs with alphabet Σ operate on Σ-trees. A NFTA can be seen as
assigning states to each of the nodes in the tree, starting with the terminal
positions and working upwards to the root. The states that are assigned
must conform to the set of transition rules T . We now give a formal definition
of the behaviour of NFTAs.

Definition 84. A run of a NFTA A = (Q,Σ, T, F) on a Σ-tree t is a
function r : Pos(t) → Q which satisfies the following conditions:

• if t(p) = a ∈ Σ0 and r(p) = q, then there is a rule a → q in T

• if t(p) = f ∈ Σm (m ≥ 1), r(p) = q, and r(p1) = q1, . . . , r(pm) = qm,
then there is a rule f(q1, . . . , qm) → q in T

Thus, a frontier position with symbol a can only be assigned a state q
for which a → q ∈ T . For a position p with symbol f whose children have
been assigned states q1, . . . , qm, we must assign a state q to p such that the
transition f(q1, . . . , qm) → q belongs to T .

Definition 85. A run r of a NFTA A on a tree t is successful if r(λ) ∈ F .
A tree t is said to be accepted by a NFTA A if there exists a successful run r
of A on t.

Thus, a tree is accepted by a NFTA if there is some way of assigning
states to the tree’s nodes according to the transition rules such that the root
node is labelled with a final state.

Definition 86. The language L(A) of a NFTA A is defined to be the set
of all trees which are accepted by A. We say that A recognizes (or accepts)
the language L(A).

Definition 87. A set L of (finite ordered ranked) trees is said to be a
recognizable tree language if L = L(A) for some NFTA A.

Example 88. Consider the NFTA A = (Q,Σ, T, F) where Q = {q0, q1, q2, q3},
Σ = {f/2, a/0, b/0}, T = {a → q0, b → q0, f(q0, q0) → q1, f(q1, q1) →
q2, f(q1, q1) → q3}, and F = {q2}. In Figure 3.2, we present graphically a
tree t, and in Figures 3.3 and 3.4 we give the two runs r and r′ of A on t.
As r(λ) = q2 ∈ F , the tree t is accepted. The language of A is the set of
Σ-trees all of whose paths have height 2.

44 CHAPTER 3. AUTOMATA ON FINITE TREES

f

f

a b

f

b b

Figure 3.2. Tree t

q2

q1

q0 q0

q1

q0 q0

Figure 3.3. Run r

q3

q1

q0 q0

q1

q0 q0

Figure 3.4. Run r′

3.3 Determinization

A natural question is whether deterministic tree automata are as powerful
as nondeterministic tree automata. In this section, we show that this is
indeed the case. The proof employs the power set construction and is quite
similar to the proof of the analogous result for finite words.

Theorem 89. Let L be a recognizable tree language. Then there exists a
DFTA which recognizes L.

Proof. Consider a recognizable tree language L, and let A = (Q,Σ, T, F) be
a NFTA with L = L(A). Consider the DFTA A′ = (Q′,Σ, T ′, F ′) defined
as follows:

• Q′ = 2Q

• T ′ is composed of all rules of the form

f(S1, . . . , Sm) → S

where S = {q ∈ Q | ∃q1 ∈ S1, . . . , qm ∈ Sm : f(q1, . . . , qm) → q ∈ T}

• F ′ = {S ∈ Q′ |S ∩ F 6= ∅}

We will now show that the unique run r′ on a tree t satisfies the following
property:

for all p ∈ Pos(t), r′(p) = {r(λ) | r is a run of A on tp}

The proof will be by induction on the distance of p from a frontier position.
The base case is when p is a frontier position. In this case, we have r′(p) =
{q ∈ Q | t(p) → q ∈ T}. By definition, each q ∈ Q with t(p) → q ∈ T
gives rise to a run r of A on tp where r(λ) = q. So we have r′(p) ⊆
{r(λ) | r is a run of A on tp} Conversely, if r is a run of A on tp, then we
must have r(λ) ∈ {q ∈ Q | t(p) → q ∈ T}, so {r(λ) | r is a run of A on tp} ⊆
t′(p). Now for the induction step, let us suppose that the statement holds

3.4. PUMPING LEMMA FOR TREE LANGUAGES 45

for positions in t which are at most k from a frontier position, and let p be a
position which is a distance of k + 1 from a frontier position. By definition
of A′, if t(p) = f ∈ Σm, then

r′(p) = {q ∈ Q | ∃q1 ∈ r′(p1), . . . , qm ∈ r′(pm) with f(q1, . . . , qm) → q ∈ T}

Consider some q ∈ r′(p), and let q1 ∈ r′(p1), . . . , qm ∈ r′(pm) be such that
f(q1, . . . , qm) → q ∈ T . Then by the induction hypothesis, there exist runs
r1, . . . , rm of A on tp1, . . . , tpm such that rpi(λ) = qi for all 1 ≤ i ≤ m. But
then if we set r(λ) = q and r(iw) = ri(w) for 1 ≤ i ≤ m, we obtain a run of A
on tp satisfying r(λ) = q. So r′(p) ⊆ {r(λ) | r is a run of A on tp}. For the
other half of the equality, suppose that r is a run of A on tp with r(λ) = q,
and let qi = r(i) for 1 ≤ i ≤ m. We must have a rule f(q1, . . . , qm) → q.
Then for each 1 ≤ i ≤ m we can define a run ri of A on tpi simply by setting
ri(w) = r(iw). By the induction hypothesis, we have qi = ri(λ) ∈ r′(pi). It
follows that q ∈ r′(p), completing our proof of the statement.

To complete the proof, suppose that t ∈ L(A′). Then the unique run r′

of A′ on t is such that r′(λ) contains some q ∈ F . But by above, r′(λ) =
{r(λ) | r is a run of A on tλ}, so there must be some run r of A on tλ = t
with r(λ) = q, which means t ∈ L(A). For the other direction, suppose
t ∈ L(A). Then there is a run r of A on t such that r(λ) ∈ F . By the
previous paragraph, r(λ) ∈ r′(λ), so t is accepted by A′.

3.4 Pumping Lemma for Tree Languages

In this section, we show how the pumping lemma for finite words can be
generalized to finite trees. For the statement of the result, we will require
some additional terminology and notation, which we introduce now.

Let Σ be a ranked alphabet, and X a set of symbols (called variables)
which is disjoint from Σ. A Σ,X -tree is defined just like a Σ-tree except
that some of the frontier positions may be labelled with symbols from X . A
Σ,X -tree is called a context if there is at most one occurrence of each symbol
from X ; it is a trivial context if it consists of a single position labelled by a
variable. If C is a context with n variables X = {x1, . . . , xn} and t1, . . . , tn

are Σ,X -trees, then C[t1, . . . , tn] is the Σ,X -tree obtained by replacing xi

with the tree ti. We define Cn inductively as follows: C0 is the trivial
context, and Cn+1 = Cn[C].

We are now ready to state the tree analogue of the pumping lemma.

Theorem 90. Let L be a recognizable tree language over the ranked alphabet
Σ. Then there exists a constant k > 0 satisfying: for every tree t ∈ L with

46 CHAPTER 3. AUTOMATA ON FINITE TREES

height greater than k, there exist a (one-variable) context C, a non trivial
(one-variable) context D, and a Σ-tree v such that t = C[D[v]] and for all
n ≥ 0, C[Dn[v]] ∈ L.

Proof. Let L be a recognizable tree language, and let A = (Q,Σ, T, F) be
a NFTA such that L = L(A). We set k equal to the number of states in
Q. Consider some tree t ∈ L with height greater than k, and let r be a
successful run of A on t. As t (hence r) has height greater than k, there
must be some path from the root to a frontier position which contains twice
the same state. So let p1 and p2 be positions such that p2 = p1p3 (for
p3 6= λ) and r(p1) = r(p2) = q. We let u be the tree tp1

, and we let C be
some context such that t = C[u]. Likewise, we let v be the tree tp2

, and D
be a non-trivial context such that u = D[v]. Then we have t = C[D[v]].

Now consider the tree t0 = C[D0[v]] = C[v]. Define r0 as follows: r0(p) =
r(p) if p1 6⊑ p, and r0(p) = r(p2p

′) if p = p1p
′. It is easily verified that r0 is

a successful run of A on t0, which means that t0 ∈ L. We now consider the
case of tn = C[Dn[v]] where n ≥ 1. We define rn in the following manner:
rn(p) = r(p) if p1 6⊑ p, rn(p) = r(p1p

′) if p = p1p
j
3p

′, where p3 6⊑ p′ and
p1p

n
3 6⊑ p, and rn(p) = r(p2p

′) if p = p1p
n
3p′. Again, it can be checked that

rn indeed defines a successful run of A on tn, which implies tn ∈ L.

Corollary 91. Let A = (Q,Σ, T, F) be a NFTA. Then L(A) is non-empty
if and only if there exists a tree t in L(A) with height at most |Q|.

3.5 Closure Properties for Tree Languages

In this section, we investigate the closure properties of the set of recognizable
tree languages.

Theorem 92. The class of recognizable tree languages is closed under union.

Proof. Let L1, L2 be a recognizable tree languages, and let A1 = (Q1,Σ, T1, F1)
and A2 = (Q2,Σ, T2, F2) be such that L1 = L(A1) and L2 = L(A2). Then
the desired automaton A = (Q,Σ, T, F) is as follows:

• Q = Q1 ∪ Q2

• T = T1 ∪ T2

• F = F1 ∪ F2

It is easily verified that this automaton accepts the language L1 ∪ L2.

3.6. TOP-DOWN TREE AUTOMATA 47

Theorem 93. The class of recognizable tree languages is closed under com-
plementation.

Proof. Let L be a recognizable tree language, and let A = (Q,Σ, T, F) be
a DFTA with L = L(A). Then the DFTA A′ = (Q,Σ, T,Q \ F) accepts
precisely those trees which are rejected by A, so L(A′) is the complement
of L.

Theorem 94. The class of recognizable tree languages is closer under in-
tersection.

Proof. Follows directly from closure under union and complementation.

3.6 Top-down Tree Automata

The tree automata that we have investigated so far are called bottom-up tree
automata since their runs correspond to assigning states to the leaf nodes
and then continuing up the tree. In this section, we introduce top-down tree
automata, which start by assigning a state to the root node, and then work
downwards to the leaf nodes.

Definition 95. A nondeterministic top-down automaton on finite ordered
ranked trees (or NTDTA for short) is a quadruple A = (Q,Σ, T, I) where:

• Q is a non-empty set of states

• Σ is a ranked alphabet

• T is a set of transition rules of the form:

(f, q) → (q1, . . . , qm)

where m ≥ 0, f ∈ Σm, q, q1, . . . , qm ∈ Q.

• I ⊆ Q is a set of initial states

If I contains a single state and there do not exist two distinct rules in T with
the same left hand side, then the automaton is said to be deterministic.

We give an informal description of the behaviour of top-down tree au-
tomata. The automaton starts by assigning an initial state to the root node
of the tree. Then it selects a rule which matches the state of the root node
in order to define the states of its children. It continues down the tree in
this manner until the tree is fully labelled, or there are no transitions which
match one of the already labelled nodes.

48 CHAPTER 3. AUTOMATA ON FINITE TREES

Definition 96. A run of a NTDTA A = (Q,Σ, T, I) on a Σ-tree t is a
function r : Pos(t) → Q which satisfies the following conditions:

• r(λ) ∈ I

• if t(p) = f ∈ Σm (m ≥ 1), r(p) = q, and r(p1) = q1, . . . , r(pm) = qm,
then there is a rule (f, q) → (q1, . . . , qm) in T

Definition 97. A tree t is said to be accepted by a NTDTA A if there exists
a run r of A on t.

Thus, the only requirement for a tree to be accepted by a NTDTA is
that there exists at least one run of the automaton on the tree. No special
conditions are placed on the type of runs that a tree has.

We now show that nondeterministic top-down tree automata recognize
the same languages as NFTAs.

Theorem 98. The set of languages which are recognized by nondeterministic
top-down tree automata is precisely the set of recognizable tree languages.

Proof. Suppose L = L(A) for some bottom-up finite tree automaton A =
(Q.Σ, T, F). Consider the top-down automaton A′ = (Q,Σ, T ′, F) where

(f, q) → (q1, . . . , qm) ∈ T ′ iff f(q1, . . . , qm) → q ∈ T

It should be clear that the successful runs of A on a tree t are precisely the
runs of A′ on t. So L(A′) = L. Thus, every recognizable tree language is
recognized by some NTDTA.

Conversely, let L = L(A) for some top-down automaton A = (Q.Σ, T, I).
Consider the bottom-up automaton A′ = (Q,Σ, T ′, I) where

f(q1, . . . , qm) → q ∈ T ′ iff (f, q) → (q1, . . . , qm) ∈ T

Again, we have that the runs of A on an input tree t correspond precisely to
the successful runs of A′ on t, so L(A′) = L. It follows that every language
accepted by a NTDTA is a recognizable tree language.

We saw earlier that nondeterministic and deterministic bottom-up tree
automata are equivalent in expressive power. The same is not true for top-
down tree automata, as the following theorem attests.

Theorem 99. There exist recognizable tree languages which are recognized
by no deterministic top-down tree automaton.

3.7. DECISION PROBLEMS 49

Proof. Let Σ = {f/2, a/0, b/0}, and consider the recognizable tree language
L = {t1, t2}, where Pos(t1) = Pos(t2) = {λ, 1, 2}, t1(λ) = t2(λ) = f ,
t1(1) = t2(2) = a, and t1(2) = t2(1) = b. Now let us suppose there exists
a deterministic top-down tree automaton A = (Q,Σ, T, I) that accepts L.
Then there is a single initial state qI and a single rule (f, qI) → (q1, q2) with
(f, qI) on the left hand side. As t1 ∈ L and t2 ∈ L, the rules (a, q1) → (),
(b, q2) → (), (b, q1) → (), and (a, q2) → () must all belong to T . But then the
tree t3 with Pos(t3), t3(λ) = f , and t3(1) = t3(2) = a will also be accepted
by A, which is a contradiction.

3.7 Decision Problems

We consider the usual decision problems: emptiness, equivalence, and uni-
versality.

Theorem 100. The emptiness problem for NFTAs is decidable in polyno-
mial time.

Proof. The basic idea is to compute the set of reachable states, and then to
check whether some final state is reachable. More specifically, we start by
adding to the set of reachable states every state q such that there is a rule
a → q. Then if q1, . . . , qn is reachable and there is a rule f(q1, . . . , qn) → q,
we add q to the set of reachable states. Clearly, this computation of reachable
states must terminate in polynomial time since at each stage we add a new
state from Q, and so there can be at most |Q| stages in the process. It
remains to be shown that the language is non-empty if and only if some
final state belongs to the set of reachable states we compute.

First suppose that L(A) is non-empty, and let t be a tree in L and r
a run of A on t. Then clearly each of the states in r, including the final
state at the root, will belong to the set of reachable states. Conversely, if
a final state q belongs to the set of reachable states, then we can construct
a run which has q at its root. We place q at the root position and find
the (unique) rule f(q1, . . . , qn) → q which was used to add q to the set of
reachable states. We set t(λ) = f , and then we iterate the process with
states q1, . . . , qn in order to find the symbols at positions 1, . . . ,m of t, and
so on. This process must terminate with a tree (and run) of height at most
|Q| since by construction a state cannot appear twice on a path in the run
we construct. Thus, the constructed run r will be a successful run of the
tree t, so L(A) is non-empty.

Theorem 101. The equivalence problem for NFTAs is decidable.

50 CHAPTER 3. AUTOMATA ON FINITE TREES

Proof. If we want to test that A1 and A2 are equivalent, we use closure un-
der union, intersection, and complementation to build an automaton which
recognizes (L(A1) ∩L(A2) ∪ (L(A2) ∩ L(A1). We then use Theorem 100 to
decide emptiness for this automaton.

Theorem 102. The univerality problem for NFTAs is decidable.

Proof. To test whether A accepts all Σ-trees, we use closure under comple-
mentation to build an automaton which accepts L(A), and we perform the
emptiness test on this automaton.

Note however that while the emptiness problem is decidable in polyno-
mial time, this is not the case for the equivalence and universality problems.
Indeed, these problems can be shown to be EXPTIME-complete, which
means that there cannot exist any polynomial algorithm which solves them.
The reason essentially is that we need to perform complementation, and
complementation may lead to an exponential blow-up in automata size.

Chapter 4

Automata on Infinite Trees

4.1 Basic Definitions and Notations

We will be working with the infinite binary tree, i.e. the tree in which every
node has exactly two children. Formally, we define the infinite binary tree,
denoted T as the set {0, 1}⋆. Each of the elements of {0, 1}⋆ corresponds
to node: the empty string λ corresponds to the root of the tree, a string of
the form w0 corresponds to the left child of the node w, and a string of the
form w1 corresponds to the right child of the node w.

The level of a node w is simply the length of the word w. A node u is
called a predecessor of a node v, written u ⊑ v, if there exists a string w
such that u = vw, or in other words, if u is a prefix of v.

Definition 103. A subset π of T is a path if the following conditions hold:

1. The root λ belongs to π

2. If u ∈ π, then exactly one of u0 and u1 is in π

It follows from the above definition, that for every pair of nodes u, v in
a path π, we must either have u ⊑ v or v ⊑ u.

Definition 104. Let Σ be an alphabet1. Then a Σ-tree τ is a function from
T to Σ.

Thus, a Σ-tree is a labelling of the nodes in T by the symbols in Σ.
Given a Σ-tree τ and a node u, we denote by τu the Σ-tree defined by
τu(v) = τ(uv). The Σ-tree τu corresponds to the subtree of τ rooted at the

1Here we will again be working with standard, i.e. unranked, alphabets.

51

52 CHAPTER 4. AUTOMATA ON INFINITE TREES

node u. Given a Σ-tree τ and a path π, we denote by τ |π the infinite string
of symbols from Σ visited along the path π. Given two Σ-trees τ and ρ, we
denote by τ [u → ρ] the Σ-tree which assigns the value τ(v) to every v with
u 6⊑ v, and the value ρ(w) to every node v = uw. Thus, τ [u → ρ] is the
Σ-tree obtained by replacing the subtree rooted at u by the tree ρ.

In this chapter, by language we will mean a subset of the set of Σ-trees.

4.2 Definition of Automata on Infinite Trees

In this section, we show how different types of automata on infinite words
can be extended to automata on infinite trees. Note that all of the automata
we consider in this chapter will be non-deterministic.

Definition 105. A Büchi (tree) automaton is a quintuple A = (Q,Σ, T, I, F)
where:

• Q is a finite set of states

• Σ is an alphabet

• T is a subset of Q × Σ × Q × Q called the transition table

• I ⊆ Q is the set of initial states

• F ⊆ Q is a set of final states

To define Müller tree automata, we simply replace the set of final states
F by a set F ⊆ 2Q of distinguished subsets.

Definition 106. A Müller (tree) automaton is a quintuple A = (Q,Σ, T, I,F)
where Q,Σ, T, I are as above and F ⊆ 2Q is a set of distinguished subsets
of Q.

For parity tree automata2, we use instead a function c : Q → N.

Definition 107. A parity (tree) automaton is a quintuple A = (Q,Σ, T, I, c)
where Q,Σ, T, I are as above and c is a function from Q to N.

We will not consider Rabin and Street tree automata in this chapter, but
obviously they can be defined in a similar manner by using a set of accepting
pairs or a set of fairness conditions as the last component of the automaton.

2Parity word automata were introduced in problem set 3.

4.2. DEFINITION OF AUTOMATA ON INFINITE TREES 53

All of the above automata take (infinite) Σ-trees as input. They will
work in a top-down manner, assigning first a state from I to the root, then
assigning states to the other nodes in T according to the transition table T .
Formally, runs of tree automata on Σ-trees are defined as follows:

Definition 108. A run of a Büchi (or Müller or parity) automaton A on
a Σ-tree τ is a mapping r : T → Q such that (i) r(λ) ∈ I and (ii) for all
u ∈ T , we have (r(u), τ(u), r(u0), r(u1)) ∈ T .

Thus, a run of an automaton on a Σ-tree is simply a labelling of the
nodes in the tree by states from Q which satisfies the automaton’s initial
states and transition table.

We now define acceptance for our three different types of infinite tree
automata.

Definition 109. A run r of an automaton A on a Σ-tree τ is said to be
successful if one of the following holds:

• A is a Büchi automaton with final state set F , and for every path π
of T , we have

{q ∈ Q | r(u) = q for infinitely many u ∈ π} ∩ F 6= ∅

• A is a Müller automaton with F as its set of distinguished subsets,
and for every path π of T , we have

{q ∈ Q | r(u) = q for infinitely many u ∈ π} ∈ F

• A is a parity automaton with coloring function c, and for every path
π of T , we have

min{c(q) | r(u) = q for infinitely many u ∈ π} is even

A Σ-tree τ is accepted by an automaton A if there is a successful run of A
on τ .

Thus, in order to decide whether a run is successful, we consider each
of the restrictions of the run to a single path of the tree, and we check
whether each of these infinite sequences of states satisfies the acceptance
condition of the automaton. So for instance if we are working with a Büchi
tree automaton, then we require that every infinite path has infinitely many
nodes labelled by a final state.

54 CHAPTER 4. AUTOMATA ON INFINITE TREES

Definition 110. The language of an automaton A with alphabet Σ, denoted
L(A), is the set of Σ-trees which are accepted by A. A language is said to be
Büchi- (resp. Müller-, parity-) recognizable if it is accepted by some Büchi
(resp. Müller, parity) automaton.

We illustrate the above definitions with some examples.

Example 111. Consider the Büchi automaton A = (Q,Σ, T, I, F) where
Q = {qa, qb}, Σ = {a, b}, T = {(qa, a, qa, qa), (qb, a, qa, qa), (qa, b, qb, qb),
(qb, b, qb, qb)}, I = {qa}, and F = {qa}. We remark that the transition
table T assigns to a node the state qa whenever the node’s parent is labelled
by the symbol a, and it assigns the state qb to nodes with parents labelled
by b. It follows that if a tree has an accepting run, then each of its branches
must contain an infinite number of a’s. Likewise, if a tree has infinitely
many a’s on each of its branches, then the unique run of A on the tree will
be accepting. Thus, L(A) is the set of all Σ-trees having infinitely many a’s
on every branch.

Example 112. Consider the Büchi automaton A = (Q,Σ, T, I, F) where
Q = {qa, qb, qc}, Σ = {a, b}, T = {(qa, a, qa, qc), (qa, a, qc, qa), (qb, a, qa, qc),
(qb, a, qc, qa), (qa, b, qb, qc), (qa, b, qc, qb), (qb, b, qb, qc), (qb, b, qc, qb), (qc, a, qc, qc),
(qc, b, qc, qc)}, I = {qa}, and F = {qa, qc}. We remark that when we are in
a state qa or qb and we read a symbol x ∈ {a, b}, then one of the children
is assigned the state qc and the other is assigned qx. Since we must start
with the state qa at the root, it follows that every run must contain a single
branch with only qa and qb, and all other branches will contain finitely many
qa and qb states, and hence infinitely many qc states. The latter branches
will all satisfy the acceptance condition, and the “chosen” branch which
contains only qa and qb will satisfy the acceptance condition if and only if it
has infinitely many qa states. It follows that the language accepted by A is
the set of all Σ-trees which have at least one branch with infinitely many a’s.

Example 113. Consider the Müller automaton A = (Q,Σ, T, I,F) where
Q = {qa, qb}, Σ = {a, b}, T = {(qa, a, qa, qa), (qb, a, qa, qa), (qa, b, qb, qb),
(qb, b, qb, qb)}, I = {qa}, and F = {{qb}}. Notice that as in Example 111,
T assigns to children of a node labelled a the state qa and to children of
a node b the state qb. Moreover, accepting runs have finitely many a’s on
every branch. It follows that the language of A is the set of Σ-trees in which
every branch contains only finitely many a’s.

Example 114. Consider the parity automaton A = (Q,Σ, T, I, c) where
Q = {qa, qb}, Σ = {a, b}, T = {(qa, a, qa, qa), (qb, a, qa, qa), (qa, b, qb, qb),

4.3. RELATION BETWEEN BÜCHI AND MÜLLER TREE AUTOMATA55

(qb, b, qb, qb)}, I = {qa}, c(qa) = 1 and c(qb) = 2. Then a branch of a
run satisfies the acceptance condition if the minimum value of the infinity
set of the branch is even, i.e. the infinity set is equal to {q2}. It follows that
A recognizes the same language as the Müller automaton in Example 113,
which is the set of all Σ-trees having finitely many a’s per branch.

4.3 Relation between Büchi and Müller Tree Au-

tomata

For infinite words, we proved in Chapter 2 that Büchi and Müller automata
recognize the same ω-languages. In this section, we show that for infinite
trees, this is no longer the case: Büchi tree automata are strictly weaker
than Müller tree automata.

We first show that Müller tree automata can recognize all Büchi-recog-
nizable languages.

Theorem 115. Every Büchi-recognizable language is Müller-recognizable.

Proof. The proof is essentially the same as for infinite words. Given a Büchi-
automata A = (Q,Σ, T, I, F), we construct the Müller automaton A′ =
(Q,Σ, T, I,F) where F = {S ⊆ Q |S ∩F 6= ∅}. It can be easily verified that
L(A) = L(A′).

We now show that there are tree languages which are Müller-recognizable
but not Büchi-recognizable.

Theorem 116. There exist Müller-recognizable languages which are not
Büchi-recognizable.

Proof. Let Σ = {a, b}, and let L be the language of Σ-trees in which every
branch contains only finitely many a’s. We know from example 113 that L is
Müller-recognizable, and we aim to show that L is not Büchi-recognizable.

Suppose then for a contradiction that there is a Büchi tree automaton
A = (Q,Σ, T, I, F) which recognizes L. Let n be the number of states in
Q. Now define the sets of nodes Ui (for i ≥ 0) as follows: Ui = ∪i

k=0
(1+0)k.

Define for each i ≥ 0 the Σ-tree τi so that τi(w) = a for w ∈ Ui and τi = b
otherwise. By construction, we have the following properties:

1. If τi(w) = a, then τi+1(w) = a and τi+1(1
k0w) = a for every k ≥ 1.

2. If τi+1(w) = a and w = 1k0v for some k ≥ 1, then τi(v) = a.

56 CHAPTER 4. AUTOMATA ON INFINITE TREES

We also remark that each tree τi belongs to L since each branch of τi has
only finitely many a’s. In particular, this means that there must be some
accepting run r of the Büchi automaton A on τn.

We now use the run r to construct a sequence of indices m1, . . . ,mn. We
let m1 > 0 be such that r(1m1) = f1 ∈ F and for every 0 < k < m1 we
have r(1k) 6∈ F . Note that we must be able to find such a m1 since r is an
accepting run, and so every path in r contains infinitely many final states.
If we have already defined m1, . . . ,mi, and i < n, then we define mi+1 so
that r(1m101m20 . . . 1mi01mi+1) = fi+1 ∈ F and no smaller value has this
property.

Now because |Q| < n, it follows that there exist j < k such that fj = fk.
Let u = 1m101m20 . . . 1mj and v = 01mj+101mj+20 . . . 1mk . Then we have
r(u) = r(uv) = fj = fk ∈ F .

We now replace the subtree rooted at node uv by the tree τnu , i.e. we
replace τn by τn[uv → τnu]. It is not hard to show that the resulting tree still
has an accepting run, namely r[uv → ru]. We can apply this procedure a
second time in the subtree rooted at uv, again yielding an accepting run. If
we then iterate this procedure an infinite number of times, then the resulting
tree will still have an accepting run. However, this tree will contain a path
with an infinite number of a’s since by construction there must be at least
one a between u and uv (and hence between uv and uvv, uvv and uvvv, ...).
This means that the automaton A accepts a tree which contains a path with
infinitely many a’s, which contradicts our assumption that L(A) = L.

Note that the proof of Theorem 116 also shows that the set of Büchi-
recognizable tree languages is not closed under complement. This is because
the language L from the proof is the complement of the language from
Example 112, which we showed to be Büchi-recognizable.

It is also interesting to note that the language we used to show that
Müller tree automata are more powerful than Büchi tree automata is the
tree version of the language that we used to show nondeterministic Büchi
are strictly stronger than deterministic Büchi. The following result, which
we will not prove here, states that all tree languages which are Müller-
recognizable but not Büchi-recognizable can be obtained from some Büchi-
recognizable language of infinite words which is not recognized by any de-
terministic Büchi automaton. In the statement of the theorem, we use L∆

to denote the set of trees τ such that every path of τ belongs to the infinite
word language L.

Theorem 117. Every Σ-tree language which is Müller-recognizable but not
Büchi-recognizable is of the form L∆ for some infinite word language L

4.4. RELATION BETWEEN MÜLLER AND PARITY TREE AUTOMATA57

over Σ which is Büchi-recognizable but not Müller-recognizable. Conversely,
if L is a Büchi-recognizable language of infinite words which is not accepted
by any deterministic Büchi automaton, then L∆ is Müller-recognizable but
not Büchi-recognizable.

4.4 Relation between Müller and Parity Tree Au-

tomata

In this section, we show that Müller and parity automata have the same
expressive power. We first show the easier direction, which is that parity-
recognizable languages can also be recognized by Müller automata.

Theorem 118. Every parity-recognizable language is Müller-recognizable.

Proof. Given a parity tree automaton A = (Q,Σ, T, I, c), we construct a
Müller automaton A′ = (Q,Σ, T, I,F), by setting

F = {S ⊆ Q |min{c(q) | q ∈ S} is even}

It is easily verified that A′ and A accept the same tree language.

The other direction of the equivalence (Müller-recognizable ⇒ parity-
recognizable) is more interesting.

Theorem 119. Every Müller-recognizable language is parity-recognizable.

Proof. Consider some Müller tree automaton A = (Q,Σ, T, I,F). For sim-
plicity, we suppose that the states of Q are {1, . . . , n}. For the state set of
the parity tree automaton, we will use all pairs ((q1 . . . qn), p) where q1 . . . qn

is a permutation of 1 . . . n (i.e. contains exactly once each state in Q) and
p ∈ {1, . . . , n}. The idea is that q1 . . . qn represents the order of the last
visits of the states on the run of the Müller automaton on some path: qn is
the most recently visited state on the path, then the state qn−1, and so on.
We use p to indicate the previous position of the most recently visited state
sq. For example, if we are at a state ((2 1 3), 1) in the parity automaton
and the next visited state of the Müller automaton on the path is 1, we
transition to ((2 3 1), 2) , since 1 is now the most recently visited state of
Q, 3 is the second most recently visited, state 2 is the least recently visted,
and the previous position of the state 1 in the sequence was 2. If the next
state visited by the Müller automaton on the path is 2, then we would get
the state ((3 1 2), 1), since 2 is the most recently visited state (then state 1,
and then state 3), and 2 was previously at position 1.

58 CHAPTER 4. AUTOMATA ON INFINITE TREES

Before describing the rest of the parity automaton, we prove some prop-
erties of its set of states. Let us suppose that q1q2q3 . . . is a sequence of states
in Q, and let s1s2s3 . . . be the corresponding sequence of states in the parity
automaton starting from some state ((t1 . . . tn−1q1), 1) where t1 . . . tn−1 is
any permutation of {1, . . . , n} \ {q1}. Then we claim the following:

Inf(q1q2q3 . . .) = S (where |S| = k) iff the sequence s1s2s3 . . . satisfies:

1. the position pi of state si is less than n − k + 1 for finitely many i

2. there are infinitely many i such that pi = n − k + 1 and the set of
states appearing in positions n − k + 1 to n is precisely S

To prove the first direction of the claim, let l1 be such that qi ∈ S for
all i ≥ l1. Then let l2 > l1 be such that every state in S appears at some
position between l1 and l2. This means that starting from timepoint l1, only
states from S are moved to the final position in the sequence. Moreover, by
timepoint l2, we must have moved all of the states in S to the final position
at least once, and so the last k positions of the sequence in state sl2 must
contain precisely the states in S (since the other states are pushed further
and further to the left). In future states si, we never move a state outside
of S (which are now in positions 1 to n− k) to the final position, so pi must
always be at least n − k + 1, and the last k positions must remain in S.
We also remark that if there are only finitely many states with position pi

equal to n − k + 1, then there must be some state in S which is no longer
visited, contradicting the fact that Inf(q1q2q3 . . .) = S. Thus, both parts of
the claim must hold. The second direction of the claim is shown using a
similar analysis of the construction.

Now we construct our new parity automaton and use the above claim
to prove its correctness. Our parity automaton A′ will have the state set
described above. For the initial set of states I ′, we can use any state
((t1 . . . tn−1q), 1) where q ∈ I and t1 . . . tn−1 is any permutation of {1, . . . , n}\
{q}. Our transition table T ′ is composed of all tuples

(((i1 . . . in−1i), p), a, ((i′1 . . . i′n−1i
′), p′), ((i′′1 . . . i′′n−1i

′′), p′′))

such that (i, a, i′, i′′) belongs to the transition table of A, the state se-
quence i′1 . . . i′n−1 (resp. i′′1 . . . i′′n−1) is obtained by removing i′ (resp. i′′)
from i1 . . . in−1i, and p′ (resp. p′′) denotes the position of i′ (resp. i′′) in
i1 . . . in−1i. Finally, for our acceptance condition, we define the function c
as follows:

4.5. COMPLEMENTATION: REDUCTION TO PARITY GAMES 59

• if s = ((q1 . . . qn), p) and {qp . . . qn} ∈ F , then c(s) = 2p

• if s = ((q1 . . . qn), p) and {qp . . . qn} 6∈ F , then c(s) = 2p + 1

In order to show correctness of the construction, suppose first that τ ∈ L(A).
Then we have an infinite run r = q1q2q3 . . . of A on τ such that the infinity
set of each branch of r belongs to F . Choose some ((t1 . . . tn−1q1), 1) ∈ I ′,
and let s be the unique run of A′ on τ starting from ((t1 . . . tn−1q1), 1) such
that the last component of the sequence in s(w) equals r(w). In other words,
we use the transitions from the run r to determine our transitions in s. Now
consider some path π. We know that Inf(r|π) = S for some S ∈ F since r
is a successful run. It follows from the above claim that s|π is such that (i)
the position pi of state si is less than n − |S| + 1 for finitely many i, and
(ii) there are infinitely many i such that pi = n − |S| + 1 and the set of
states appearing in positions n − |S| + 1 to n belongs to S. But it follows
then that Inf(s|π) contains some element of the form ((q1 . . . qn), n−|S|+1)
where {qn−|S|+1, . . . , qn} = S, and Inf(s|π) contains no elements of the form
((q1 . . . qn), p) for p ≤ n − |S|. It follows that the path s|π satisfies the
parity acceptance condition. Since the same holds for all paths, we get that
τ ∈ L(A′).

For the second direction, suppose that τ ∈ L(A′). That means that there
is an accepting run s of A′ on τ . Define r such that r(w) = q if q is the final
state in the sequence of states in s(w). By definition, r(λ) ∈ I, and for every
position w, we must have (r(w), τ(w), r(w0), r(w1)) ∈ T . It follows that r
is a run of A on τ . Now because s is accepting, it follows that for each path
π, there is some state ((q1 . . . qn), p) such that {qp . . . qn} ∈ F which appears
infinitely often on s|π, and that no state with last component less than p
appears infinitely often. But according to the above claim, and the way we
have defined the run r, it must be the case that Inf(r|π) = {qp . . . qn} ∈ F .
Thus, all paths of r satisfy the Müller acceptance condition, so r is an
accepting run, and w ∈ L(A).

4.5 Complementation: Reduction to Parity Games

The class of languages recognized by Müller (or equivalently parity) au-
tomata can be shown to satisfy the standard closure properties: union,
intersection, complementation, and projection. In this section, we will focus
on complementation since the other closure properties are proved similarly
to the case for infinite word automata. On the other hand, closure under
complementation is a much more difficult and interesting result.

60 CHAPTER 4. AUTOMATA ON INFINITE TREES

The idea behind our proof will be to reduce the complementation prob-
lem to a known result concerning strategies in certain types of (abstract)
games. We associate to a tree automaton A (with alphabet Σ) and a Σ-
tree τ an infinite two-person game denoted GA,τ . We will assume without
loss of generality that A has a single initial state qI . The two players in
this game are called “Automaton” and “Pathfinder”. The players alternate
turns, and after each round of turns, they move to a subsequent position in
the tree τ , starting from the root node. The game begins with Automaton
who must select a transition from T which can be applied at the root node.
Then the player Pathfinder chooses either the right or left child of the node,
and moves the marker to this node. It is then Automaton’s turn again to
choose a new transition from T which must agree with the label of the cur-
rent node of the tree and the state associated with this node. Pathfinder
then chooses again whether to move to the marker to the left child or right
child. The game continues indefinitely in this manner and results in the con-
struction of an infinite sequence of states from Q. We say that Automaton
wins the game if this sequence of states satisfies the acceptance condition
of A, and otherwise it is Pathfinder who wins. Thus, the player Automa-
ton wants to choose transitions which will satisfy the acceptance condition,
while Pathfinder aims to select a path for which Automaton will not be able
to fulfill the acceptance condition.

Formally, the positions of the game GA,τ are of two types, those for
Automaton, and those for Pathfinder. Automaton’s game positions are of
the form (w, q) where w is a node and q is a state from Q. From the
position (w, q), the possible moves of Automaton are precisely the tran-
sitions from T of the form (q, τ(w), q1, q2). If Automaton selects a tran-
sition (q, τ(w), q1, q2), then this yields the position (w, (q, τ(w), q1 , q2)) for
Pathfinder. Now Pathfinder may select either a move to the left child of
w, yielding the position (w0, q1), or a move to the right child node, which
gives the game position (w1, q2). The usual starting position for the game
is (λ, qI).

A natural way of thinking of the game GA,τ is as an infinite graph, in
which the vertices are game positions, and there is an edge from one game
position to another if there is a move which is possible in the first position
and leads to the second position. Then each possible infinite sequence of
the players’ moves in the game corresponds to an infinite path in this game
graph. We will call a game position p′ reachable from a game position p if
there exists a finite sequence of moves which leads from p to p′.

A strategy from position p for the player Automaton (resp. Pathfinder) is
a function mapping each sequence of moves which begin in p and end in some

4.5. COMPLEMENTATION: REDUCTION TO PARITY GAMES 61

game position p′ of Automaton (resp. Pathfinder) to a move which is possible
in the position p′. Thus, a strategy for p tells the player exactly which
moves he should select at each possible game position which is reachable
from p. Strategies which depend only on the current position p′, and not
on the moves which lead to this position, are called memoryless. A winning
strategy for a player is a strategy which guarantees that the player will win
if he follows the strategy no matter what moves the other player makes.

We now show how acceptance of a tree by an automaton can be rephrased
in terms of winning strategies.

Lemma 120. The tree automaton A over alphabet Σ accepts a Σ-tree τ if
and only if there is a winning strategy for the player Automaton in the game
GA,τ starting from the position (λ, qI).

Proof. Suppose that A accepts τ , and consider some successful run r of A
on τ . We use r to construct a winning strategy from (λ, qI) for Automaton
in the game GA,τ . The strategy is defined as follows: at the root, Automa-
ton should pick the transition (r(λ), τ(λ), r(0), r(1)), and at all subsequent
positions (w, q), he should select the transition (q, τ(w), r(q0), r(q1)). If Au-
tomaton follows this strategy, then the sequence of states generated by the
players’ moves must correspond to a path in the run r. Since we know
that all paths in r satisfy the acceptance condition of A, it follows that
Automaton must win if he follows this strategy.

Conversely, suppose that Automaton has a winning strategy from (λ, qI)
in the game GA,τ . Then we construct a successful run of A on τ as follows.
At the root node, we assign the unique initial state of A: r(λ) = qI . For the
remaining nodes, we proceed level by level. If at some stage, r(w) is defined,
but w’s children have not been assigned states, then we set r(w0) = q1 and
r(w1) = q2, where (r(w), τ(w), q1 , q2) is the transition which is assigned to
the game position (w, r(w)) by the winning strategy. Now by definition
of the moves of Automaton, r must be a run of A on τ . Moreover, it is
a successful run because if there were a path in r which does not satisfy
the acceptance condition of A, the Pathfinder could choose this path, and
Automaton would not win the game, contradicting the fact that Automaton
is using a winning strategy to select his moves.

According to this lemma, a tree τ is not accepted by A if and only if
Automaton does not have a winning strategy in the game GA,τ . The next
step in the proof is to make use of the following important result3 (which
we very unfortunately will not have time to prove in the course):

3Actually, Theorem 121 is just a special case of a more general theorem which says

62 CHAPTER 4. AUTOMATA ON INFINITE TREES

Theorem 121. Let A be a parity tree automaton over Σ, and let τ be a
Σ-tree. Then for every game position p in the game GA,τ , there exists a
memoryless winning strategy for p for either Automaton or Pathfinder. In
particular, from the starting position (λ, qI), either Automaton or Pathfinder
has a winning strategy.

This theorem tells us that a tree τ is not accepted by A if and only if
Pathfinder has a memoryless winning strategy from (λ, qI) in the game GA,τ .
To prove our complementation result, we will show how to use Pathfinder’s
memoryless winning strategy in GA,τ to construct an automaton which ac-
cepts the complement of L(A).

Theorem 122. For any parity tree automaton A over Σ, there exists a
parity tree automaton which recognizes exactly those Σ-trees which do not
belong to L(A).

Proof. Consider some parity automaton A = (Q,Σ, T, I, c). We will con-
struct a Müller automaton which accepts the complement of L(A). By
Theorem 119, the Müller automaton we construct can then be transformed
into an equivalent parity automaton, yielding the desired result.

Now we know from Lemma 120 and Theorem 121 that a Σ-tree τ is not
accepted by A if and only if

(⋆) Pathfinder has a memoryless winning strategy from (λ, qI) in GA,τ

We wish to rephrase the latter condition in terms of acceptance of the tree
τ by some automaton B. First, we remark that Pathfinder’s memoryless
strategy can be broken down into a set of functions, one for each node w,
which state how to compute the direction for any given transition. In other
words, we can see Pathfinder’s strategy as associating a function fw to each
node w which maps each transition from T to a direction in {0, 1}. We will
let I denote the set of all such functions. Note that this set is finite since
T is finite. This means that we can view Pathfinder’s strategy as an I-tree
σ, where at each node w, we have σ(w) = fw ∈ I. We can thus reformulate
the statement (⋆) as follows:

There exists an I-tree σ such that for every infinite sequence
t0t1t2 . . . of transitions from T (chosen by Automaton), the unique
path π ∈ {0, 1}ω determined by t0t1t2 . . . and the strategy en-
coded in σ gives rise to an infinite sequence of states which vio-
lates the parity condition.

that all parity games (of which the game GA,τ is just one example) are determined, i.e.
one of the players must have a winning strategy.

4.5. COMPLEMENTATION: REDUCTION TO PARITY GAMES 63

We will call I-trees which satisfy the conditions of this statement winning
trees. Our first objective will be to characterize using infinite word automata
when a given I-tree σ is a winning tree. We will work with infinite words
over the alphabet Σ′ composed of triples (f, a, i) where f is a function from
T to {0, 1}, a is a symbol from Σ, and i ∈ {0, 1} is a direction. Given a
strategy tree σ and a Σ-tree τ the language Lσ,τ will be composed of all
Σ′-words

(σ(λ), τ(λ), π(0)) (σ(π[0, 0]), τ(π[0, 0]), π(1)) (σ(π[0, 1]), τ(π[0, 1]), π(2)) . . .

where π is a path (which we view as an infinite string over {0, 1}). We notice
that the last coordinate specifies the path π, and the first two coordinates
specify the strategy function and symbol associated with each position in
the path by the trees σ and τ . Thus, such a sequence encodes the path π
and the restrictions of σ and τ to π, i.e. the words σ|π and τ |π.

Now we create a parity word automaton B = (Q,Σ′, T ′, qI , c) where Q,
qI , and c are as in the original tree automaton A. For the transition rela-
tion T ′, we include all transitions of the form (q, (f, a, i), q′i) such that there
exists t = (q, a, q′0, q

′
1) ∈ T such that f(t) = i. Here the idea is that we allow

the other player Automaton to choose a transition from T . However, we
only allow those transitions that would give rise to the path encoded in the
last coordinate of the word we are reading (since we want π to be the path
resulting from the moves of Automaton and Pathfinder). Now we can give
our characterization of winning trees:

Claim: The tree σ is a winning tree iff Lσ,τ ∩ L(B) = ∅.

Proof. For the first direction, let σ be a winning tree, and suppose for a
contradiction that Lσ,τ ∩ L(B) 6= ∅. Then there exists a path π such that
the Σ′-word

µ = (σ(λ), τ(λ), π(0)) (σ(π[0, 0]), τ(π[0, 0]), π(1)) (σ(π[0, 1]), τ(π[0, 1]), π(2)) . . .

is accepted by B. It follows that there is a successful run q0q1q2 . . . of B on µ
with q0 = qI . This means that for each j ≥ 0 there is a transition

(qj , (σ(π[0, j − 1]), τ(π[0, j − 1]), π(j)), qj+1)

in T ′, and hence we can find a transition tj = (qj , τ(π[0, j − 1]), q′0, q
′
1) of A

satisfying σ(π[0, j−1])(tj) = π(j). Note that if π(j) = 0, we have qj+1 = q′0,
otherwise qj+1 = q′1. Let us then suppose that the transitions tj are those

64 CHAPTER 4. AUTOMATA ON INFINITE TREES

chosen by the player Automaton during the game, and suppose Pathfinder
responds following the strategy σ, i.e. plays the moves σ(π[0, j]). Then
the induced sequence of states is qIq1q2 . . ., which satisfies the acceptance
condition of B, and hence of A. This contradicts our assumption that σ is
a winning tree.

For the second direction, suppose Lσ,τ ∩ L(B) = ∅. Consider some play
of the game GA,τ from the starting position (λ, qI) such that Pathfinder
follows the strategy encoded in σ. Let π be the path created resulting from
the play, and let (qj , τ(π[0, j − 1]), qj0, qj1) ∈ T be the transition chosen by
Automaton when at position (π[0, j − 1], qj). Finally let qIq1q2 . . . be the
sequence of states resulting from the play. It is not hard to verify that this
sequence of states is a run of the word µ ∈ Lσ,τ defined above. Since we have
assumed that Lσ,τ ∩ L(B) = ∅, we get µ 6∈ L(B). It follows that qIq1q2 . . .
does not verify the acceptance condition of B, hence the acceptance condi-
tion of A. Now since the above argument holds for every possible sequence
of transitions chosen by Automaton, we have shown that σ satisfies the con-
ditions of winning trees. (end of proof of claim)

We now use the word automaton B in order to construct a parity tree
automaton which recognizes the complement of L(A). The first step is to
complement the automaton B, since according to the claim, σ is a winning
tree if every word in Lσ,τ is not in L(B). This can be done e.g. by first
translating B into an equivalent Müller word automaton, then performing
complementation, and then translating back to a parity automaton. Let
B′ = (Q′,Σ′, T ′′, q′I , c

′) be the resulting parity word automaton satisfying

L(B′) = L(B).

We then use B′ to define the desired parity tree automaton. The main
idea is to run B′ in parallel on each path of the input tree τ , while “guessing”
the strategy σ. Formally, we define the automaton A′ = (Q′,Σ, T ′′′′, q′I , c

′),
where Q′, q′I , c

′ are as in the automaton B′, the alphabet Σ is the same as
for A, and the transition table T ′′′′ contains a tuple (q, a, q1, q2) if and only
if (q, (f, a, 0), q1) ∈ T ′′′ and (q, (f, a, 1), q2) ∈ T ′′′ for some function f : T →
{0, 1}. In order to complete the proof, we must show that L(A′) = A.

For the first direction, suppose τ ∈ L(A′). Then there is an accept-
ing run r of A′ on τ . Hence r|π satisfies the parity condition c′ for ev-
ery path π. Moreover, for each position w, there must be a transition
(r(w), τ(w), r(w0), r(w1)) in T ′′′′. From the way we have defined T ′′′′, we
know that there must exist some function fw : T → {0, 1} such that both
(r(w), (f, τ(w), 0), r(w0)) and (r(w), (fw, τ(w), 1), r(w1)) belong to the tran-

4.5. COMPLEMENTATION: REDUCTION TO PARITY GAMES 65

sition set T ′′′ of the word automaton B′. Define an I-tree σ by setting
σ(w) = fw. Consider some path π and the corresponding word

µ = (σ(λ), τ(λ), π(0)) (σ(π[0, 0]), τ(π[0, 0]), π(1)) (σ(π[0, 1]), τ(π[0, 1]), π(2)) . . .

in Lσ,τ . Now given the above, we know that r|π is a run of B′ on µ, and
moreover, it must be an accepting run since r is accepting, and the parity
condition is the same for B′ and A′. So we get µ ∈ L(B′), and hence
µ 6∈ L(B). It follows that Lσ,τ ∩ L(B) = ∅, so by the above claim, σ is a
winning tree. By applying (⋆) and its reformulation and Lemma 120, we
obtain τ 6∈ L(A).

For the second direction, suppose τ 6∈ L(A). Then by Lemma 120 and
the statement (⋆) and its reformulation, there must exist a winning tree
σ. By the above claim, σ is such that Lσ,τ ∩ L(B) = ∅, or equivalently,
Lσ,τ ⊆ L(B′). So for every path π there exists an accepting run of B′ on the
word

(σ(λ), τ(λ), π(0)) (σ(π[0, 0]), τ(π[0, 0]), π(1)) (σ(π[0, 1]), τ(π[0, 1]), π(2)) . . .

We note that since B′ is a deterministic parity automaton with a single
initial state, if two paths π and π′ coincide on an initial segment, then the
unique runs of B′ on the corresponding words in Lσ,τ will assign the same
states to this initial segment. That means that for every position w there is
a unique state q such that if π is such that w = π[0, k] , then the run of B′

on π assigns q to position k. Now define a run r of A′ on τ by setting r(w)
equal to the unique state q defined as described. Then each path r|π in r is
precisely the run of B′ on the word in Lσ,τ induced by the path π. It follows
that r|π satisfies the parity condition c′. Thus, r is an accepting run of A′

on τ , i.e. τ ∈ L(A′).

