Exercise 1 (20 points). Construct deterministic finite automata over the alphabet \(\Sigma = \{a, b\} \) which recognize the following languages:

1. The set of words with an even number of \(a \)'s.
2. The set of words which contain no substring \(aaa \).
3. The set of words in which every \(a \) is immediately followed by a \(b \).
4. The set of words which terminate in \(bb \).
5. The set of words whose third-to-last symbol is \(a \).

For the last language, also give a simpler NFA.

Exercise 2 (20 points). Prove or disprove: if the language \(L \) is regular, then so is the language \(\text{Reverse}(L) = \{w^R \mid w \in L\} \) (where \(w^R \) is the word \(w \) in reverse).

Exercise 3 (20 points). Let \(L \) be a language over \(\Sigma \). Then we define \(\text{DeleteOne}(L) \) to be the language \(\{xz \mid xyz \in L, y \in \Sigma\} \), i.e. the set of words from \(L \) with one symbol deleted. Prove that if \(L \) is regular, then so is \(\text{DeleteOne}(L) \).

Exercise 4 (20 points). Let \(L \) be a language. Then we define \(\text{Half}(L) \) as the set of strings \(x \) such that there is a string \(y \) with \(|x| = |y| \) and \(xy \in L \). Prove that if \(L \) is regular, then so is \(\text{Half}(L) \).

Exercise 5 (20 points). Show the following two languages are not regular. For the first, use the pumping lemma, and for the second, use Myhill-Nerode.

- \(\{www \mid w \in \{a, b\}^*\} \)
- \(\{a^ib^ja^k \mid k > i + j\} \)