Homework 2

Finite Automata on Infinite Words and Trees Winter semester, 2009-2010

Note: Graphical representations of automata are accepted.

Exercise 1 (25 points). Consider the alphabet $\Sigma = \{0, 1\}$. Construct Büchi automata which accept each of the following languages:

- 1. $\{w \mid \text{the symbol 0 appears in } w \text{ exactly twice}\}$
- 2. $\{w \mid \text{every } 0 \text{ which appears in } w \text{ is followed immediately by } 11\}$
- 3. $\{w \mid w \text{ does not contain the substring } 000 \}$
- 4. $\{w \mid w \text{ contains finitely many substrings } 11\}$
- 5. $\{w \mid w \text{ contains finitely many substrings 11 but infinitely many 1's} \}$

Exercise 2 (25 points). Prove or disprove the following two statements:

- 1. The set of languages recognized by deterministic Büchi automata is closed under union.
- 2. The set of languages recognized by deterministic Büchi automata is closed under intersection.

Exercise 3 (25 points). Suppose that L is a Büchi recognizable language over the alphabet

$$\Sigma = \Sigma_1 \times \Sigma_2 = \{(a, b) \mid a \in \Sigma_1, b \in \Sigma_2\}$$

Prove that the languages $PR_1(L)$ and $PR_2(L)$ defined by

 $PR_{1} = \{ u \in \Sigma_{1}^{\omega} \mid \exists v \in \Sigma_{2}^{\omega} \text{ such that } (u[0], v[0])(u[1], v[1])(u[2], v[2]) \dots \in L \}$ $PR_{2} = \{ v \in \Sigma_{2}^{\omega} \mid \exists u \in \Sigma_{1}^{\omega} \text{ such that } (u[0], v[0])(u[1], v[1])(u[2], v[2]) \dots \in L \}$ are both Büchi recognizable.

Exercise 4 (25 points). Given a Büchi recognizable language SELECT over alphabet $\{1, 2\}$ and two Büchi recognizable languages L_1 , L_2 over alphabet $\{a, b\}$, prove that the following language FUSION is also Büchi recognizable:

FUSION = {
$$\sigma$$
 | there exists $\alpha \in L_1$ and $\beta \in L_2$ and $\gamma \in \text{SELECT}$ such that $\sigma[i] = \alpha[i]$ if $\gamma[i] = 1$, and $\sigma[i] = \beta[i]$ if $\gamma[i] = 2$ }