Finite Automata on Infinite Words and Trees Winter semester, 2009-2010

Note: Graphical representations of automata are accepted.

Exercise 1 (30 points). Consider the alphabet $\Sigma = \{0, 1\}$. Construct Müller, Rabin, and Streett automata which accept each of the following languages:

- 1. $\{w \mid \text{the symbol 0 appears in } w \text{ exactly twice}\}$
- 2. $\{w \mid \text{every } 0 \text{ which appears in } w \text{ is followed immediately by } 11\}$
- 3. $\{w \mid w \text{ contains finitely many 1's }\}$
- 4. $\{w \mid w \text{ contains finitely many substrings } 11\}$
- 5. $\{w | \text{ either } w \text{ contains only 1's, or } w \text{ contains infinitely many 0's and infinitely many 1's} \}$

Exercise 2 (20 points). Let $\Sigma = \{a, b, c\}$. Let $\mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_3, \mathcal{A}_4$ be the Müller automata whose states and transitions are as pictured in Figure 1, and whose acceptance conditions are defined as follows: $\mathcal{F}_1 = \{\{2, 3\}\},\$

Figure 1: Graph representation of the automata in Exercise 2.

 $\mathcal{F}_2 = \{\{1\}, \{1,4\}\}, \mathcal{F}_3 = \{\{3\}, \{1,2\}\}, \text{ and } \mathcal{F}_4 = \{\{1,2,3\}\}.$ Determine

the languages $L(\mathcal{A}_1)$, $L(\mathcal{A}_2)$, $L(\mathcal{A}_3)$, and $L(\mathcal{A}_4)$. You may represent the languages by ω -regular expressions (e.g. $(aa + bb)^*(ab)^{\omega}$), but try to keep the expressions as simple as possible, and explain your reasoning.

Exercise 3 (15 points). Prove that every Müller-recognizable language is a Boolean combination (union, intersection, complementation) of languages \vec{W}_i , where each W_i is a FA-recognizable language (of finite words).

Exercise 4 (25 points). A parity automaton is a tuple $(Q, \Sigma, T, \{q_I\}, c : Q \to \mathbb{N})$, where T is a transition function. A run r of a parity automaton is successful if and only if $\max\{c(q)|q \in \mathsf{Inf}(r)\}$ is even.

- 1. Show how to construct Müller, Rabin, and Streett automata which recognize the same language as a given parity automaton. Explain briefly how your constructions work.
- 2. Prove that parity automata are closed under negation.

Exercise 5 (10 points). *Review of complementation of finite word automata.* Use the power set construction to convert the following NFA into an equivalent DFA.

