MZH 3090 clu@uni-bremen.de Tel.: 0421/218-64431

3. Aufgabenblatt für die Vorlesung "Logik"

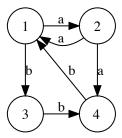
Aufgabe 11: 25 Prozent

Sei $\tau = \{<\}$ eine relationale Signatur, wobei < ein zweistelliges Relationssymbol ist. Gib jeweils eine FO(τ)-Formel für die folgenden Eigenschaften an.

- < ist reflexiv
- < ist antisymmetrisch
- < hat ein kleinstes Element
- < ist linear, d.h. für beliebige Elemente a, b gilt entweder a = b, a < b, oder a > b.
- < ist dicht, d.h. zwischen zwei beliebigen Elemente existiert immer noch ein weiteres
- (a) Welche der Sätze sind gültig in den Strukturen \mathfrak{R}_{\leq} bzw. \mathfrak{N}_{\leq} (aus der Vorlesung)?
- (b) Sei nun $\mathfrak{P} = (P, <^P)$ mit $P = 2^{\mathbb{N}}$ (Potenzmenge der natürlichen Zahlen) und $<^P = \{(N, M) \mid N \subseteq M\}$ (Teilmengenrelation). Welche der Sätze gelten in \mathfrak{P} ? Gib jeweils eine kurze Begründung an.

Aufgabe 12: 25 Prozent

Gegeben sei der folgende gerichtete, kantenbeschriftete Graph G = (V, R, S), wobei R (bzw. S) genau die Kanten sind, die mit a (bzw. b) beschriftet sind.



- (a) Verwende den Auswertungsalgorithmus der Prädikatenlogik, um zu entscheiden, ob folgende Modellbeziehungen gelten:
 - $G, \beta_1 \models \exists x. R(x, y) \text{ mit } \beta_1(y) = 1$
 - $G, \beta_2 \models \forall y. (R(x,y) \lor S(x,y)) \text{ mit } \beta_2(x) = 2$
- (b) Gib eine Formel $\varphi(x)$ an, für die $G, \beta \models \varphi(x)$ genau dann gilt, falls $\beta(x) \in \{1, 2\}$

Aufgabe 13: 25 Prozent

- (a) Beweise durch Umformung mittels bekannter Äquivalenzen oder widerlege durch Angabe eines Gegebeispiels:
 - $\forall x.(\varphi \lor \psi) \equiv \forall x.\varphi \lor \forall x.\psi$
 - $\neg \exists x. (\exists y. \neg \varphi \land \psi) \equiv \forall x. (\psi \rightarrow \forall y. \varphi)$ (Beachte die Präzedenzregeln für \exists und \land .)
 - $\forall x. \exists y. \varphi \equiv \exists y. \forall x. \varphi$
- (b) Bringe die folgende Formel zuerst in Negationsnormalform und dann in Pränexnormalform.

$$\neg \exists y. (\neg R(f(x), y) \land \forall x. R(x, x))$$

Aufgabe 14: 25 Prozent

Vervollständige den Beweis des Theorems von Folie 59 (aktuelle Version der Folien), indem du zeigst, dass für alle τ -Formeln φ und für alle Zuweisungen β gilt:

$$\mathfrak{A}, \beta \models \varphi \text{ gdw. } \hat{\mathfrak{A}}, \hat{\beta} \models \varphi$$

Verwende strukturelle Induktion über den Aufbau der Formeln.

Aufgabe 15: 25 Prozent (Zusatzaufgabe)

Das Spektrum eines $FO(\tau)$ -Satzes φ ist die Menge aller natürlichen Zahlen n, sodass φ ein Modell mit einem Universum der Größe n besitzt.

- (a) Zeige:
 - \emptyset und $\mathbb{N} \setminus \{0\}$ sind jeweils das Spektrum eines $FO(\emptyset)$ -Satzes
 - Jede endliche Menge ist Spektrum eines $FO(\emptyset)$ -Satzes.
 - Jede co-endliche Menge ist Spektrum eines $FO(\emptyset)$ -Satzes (A co-endlich gdw. $\mathbb{N} \setminus A$ endlich)
- (b) Gib einen Satz über der Signatur $\tau = \{R\}$, wobei R ein zweistelliges Relationssymbol ist, an, dessen Spektrum die Menge der geraden Zahlen ist.